KR101967351B1 - Antimicrobial fiber and method of prepating the same - Google Patents
Antimicrobial fiber and method of prepating the same Download PDFInfo
- Publication number
- KR101967351B1 KR101967351B1 KR1020160106878A KR20160106878A KR101967351B1 KR 101967351 B1 KR101967351 B1 KR 101967351B1 KR 1020160106878 A KR1020160106878 A KR 1020160106878A KR 20160106878 A KR20160106878 A KR 20160106878A KR 101967351 B1 KR101967351 B1 KR 101967351B1
- Authority
- KR
- South Korea
- Prior art keywords
- fiber
- gtac
- silver
- fibers
- group
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 94
- 230000000845 anti-microbial effect Effects 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 14
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 claims abstract description 64
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims abstract description 38
- 125000000524 functional group Chemical group 0.000 claims abstract description 11
- 125000003277 amino group Chemical group 0.000 claims abstract description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 7
- 150000005309 metal halides Chemical class 0.000 claims abstract description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims description 50
- 239000004332 silver Substances 0.000 claims description 50
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 48
- 239000000084 colloidal system Substances 0.000 claims description 22
- 239000003365 glass fiber Substances 0.000 claims description 20
- 230000000844 anti-bacterial effect Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 229940068984 polyvinyl alcohol Drugs 0.000 claims description 8
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 8
- 229920006231 aramid fiber Polymers 0.000 claims description 7
- 210000002268 wool Anatomy 0.000 claims description 6
- 229920003043 Cellulose fiber Polymers 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 5
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 241000588724 Escherichia coli Species 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 239000004599 antimicrobial Substances 0.000 claims description 3
- 125000003700 epoxy group Chemical group 0.000 abstract description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 abstract description 4
- 238000007142 ring opening reaction Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 29
- 239000000243 solution Substances 0.000 description 13
- 238000005406 washing Methods 0.000 description 12
- 239000002105 nanoparticle Substances 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- -1 silver cations Chemical class 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004760 aramid Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 241001646719 Escherichia coli O157:H7 Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229940054334 silver cation Drugs 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/38—Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
- D06M11/42—Oxides or hydroxides of copper, silver or gold
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
- D01F1/103—Agents inhibiting growth of microorganisms
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/449—Yarns or threads with antibacterial properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
- D06M2101/36—Aromatic polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/13—Physical properties anti-allergenic or anti-bacterial
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
본 발명은 분자구조에 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기와 금속할로젠화물(Metal Halide) 중 적어도 하나를 포함하는 섬유; 상기 섬유와 결합된 Glycidyltrimethylammonium chloride(GTAC); 상기 GTAC와 결합된 은 나노 입자를 포함하고, 상기 GTAC는 에폭시 기의 링 오픈에 의해 섬유와 결합된 것이고, 상기 은 나노 입자는 GTAC에 존재하는 4차 암모늄 염과 결합된 것인 항균 섬유 및 그 제조 방법에 관한 것이다.The present invention relates to a fiber comprising at least one of a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) and a metal halide in a molecular structure; Glycidyltrimethylammonium chloride (GTAC) combined with the fibers; Wherein the silver nanoparticles are bound to the fiber by ring opening of an epoxy group and the silver nanoparticles are combined with a quaternary ammonium salt present in the GTAC, And a manufacturing method thereof.
Description
본 발명은 항균 섬유 및 그 제조 방법에 관한 것으로, 구체적으로는 은 나노 입자에 의해 표면 처리된 항균 섬유 및 그 제조 방법에 관한 것이다. The present invention relates to an antibacterial fiber and a method for producing the same, and more specifically, to an antibacterial fiber surface-treated with silver nanoparticles and a method for producing the same.
예로부터 은(silver)은 동서양을 막론하고 병독을 다스리는 재료로 널리 사용이 되었다. 예를 들면, 동양의 경우 임금님이 식사를 하기 전, 은 젓가락으로 독이 있는지 검사하거나, 의원이 은으로 만든 침으로 시술하였으며, 미국에서는 우유 그릇 속에 은화를 넣어 우유를 오래 보관하고, 이집트에서는 상처 부위에 은으로 만든 판을 감싸 치료를 하였다. 뿐만 아니라, 동의보감에는 은이 간질 및 경기 등 정신질환과 냉대하와 같은 부인병 예방 및 치료에 효험이 있고, 본초강목에는 은을 몸에 지니고 있으면 오장이 편안하고 심신이 안정되며 나쁜 기를 내쫓고 몸을 가볍게 해서 수명 연장에 도움을 준다고 기록되어 있다.Silver has been widely used as a material to control poisons, both east and west. For example, in the case of the Orient, the king checked the poison with the chopsticks before eating, or the clergyman used the needle made with silver. In the United States, silver was put in the milk bowl to store the milk for a long time. In Egypt, I wrapped a plate made of silver and treated it. In addition, Dongbok can be used for the prevention and treatment of women's diseases such as epilepsy and sports such as epilepsy and cold weather, and when the body has silver in the main river gangmok, it is comfortable for the five people and the mind and body are stabilized. It is said that it helps to extension.
더욱이 기술 발전이 이루어진 현대에 이르러 은이 우리 주변에 존재하는 대부분의 단세포 세균, 박테리아를 죽일 수 있다는 것이 다양한 실험을 통해 밝혀짐에 따라, 은 입자를 접목한 웰빙 제품을 우리 주변에서 더욱더 쉽게 접할 수 있다. 또한, 경제적으로 풍요로워지고 삶의 질이 점차적으로 향상됨에 따라 소비자들의 건강하고 쾌적한 삶에 대한 욕구가 커지면서 항균제품에 대한 수요가 날로 증가하고 있으며, 의류, 침구류, 인테리어 제품을 비롯하여 항균필터, 의료용 섬유 제품 등 다양한 섬유에 적용되고 있고, 벽지, 장판, 식기, 세탁기 등에 이르기까지 활용되고 있으며, 특히, 은을 미세한 나노 입자로 만드는 기술의 개발로 그 적용 분야는 보다 광범위해지고 있는 추세이다.Furthermore, as the technology has been developed, it has become clear through various experiments that silver can kill most single cell bacteria and bacteria that exist around us, so that the well-being product that grafts silver particles can be more easily seen around us . In addition, as the economy becomes more abundant and the quality of life gradually improves, the demand for antimicrobial products is increasing day by day as consumers' desire for a healthy and comfortable life grows, and the demand for antibacterial products is increasing day by day. And textile products. It has been used in various fields such as wallpaper, table top, tableware, washing machine, etc. Especially, development of technology to make fine nano particles of silver is becoming more widespread.
은 나노 입자(Silver Nanoparticles, AgNPs)의 항균 활성에 대한 정확한 메커니즘이 밝혀진 것은 아니지만, 은의 양이온(Ag+)이 세균의 -SH, -COOH, -OH기 등과 강하게 결합하여 세균의 세포막을 파괴하거나 세포의 기능을 교란시킨다고 보는 학설, 산소가 은의 양이온(Ag+)의 촉매 작용에 의해 활성산소(O2+, O2-, O)로 전환되어 이에 의해 살균(산화)작용이 일어난다고 보는 학설, 그리고 나노 크기의 은 입자를 섭취한 미생물이 호흡기 장애 또는 대사 장애를 일으켜 사멸한다고 보는 학설 등이 대표적으로 존재한다.Although the exact mechanism of silver nanoparticles (AgNPs) has not been elucidated yet, the silver cation (Ag +) strongly binds to the -SH, -COOH, and -OH groups of bacteria to destroy the cell membranes of bacteria, The theory that the function is disturbed is that the theory that oxygen is converted to active oxygen (O 2+ , O 2- , O) by the catalytic action of silver cations (Ag +), And that the microorganisms consuming the silver particles of the size cause respiratory or metabolic disorders and die.
다만, 은 나노 입자 단독으로 보면, 반응기가 존재하지 않으므로 고분자나 다른 물질에 직접적으로 적용시키기에 한계가 있다. 이에 종래 문헌 1 및 2에서는 각각 3-mercaptopropyltrimethoxysilane(3-MPTMS) 및 cysteamine12와 같은 가교제를 사용하는 방법으로, 종래문헌 3에서는 물리적인 방법, 그리고 종래문헌 4에서는 Ag 이온을 환원시키는 방법으로 은 입자를 부착시켜 항균성을 부여한 연구 보고가 이루어진 바 있다.However, when silver nanoparticles alone are used, there is a limit to apply directly to polymers or other materials since there is no reactor.
한편, 종래 특허문헌으로 일본공개공보 특개평 2002-293705호에서는 은 콜로이드 입자 및 양이온성 계면활성제를 담지한 무기질 흡착제로 이루어진 은계 항균제를 기재하고 있고, 일본 공개특허공보 평5-195438호에서는 아크릴 섬유 등의 흡착성이 풍부한 섬유재 중에 은 화합물을 항균제로서 혼련시킨 후, 방사하여 얻어진 섬유를 제 4 급 암모늄염 용액 중에 함침시켜 얻어지는 항균 방취 섬유를 개시하고 있다.On the other hand, Japanese Patent Laid-Open No. 2002-293705 discloses a silver antimicrobial agent composed of an inorganic adsorbent carrying silver colloid particles and a cationic surfactant, and JP-A-5-195438 discloses an acrylic fiber Discloses an antibacterial deodorant fiber obtained by kneading a silver compound as an antibacterial agent in a fiber material rich in adsorbability such as water, and then impregnating the resulting fiber into a quaternary ammonium salt solution.
하지만, 여전히 은 입자를 처리함에 있어서 물리적으로 고착시키는 방법은 은 입자가 견고히 결합되지 못하는 한계가 존재하며, 특히 섬유에 적용하는 경우, 마무리 가공 등에서의 반복적인 약품 및 수세 처리, 세탁 등 사용 과정에서의 빈번한 마찰로 인해 항균 물질이 섬유로 탈리되어 버리는 경우가 많다. 또한, 이를 보완하기 위해 접착제나 수지를 이용하면 그만큼 은에 의해 얻어지는 효과가 떨어질 수 있고, 제품 안정성이 저하될 수 있다. However, the method of physically fixing silver particles in the process of silver particles still has a limitation in that silver particles can not be bonded firmly. Particularly, when applied to fibers, it is used in repetitive chemical processes such as finishing and washing, The antimicrobial material is often separated from the fibers by the frequent friction of the fibers. If an adhesive or a resin is used in order to compensate for this, the effect obtained by silver may be lowered and the product stability may be lowered.
이에 충분한 양의 은 나노 입자를 섬유에 보다 견고하게 결합시켜 항균 특성을 강화하고 그 지속력을 향상시킬 수 있는 기술 개발이 요구되는 실정이며, 이를 위해 본 발명은 에폭시기를 갖는 Glycidyltrimethylammonium chloride(GTAC)에 의해 은 나노 입자와 결합 구조를 갖는 항균 섬유 및 그 제조 방법을 제공하고자 한다.Therefore, it is required to develop a technique for enhancing the antimicrobial properties and improving the sustainability of the silver nanoparticles by firmly binding a sufficient amount of the silver nanoparticles to the fibers. To this end, the present invention relates to a silver halide photographic light- Silver nanoparticles and a binding structure thereof, and a process for producing the same.
상기 과제를 해결하기 위한 본 발명의 바람직한 제 1 구현예는 분자구조에 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기와 금속할로젠화물(Metal Halide) 중 적어도 하나를 포함하는 섬유; 상기 섬유와 결합된 Glycidyltrimethylammonium chloride(GTAC); 상기 GTAC와 결합된 은 나노 입자를 포함하고, 상기 GTAC는 에폭시 기의 링 오픈에 의해 섬유와 결합된 것이고, 상기 은 나노 입자는 GTAC에 존재하는 4차 암모늄 염과 결합된 것인 항균 섬유이다.In order to solve the above problems, a first preferred embodiment of the present invention relates to a method for producing a metal halide, which comprises reacting a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) Fibers comprising at least one; Glycidyltrimethylammonium chloride (GTAC) combined with the fibers; Wherein the silver nanoparticles are combined with the GTAC and the GTAC is bound to the fibers by ring opening of an epoxy group and the silver nanoparticles are combined with a quaternary ammonium salt present in the GTAC.
상기 제 1 구현예에 따른 섬유는 유리섬유(glass fiber), 폴리아미드계 섬유(Polyamide fiber), PVA(Poly vinyl alcohol) 섬유, 폴리에스터계 섬유(Polyester fiber), 양모(wool), 아라미드계 섬유(Aramid fiber), 폴리이미드계 섬유(Polyimide fiber), PBI 섬유(Polybenzimidazole fiber) 및 셀룰로오스 섬유(cellulose fiber)로 이루어진 군에서 선택된 1종 이상인 것일 수 있으며, 상기 은 나노 입자는 섬유 100 중량부 기준 0.1 내지 10 중량부 포함되는 것일 수 있다.The fibers according to the first embodiment may include glass fibers, polyamide fibers, PVA (poly vinyl alcohol) fibers, polyester fibers, wool, aramid fibers The silver nanoparticles may be one or more selected from the group consisting of aramid fiber, polyimide fiber, PBI fiber and cellulose fiber. The silver nanoparticles may be 0.1 To 10 parts by weight.
또한, 상기 과제를 해결하기 위한 본 발명의 바람직한 제 2 구현예는 (S1) 분자구조에 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기와 금속할로젠화물(Metal Halide) 중 적어도 하나를 포함하는 섬유를 glycidyltrimethylammonium chloride(GTAC)로 전처리하는 단계; 및 (S2) 상기 GTAC로 전처리된 섬유를 은(Ag) 콜로이드 용액에 침지하여 은 나노 입자와 결합시키는 단계를 포함하는 항균 섬유 제조 방법이다.In order to solve the above-described problems, a second preferred embodiment of the present invention is a method for manufacturing a semiconductor device, comprising: (S1) adding a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) Treating the fiber including at least one of metal halide with glycidyltrimethylammonium chloride (GTAC); And (S2) immersing the fiber pretreated with GTAC in a silver (Ag) colloid solution to bind silver nanoparticles.
상기 제 2 구현예에서 섬유는 유리섬유(glass fiber), 폴리아미드계 섬유(Polyamide fiber), PVA(Poly vinyl alcohol) 섬유, 폴리에스터계 섬유(Polyester fiber), 양모(wool), 아라미드계 섬유(Aramid fiber), 폴리이미드계 섬유(Polyimide fiber), PBI 섬유(Polybenzimidazole fiber) 및 셀룰로오스 섬유(cellulose fiber)로 이루어진 군에서 선택된 1종 이상인 것 일 수 있다.In the second embodiment, the fiber is selected from the group consisting of glass fiber, polyamide fiber, PVA (poly vinyl alcohol) fiber, polyester fiber, wool, aramid fiber Aramid fibers, polyimide fibers, PBI fibers, and cellulose fibers. [0033] The term " fibers "
상기 제 2 구현예에서 (S1) 단계는 증류수에 GTAC가 10 내지 50% 희석된 용액에 섬유를 침지한 후, 60 내지 90℃ 온도에서 예비 건조하고 180 내지 200℃ 온도에서 큐어링(curing)하여 수행될 수 있으며, (S2) 단계는 30 내지 80℃에서 수행되는 것일 수 있다.In the second embodiment, step (S1) is a step of immersing the fiber in a 10 to 50% diluted solution of GTAC in distilled water, pre-drying at 60 to 90 DEG C and curing at 180 to 200 DEG C , And step (S2) may be performed at 30 to 80 ° C.
또, 상기 제 2 구현예에서 (S2) 단계의 은(Ag) 콜로이드 용액은 은(Ag) 나노 입자의 농도가 7,500 내지 50,000ppm인 것일 수 있다.In the second embodiment, the silver (Ag) colloidal solution of step (S2) may have a silver (Ag) nanoparticle concentration of 7,500 to 50,000 ppm.
나아가, 상기 과제를 해결하기 위한 본 발명의 바람직한 제 3 구현예는 상기 제 2 구현예로 제조된 항균 섬유이다.Further, a third preferred embodiment of the present invention for solving the above problems is the antibacterial fiber produced by the second embodiment.
본 발명에 따르면 비교적 간편한 방법을 통해 은 나노 입자를 섬유 표면에 화학적으로 결합시킬 수 있으며, 보다 높은 함량의 은 나노 입자가 견고하게 결합되어, 섬유의 항균 특성을 강화하고 그 지속력을 향상시킬 수 있다.According to the present invention, the silver nanoparticles can be chemically bonded to the fiber surface through a relatively simple method, and the silver nanoparticles having a higher content can be firmly bonded, thereby enhancing the antibacterial property of the fiber and improving the sustainability thereof .
도 1은 본 발명에 따른 은 나노 입자, GTAC 및 섬유(유리섬유)의 결합 구조를 나타낸 모식도이다.
도 2는 GTAC의 농도 조건에 따라 섬유(유리섬유) 표면에 존재하는 은(Ag)의 Atomic(%) 값을 나타낸 그래프이다.
도 3은 온도 조건에 따라 섬유(유리섬유) 표면에 존재하는 은(Ag)의 Atomic(%) 값을 나타낸 그래프이다.
도 4는 은(Ag) 콜로이드의 농도 조건에 따라 섬유(유리섬유) 표면에 존재하는 은(Ag)의 Atomic(%) 값을 나타낸 그래프이다.
도 5는 비교예 9-A 내지 11-A(a~c) 및 실시예 3-A(d)의 표면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 6은 비교예 9-A(a) 및 실시예 3-A(b)의 표면을 원자현미경(AFM, Atomic Force Microscope)으로 촬영한 2차원(좌) 및 3차원(우) 이미지이다.1 is a schematic view showing a bonding structure of silver nanoparticles, GTAC, and fibers (glass fiber) according to the present invention.
2 is a graph showing the atomic (%) value of silver (Ag) present on the fiber (glass fiber) surface according to the concentration condition of GTAC.
3 is a graph showing the atomic (%) value of silver (Ag) present on the surface of the fiber (glass fiber) according to the temperature condition.
4 is a graph showing the atomic (%) value of silver (Ag) present on the surface of the fiber (glass fiber) according to the concentration condition of the silver (Ag) colloid.
5 is an image obtained by scanning electron microscopy (SEM) of the surfaces of Comparative Examples 9-A to 11-A (a to c) and Example 3-A (d).
FIG. 6 is a two-dimensional (left) and three-dimensional (right) image obtained by photographing the surfaces of Comparative Examples 9-A (a) and 3-A (b) using an atomic force microscope (AFM).
본 발명은 분자구조에 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기와 금속할로젠화물(Metal Halide) 중 적어도 하나를 포함하는 섬유; 상기 섬유와 결합된 Glycidyltrimethylammonium chloride(GTAC); 상기 GTAC와 결합된 은 나노 입자를 포함하고, 상기 GTAC는 에폭시 기의 링 오픈에 의해 섬유와 결합된 것이고, 상기 은 나노 입자는 GTAC에 존재하는 4차 암모늄 염과 결합된 것인 항균 섬유를 제공한다.The present invention relates to a fiber comprising at least one of a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) and a metal halide in a molecular structure; Glycidyltrimethylammonium chloride (GTAC) combined with the fibers; Wherein the silver nanoparticles are bound to the fiber by ring opening of an epoxy group and the silver nanoparticles are bound to a quaternary ammonium salt present in GTAC do.
또한, 본 발명은 상기 항균 섬유를 제조하는 방법의 일환으로서 (S1) 분자구조에 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기와 금속할로젠화물(Metal Halide) 중 적어도 하나를 포함하는 섬유를 glycidyltrimethylammonium chloride(GTAC)로 전처리하는 단계; 및 (S2) 상기 GTAC로 전처리된 섬유를 은(Ag) 콜로이드 용액에 침지하여 은 나노 입자와 결합시키는 단계를 포함하는 항균 섬유 제조 방법을 제공한다.The present invention also relates to a method for producing the antimicrobial fiber, which comprises the steps of (S1) adding a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) Halide) with glycidyltrimethylammonium chloride (GTAC); And (S2) immersing the fiber pretreated with GTAC in a silver (Ag) colloid solution to bind silver nanoparticles.
본 발명의 발명자들은 이미 은 나노 입자의 표면을 3-MPTMS로 개질(modified)한 후, 이를 섬유의 표면에 처리함으로써 항균 활성을 부여하는 연구에 대한 학술 논문을 발표한 바 있었다(Sam Soo Kim; Jeong Eun Park; Jae Woong Lee. Journal of Applied Polymer Science, Vol.119, 2011, 2261-2267). 그러나, 상기 연구에서는 3-MPTMS 및 은 나노 입자를 이용한 표면 처리만으로는 균의 양이 많아질 경우 황색 포도상 구균에 대한 항균 활성이 충분하지 못하였고, 또한 녹농균 등에 추가적인 균 실험에서는 항균성이 높지 않은 것으로 확인되었다.The inventors of the present invention have published an academic paper on research for imparting antimicrobial activity by modifying the surface of already-existing silver nanoparticles with 3-MPTMS and then treating the surface with 3-MPTMS (Sam Soo Kim; Jeong Eun Park; Jae Woong Lee. Journal of Applied Polymer Science, Vol.119, 2011, 2261-2267). However, in the above study, it was found that the surface treatment using 3-MPTMS and silver nanoparticles did not have sufficient antimicrobial activity against Staphylococcus aureus when the amount of the microorganism was increased. Further, .
이에 거듭된 연구와 수많은 시행착오를 거쳐 섬유의 표면에 보다 결합력을 높여 은 나노 입자의 함량을 끌어올리고 치밀한 결합을 형성할 수 있는 방법을 찾은 결과, 항균가공에서 많이 활용되는 4급 암모늄 이온을 포함하면서 동시에 섬유와 화학적 결합이 가능한 화합물로서 분자 구조내에 에폭시(Epoxy) 기를 포함하는 glycidyltrimethylammonium chloride(GTAC)를 이용할 경우, 3-MPTMS를 이용할 때 보다 높은 함량으로 은 입자를 섬유 표면에 견고히 결합시킬 수 있어 항균 효과와 그 지속력이 향상될 수 있음을 확인하였다.Through repeated research and numerous trial and error, we have found a way to increase the content of silver nanoparticles and form a dense bond by increasing the bonding force on the surface of the fiber. As a result, we have found that the quaternary ammonium ion At the same time, when glycidyltrimethylammonium chloride (GTAC) containing an epoxy group is used as a compound capable of chemical bonding with fibers, silver particles can be firmly bonded to the surface of the fiber at a higher content when 3-MPTMS is used, Effect and its sustainability can be improved.
GTAC는 작용기로서 에폭시 기(epoxy ring)를 가지는데, 에폭시 기는 고온에서 개환, 즉 링 오프닝(ring opening)되어 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기나 금속할로젠화물(Metal Halide)과 탈 알코올 반응을 일으켜 섬유 표면에 결합할 수 있다(도 1 참조). 이때, 아민기는 1차 및 2차 아민 모두 가능하다.GTAC has an epoxy ring as a functional group. The epoxy group is ring-opened at a high temperature, that is, a ring opening is performed, and a hydroxyl group (-OH), a thiol group (-SH) and an amine group And can be bound to the fiber surface by causing a dealcohol reaction with a metal halide (see FIG. 1). At this time, the amine group is available for both primary and secondary amines.
이와 같이 GTAC를 섬유와 결합시킬 경우, 3-MPTMS로 은 입자를 표면 개질시켜 결합하는 경우 보다 넓은 공간이 확보되어 결과적으로 보다 높은 함량의 은 나노 입자를 표면에 결합시킬 수 있으며, 결과적으로 본 발명의 항균 섬유는 셀룰로오스 섬유 100 중량부 기준 0.1 내지 10 중량부의 은 나노 입자를 포함할 수 있게 된다.When the GTAC is bonded to the fiber as described above, a larger space can be secured than when silver nanoparticles are surface-modified by 3-MPTMS, resulting in binding of silver nanoparticles having a higher content to the surface. As a result, Can contain 0.1 to 10 parts by weight of silver nanoparticles based on 100 parts by weight of the cellulose fiber.
본 발명에 적용 가능한 섬유는 유리섬유(glass fiber); 나일론 등을 포함하는 폴리아미드계 섬유(Polyamide fiber); PVA(Poly vinyl alcohol) 섬유; PET(Polyethylene terephthalate), PEN(Polyethylene naphthalate), PBT(Polybuthylene terephthalate) 및 PPT(Polytrimethylene terephthalate) 등을 포함하는 폴리에스터계 섬유(Polyester fiber); 양모(wool); para 아라미드 및 meta 아라미드 등을 포함하는 아라미드계 섬유(Aramid fiber); 폴리이미드계 섬유(Polyimide fiber); PBI 섬유(Polybenzimidazole fiber) 및 면, 마, 비스코스 레이온 및 라이오셀 등을 포함하는 셀룰로오스 섬유(cellulose fiber)중 선택된 1종 이상인 것이 바람직하며, 필요에 의해 에폭시기와 반응 가능하도록 수산기(-OH), 티올기(-SH) 및 아민기(-NH)를 포함한 작용기나 금속할로젠화물(Metal Halide)을 부여한 섬유도 가능하다.Fibers applicable to the present invention include glass fibers; Polyamide fibers including nylon and the like; Poly vinyl alcohol (PVA) fibers; Polyester fibers including PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), and PPT (Polytrimethylene terephthalate); Wool; aramid fibers including para aramid and meta aramid; Polyimide fibers; Polyvinylidene fluoride (PBI) fiber, and cellulose fiber including cotton, hemp, rayon, viscose rayon, and lyocell, and may further contain at least one selected from the group consisting of hydroxyl group (-OH), thiol A functional group containing a group (-SH) and an amine group (-NH) or a fiber imparted with a metal halide is also possible.
본 발명의 상기 항균 섬유 제조 방법을 보다 구체적으로 설명하면 다음과 같다.The antibacterial fiber manufacturing method of the present invention will be described in more detail as follows.
먼저, 증류수에 GTAC가 5 내지 50% 희석된 용액을 이용하여 섬유를 침지한 후, 60 내지 90℃ 온도에서 예비 건조하고 180 내지 200℃ 온도에서 큐어링(curing)하여 전처리 공정을 수행한다. 이때, 상기 GTAC의 농도가 10% 미만일 경우 더 많은 은 나노 입자를 결합시키는데 제약이 발생할 수 있고, 섬유에 존재하는 작용기 수도 제한적일 수 있으므로 50%를 초과하여 희석할 필요는 없다. 또한, 예비 건조 온도는 섬유내부에 침투한 GTAC 수용액이 건조되면서 GTAC가 급격히 섬유표면으로 이동(migration)되는 것을 방지하기 위하여 상대적으로 높지 않은 온도인 60 내지 90℃가 적절하며, GTAC가 열 분해되지 않는 온도 범위에서 안전하게 결합시키기 위해 180 내지 200℃에서 큐어링을 수행하는 것이 바람직하다.First, fibers are immersed in distilled water using a solution diluted with 5-50% of GTAC, pre-dried at a temperature of 60 to 90 ° C, and cured at a temperature of 180 to 200 ° C to perform a pretreatment process. If the concentration of the GTAC is less than 10%, there may be a restriction to bind more silver nanoparticles, and since the number of functional groups present in the fibers may be limited, there is no need to dilute more than 50%. Also, the pre-drying temperature is suitably 60 to 90 ° C., which is relatively high, in order to prevent GTAC from rapidly migrating to the fiber surface due to the drying of the GTAC aqueous solution penetrated into the fiber, It is preferable to perform curing at 180 to 200 占 폚 in order to securely bond the substrate to the substrate at a temperature within a range of not lower than 200 占 폚.
이와 같이 섬유를 GTAC에 의해 전처리 한 후 에는 은 콜로이드에 상기 GTAC로 전처리된 섬유를 침지한다. 이때, 상기 은 콜로이드는 은 나노 입자가 분산된 용액을 의미하며, 충분한 양의 나노 입자를 섬유 표면에 결합시키기 위해, 분산된 은 나노 입자의 농도 즉, 콜로이드의 농도는 7,500 내지 50,000ppm 인 것이 바람직하다.After the fiber is pretreated with GTAC, the GTAC pretreated fiber is immersed in the silver colloid. In this case, the silver colloid means a solution in which silver nanoparticles are dispersed. To bind a sufficient amount of nanoparticles to the fiber surface, the concentration of the dispersed silver nanoparticles, that is, the concentration of the colloid, is preferably 7,500 to 50,000 ppm Do.
본 발명에서 상기 GTAC에 의해 전처리된 섬유를 은 콜로이드에 침지할 때 온도 조건은 30 내지 60℃인 것이 높은 온도에서 일어날 수 있는 은 나노 입자의 급한 고착 즉, 일종의 불균염을 방지하는 측면에서 바람직하며, 침지 시간은 이에 한정되지는 않으나 30분 내지 2시간이 충분한 반응을 위해 적절할 수 있다.In the present invention, when the fibers pretreated with GTAC are immersed in silver colloid, the temperature condition is preferably in the range of 30 to 60 ° C from the viewpoint of the rapid adhesion of silver nanoparticles which can occur at high temperatures, that is, , The immersion time is not limited thereto, but 30 minutes to 2 hours may be suitable for sufficient reaction.
이에 반드시 한정되는 것은 아니나, 본 발명에서 상기 전처리 과정이 끝난 후와 최종 반응이 끝난 후에는 탈 이온수나 증류수를 이용하여 충분히 반응물을 세척하는 단계를 수행할 수 있으며, 세척이 끝난 후에는 충분히 건조하는 것이 바람직하다.After completion of the pretreatment and after the completion of the final reaction, the reaction product may be sufficiently washed with deionized water or distilled water. .
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are for the purpose of illustrating the present invention more specifically, and the present invention is not limited thereto.
준비예Preparation Example
GTAC은 시그마 알드리치(세인트루이스, MO, USA)로부터 구입하였고, 은 콜로이드(Nanomix 실버, 입자 크기 50~100nm, 미지 나노텍)와 함께 4종류의 A: 유리섬유(whatman, Glass Microfiber Filters-GF/F, UK), B: m-아라미드 섬유 (Yantai, 중국), C: Nylon(효성, 한국) 및 D: 울 섬유(Testfabrics Korea, 한국)를 준비하였다.GTAC was purchased from Sigma Aldrich (St. Louis, Mo., USA), and four kinds of A: glass fibers (glass fiber microfiber filters: GF / F, UK), B: m-aramid fiber (Yantai, China), C: Nylon (Hyosung, Korea) and D: wool fiber (Testfabrics Korea, Korea).
실시예Example 1 내지 4 (16종): 1 to 4 (16 kinds): 실시예Example 1-A 내지 1-D ~ 1-A to 1-D- 실시예Example 4-A 내지 4-D 4-A to 4-D
증류수에 GTAC를 각각 10%, 20%, 30% 및 40% 농도로 희석한 후, 상기 4종류의 섬유를 각각 독립적으로 4가지 GTAC 희석 용액에 20분간 침지하였다. 이 후, 처리된 샘플을 꺼내 80℃에서 15분간 예비건조하고 180℃에서 5분 큐어링(curing) 시킨 뒤 증류수에 2번씩 수세하여 30℃에서 완전 건조 시켰다.GTAC was diluted in distilled water to concentrations of 10%, 20%, 30% and 40%, respectively, and the four kinds of fibers were immersed independently in four GTAC diluted solutions for 20 minutes. Thereafter, the treated sample was taken out, preliminarily dried at 80 ° C for 15 minutes, cured at 180 ° C for 5 minutes, washed twice with distilled water, and completely dried at 30 ° C.
이어서, 상기 농도별 GTAC로 전처리된 유리 섬유를 45℃의 수욕 진탕(water bath) 조건에서 은 콜로이드(30,000 ppm)에 90분 동안 침지하였다. 이후, 샘플을 100 ml의 이소프로판올로 두 번 세척하고, 100 mL의 증류수로 2 회 세척하였으며, 공기 중 실온에서 최종 건조시켰다. Then, the GTAC-pretreated glass fiber was immersed in silver colloid (30,000 ppm) for 90 minutes in a water bath condition of 45 ° C. Then, the sample was washed twice with 100 ml of isopropanol, twice with 100 ml of distilled water, and finally dried at room temperature in air.
비교예Comparative Example 1 내지 5 ( 1 to 5 ( 20 종20 species ): ): 비교예Comparative Example 1-A 내지 1-D ~ 1-A to 1-D- 비교예Comparative Example 5-A 내지 5-D 5-A to 5-D
GTAC의 농도를 각각 0%, 2%, 4%, 6% 및 8%로 변경한 것을 제외하고 상기 실시예 1 내지 4와 동일한 방법으로 비교예 1 내지 5를 제조하였다.Comparative Examples 1 to 5 were prepared in the same manner as in Examples 1 to 4 except that the concentrations of GTAC were changed to 0%, 2%, 4%, 6% and 8%, respectively.
실시예Example 5 내지 7 (12종) 및 5 to 7 (12 species) and 비교예Comparative Example 6 내지 8 (12종) 6 to 8 (12 species)
GTAC의 농도는 30%로 고정하되, 은 콜로이드(30,000 ppm)에 침지시킬 때의 온도조건을 하기 표 1과 같이 변경한 것을 제외하고, 상기 실시예 1 내지 4와 동일한 방법으로 항균 섬유를 제조하였다.The antimicrobial fiber was prepared in the same manner as in Examples 1 to 4 except that the concentration of GTAC was fixed to 30% and the temperature condition when immersed in silver colloid (30,000 ppm) was changed as shown in Table 1 below .
실시예Example 8 내지 11 (16종) 및 8 to 11 (16 species) and 비교예Comparative Example 9 내지 11 (12종) 9 to 11 (12 species)
GTAC의 농도는 30%로 고정하되, 은 콜로이드 농도 조건을 하기 표 1과 같이 변경한 것을 제외하고, 상기 실시예 1 내지 4와 동일한 방법으로 항균 섬유를 제조하였다.The antimicrobial fiber was prepared in the same manner as in Examples 1 to 4 except that the concentration of GTAC was fixed to 30% and the silver colloid concentration condition was changed as shown in Table 1 below.
<< 측정예Measurement example 1: Atomic 1: Atomic %% 측정> Measurement>
상기 제조된 실시예 및 비교예에 대하여 은 나노입자가 부착된 섬유의 표면 형상 및 부착된 성분 분석을 위해 시료를 백금으로 코팅한 뒤 주사전자현미경(S-4100, Hitachi, 일본)을 사용하여 15kV의 가속 전압 하에서 Atomic %를 측정하였다. For the fabricated examples and comparative examples, silver nanoparticles were coated with a platinum sample for analysis of the surface shape and attached components of the fiber to which the nanoparticles were attached, and then a 15 kV Atomic% was measured under the accelerating voltage.
먼저 상기 표 1를 통해 확인할 수 있듯이 조건별 항균섬유 표면에 존재하는 Ag의 atomic 농도를 분석한 결과, 높은 농도의 GTAC 용액에서 전처리한 섬유일수록 Ag의 atomic %가 증가하는 경향을 보였다. 보다 구체적인 경향을 알아보기 위해 일예로 유리 섬유의 경우에 대해 도 2와 같이 그래프로 atomic 농도를 나타내보니, 10% 미만의 GTAC용액에서는 Ag의 atomic %가 5%에 미치지 못하다가, 10% 이상의 GTAC용액에서는 Ag의 atomic %가 5%를 넘는 것을 확인할 수 있었다. 다만, 10% 이상의 GTAC용액에서는 GTAC의 농도 증가에 따라 Ag의 atomic %가 급격히 증가하지는 않았는데, 이는 GTAC와 반응할 수 있는 작용기의 수가 제한되기 때문인 것으로 분석되었다As shown in Table 1, the atomic concentration of Ag on the surface of the antimicrobial fiber according to the condition was analyzed. As the fiber pretreated in the high concentration of GTAC solution, the atomic% of Ag tended to increase. For example, the atomic concentration of Ag is less than 5% in the case of less than 10% of the GTAC solution, while the concentration of the GTAC in the case of 10% or more of GTAC It was confirmed that atomic% of Ag exceeded 5% in the solution. However, in the GTAC solution of 10% or more, the atomic% of Ag did not increase with the increase of the concentration of GTAC, because the number of functional groups capable of reacting with GTAC was limited
또한, 온도에 따른 Ag atomic % 분석 결과에 따르면, 표 1과 같이 처리 온도가 높아질수록 Ag atomic%가 증가하며 Ag atomic% 값의 표준편차 또한 커지는 것을 알 수 있었다. 도 3은 유리 섬유의 경우에 대해 은 나노 입자 처리 온도에 따른 Ag atomic % 분석 결과를 그래프로 좀 더 자세히 나타낸 것인데, 30℃에서부터 Ag atomic% 값의 표준편차가 급격히 커지는 것으로부터 은 나노 입자의 결합이 30℃이상에서 활발히 이루어지는 것을 파악할 수 있었다. 다만, 60 내지 80℃에서 Ag atomic%값의 표준편차가 가장 크게 나타났으나, 지나치게 높은 온도에서 은 나노 입자가 GTAC에 급격하게 부착되어 불균염이 발행될 수 있는 것으로 확인되었다.According to the results of Ag atomic% analysis according to the temperature, as shown in Table 1, the Ag atomic% increases and the standard deviation of the Ag atomic% value increases as the treatment temperature increases. FIG. 3 is a graph showing the results of the Ag atomic% analysis according to the treatment temperature of the silver nanoparticles in a more detailed manner in the case of glass fiber. The standard deviation of the Ag atomic% value rapidly increases from 30 ° C., Was actively performed at 30 DEG C or higher. However, the standard deviation of the Ag atomic% value was the greatest at 60 to 80 ° C, but it was confirmed that the silver nanoparticles were adhered to the GTAC at an excessively high temperature, resulting in unevenness.
마지막으로, 은 콜로이드 농도 역시, Ag atomic %값에 영향을 미치는 것으로 확인되었다. 특히 은 콜로이드 농도가 7,500ppm까지 증가하는 동안 Ag atomic %는 꾸준히 증가(표 1 및 도 4 참조)하였는데, 이러한 결과로부터 최소한 7,500ppm 농도의 은 콜로이드를 사용해야 충분히 은 나노 입자를 섬유 표면에 결합시킬 수 있다는 것을 알수 있었다. 다만, 이 경우도 GTAC와 반응할 수 있는 섬유내 작용기 수가 제한되어 GTAC의 농도를 지나치게 높일 필요가 없었던 것과 마찬가지로, GTAC와 결합하는 은 입자의 함량도 계속적으로 증가하지 않음에 따라 50,000ppm을 초과할 필요는 없을 것으로 파악되었다.Finally, the silver colloid concentration was also found to affect the Ag atomic% value. In particular, Ag atomic% increased steadily (see Table 1 and Fig. 4), especially when the silver colloid concentration increased to 7,500 ppm. From these results, silver colloids of at least 7,500 ppm concentration were required to bind sufficient silver nanoparticles to the fiber surface . However, in this case, as the number of functional groups in the fiber capable of reacting with GTAC was limited and the concentration of the silver particles associated with the GTAC did not increase continuously as well as the concentration of the GTAC particles did not need to be increased excessively, the content exceeded 50,000 ppm No need was found.
<< 측정예Measurement example 2: 2: SEMSEM 촬영> Shooting>
상기 제조된 실시예 및 비교예 가운데, 표면 Ag atomic 농도가 타 섬유에 비해 높게 나타난 유리섬유를 기준으로, 은 콜로이드 농도가 각기 다른 실시예 3-A 및 비교예 9-A 내지 11-A를 선택하여 주사 전자 현미경(SEM, 히타치 S-400, 도쿄, 일본)으로 상기 선택된 섬유 표면을 15 KV의 가속 전압 및 3.00 K 배율 조건에서 관찰하였다. 단, 샘플을 시험 전에 스퍼터링에 의해 백금을 코팅하였다.Among Examples and Comparative Examples, Example 3-A and Comparative Examples 9-A to 11-A with different silver colloid concentrations were selected on the basis of glass fibers whose surface Ag atomic concentration was higher than other fibers , And the surface of the selected fiber was observed under a scanning electron microscope (SEM, Hitachi S-400, Tokyo, Japan) under the conditions of an acceleration voltage of 15 KV and a magnification of 3.00K. However, the sample was coated with platinum by sputtering before the test.
섬유 표면 특성을 비교한 결과, 도 5를 통해 확인할 수 있듯이 은 나노 입자 처리를 하지 않고 GTAC만 처리된 유리섬유(비교에 9-A, (a))의 표면은 매우 평활한 것으로 나타났다. 이에 반해, 2,500 ppm 및 5,000 ppm의 은 콜로이드 농도에서 각각 처리된 유리섬유(비교예 10-A(b) 및 11-A(c))는 비교예 9-A에 비해서 표면이 상대적으로 거칠어진 것을 확인할 수 있다. 그러나, 30,000 ppm의 은 콜로이드에서 처리된 유리섬유(실시예 3-A, (d))와 비교해 보았을 때, 거칠기가 확연히 떨어지는 것으로 확인되었다.As a result of comparing the fiber surface characteristics, as shown in FIG. 5, the surface of the glass fiber treated with only GTAC without the silver nanoparticle treatment (comparative example 9-A, (a)) was found to be very smooth. On the contrary, the glass fibers (Comparative Examples 10-A (b) and 11-A (c)) treated with silver colloid concentrations of 2,500 ppm and 5,000 ppm, respectively, Can be confirmed. However, when compared with glass fibers treated with 30,000 ppm silver colloid (Example 3-A, (d)), it was confirmed that the roughness was significantly lowered.
<< 측정예Measurement example 3: 3: AFEMAFEM 촬영> Shooting>
이어서, 실시예 3-A와 비교예 9-A에 대해 원자 현미경(AFM, XE-100, Park system)을 사용하여, Resolution X,Y : 0.1nm, Resolution Z : 0.01nm 의 조건에서 GTAC 및 은 나노 입자 처리 후 유리 섬유의의 표면변화를 입체적으로 관찰하였다. 그 결과, 도 6과 같이 은 나노 입자를 처리하지 않은 시료(비교예 9-A)의 표면(a)은 상대적으로 평활한 반면, 은 나노 입자를 처리한 시료(실시예 3-A)의 표면(b)은 (a)에 비하여 더 굴곡진 것을 확인할 수 있다. Next, using the atomic force microscope (AFM, XE-100, Park system) for Example 3-A and Comparative Example 9-A, GTAC and silver The surface changes of the glass fiber after the treatment of nanoparticles were observed in three dimensions. As a result, the surface (a) of the sample not treated with the silver nanoparticles (Comparative Example 9-A) was relatively smooth while the surface of the silver nanoparticle-treated sample (Example 3-A) (b) is more curved than (a).
<< 측정예Measurement example 4: 항균 테스트> 4: Antibacterial test>
한편, 은나노 처리에 따른 항균성 평가를 위해 유리섬유를 기준으로 미처리시료, GTAC만 처리한 비교예 9-A, GTAC와 은나노를 처리한 실시예 1-A를 대상으로 하기와 같이 항균 테스트 실험을 진행하였으며, 그 결과를 하기 표 2에 나타내었다.On the other hand, in order to evaluate the antimicrobial activity of silver nanoparticles, an untreated sample based on glass fiber, Comparative Example 9-A treated only with GTAC, and Example 1-A treated with GTAC and silver nano The results are shown in Table 2 below.
- 항균 테스트: Luria-Bertani(LB) 배지(BD 바이오 사이언스, NJ, USA) 플레이트에 -80℃ 글리세롤 스톡으로부터 4 종류의 병원성 세균인 대장균 O157:H7(E. coli O157:H7, ATCC 43895), 메티실린 내성 황색 포도상 구균 MRSA(S. aureus, ATCC의 BAA-1707), 녹농균 PAO1(P. aeruginosa, ATCC 15692) 및 살모넬라 무리움(S. typhimurium, KCCM 11862)균을 초기 스트리크(streak)하고, 250 mL의 플라스크의 LB(25 ㎖)에서 단일 콜로니를 접종한 후, 250rpm으로 교반하면서 37℃ 에서 배양하였다. 하루지나 인산염 완충 생리 식염수(PBS)를 이용하여 1:500 의 비율로 희석한 후, 각 샘플을 희석 된 박테리아 세포 용액 0.3mL에 침지하고 24시간 동안 37℃에서 인큐베이션하였다. 모든 실험은 각각 적어도 두 개의 배지를 사용하여 수행하였고, 배양 후, 콜로니 형성 단위(CFUs) 개수로 살아남은 세포를 평균내어 계산하였다. - Antibacterial test: E. coli O157: H7 (E. coli O157: H7, ATCC 43895), which is a pathogenic bacterium from -80 ° C glycerol stock to Luria-Bertani (LB) medium (BD Bioscience, Streaks of S. typhimurium (KCCM 11862) and methicillin-resistant Staphylococcus aureus MRSA (S. aureus, BAA-1707 of ATCC), P. aeruginosa (ATCC 15692) and P. aeruginosa , A single colony was inoculated in LB (25 mL) of a 250 mL flask, and then cultured at 37 DEG C with stirring at 250 rpm. After diluting with a phosphate buffered saline solution (PBS) at a ratio of 1: 500 per day, each sample was immersed in 0.3 mL of a diluted bacterial cell solution and incubated at 37 DEG C for 24 hours. All experiments were performed using at least two media each, and after incubation, the surviving cells were counted as a number of colony forming units (CFUs).
a Total bacteria: 9.4 x 104 cfu/sample. a Total bacteria: 9.4 x 10 4 cfu / sample.
b Total bacteria: 6.1 x 104 cfu/sample. b Total bacteria: 6.1 x 10 4 cfu / sample.
c Total bacteria: 5.2 x 104 cfu/sample. c Total bacteria: 5.2 x 10 4 cfu / sample.
d Total bacteria: 6.6 x 104 cfu/sample. d Total bacteria: 6.6 x 10 4 cfu / sample.
항균 실험 결과에 따르면, 표 2에 나타난 바와 같이 미처리된 유리섬유(미처리 시료)의 경우엔 모든 균에 대해 항균 활성이 나타나지 않았으며, GTAC만 처리된 유리섬유(비교예 9-A)의 경우, 황색 포도상 구균(S. aureus) 과 살모넬라 균(S. typhimurium)에 대해서는 항균 활성을 나타내는 반면, 대장균(E. coli) 및 녹농균(P. aeruginosa)에 대한 항균 활성은 충분하지 못한 것으로 확인되었다. 반면, 섬유를 GTAC로 전처리한 후 은 나노 입자를 결합시킨 실시예 1-A의 경우, 실험한 네 가지 균에 대해 모두 뛰어난 항균 활성을 보였다.According to the results of the antibacterial test, as shown in Table 2, the antibacterial activity was not exhibited for all of the untreated glass fiber (untreated sample), and for the glass fiber treated only with GTAC (Comparative Example 9-A) The antimicrobial activity against S. aureus and S. typhimurium was found to be insufficient, while the antimicrobial activity against E. coli and P. aeruginosa was found to be insufficient. On the other hand, Example 1-A in which silver nanoparticles were bound after pretreatment of fibers with GTAC showed excellent antibacterial activity against all four bacteria tested.
<< 측정예Measurement example 5: 세탁 5: Washing 견뢰도Fastness 테스트> Test>
은 콜로이드 농도 30,000ppm, GTAC 농도(%) 30%, 및 은 나노 입자 처리 온도(℃) 45℃의 조건으로 실험한 실시예 3을 기준으로, 4 종류의 섬유에 대해 세탁 횟수에 따른 Ag atomic 농도(%)를 측정해 보았다. 세탁 방법은 다음과 같았으며, 그 결과는 표 3에 나타내었다.(Ag atomic concentration) according to the number of times of washing for four kinds of fibers based on Example 3 which was tested under conditions of a colloid concentration of 30,000 ppm, a GTAC concentration (%) of 30%, and a silver nanoparticle treatment temperature (%) Were measured. The washing method was as follows. The results are shown in Table 3.
- 세탁 방법: 세탁 측정법은 ISO 105-C01:1989의 방법이 적용되었으며, 구체적으로 5g의 세제가 1L의 증류수에 혼입하여 사용하였고, 온도는 40± 2℃로 유지되었다. 세탁시간은 30분이며, 5회 세탁 사이클이 적용되었다.- Washing method: Washing method was applied according to ISO 105-C01: 1989. Specifically, 5 g of detergent was mixed with 1 L of distilled water and the temperature was maintained at 40 ± 2 ° C. The washing time was 30 minutes, and 5 washing cycles were applied.
세탁 견뢰도 테스트 결과, 섬유 종류에 관계 없이 실시예 3-A 내지 3-D의 항균 섬유는 5회 세탁시에도 Ag atomic 농도 저하율이 35% 미만으로 나타나 항균력이 오래 유지되는 것으로 평가되었다.As a result of washing fastness test, it was evaluated that the antimicrobial fibers of Examples 3-A to 3-D showed a decrease in Ag atomic concentration of less than 35% even after washing five times, regardless of the type of fibers.
Claims (9)
(S2) 상기 GTAC로 전처리된 섬유를 은(Ag) 콜로이드 용액에 침지하여 은 나노 입자와 결합시키는 단계를 포함하고;
상기 (S1) 단계는 증류수에 GTAC가 10 내지 40 질량%로 희석된 용액에 섬유를 20분간 침지한 후, 80℃ 온도에서 15분간 예비 건조하고 180℃ 온도에서 5분간 큐어링(curing)하여 수행하는 것이고,
상기 (S2) 단계는 30~80℃의 온도에서 은(Ag) 나노 입자의 농도가 7,500 내지 50,000ppm로 함유된 은(Ag) 콜로이드 용액에 상기 GTAC로 전처리된 섬유를 침지시키는 것이고,
상기 섬유는 유리섬유(glass fiber), 폴리아미드계 섬유(Polyamide fiber), PVA(Poly vinyl alcohol) 섬유, 폴리에스터계 섬유(Polyester fiber), 양모(wool), 아라미드계 섬유(Aramid fiber), 폴리이미드계 섬유(Polyimide fiber), PBI 섬유(Polybenzimidazole fiber) 및 셀룰로오스 섬유(cellulose fiber)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는,
황색 포도상 구균(S. aureus), 살모넬라 균(S. typhimurium), 대장균(E. coli) 및 녹농균(P. aeruginosa) 모두에 대한 항균 활성을 갖는 항균 섬유 제조 방법.
(S1) A fiber comprising at least one of a functional group containing a hydroxyl group (-OH), a thiol group (-SH) and an amine group (-NH) and a metal halide in a molecular structure is reacted with glycidyltrimethylammonium chloride (GTAC) Lt; / RTI > And
(S2) immersing the GTAC pre-treated fiber in a silver (Ag) colloid solution to bind silver nanoparticles;
The step (S1) is performed by immersing the fiber in distilled water in which 10 to 40 mass% of GTAC is diluted, for 20 minutes, pre-drying at 80 ° C for 15 minutes and curing at 180 ° C for 5 minutes However,
The step (S2) is to immerse the GTAC pretreated fiber in a silver (Ag) colloid solution containing silver nanoparticles at a concentration of 7,500 to 50,000 ppm at a temperature of 30 to 80 ° C,
The fibers may be selected from the group consisting of glass fiber, polyamide fiber, PVA (poly vinyl alcohol) fiber, polyester fiber, wool, aramid fiber, A polyimide fiber, a polyimide fiber, a PBI fiber, and a cellulose fiber.
A method for producing an antimicrobial fiber having antimicrobial activity against all of S. aureus, S. typhimurium, E. coli and P. aeruginosa.
An antimicrobial fiber having antibacterial activity against all of S. aureus, S. typhimurium, E. coli and P. aeruginosa produced by the method of claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160106878A KR101967351B1 (en) | 2016-08-23 | 2016-08-23 | Antimicrobial fiber and method of prepating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160106878A KR101967351B1 (en) | 2016-08-23 | 2016-08-23 | Antimicrobial fiber and method of prepating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180022056A KR20180022056A (en) | 2018-03-06 |
KR101967351B1 true KR101967351B1 (en) | 2019-04-09 |
Family
ID=61727106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160106878A KR101967351B1 (en) | 2016-08-23 | 2016-08-23 | Antimicrobial fiber and method of prepating the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101967351B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102088250B1 (en) | 2019-06-21 | 2020-03-12 | 항균소재 주식회사 | Antimicrobial Yarn for furniture textile and Manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113846480A (en) * | 2021-09-23 | 2021-12-28 | 兰邦(江苏)特种纺织有限公司 | Preparation method of antibacterial anti-mite cotton fiber and product thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101307563A (en) * | 2008-06-17 | 2008-11-19 | 苏州大学 | Nanometer silver antibiotic textile finishing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100451005B1 (en) * | 2001-11-09 | 2004-10-02 | 주식회사유니드 | Preparation of cellulose-based adsorbents containing the quaternary ammonium functional groups and their recycling methods |
ES2603272T3 (en) * | 2007-10-25 | 2017-02-24 | Kao Corporation | Method to produce a cellulose ether derivative |
KR101727217B1 (en) * | 2014-11-25 | 2017-04-17 | 사단법인 코티티시험연구원 | Cationic modified cellulose fabric and its manufacturing method |
-
2016
- 2016-08-23 KR KR1020160106878A patent/KR101967351B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101307563A (en) * | 2008-06-17 | 2008-11-19 | 苏州大学 | Nanometer silver antibiotic textile finishing method |
Non-Patent Citations (1)
Title |
---|
Properties and Antimicrobial Efficacy of Cellulose Fiber Coated with Silver Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS),김삼수 외 2명,Journal of Applied Polymer Science, 2261-2267(2011) 1부.* |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102088250B1 (en) | 2019-06-21 | 2020-03-12 | 항균소재 주식회사 | Antimicrobial Yarn for furniture textile and Manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20180022056A (en) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Memon et al. | Influence of incorporating silver nanoparticles in protease treatment on fiber friction, antistatic, and antibacterial properties of wool fibers | |
KR101967351B1 (en) | Antimicrobial fiber and method of prepating the same | |
Kim et al. | Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3‐mercaptopropyltrimethoxysilane (3‐MPTMS) | |
Montazer et al. | Simultaneous synthesis and fabrication of nano Cu 2 O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio-and photoactive textiles without color change | |
Patil et al. | Durable superhydrophobic and antimicrobial cotton fabrics prepared by electrostatic assembly of polyhexamethylene biguanide and subsequent hydrophobization | |
EP3146842B1 (en) | Method for imparting an article or a hygiene product with antimicrobial activity and the article and the hygiene product imparted with the antimicrobial activity | |
Ali et al. | Novel, Self-Assembled Antimicrobial Textile Coating Containing Chitosan Nanoparticles. | |
Ma et al. | In-situ synthesis and immobilization of silver nanoparticles on microfibrillated cellulose for long-term antibacterial applications | |
KR101239136B1 (en) | Method for Preparing Nano Fiber Web Comprising Apatite with High Antibacterial Function | |
Qian et al. | Synthesis of polysiloxane and its co-application with nano-SiO 2 for antibacterial and hydrophobic cotton fabrics | |
Abd El-Hady et al. | Multiwalled-carbon-nanotubes (MWCNTs)–GPTMS/tannic-acid-nanocomposite-coated cotton fabric for sustainable antibacterial properties and electrical conductivity | |
Tian et al. | Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination | |
Mu et al. | Multifunctional coatings for mitigating bacterial fouling and contamination | |
Nawaz et al. | Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric | |
Qian et al. | Fabrication of stable fluorine-free hydrophobic cotton fabrics with prominent antibacterial property | |
Kang et al. | Effective surface attachment of Ag nanoparticles on fibers using glycidyltrimethylammonium chloride and improvement of antimicrobial properties | |
Chen et al. | Silver nanoparticles deposited on a cotton fabric surface via an in situ method using reactive hyperbranched polymers and their antibacterial properties | |
Wang et al. | Design of broad-spectrum antimicrobial polyethylene terephthalate fabrics by coating composited natural brucites | |
KR101300645B1 (en) | Antimicrobial wrap for food packaging | |
Dumitrescu et al. | Antimicrobial functionalization of textile materials with hydrophobins and Ag/ZnO composite nanopowders | |
KR101046694B1 (en) | Method for producing antimicrobial fiber in which metal nanoparticles are introduced using chemical bonds and antimicrobial fiber formed therefrom | |
KR20180022058A (en) | Antimicrobial fiber using silver nanoparticals and treatment method by the same | |
Prorokova et al. | Antimicrobial properties of polypropylene yarn modified by metal nanoparticles stabilized by polyethylene | |
KR101565753B1 (en) | Manufacturing methode of fabrics with super water-repellent function and fabric by manufactured thereof | |
KR101448551B1 (en) | Anti-biofouling water treatment membrane and method of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |