KR101960501B1 - New ketol-acid reductoisomerase with a cofactor preference to NADH developed - Google Patents

New ketol-acid reductoisomerase with a cofactor preference to NADH developed Download PDF

Info

Publication number
KR101960501B1
KR101960501B1 KR1020170118313A KR20170118313A KR101960501B1 KR 101960501 B1 KR101960501 B1 KR 101960501B1 KR 1020170118313 A KR1020170118313 A KR 1020170118313A KR 20170118313 A KR20170118313 A KR 20170118313A KR 101960501 B1 KR101960501 B1 KR 101960501B1
Authority
KR
South Korea
Prior art keywords
ala
gly
leu
glu
ilvc
Prior art date
Application number
KR1020170118313A
Other languages
Korean (ko)
Inventor
김경헌
신철수
양정우
박용철
최일섭
Original Assignee
고려대학교 산학협력단
(주)에이피테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, (주)에이피테크놀로지 filed Critical 고려대학교 산학협력단
Priority to KR1020170118313A priority Critical patent/KR101960501B1/en
Application granted granted Critical
Publication of KR101960501B1 publication Critical patent/KR101960501B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01086Ketol-acid reductoisomerase (1.1.1.86)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to an enzymatic modification of ketol-acid reductoisomerase essential for the production of isobutanol. More specifically, the enzyme was modified through the Rossman loop remodeling to make Escherichia coli-derived ketol-acid reductoisomerase having affinity for NADPH have affinity for NADH.

Description

NADH 친화적인 신규 케톨산 리덕토아이소머라제{New ketol-acid reductoisomerase with a cofactor preference to NADH developed}NADH-friendly new ketol-acid reductoisomerase with a cofactor preference to NADH developed.

본 발명은 NADH 친화적인 신규 케톨산 리덕토아이소머라제에 관한 것이다.The present invention relates to a novel NADH-friendly ketolanhydride isomerase.

과도한 화석 연료 자원 개발 및 사용이 환경 문제를 야기하고 있는 가운데, 기존의 화석 연료를 대체하기 위한 친환경적 재생 에너지원에 대한 탐색이 시급한 실정이다. 특히, 우리나라의 경우 화석 연료에 대한 에너지 의존도가 85%로 높고 그 대부분을 해외에서 수입하기 때문에 재생 에너지원에 대한 탐색의 중요성은 매우 높다고 할 수 있다.As the development and use of excessive fossil fuel resources cause environmental problems, it is urgent to search for environmentally friendly renewable energy sources to replace existing fossil fuels. In particular, Korea is highly dependent on fossil fuels (85%), and most of them are imported from abroad, so the search for renewable energy sources is very important.

일반적으로 환경친화적 바이오 에너지는 초본계 리그로셀룰로오스(lignocellulose)와 같은 재생 가능한 자원으로부터 미생물의 발효에 의해서 생산되는 액상연료를 의미한다. 현재까지 주로 효모에 의해 생산되는 바이오에탄올이 바이오에너지로서 각광받고 있으나, 에탄올과 비교하여 높은 에너지 밀도(high energy density) 및 낮은 흡습성(hygroscopicity)을 가지는 향상된 바이오에너지를 탐색하고 있는 실정이며, 이러한 대표적인 예는 이소부탄올이다. 이소부탄올은 주로 이종 미생물의 유전자가 삽입된 형질전환 대장균(Escherichia coli), 효모(Saccharomyces cerevisiae), 바실러스(Bacillus subtilus) 및 코리네박테리움(Corynebacterium glutaminicum)에서 생산이 가능하다. 그러나, 이소부탄올 생산에 가장 큰 걸림돌은 첫째, 높은 농도의 이소부탄올은 미생물의 생장 및 발효를 억제시키는 것이다. 이 문제는 고농도 세포(high cell density) 발효를 통하여 극복할 수 있다고 많은 문헌에서 보고되어 있다. 둘째는, 이소부탄올 생합성과정에서는 첨부도면 도 1과 같이 5가지의 효소(AlsS, IlvC, ilvD, Kdc, Adh)가 필수적인데, 해당과정에서 생산되는 2분자의 NADH와 생합성과정에서 소비되는 1분자의 NADPH가 계속해서 생산과 소비를 반복하는 대사흐름이므로 조효소의 산화환원의 균형(cofactor redox balance)이 파괴된다는 것이다. Generally, eco-friendly bioenergy refers to liquid fuels produced by the fermentation of microorganisms from renewable resources such as lignocellulose in herbal leagues. Although bioethanol produced mainly by yeast has been spotted as bioenergy to date, it has been searching for improved bioenergy having high energy density and hygroscopicity as compared with ethanol. An example is isobutanol. Isobutanol is mainly produced by Escherichia coli transformed with a gene of a heterologous microorganism E. coli , yeast ( Saccharomyces cerevisiae ), Bacillus subtilus , and Corynebacterium glutaminicum . However, the biggest obstacle to the production of isobutanol is that first, high concentration of isobutanol inhibits the growth and fermentation of microorganisms. It has been reported in many literature that this problem can be overcome by high cell density fermentation. Second, in the process of isobutanol biosynthesis, five enzymes (AlsS, IlvC, ilvD, Kdc, and Adh) are essential as shown in FIG. 1 of the accompanying drawings. Two molecules of NADH produced in the process and one molecule Of NADPH is a metabolic stream that is repeatedly produced and consumed, so that the cofactor redox balance of the coenzyme is destroyed.

일반적으로 조효소(cofactor)인 균형이라 함은 NADH/NAD+ 및 NADPH/NADP+가 쌍을 이루어 산화환원의 균형을 유지하면서, 탄소흐름(carbon flux) 및 생 주기(life cycle) 등을 유지하는 것을 의미한다. 그러나, 조효소의 균형이 파괴되면, 세포의 성장과 대사 등을 방해하여 결국 이소부탄올 생산성을 크게 떨어뜨리게 된다. 현재까지 조효소의 불균형을 다시 균형으로 유지하기 위하여 많은 연구가 이루어져 왔으며, 대표적인 방법적으로는 1) 세포수준(cellular level)에서의 프로모터 공학(promoter engineering), 유전체 규모에서의 방법 (genome scale engineering), 합성생물학적 방법(synthetic biotechnology) 및 외부유전자의 도입을 통한 필요한 조효소의 재생산(cofactor regeneration)등의 접근 방법과, 2) 단백질 수준(protein level)에서의 효소공학(protein engineering)의 접근 방법이 있다. 특히, 효소공학적 방법으로는 효소전체의 랜덤 돌연변이(whole enzyme random mutagenesis)와 효소의 구조분석을 통하여 얻은 정보를 이용하여 효소의 특정 아미노산에 대한 포화 돌연변이(saturated random mutagenesis)를 이용하여 원하는 특성을 가지는 효소를 스크리닝하는 것이 대표적이다.In general, the cofactor balance means that NADH / NAD + and NADPH / NADP + are paired to maintain the carbon flux and life cycle while maintaining the redox balance it means. However, if the balance of the coenzyme is destroyed, it interferes with the growth and metabolism of the cell, and eventually decreases the productivity of isobutanol. To date, many studies have been conducted to maintain the equilibrium of coenzyme in balance. Representative methods include 1) promoter engineering at the cellular level, genome scale engineering, Approaches such as synthetic biotechnology and cofactor regeneration through the introduction of foreign genes and 2) approach to protein engineering at the protein level . In particular, the enzyme engineering method utilizes information obtained through whole enzyme random mutagenesis and structural analysis of enzymes, and uses saturated random mutagenesis of a specific amino acid of the enzyme, Screening of enzymes is typical.

미생물 발효를 이용한 이소부탄올 생합성 과정은 첨부도면 도 1과 같이 해당과정에서 생산되는 2분자의 NADH와 생합성과정에서 소비되는 1 분자의 NADPH가 계속해서 생산과 소비를 반복하는 대사흐름이므로 조효소의 산화환원의 균형(cofactor redox balance)이 파괴된다는 단점이 있다. 그 결과, 세포의 산화환원 반응과 관련된 물질의 합성과 분해에 관여하는 많은 효소의 기능이 약화되고 전체적인 생리적 활성이 떨어지게 되며, 결국 이소부탄올의 생산성이 현저히 감소한다. As shown in Fig. 1, the isobutanol biosynthesis process using microbial fermentation is a metabolic flow in which the two molecules of NADH produced in the process and the one molecule of NADPH consumed in the biosynthesis process continue to be repeatedly produced and consumed, The cofactor redox balance is destroyed. As a result, the functions of many enzymes involved in the synthesis and degradation of substances related to the redox reaction of cells are weakened, the overall physiological activity is reduced, and the productivity of isobutanol is remarkably reduced.

국내 특허 등록 제1573775호Domestic patent registration No. 1573775

이에, 본 발명자들은 이소부탄올 생합성 경로 상의 NADPH/NADP+ 및 NADH/NAD+의 조효소 불균형을 해결하고자 NADPH 대신 NADH를 소비하여 아세토락테이트(2-acetolactate)를 2,3-dihydroxyisovalerate(2,3-DHIV)로 전환하는 케톨산 리덕토아이소머라제(ketol-acid reductoisomerase, IlvC) 효소를 개발하고자 연구 노력한 결과, 효소 내의 NADPH의 phosphate의 결합에 관여하는 로스만 루프 부위(아미노산 서열 67-78번)를 리모델링(remodeling)하는 개념으로 targeted random mutagenesis(특정부위 랜덤 돌연변이)를 통하여 돌연변이 라이브러리를 제작한 후, NADH에 친화도를 가지는 효소를 스크리닝 하였다. 초기 400종의 돌연변이 효소 중 42종의 효소를 스크리닝하였고, 그 중 최종적으로 NADH에 대한 친화도가 높은 2종의 효소를 발굴함으로써 본 발명을 완성하게 되었다.Therefore, the present inventors tried to solve the co-enzyme imbalance of NADPH / NADP + and NADH / NAD + on the isobutanol biosynthesis pathway by dissolving NADH in place of NADPH to convert 2-acetolactate into 2,3-dihydroxyisovalerate (2,3- (Amino acid sequence 67-78) which is involved in the binding of phosphate of NADPH in the enzyme. As a result, it was found that the NADPH- The mutant library was constructed through targeted random mutagenesis (concept of random mutation), and the enzyme having affinity to NADH was screened. Among the initial 400 mutant enzymes, 42 enzymes were screened. Finally, two kinds of enzymes having high affinity for NADH were discovered to complete the present invention.

따라서, 본 발명은 NADH 친화적인 케톨산 리덕토아이소머라제 변이체 2종을 제공하는데 그 목적이 있다. Accordingly, it is an object of the present invention to provide two kinds of NADH-friendly ketolanilide isomerase mutants.

본 발명은 NADH 친화적인 케톨산 리덕토아이소머라제 변이체를 제공한다. The present invention provides NADH-friendly ketolanhydride isomerase variants.

또한, 본 발명은 상기 케톨산 리덕토아이소머라제 효소를 이용하여 이소부탄올을 생산하는 방법을 제공한다.The present invention also provides a method for producing isobutanol using the ketolanidduct isomerase enzyme.

이하, 본 발명의 과제 해결 수단을 보다 구체적으로 설명한다.Hereinafter, the problem solving means of the present invention will be described in more detail.

케톨산 리덕토아이소머라제(ilvC)는 분자사슬 아미노산(branched-chain amino acid)의 생산에 있어서 필수적인 중간산물을 만드는 매우 중요한 효소이며, 분자사슬 아미노산은 최근 동물사료, 다이어트 보조제, 제약사업 등에서 년간 1500톤이 생산된다고 알려져 있다. 또한, ilvC는 이소부탄올과 1-부탄올을 포함한 다양한 바이오에너지를 만드는데 있어서 매우 중요한 효소이다. Ketolanideductoisomerase (ilvC) is a very important enzyme that makes an intermediate product essential for the production of branched-chain amino acid. Molecular chain amino acid has recently been used in animal feed, dietary supplements, It is said that 1,500 tons are produced. IlvC is also an important enzyme in the production of various bioenergies including isobutanol and 1-butanol.

본 발명의 일 구현예에 따르면, NADH 친화적인 케톨산 리덕토아이소머라제 변이체는 Escherichia coli 유래 SEQ ID NO: 1의 아미노산 서열로 표시되는 케톨산 리덕토아이소머라제 야생형(IlvC_W) 효소의 로즈만 루프 내 NADPH의 phosphate와 결합에 직접적으로 관여하는 68번, 76번 및 78번 위치의 아미노산 Arg가 치환된 변이체를 포함할 수 있다. 구체적으로, 상기 NADH 친화적인 케톨산 리덕토아이소머라제 변이체는 68번 아미노산인 Arg가 Ser으로 치환되고, 76번 아미노산인 Arg가 Phe로 치환되며, 78번 아미노산인 Arg가 Asp로 치환된 변이체(이하, IlvC_CH11) 또는 야생형(wild type) 효소의 68번 아미노산인 Arg가 Phe로 치환되며, 76번 아미노산인 Arg가 Phe로 치환되며, 78번 아미노산인 Arg가 Ala로 치환된 변이체(이하, IlvC_CH13)일 수 있다.According to one embodiment of the present invention, the NADH-friendly ketolan reductoisomerase variant is Escherichia coli origin Ketol acid reductoisomerase represented by the amino acid sequence of SEQ ID NO: 1. The wild-type (IlvC_W) enzyme has amino acid Arg at positions 68, 76 and 78 directly involved in binding with phosphate of NADPH in the rosemann loop May include substituted variants. Specifically, the NADH-compatible ketolanidyl isomerase mutant is a mutant in which Arg at position 68 is substituted with Ser, Arg at position 76 is substituted with Phe, Arg at position 78 is substituted with Asp (IlvC_CH11) or a mutant in which the Arg at position 68 of the wild type enzyme is substituted with Phe, the Arg at position 76 is substituted with Phe, the Arg at position 78 is substituted with Ala (hereinafter referred to as IlvC_CH13) Lt; / RTI >

상기 케톨산 리덕토아이소머라제 변이체 IlvC_CH11를 코딩하는 유전자를 포함할 수 있으며, 이는 하기 SEQ ID NO: 4의 염기서열로 표시된다.A gene coding for the ketolan reductoisomera mutant IlvC_CH11, which can be represented by the following SEQ ID NO: 4.

상기 케톨산 리덕토아이소머라제 변이체 IlvC_CH13 를 코딩하는 유전자를 포함할 수 있으며, 이는 하기 SEQ ID NO: 6의 염기서열로 표시된다.The gene encoding the ketolan reductoisomera mutant IlvC_CH13, which is represented by the nucleotide sequence of SEQ ID NO: 6 below.

SEQ ID NO: 1 SEQ ID NO: 1

IlvC_W 아미노산 서열IlvC_W amino acid sequence

M A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A L R K E A I A E K R A S W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A GM A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A L R K E A I A E K R A S W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A G

SEQ ID NO: 2SEQ ID NO: 2

IlvC_W 염기서열IlvC_W nucleotide sequence

GCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGTGCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGT

SEQ ID NO: 3SEQ ID NO: 3

IlvC_CH11 아미노산 서열IlvC_CH11 amino acid sequence

M A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A E S A L V V W L S F D D W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A GM A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A E S A L V V W L S F D D W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A G

SEQ ID NO: 4SEQ ID NO: 4

IlvC_CH11 염기 서열IlvC_CH11 base sequence

GCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGTGCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGT

SEQ ID NO: 5SEQ ID NO: 5

IlvC_CH13 아미노산 서열IlvC_CH13 amino acid sequence

M A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A D F G E F S L R L F G A W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A GM A N Y F N T L N L R Q Q L A Q L G K C R F M G R D E F A D G A S Y L Q G K K V V I V G C G A Q G L N Q G L N M R D S G L D I S Y A D F G E F S L R L F G A W R K A T E N G F K V G T Y E E L I P Q A D L V I N L T P D K Q H S D V V R T V Q P L M K D G A A L G Y S H G F N I V E V G E Q I R K D I T V V M V A P K C P G T E V R E E Y K R G F G V P T L I A V H P E N D P K G E G M A I A K A W A A A T G G H R A G V L E S S F V A E V K S D L M G E Q T I L C G M L Q A G S L L C F D K L V E E G T D P A Y A E K L I Q F G W E T I T E A L K Q G G I T L M M D R L S N P A K L R A Y A L S E Q L K E I M A P L F Q K H M D D I I S G E F S S G M M A D W A N D D K K L L T W R E E T G K T A F E T A P Q Y E G K I G E Q E Y F D K G V L M I A M V K A G V E L A F E T M V D S G I I E E S A Y Y E S L H E L P L I A N T I A R K R L Y E M N V V I S D T A E Y G N Y L F S Y A C V P L L K P F M A E L Q P G D L G K A I P E G A V D N G Q L R D V N E A I R S H A I E Q V G K K L R G Y M T D M K R I A V A G

SEQ ID NO: 6SEQ ID NO: 6

IlvC_CH13 염기 서열IlvC_CH13 base sequence

GCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGTGCCGCAGTATGAAGGCAAAATCGGCGAGCAGGAGTACTTCGATAAAGGCGTACTGATGATTGCGATGGTGAAAGCGGGCGTTGAACTGGCGTTCGAAACCATGGTCGATTCCGGCATCATTGAAGAGTCTGCATATTATGAATCACTGCACGAGCTGCCGCTGATTGCCAACACCATCGCCCGTAAGCGTCTGTACGAAATGAACGTGGTTATCTCTGATACCGCTGAGTACGGTAACTATCTGTTCTCTTACGCTTGTGTGCCGTTGCTGAAACCGTTTATGGCAGAGCTGCAACCGGGCGACCTGGGTAAAGCTATTCCGGAAGGCGCGGTAGATAACGGGCAACTGCGTGATGTGAACGAAGCGATTCGCAGCCATGCGATTGAGCAGGTAGGTAAGAAACTGCGCGGCTATATGACAGATATGAAACGTATTGCTGTTGCGGGT

본 발명에서는 이소부탄올 생합성에 관여하는 효소 중 아세토락테이트(2-acetolactate)를 NADPH를 이용하여 2,3-dihydroxyisovalerate로 전환하는 효소인 케톨산 리덕토아이소머라제(ketol-acid reductoisomerase, IlvC) 효소의 조효소 친화도를 NADPH에서 NADH로 바꾸는 것이다. 이를 위하여, 효소 내의 NADPH의 phosphate의 결합에 관여하는 로스만 루프 부위(아미노산 서열 67-78번)를 리모델링(remodeling)하는 개념으로 특정부위 랜덤 돌연변이 (targeted random mutagenesis)를 통하여 돌연변이 라이브러리를 제작한 후, NADH에 친화도를 가지는 효소를 스크리닝하였다. 초기 400종의 돌연변이 효소 중 42종의 효소를 스크리닝하였고, 그 중 최종적으로 NADH에 대한 친화도가 높은 2종의 효소(IlvC_CH11, IlvC_CH13)를 스크리닝을 하였다. 2종의 효소를 대장균에 형질전환하여 생산 및 정제한 후 효소의 반응속도 등의 계산하여 본 결과 돌연변이 효소들은 야생형 (wild type)의 효소에 비하여 catabolic efficiency가 NADH에 대해서는 2.5-3배가 높았으며, NADPH에 대해서는 4.3-4.5배가 낮게 나타났다. 마지막으로, 2종의 돌연변이 효소들은 로스만 루프 내에서 NADPH의 phosphate와의 결합력이 높은 Arg68, Arg76, 및 Ser78의 아미노산이 Ser68, Phe76, Asp78과 Phe68, Phe76, and Ala78으로 바뀌어 있음으로 미루어, phosphate와의 친화도가 줄어든 것이 NADH의 친화도를 높이는데 결정적 이유가 있는 것으로 판단된다. In the present invention, ketol-acid reductoisomerase (IlvC) enzyme, an enzyme that converts 2-acetolactate, which is involved in isobutanol biosynthesis, into 2,3-dihydroxyisovalerate using NADPH Of NADPH to NADH. For this purpose, a mutant library was constructed through targeted random mutagenesis as a concept of remodeling the Rossmann loop region (amino acid sequence No. 67-78) involved in the binding of phosphate of NADPH in the enzyme , And an enzyme having affinity for NADH was screened. Of the initial 400 mutagenic enzymes, 42 enzymes were screened. Finally, two enzymes (IlvC_CH11, IlvC_CH13) with high affinity for NADH were screened. The mutant enzymes were 2.5-3 times higher in catabolic efficiency than NADH enzymes in terms of the rate of enzyme reaction after production and purification of two enzymes transformed into E. coli. And 4.3-4.5 times lower for NADPH. Finally, the two mutant enzymes have been shown to alter the amino acids Arg68, Arg76, and Ser78, which bind to NADPH with phosphate in the Rossman loop, to Ser68, Phe76, Asp78 and Phe68, Phe76, and Ala78, It is believed that there is a decisive reason for the affinity of NADH to be increased because the affinity is reduced.

본 발명에서 개발된 NADH 친화도가 높은 케톨산 리덕토아이소머라제(ketol-acid reductoisomerase, IlvC) 돌연변이 효소를 기존 이소부탄올 생산방법에 적용하면 해당과정에서 생성되는 NADH가 IlvC에 의해 소비가 되므로 조효소 불균형의 문제가 해결되어 이소부탄올 생산성을 향상시킬 수 있다 (도 2).When the mutant enzyme of ketol-acid reductoisomerase (IlvC) having high NADH affinity developed in the present invention is applied to the conventional method of producing isobutanol, since NADH produced in the process is consumed by IlvC, The problem of imbalance is solved and the productivity of isobutanol can be improved (Fig. 2).

특히, 본 발명에서 개발된 케톨산 리덕토아이소머라제를 바이오에너지 생합성 미생물 균주에 직접적으로 적용하여 이소부탄올 등의 생산을 증대하는 기술은 기존의 화석연료를 대체하기 위한 친환경적 재생 에너지를 생산한다는 측면에서 매우 의미가 있다.In particular, the technology for directly increasing the production of isobutanol and the like by directly applying the ketol acid reductoisomerase, which has been developed in the present invention, to the bioenergy biosynthetic microorganism strain is a method for producing environmentally- It is very meaningful in.

본 발명에 따른 NADH 친화도가 높은 케톨산 리덕토아이소머라제(ketol-acid reductoisomerase, IlvC) 돌연변이 효소를 이소부탄올 생산에 적용한다면, 조효소 산화환원불균형(cofactor redox balance)의 문제를 해결하여 이소부탄올 생산성이 증가할 것으로 기대한다. When the mutant enzyme of ketol-acid reductoisomerase (IlvC) having high NADH affinity according to the present invention is applied to the production of isobutanol, the problem of cofactor redox balance is solved and isobutanol Productivity is expected to increase.

도 1은 이소부탄올의 생합성 경로를 도식화 한 것이다.
도 2는 본 발명의 IlvC 돌연변이를 이용한 이소부탄올의 생합성 경로를 도식화한 것이다.
도 3은 조효소 NADH 선호 IlvC 효소 개발을 위한 라이브러리 제작과정을 나타낸 것이다[(a) IlvC 효소의 랜덤 돌연변이의 타깃인 Rossman loop의 아미노산 서열 및 위치, (b) 랜덤 돌연변이 라이브러리 제작을 위한 assembly PCR 전략 모식도, (c) Assmebly PCR을 통한 랜덤 라이브러리 획득: M, marker; lane 1, fragment 1, 198 bp; lane 2, fragment 1+2, 271 bp; lane 3, fragment 3, 1242 bp; lane 4, 로즈만 루프(Rossman loop)의 돌연변이 ilvC, 1476 bp].
도 4는 IlvC 효소 스크리닝을 위한 기질(2-acetolactate, 이하 2-AL)의 화학적 합성을 나타낸 것이다[(a) 2-AL 화학적 합성을 위한 모식도, (b) GC/TOF MS를 통하여 획득된 토털 이온 크로마토그램(total ion chromatogram), (c) 합성된 2-AL의 질량스펙트럼].
도 5는 야생형(wild type) 및 스크리닝 된 돌연변이 IlvC에 의한 NADH 소비를 나타낸 것이다[C, empty vector; W, 야생형 IlvC; 1-42, 돌연변이 IlvC].
도 6은 최종적으로 선별된 IlvC_CH11 및 IlvC_CH13 돌연변이 및 야생형 IlvC 효소의 정제 결과를 나타낸 것이다[M, 단백질 사이즈 마커(kDa); lane 1, 야생형(wild type) IlvC 효소; lane 2, IlvC_CH11; lane 3, IlvC_CH13].
도 7은 선별된 IlvC 돌연변이와 야생형 효소의 동역학 계수를 구하기 위한 라인위버-버크(Lineweaver-Burk) 플롯이다[(a) 다양한 농도의 NADH를 조효소로 효소반응, (b) 다양한 농도의 NADPH를 조효소로 효소반응].
도 8은 IlvC_CH11 및 IlvC_CH13의 효소반응을 확인한 것이다[NADH를 조효소로 정제된 효소를 이용한 효소반응 시료의 (a) GC/TOF MS분석을 통하여 획득된 토털 이온 크로마토그램(total ion chromatogram), (b) 효소반응 후 생성된 시료의 질량스펙트럼. (c) 표준물질 2,3-DHIV의 질량스펙트럼].
도 9는 IlvC_CH11 및 IlvC_CH13의 (a) DNA 염기서열 분석 및 (b) 단백질 서열 분석한 결과이다.
Figure 1 schematically illustrates the biosynthetic pathway of isobutanol.
Figure 2 is a schematic representation of the biosynthetic pathway of isobutanol using the IlvC mutant of the present invention.
FIG. 3 shows the procedure for constructing a library for the development of a coenzyme NADH-favored IlvC enzyme [(a) amino acid sequence and position of the Rossman loop, which is a target of a random mutation of IlvC enzyme, and (b) assembly PCR strategy for producing a random mutant library. , (c) Obtaining random library through Assmebly PCR: M, marker; lane 1, fragment 1, 198 bp; lane 2, fragment 1 + 2, 271 bp; lane 3, fragment 3, 1242 bp; lane 4, mutant ilvC of the Rossman loop, 1476 bp].
FIG. 4 shows the chemical synthesis of 2-acetolactate (hereinafter referred to as 2-AL) for IlvC enzyme screening [(a) schematic diagram for 2-AL chemical synthesis, (b) total amount obtained through GC / TOF MS Ion mass spectrometry (c) synthesized 2-AL mass spectrum].
Figure 5 shows NADH consumption by wild type and screened mutant IlvC [C, empty vector; W, wild type IlvC; 1-42, mutant IlvC].
Figure 6 shows the results of purification of the finally selected IlvC_CH11 and IlvC_CH13 mutants and the wild type IlvC enzyme [M, protein size marker (kDa); lane 1, wild type IlvC enzyme; lane 2, IlvC_CH11; lane 3, IlvC_CH13].
Figure 7 is a Lineweaver-Burk plot for determining the selectivity of the IlvC mutation and the wild-type enzyme kinetic parameters [(a) enzymatic reaction with various concentrations of NADH as a coenzyme, (b) varying concentrations of NADPH as a coenzyme To the enzyme reaction].
Fig. 8 shows the enzymatic reaction of IlvC_CH11 and IlvC_CH13. [Total ion chromatogram (total ion chromatogram) obtained by GC / TOF MS analysis of (a) enzyme reaction sample using NADH as enzyme coenzyme purified, (b ) Mass spectrum of the sample after enzyme reaction. (c) mass spectrum of the reference material 2,3-DHIV.
9 shows the results of (a) DNA sequence analysis and (b) protein sequence analysis of IlvC_CH11 and IlvC_CH13.

이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited by the following examples.

[[ 실시예Example ]]

실시예Example 1:  One: 케톨산Ketoxylic acid 리덕토아이소머라제Reductoisomerase (( ketolketol -- acidacid reductoisomerase재ductoisomerase , , IlvCIlvC ) 효소 개발을 위한 로스만 루프() Rosmann Loop for enzyme development ( RossmanRossman looploop )의 랜덤 돌연변이 라이브러리 제작) Random mutant library

IlvC 효소가 가지고 있던 NADPH(nicotinamide adenine dinucleotide phosphate)에 대한 조효소 친화도를 NADH(nicotinamide adenine dinucleotide)로 바꾸기 위하여, 두 조효소의 차이점인 “phosphate”에 주목을 하였고, phosphate의 결합에 관여하는 IlvC 효소내의 로스만 루프(Rossman loop)를 랜덤 돌연변이하여 NADH에 친화도가 높은 돌연변이 효소를 스크리닝하고자 했다(도 3의 (a)). 이를 위하여 ilvC 유전자를 하기 표 1의 ‘Sd_’ 프라이머들을 이용하여 도 3의 (b)의 모식도와 같이 어셈블리(assembly) PCR을 이용하여 랜덤 돌연변이를 제작하였다. 그 결과, 도 3의 (c)와 같이 단계별 ilvC 절편(DNA fragment)을 얻을 수 있었고, 최종적으로 모든 절편들은 assembly하여 원하는 ilvC 돌연변이 라이브러리를 제작하였다(도 3의 (c)). In order to convert the coenzyme affinity of NADPH (nicotinamide adenine dinucleotide phosphate), which was possessed by IlvC enzyme, to NADH (nicotinamide adenine dinucleotide), attention was paid to the difference between two coenzymes, "phosphate" A Rossman loop was randomly mutated to screen mutant enzymes with high affinity to NADH (Fig. 3 (a)). For this, a random mutation was constructed by using assembly PCR as shown in the schematic diagram of FIG. 3 (b) using 'Sd_' primers of the ilvC gene shown in Table 1 below. As a result, the step-by-step as shown in (c) of Figure 3 ilvC DNA fragments were obtained. Finally, all the fragments were assembled to construct a desired ilvC mutant library (Fig. 3 (c)).

또한, 편리한 스크리닝을 위하여 단백질 세포 표면발현(surface display)용 벡터를 제작하여(표 1의 pATLIC_ilvC mut), E. coli Top10에 형질전환시켰다. 그 결과, 3.2×104의 콜로니(colony, CFU)를 획득하였으며, 형질전환의 효율은 3.2×103 CFU/μg DNA였다. 한편, 20개의 콜로니를 무작위로 선별하여 로스만 루프의 36bp의 염기서열을 분석한 결과 돌연변이 확률은 60%로 나타났으며, 나머지 40%는 돌연변이는 일어났으나 대부분 single base pair의 결실(deletion)에 의한 프레임 쉬프트(frame shift) 돌연변이로 확인되었다. In order to facilitate screening, a protein surface expression vector was prepared (pATLIC_ ilvC mut in Table 1) and transformed into E. coli Top10. As a result, 3.2 × 10 4 colonies (CFU) were obtained and the transformation efficiency was 3.2 × 10 3 CFU / μg DNA. In the meantime, a random selection of 20 colonies revealed that 36 bp of the rosemann loop had a mutation probability of 60%, while the remaining 40% had a mutation but most of the single base pair deletion And a frame shift mutation due to the mutation.

▶실험방법 1-1) ilvC 유전자 돌연변이 라이브러리 제작: ▶ Experimental method 1-1) Construction of ilvC gene mutant library :

E. coli K12 균주로부터 genomic DNA를 분리 후 하기 표 1의 ilvC_pET_Fw 및 ilvC_pET_Rv 프라이머를 이용하여 PCR로 ilvC 유전자를 확보하였다. 그 후, 확보된 유전자를 주형(template)로 표 1의‘Sd_’ primer들을 이용하여 assembly PCR을 실시하였다[표 2 참조]. 돌연변이의 타깃이 되는 로스만 루프는 primer인 SD_R2를 돌연변이의 자체주형으로 이용하였으며, 돌연변이 제작에 사용된 primer들은 서로 5’ 및 3’ 부위 겹치는 부위(15 bp overlapping region)을 가지며, Tm값은 58-62 ℃로 균일하게 제작되었다. Genomic DNA was isolated from E. coli strain K12, and the ilvC_pET_Fw and ilvC_pET_Rv primers shown in Table 1 were used to carry out ilvC Gene. Subsequently, assembly PCR was carried out using 'Sd_' primers shown in Table 1 with the obtained gene as a template (see Table 2). The target of the mutation, the Rhuman Loop, used the primer SD_R2 as its own template, and the primers used for mutagenesis had overlapping regions (15 bp overlapping region) of 5 'and 3' -62 < [deg.] ≫ C.

[표 1][Table 1]

본 실험에서 사용된 박테리아, 플라스미드 및 프라이머The bacteria, plasmids and primers used in this experiment

Figure 112017089701805-pat00001
Figure 112017089701805-pat00001

[표 2][Table 2]

ilvC 돌연변이 제작을 위하여 이용된 PCR 조건- Q5 polymerase 이용 (NEB; New England Biolabs, Ipswich, MA, USA)(NEB; New England Biolabs, Ipswich, MA, USA) using the Q5 polymerase for the ilvC mutagenesis.

Figure 112017089701805-pat00002
Figure 112017089701805-pat00002

실시예Example 2: 조효소  2: Coenzyme NADH에On NADH 친화도를Affinity 가지는 돌연변이 효소 스크리닝 Mutant enzyme screening

돌연변이 스크리닝에 앞서, 먼저 기질로 사용되는 2-AL(2-acetolactate)를 ethyl 2-acetoxy-2-methylacetoacetate(EAMAA)로부터 0.1M NaOH를 이용한 비누화반응(saponification)을 통하여 합성하였다 (도 4의 (a)). 또한, 합성된 2-AL은 기체크로마토그래피/질량분석을 통하여 확인할 수 있었다. 도 4의 (b)는 합성된 2-AL의 전체 이온 크리마토그램(total ion chromatogram)이며, 리텐션 타임을 확인할 수 있었다. 도 3의 (c)는 합성된 2-AL의 질량 스펙트럼(mass spectrum)의 결과로서, 이온화되어 분리되는 질량 패턴(mass fragmentation pattern)상의 고유한 피크를 통하여 유도체화된 형태(derivatized form)의 2-AL을 확인할 수 있었다. 그 후, 초기 400개의 돌연 변이된 콜로니를 선택하여, 효소를 과발현 후, 기질(2-AL) 및 NADH와 함께 반응하여 본 결과, NADH를 가장 많이 소비하는 42개의 돌연변이 효소를 스크리닝할 수 있었다 (도 5). 그 중, 13개의 효소를 다시 선별하였고, E. coli BL21(DE3)에서 13개의 효소를 과발현한 후 in vitro 반응을 통해서 최종적으로 2개의 효소를 선별하였고, 이를 각각 IlvC_CH11(SEQ ID NO: 3) 및 IlvC_CH13(SEQ ID NO: 5)이라고 명명하였다. Prior to mutagenic screening, 2-AL (2-acetolactate) used as a substrate was first synthesized from ethyl 2-acetoxy-2-methylacetoacetate (EAMAA) through saponification using 0.1 M NaOH a)). The synthesized 2-AL was confirmed by gas chromatography / mass spectrometry. FIG. 4 (b) is a total ion chromatogram of synthesized 2-AL, and the retention time can be confirmed. FIG. 3 (c) shows the result of the mass spectrum of the synthesized 2-AL. As a result of the mass spectrum of the derivatized form through a unique peak on the ionized and separated mass fragmentation pattern, -AL could be confirmed. Afterwards, 400 mutagenic colonies were selected and overexpressed, followed by reaction with substrate (2-AL) and NADH, resulting in screening of 42 mutant enzymes that consume the most NADH ( 5). Among them, 13 enzymes were selected again, and 13 enzymes were overexpressed in E. coli BL21 (DE3), followed by in vitro reaction. Finally, two enzymes were selected and identified as IlvC_CH11 (SEQ ID NO: 3) And IlvC_CH13 (SEQ ID NO: 5).

▶실험방법 2-1) 2- acetolactate (2-AL)의 화학적 합성 및 확인(1): ▶ Experimental method 2-1) 2- chemical synthesis and identification of acetolactate (AL-2) (1):

IlvC 효소의 스크리닝을 위하여, 기질인 2-AL을 ethyl 2-acetoxy-2-methylacetoacetate(EAMAA)로부터 합성하였다. 그 후, 합성된 2-AL의 시료를 진공 농축기(centrifugal vaccum concentrator)를 이용하여 완전히 건조시키고, 유도체화(derivatization)을 위하여 피리딘(pyridine)에 40 mg/mL 농도의 methoxyamine hydrochloride in pyridine(Sigma-Aldrich, St. Louis, MO, USA) 5 μL와 시료를 30 ℃, 200 rpm의 조건으로 90분 반응하였다. 그 후, 45μL의 N-methyl-N-(trimethylsilyl)trifluoroacetamide(Fluka, Buchs, Switzerland)와 37 ℃, 200 rpm의 조건으로 30분 반응하였다. For the screening of IlvC enzyme, the substrate 2-AL was synthesized from ethyl 2-acetoxy-2-methylacetoacetate (EAMAA). Then, the synthesized 2-AL sample was completely dried using a vacuum concentrator and pyridine was added to 40 mg / mL of methoxyamine hydrochloride in pyridine (Sigma- Aldrich, St. Louis, Mo., USA) at 30 ° C and 200 rpm for 90 minutes. Then, the reaction was performed with 45 μL of N-methyl-N- (trimethylsilyl) trifluoroacetamide (Fluka, Buchs, Switzerland) at 37 ° C. and 200 rpm for 30 minutes.

▶실험방법 2-2) 2- acetolactate (2-AL)의 화학적 합성 및 확인(2): ▶ Experimental method 2-2) 2- acetolactate (chemical synthesis and identification of 2-AL) (2):

상기 실험방법 2-1)에서 준비된 시료를 바이알(vial)에 옮긴 후 기체 크로마토그래피/질량분석(Agilent Technologies, 7890B CC, Wilmington, DE, USA)을 수행하였으며, 기기의 분석 조건은 다음과 같다. 분석시 사용한 컬럼은 RTX-5Sil MS capillary column (30 m length, 25 mm inner diameter, 0.25 mm film thickness)이며, GC 컬럼 온도는 먼저 50 ℃에서 5분간 유지시키고 330 ℃까지 승온시킨 후 1분간 유지하였다. 샘플은 1 μL를 비분할법(spitless)으로 주입하였으며, transfer line 온도와 ion source 온도는 각각 280 ℃ 및 250 ℃로 유지시켰다. 최종적으로 획득된 GC/TOF MS결과는 보유하고 있는 BinBase의 라이브러리와 매치시켜 2-AL임을 확인하였다. The sample prepared in Experimental Method 2-1) was transferred to a vial and analyzed by gas chromatography / mass spectrometry (Agilent Technologies, 7890B CC, Wilmington, DE, USA). The GC column temperature was maintained at 50 ° C for 5 minutes, then the temperature was increased to 330 ° C, and the temperature was maintained for 1 minute. The temperature of the column was measured by RTX-5Sil MS capillary column (30 m length, 25 mm inner diameter, 0.25 mm film thickness) . The samples were injected with 1 μL spitless and the transfer line temperature and ion source temperature were maintained at 280 ° C and 250 ° C, respectively. The final GC / TOF MS results were matched with the BinBase library and confirmed to be 2-AL.

▶실험방법 2-3) 돌연변이 IlvC 효소 스크리닝: ▶ Experimental method 2-3) Mutant IlvC enzyme screening :

돌연변이 단백질의 표면 발현용 벡터인 pATLIC_ilvC mut가 형질전환된 대장균의 싱글 콜로니(single colony)를 취하여 LB(Luria-Bertani) 액체배지, 37 ℃에서 16시간 배양하였다. 그 후, 세포배양액을 새로운 LB 액체배지에 세포농도(cell density)가 OD600=0.02가 되도록 옮긴 후, 세포배양액이 OD600=0.5가 되면 IlvC 효소의 과발현을 위하여 0.2%(w/v)의 아라비노스(arabinose)를 투입하였다. 12 시간 후, 2mL의 세포배양액을 취한 뒤, 5000 × g, 10분간 원심분리 후 세포만 획득하였다. 효소 반응을 위하여 획득된 세포, 2.5 mM 2-AL, 그리고 200 μM NADH를 phosphate 버퍼(100mM sodium phosphate, 1 mM DTT, 10 mM MgCl2; pH 7.0)에서 37 ℃, 30분간 배양하였다. 최종적으로 세포표면에 발현된 IlvC 돌연변이에 의하여 소비된 NADH의 양을 microplate reader를 이용하여 340 nm에서 흡광도를 찍어 확인하였다. 음성대조군(negative control)로써, 야생형 IlvC 효소에 의한 NADH 소비량도 함께 비교하였다. A single colony of E. coli transformed with pATLIC_ ilvC mut , a vector for surface expression of the mutant protein, was cultured in LB (Luria-Bertani) liquid medium at 37 ° C for 16 hours. Thereafter, the cell culture medium was transferred to a new LB liquid medium so that the cell density became OD 600 = 0.02. Then, when the cell culture medium reached OD 600 = 0.5, 0.2% (w / v) And arabinose was added thereto. After 12 hours, 2 mL of the cell culture was taken, and then cells were obtained after centrifugation at 5000 xg for 10 minutes. 2.5 mM 2-AL and 200 μM NADH were incubated in phosphate buffer (100 mM sodium phosphate, 1 mM DTT, 10 mM MgCl 2, pH 7.0) for 30 min at 37 ° C for enzyme reaction. Finally, the amount of NADH consumed by the IlvC mutation expressed on the cell surface was confirmed by absorbance at 340 nm using a microplate reader. As a negative control, NADH consumption by wild type IlvC enzyme was also compared.

실시예Example 3:  3: IlvCIlvC _CH11 및 _CH11 and IlvCIlvC _CH13 효소의 동역학적 계수(Kinetic Coefficient of _CH13 Enzyme ( kinetickinetic parameterparameter )의 결정) Determination

도 6과 같이 정제된 야생형 IlvC 효소와 선별된 돌연변이 IlvC 효소들은 0.1 mg/mL의 농도에 맞추어서 2.5 mM의 2-AL 및 다양한 농도의 NADPH와 NADH (0.05 ~ 0.5 mM)과 함께 최종 부피 200 μL의 phosphate buffer에서 37℃, 30분간 반응하였다. 그 후 NADPH 및 NADH의 소비되는 양은 microplate reader를 이용하여 흡광도 340nm에서 5분 마다 1시간 동안 모니터링하였다. 그 결과 기질인 NADH 및 NADPH의 농도별 초기 효소반응 속도(initial velocity)를 구한 후 Lineweaver-Burk plot(도 7)를 기초로 Km값과 Vmax값을 계산할 수 있었으며, 이를 이용하여 Kcat값 및 catabolic efficiency(Kcat/Km)를 구하였다 (표 3). 그 결과, IlvC_CH11과 IlvC_CH13의 NADH에 대한 catabolic efficiency가 wild type IlvC에 비하여 각각 2.9 및 2.6배가 증가됨을 확인하였다. 반면 NADPH에 대하여서는 wild type IlvC 대비 각각 4.3 및 4.6배가 감소함을 확인하였다(표 3). 이로서, 선별된 IlvC_CH11과 CH13 변이효소들은 기존의 야생형에 비하여 NADH에 친화도가 높아졌다고 결론을 내렸다. As shown in FIG. 6, purified wild-type IlvC enzymes and selected mutant IlvC enzymes were mixed with 2.5 mM 2-AL and various concentrations of NADPH and NADH (0.05-0.5 mM) to a concentration of 0.1 mg / phosphate buffer at 37 ° C for 30 minutes. The consumed amounts of NADPH and NADH were then monitored for 1 hour every 5 minutes at 340 nm using a microplate reader. As a result, substrate, NADH, and after obtaining the initial enzyme reaction velocity (initial velocity) per concentration of NADPH Lineweaver-Burk plot based on the (7) was able to calculate the K m value and V max values, by using this K cat value And catabolic efficiency ( K cat / K m) (Table 3). As a result, it was confirmed that the catabolic efficiency of IlvC_CH11 and IlvC_CH13 on NADH was increased 2.9 and 2.6 times, respectively, compared to wild type IlvC. On the other hand, NADPH decreased 4.3 and 4.6 times compared to wild-type IlvC (Table 3). As a result, it was concluded that the selected IlvC_CH11 and CH13 mutant enzymes had higher affinity for NADH than the wild type.

▶실험방법 3-1) 선별된 변이효소들과 wild type IlvC의 과발현을 위하여 표 1의 ilvC_Fw 및 ilvC_Rv를 이용 pATILC_ilvC_CH11 및 pATILC_ilvC_CH13으로부터 PCR을 통하여 ilvC _CH11ilvC _CH13 유전자를 획득한 후, pET21a(+) vector에 cloning을 하여 pET21_ilvC와pET21_ilvC_CH11 및 pET21_ilvC_CH11 플라스미드를 제작하였다. 플라스미드들은 E. coli BL21(DE3)에 형질전환하였다. 세포의 발현을 위하여, E. coli BL21(DE3)의 single colony를 100 μg/mL의 ampicillin이 함유된 LB 배지 10mL에서 37 ℃, 16시간 동안 배양하였다. 그 뒤, 다시 1L의 fresh LB 배지에서 초기 세포밀도(cell density)가 흡광도(600nm) 0.02로 되도록 맞추어 키운 후, 흡광도가 0.5가 될 때 효소 과발현을 위하여 0.5 mM의 IPTG(isopropyl-β-D-galactopyranoside)를 넣어 주고 16℃에서 16시간 배양하였다. 그 뒤, 세포를 30 mL의 phosphate buffer (100 mM sodium phosphate, 20 mM sodium chloride, pH 7.0)에 회수하여 sonication을 이용하여 파쇄하였다. 그 뒤, 원심분리 후 상등액을 취하여 1 mL의 Ni2 +-NTAsepharose (Qiagen, Valencia, CA, USA)와 4℃에서 1시간 동안 반응시킨 후, 30mL 용량의 open column에 loading하여 다양한 imidazole 농도(50~1000 mM)로 단백질을 정제하였다. 최종적으로 정제된 단백질은 BCA 방법을 이용하여 정량하였다. ▶ Experimental method 3-1) After obtaining the ilvC _CH11 _CH13 and ilvC gene by PCR, and the ilvC_Fw ilvC_Rv in Table 1 to the selected mutant enzymes and overexpression of the wild type from the use IlvC pATILC_ilvC_CH11 and pATILC_ilvC_CH13, pET21a (+) vector to construct pET21_ilvC, pET21_ilvC_CH11 and pET21_ilvC_CH11 plasmids. Plasmids were transformed into E. coli BL21 (DE3). For expression of the cells, a single colony of E. coli BL21 (DE3) was cultured in 10 mL of LB medium containing 100 μg / mL of ampicillin at 37 ° C for 16 hours. The cell density was then adjusted to an absorbance (600 nm) of 0.02 in 1 L fresh LB medium. After the incubation, the absorbance was 0.5, 0.5 mM IPTG (isopropyl-β-D- galactopyranoside) was added and cultured at 16 ° C for 16 hours. Cells were then resuspended in 30 mL of phosphate buffer (100 mM sodium phosphate, 20 mM sodium chloride, pH 7.0) and sonicated. After centrifugation, the supernatant was taken and reacted with 1 mL of Ni 2 + -NTAsepharose (Qiagen, Valencia, CA, USA) for 1 hour at 4 ° C. To 1000 mM). Finally, the purified protein was quantified using the BCA method.

[표 3][Table 3]

본 발명에서 개발한 2종의 돌연변이 및 야생종 효소의 특성Characteristics of the two mutants and wild-type enzymes developed in the present invention

Figure 112017089701805-pat00003
Figure 112017089701805-pat00003

실시예Example 4: 선별된  4: Selected IlvCIlvC 변이 효소의  Mutant enzyme NADH를NADH 이용한 활성 확인 Identify active activity

선별된 IlvC 변이효소가 NADH를 조효소로 이용하여 2-acetolactate로부터 2,3-dihydroxylisovalerate(2,3-DHIV)를 합성하는지 여부를 in vitro 실험을 통하여 확인하였다. 반응조건은 0.1 mg/mL 농도의 효소를 2.5 mM 2-acetolactate 및 0.5 mM NADH와 함께 최종 부피 200 μL의 phosphate buffer에서 37 ℃, 10분간 반응하였으며, 반응 전후의 물질을 실험 방법 2-1) 및 2-2)과 같이 시료를 유도체화(derivatization) 후 GC/TOF MS 분석하였다 (도 8). 그 결과, IlvC_돌연변이 효소에 의하여 기질인 2-AL이 NADH를 조효소로 이용하여 2,3-DHIV로 전환(conversion)됨을 확인할 수 있었다 (도 8의 (a)). 반면, control인 효소가 없는 조건에서는 2-AL의 변화가 없으며 반응산물이 없는 것을 확인 할 수 있었다(도 8의 (a)).Whether the selected IlvC mutant enzymes using NADH as a coenzyme from a 2-acetolactate synthesis of 2,3-dihydroxylisovalerate (2,3-DHIV) in vitro experiments. The reaction conditions were as follows: 0.1 mg / mL of enzyme was reacted with 2.5 mM 2-acetolactate and 0.5 mM NADH in a final volume of 200 μL of phosphate buffer at 37 ° C for 10 minutes. 2-2), GC / TOF MS analysis was performed after derivatization of the sample 8). As a result, it was confirmed that the substrate 2-AL was converted to 2,3-DHIV by using the NADH as a coenzyme by the IlvC_ mutant enzyme (FIG. 8 (a)). On the other hand, in the absence of the control enzyme, 2-AL was not changed and there was no reaction product (FIG. 8 (a)).

마지막으로, GC/TOF MS 분석 결과 효소반응 산물이 표준물질 2,3-dihydroxylisovalerate (Sigma-Aldrich, St. Louis, MO, USA)과 질량 스펙트럼을 비교하여 본 결과, 이온화되어 분리되는 질량 패턴이 일치됨을 확인하였다(도 8의 (b), (c)). Finally, GC / TOF MS analysis showed that the mass spectra of the enzyme reaction products were compared with the standard mass of 2,3-dihydroxylisovalerate (Sigma-Aldrich, St. Louis, Mo., USA) (Fig. 8 (b), (c)).

실시예 5: 선별된 IlvC 변이 효소의 DNA 및 단백질 서열 분석 Example 5: DNA and protein sequence analysis of selected IlvC mutant enzymes

선별된 IlvC 변이효소의 DNA와 단백질의 서열 분석 결과, 로즈만 루프(Rossman loop)에 해당하는 유전자 198-233bp사이 총 36개의 염기 및 아미노산 67-78aa 사이의 총 12개의 아미노산이 야생형 ilvC(또는 IlvC)에 대하여 완전히 리모델링(remodeling)되어 있음을 확인할 수 있었으며(도 9의 (a), (b)), Sequence analysis of the selected DNA and protein of IlvC mutant enzymes revealed that a total of 36 bases and a total of 12 amino acids between amino acids 67-78aa between 198-233bp of the gene corresponding to the Rossman loop corresponded to the wild type ilvC (or IlvC (Fig. 9 (a), (b)), and it was confirmed that the remodeling was completely performed

특히, 로즈만 루프내의 NADPH의 phosphate와 결합에 직접적으로 관여하는 68번, 76번, 78번의 아미노산이 IlvC_CH11번에서는 Arg68Ser, Arg76Phe, Arg78Asp 그리고, IlvC_CH13번에서는 Arg68Phe, Arg76Phe, Arg78Ala로 치환된 것을 확인하였다(도 9의 (b)). Particularly, it was confirmed that the amino acids 68, 76 and 78 directly involved in binding with the phosphate of NADPH in the Rhodamine loop were substituted with Arg68Ser, Arg76Phe and Arg78Asp in IlvC_CH11 and Arg68Phe, Arg76Phe and Arg78Ala in IlvC_CH13 (Fig. 9 (b)).

<110> Korea University Industrial & Academic Collaboration Foundation <120> New ketol-acid reductoisomerase with a cofactor preference to NADH developed <130> P17U13C0754 <160> 6 <170> KoPatentIn 3.0 <210> 1 <211> 491 <212> PRT <213> Escherichia coli <400> 1 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> 2 <211> 1473 <212> DNA <213> Escherichia coli <400> 2 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473 <210> 3 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> IlvC_CH11 <400> 3 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Glu Ser Ala Leu Val Val Trp Leu Ser Phe Asp Asp Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> 4 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> IlvC_CH11 <400> 4 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctga atccgcattg gtcgtctggt tgagctttga cgactggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473 <210> 5 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> IlvC_CH13 <400> 5 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Asp Phe Gly Glu Phe Ser Leu Arg Leu Phe Gly Ala Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> 6 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> IlvC_CH13 <400> 6 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctga ttttggtgaa ttttcgttac gtctgttcgg tgcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473 <110> Korea University Industrial & Academic Collaboration Foundation <120> New ketol-acid reductoisomerase with a cofactor preference to          NADH developed <130> P17U13C0754 <160> 6 <170> KoPatentin 3.0 <210> 1 <211> 491 <212> PRT <213> Escherichia coli <400> 1 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln   1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala              20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln          35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser      50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg  65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile                  85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser             100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu         115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg     130 135 140 Lys Asp Ile Thr Val Val Met Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala                 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys             180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser         195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile     210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe                 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ale Leu Lys Gln Gly Gly Ile Thr Leu             260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu         275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met     290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys                 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln             340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly         355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu     370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr                 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu             420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile         435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala     450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly                 485 490 <210> 2 <211> 1473 <212> DNA <213> Escherichia coli <400> 2 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473 <210> 3 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> IlvC_CH11 <400> 3 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln   1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala              20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln          35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser      50 55 60 Tyr Ala Glu Ser Ala Leu Val Val Trp Leu Ser Phe Asp Asp Trp Arg  65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile                  85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser             100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu         115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg     130 135 140 Lys Asp Ile Thr Val Val Met Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala                 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys             180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser         195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile     210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe                 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ale Leu Lys Gln Gly Gly Ile Thr Leu             260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu         275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met     290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys                 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln             340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly         355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu     370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr                 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu             420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile         435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala     450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly                 485 490 <210> 4 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> IlvC_CH11 <400> 4 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctga atccgcattg gtcgtctggt tgagctttga cgactggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473 <210> 5 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> IlvC_CH13 <400> 5 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln   1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala              20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln          35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser      50 55 60 Tyr Ala Asp Phe Gly Glu Phe Ser Leu Arg Leu Phe Gly Ala Trp Arg  65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile                  85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser             100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu         115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg     130 135 140 Lys Asp Ile Thr Val Val Met Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala                 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys             180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser         195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile     210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe                 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ale Leu Lys Gln Gly Gly Ile Thr Leu             260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu         275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met     290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys                 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln             340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly         355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu     370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr                 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu             420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile         435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala     450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly                 485 490 <210> 6 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> IlvC_CH13 <400> 6 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctga ttttggtgaa ttttcgttac gtctgttcgg tgcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggt 1473

Claims (3)

SEQ ID NO: 3으로 표시되는 아미노산 서열로 구성되는 NADH 친화적인 케톨산 리덕토아이소머라제 변이체
An NADH-friendly ketolan lidto isomerase variant consisting of the amino acid sequence of SEQ ID NO: 3
SEQ ID NO: 5로 표시되는 아미노산 서열로 구성되는 NADH 친화적인 케톨산 리덕토아이소머라제 변이체.
5. An NADH-friendly ketolan reductoisomerase variant comprising the amino acid sequence of SEQ ID NO: 5.
제 1 항 또는 제 2 항의 케톨산 리덕토아이소머라제 변이체를 이용하여 이소부탄올을 생산하는 방법.A method for producing isobutanol using the ketolanilductoisomerase mutant of claim 1 or 2.
KR1020170118313A 2017-09-15 2017-09-15 New ketol-acid reductoisomerase with a cofactor preference to NADH developed KR101960501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170118313A KR101960501B1 (en) 2017-09-15 2017-09-15 New ketol-acid reductoisomerase with a cofactor preference to NADH developed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170118313A KR101960501B1 (en) 2017-09-15 2017-09-15 New ketol-acid reductoisomerase with a cofactor preference to NADH developed

Publications (1)

Publication Number Publication Date
KR101960501B1 true KR101960501B1 (en) 2019-03-21

Family

ID=66036605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170118313A KR101960501B1 (en) 2017-09-15 2017-09-15 New ketol-acid reductoisomerase with a cofactor preference to NADH developed

Country Status (1)

Country Link
KR (1) KR101960501B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090163376A1 (en) * 2007-12-20 2009-06-25 E.I. Du Pont De Nemours And Company Ketol-acid reductoisomerase using nadh
KR20150014953A (en) * 2012-05-11 2015-02-09 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Ketol-acid reductoisomerase enzymes and methods of use
KR101573775B1 (en) 2007-04-18 2015-12-04 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 - fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573775B1 (en) 2007-04-18 2015-12-04 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 - fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes
US20090163376A1 (en) * 2007-12-20 2009-06-25 E.I. Du Pont De Nemours And Company Ketol-acid reductoisomerase using nadh
EP2222841A2 (en) * 2007-12-20 2010-09-01 ButamaxTM Advanced Biofuels LLC Ketol-acid reductoisomerase using nadh
KR20150014953A (en) * 2012-05-11 2015-02-09 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Ketol-acid reductoisomerase enzymes and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sabine Brinkmann-Chen et al., Proc Natl Acad Sci U S A. 110(27): 10946-10951. (2013.07.02.) *
최일섭, Random mutagenesis of Ketol-acid reductoisomerase for switching its cofactor preference, 석사학위논문, 고려대학교 생명공학과 (2016.08.)* *

Similar Documents

Publication Publication Date Title
McKenna et al. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
Ji et al. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
Wisselink et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
Sarkar et al. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose
Liu et al. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3, 5-bis (trifluoromethyl) acetophenone
Shimizu et al. Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells
Gu et al. Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid
Seong et al. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption
Zhu et al. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli
Zheng et al. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling
Neuner et al. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering
Du et al. Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1, 3-propanediol-producing capability
Tan et al. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein
Maeda et al. Protein engineering of hydrogenase 3 to enhance hydrogen production
Jingping et al. A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol
JP2020513790A (en) A genetically engineered biosynthetic pathway for the production of tyramine by fermentation
KR20100124332A (en) Polypeptide having glyoxalase iii activity, polynucleotide encoding the same and uses thereof
Tsuge et al. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum
Zhao et al. Reexamination of the physiological role of PykA in Escherichia coli revealed that it negatively regulates the intracellular ATP levels under anaerobic conditions
Milne et al. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae
Choi et al. Enhanced production of 2, 3‐butanediol in pyruvate decarboxylase‐deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose
Huang et al. Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism
Gao et al. High-yield production of D-1, 2, 4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system
Jawed et al. Enhanced H 2 production and redirected metabolic flux via overexpression of fhlA and pncB in Klebsiella HQ-3 strain
US20140134690A1 (en) Microbes and methods for producing 1-propanol

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant