KR101953950B1 - Development of transfer vector for targeting vacuole by signal peptide sequence - Google Patents

Development of transfer vector for targeting vacuole by signal peptide sequence Download PDF

Info

Publication number
KR101953950B1
KR101953950B1 KR1020160085689A KR20160085689A KR101953950B1 KR 101953950 B1 KR101953950 B1 KR 101953950B1 KR 1020160085689 A KR1020160085689 A KR 1020160085689A KR 20160085689 A KR20160085689 A KR 20160085689A KR 101953950 B1 KR101953950 B1 KR 101953950B1
Authority
KR
South Korea
Prior art keywords
protein
seq
gfp
sequence
amino acid
Prior art date
Application number
KR1020160085689A
Other languages
Korean (ko)
Other versions
KR20180005497A (en
Inventor
박동준
윤지희
이세영
민지호
김양훈
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020160085689A priority Critical patent/KR101953950B1/en
Publication of KR20180005497A publication Critical patent/KR20180005497A/en
Application granted granted Critical
Publication of KR101953950B1 publication Critical patent/KR101953950B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/16Serine-type carboxypeptidases (3.4.16)
    • C12Y304/16005Carboxypeptidase C (3.4.16.5), i.e. carboxypeptidase Y
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/23Aspartic endopeptidases (3.4.23)
    • C12Y304/23006Microbial carboxyl proteinases (3.4.23.6)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 액포로 수송되는 것을 특징으로 하는 신호전달 펩타이드의 프라이머 및 이와 작동가능하게 연결된 pYES2에 대한 GFP를 암호화 하는 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터에 관한 것이다.The present invention relates to a recombinant vector comprising a primer of a signal transduction peptide characterized by being transported in vacuo and a nucleotide sequence encoding GFP for operably linked pYES2.

Description

신호전달 펩타이드에 의한 액포수송벡터 개발{Development of transfer vector for targeting vacuole by signal peptide sequence} [0001] The present invention relates to a method for preparing a liquid transport vector by a signal transduction peptide,

본 발명은 신호전달 단백질이 포함된 재조합 수송벡터 및 수송벡터에 의해 액포 내로 수송된 단백질의 활성과 발현 여부를 확인하기 위한 것으로, 더욱 상세하게는 효모 내에 존재하는 액포 단백질로부터 분리된 신호전달 단백질을 포함하는 것을 특징으로 하는 재조합 벡터, 상기 재조합 벡터로 형질 전환된 재조합 미생물 및 액포 내에서 목적단백질의 발현 유무를 확인함으로써 목적 단백질을 수득하는 방법에 관한 것이다. The present invention relates to a method for confirming the activity and expression of a protein transported into a vacuole by a recombinant transport vector and a transport vector containing a signal transduction protein. More particularly, the present invention relates to a signal transduction protein isolated from a lipoprotein present in yeast , A recombinant microorganism transformed with the recombinant vector, and a method for obtaining a target protein by confirming the expression of the target protein in the lactose.

현대과학기술에서는 상용화 가능 한 기술들이 무궁무진하게 개발되고 있는 가운데 의약품 및 화장품과 같은 부가가치가 높고, 사람들에게 보급되기 중요한 산업들이 관심을 받고 있다. 분자생물학적인 관점에서 단백질체학 (proteomics)은 수많은 과학자들이 관심을 가지고 있으며 이는 곧 원핵생물 및 진핵생물 모두를 통틀어 연구되어야 하는 중요한 연구라고 말할 수 있다.In modern science and technology, there are numerous technologies that can be commercialized, and there is interest in industries that have high added value such as pharmaceuticals and cosmetics, and are important to be distributed to people. From a molecular biological point of view, proteomics is of interest to a number of scientists, and it can be said that this is an important study that needs to be studied through both prokaryotes and eukaryotes.

생물 내에 존재하는 모든 단백질들은 신호전달체계를 구축하고 있으며 이 들의 수송에 관한 연구가 관심을 받게 되었고 무엇보다 어떠한 신호에 의해 전달되는지 신호전달 펩타이드 (signal peptide sequence)도 1980년 대 이후 다양하게 분석되고 있다. 진핵생물의 대표적인 미생물로 효모(S.cerevisiae)가 분석이 많이 되었으며 주로 다양한 단백질들의 수송에 관여하는 신호전달 펩타이드는 세포소기관인 리소좀(lysosome)이라 불리는 세포소기관에 존재하는 단백질들과 유사성을 보여 주었다. 이는 타겟하는 단백질이 특정한 세포소기관 혹은 세포 밖으로의 수송과 같이 방향성을 결정해주는 요인이라고 볼 수 있으며, 단백질의 이동과 관련된 리소좀 단백질로 예를 들어보게 되면 총 4가지의 이동방법을 들 수 있다. 첫째로, MVB 경로에 관여된 단백질은 무수히 많으며 아직 밝혀지지 않은 단백질도 많이 있고, 이 경로에 의해 수송되는 단백질들은 골지체(golgi apparatus)에서 생성되어 리소좀(lysosome)으로 수송되기 전에 수송소포(transport vesicle)로 불리는 작은 전단 소포에 이동 후, 전해지게 된다. 주로 막 단백질 (membrane protein) 들을 수송하는 것으로 알려져 있다. 다음으로는 ALP pathway로 분류되는 단백질들은 골지체(golgi apparatus)에서 생성된 단백질이 바로 리소좀(lysosome)으로 수송된다. 수송되는 단백질로는 막단백질(membrane protein)들이 알려져 있으며 단백질이 adaptor protein (AP)과의 결합에 의한 수송이 되는 경로이다. 셋째로 CVT pathway에 속하는 단백질들은 세포질(cytosol)에 존재하는 단백질들이 리소좀(lysosome)으로 수송되는 경로를 가지며, 마지막으로 CPY pathway는 수송소포(transport vesicle)에서 리소좀(lysosome)으로 이동하는 단백질들을 말할 수 있다.All of the proteins in living organisms are constructing a signal transduction system, and research on their transport has been of interest. What signal is transmitted by the signal peptide sequence has been variously analyzed since the 1980s have. S. cerevisiae has been analyzed as a representative microorganism of eukaryotic organisms, and signal transduction peptides mainly involved in the transport of various proteins showed similarities with proteins present in cell organelles called lysosomes, which are cell organelles . This can be regarded as a factor that determines the directionality of the targeted protein, such as the transport of specific organelles or extracellular pathways. For example, when a lysosomal protein is involved in protein migration, a total of four migration methods can be cited. First, the proteins involved in the MVB pathway are numerous and many proteins have not yet been identified. The proteins transported by this pathway are generated in the golgi apparatus and transport vesicles (lysosomes) ), And then transferred to a small shear vesicle called " It is known to transport mainly membrane proteins. Next, the proteins classified into the ALP pathway are transported to the lysosome by the protein produced in the golgi apparatus. Membrane proteins are known to be transported, and proteins are transported by binding with adapter protein (AP). Third, the proteins belonging to the CVT pathway have a pathway through which proteins present in the cytosol are transported to the lysosome. Finally, the CPY pathway refers to proteins that migrate from the transport vesicle to the lysosome .

이러한 리소좀단백질들은 각기 다른 신호서열(signal sequence)에 의해 이동되는 목적이 다르게 되는데 이중 가장 많은 단백질들이 이동하는 경로가 연구된 것은 CPY pathway 로 알려져 있다. 대표적인 단백질로 Carboxypeptidase Y의 리소좀으로의 수송에 요구되는 단백질들이 포함된 경로를 나타내며, 세포질속에서 리소좀으로 이동되는 vesicle 형태의 수송소포(transport vesicle)이 리소좀(lysosome)으로 이동된다. 주로 이 단계에서는 큰 분자의 단백질도 수송이 가능하기 때문에 중요하게 연구되고 있다.These lysosomal proteins differ in their purpose of movement by different signal sequences. The CPY pathway is the study of the pathway in which the most proteins move. A representative vesicle-like transport vesicle that is transported from the cytoplasm to the lysosome is transported to the lysosome, representing a pathway containing proteins required for transport of the carboxypeptidase Y to the lysosome. It is mainly studied at this stage because proteins of large molecules can be transported.

상기 단백질 수송경로에 따른 수송관련 신호 펩타이드의 선별은 두 가지의 대표적인 리소좀 단백질에서 이루어 졌으며, 이는 단백질의 genomic DNA로부터 신호 펩타이드 서열(signal peptide sequence)를 추출하여 발현벡터에 삽입하여 재조합을 하게 되면 우리가 원하는 단백질을 리소좀으로 수송할 수 있는 기술개발에 응용을 할 수 있다.Selection of the transport-related signal peptide according to the protein transport pathway is performed by two representative lysosomal proteins. When the signal peptide sequence is extracted from the genomic DNA of the protein and inserted into the expression vector, Can be applied to the development of techniques for transporting desired proteins to lysosomes.

또한 신호 전달 펩타이드에 의해 리소좀으로 이동된 단백질들은 추출되어 그 기능이 유지된 형태의 vacuole 형태로 활용 될 수 있는 평가를 하게 되고, 항균효능 및 목적단백질에 맞는 기능성을 평가 받게 됨으로써 실생활에 응용할 수 있는 범위가 무궁무진 하다는 것이 기술의 핵심일 수 있다. 한 예로, 세포질에만 존재하는 알데하이드계열 물질을 분해하는 단백질이 신호 전달 단백질에 의해서 리소좀으로 수송됨에 따라 리소좀 내에서 더 큰 효율을 발현시켜 다른 carrier를 사용하지 않아도 되는 경우를 볼 수 있다. 이는 목적단백질의 신호 전달 펩타이드와 재조합 된 균주로부터 추출된 리소좀을 축산환경에 살고 있는 환경 유해 물질 관련 질병에 노출되어있는 가축들의 사료로써 개발하게 되면 친환경적인 소재로부터 추출된 사료를 가축에게 적용할 수 있다. 따라서 본 기술이 우리가 원하는 단백질을 원하는 곳으로의 수송 및 방향성을 제시할 수 있는 back bone carrier임을 강조할 수 있다.In addition, the proteins transferred to the lysosomes by the signal transduction peptide are extracted and evaluated to be utilized in the form of a vacuole in which the functions thereof are retained, and the antifungal activity and the functionality suitable for the target protein are evaluated. It can be the core of technology that the range is endless. For example, proteins that degrade aldehyde-based materials that are present only in the cytoplasm are transported to the lysosomes by signaling proteins, which results in greater efficiency in lysosomes and elimination of the use of other carriers. This is because if the lysosome extracted from the signal transduction peptide and the recombinant strain of the target protein is developed as a feed for livestock exposed to environmentally harmful diseases living in the livestock environment, the feed extracted from the environmentally friendly material can be applied to the livestock have. Therefore, we can emphasize that this technology is a back bone carrier that can transport and direct the desired protein to the desired site.

이를 해결하기 위해 본 발명자는 진핵세포인 효모 내에 존재하는 액포 단백질로부터 신호전달 펩타이드를 분리해내어 녹색 형광 단백질을 포함하는 벡터에 도입하여 재조합 벡터를 제작하였다. 이 재조합 벡터를 미생물에 형질주입하고 형질전환된 미생물을 이용해 리소좀에서 녹색 형광 단백질이 발현되는 것을 관찰하였다. 즉, 본 발명으로부터 기존에 세포가 가질 수 없는 단백질 또는 세포질에 존재하는 단백질과 결합하여 원하는 세포소기관으로 수송할 수 있는 케리어(carrier)를 개발하였으며, 형광 단백질의 발현 유무를 확인함으로써 본 발명을 완성하였다.To solve this problem, the inventors isolated a signal peptide from a lipoprotein present in eukaryotic yeast cells and introduced it into a vector containing a green fluorescent protein to prepare a recombinant vector. This recombinant vector was transfected into microorganisms and the green fluorescent protein was expressed in the lysosome using the transformed microorganism. That is, according to the present invention, a carrier capable of binding to a protein existing in a cell or not existing in cells or a protein existing in the cytoplasm and transporting it to a desired cell organelle has been developed. By confirming the presence or absence of expression of a fluorescent protein, Respectively.

따라서, 본 발명의 목적은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 서열번호 5 및 6의 염기서열로 이루어진 신호전달 단백질 PEP4 (Proteinase A)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공하는 것이다.Accordingly, an object of the present invention is to solve the above-mentioned problems. Accordingly, an object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a DNA sequence encoding a signal protein PEP4 (Proteinase A) comprising the nucleotide sequence of SEQ ID NOS: 5 and 6, Of the nucleotide sequence of the recombinant vector.

또한, 본 발명의 목적은 서열번호 9 및 10의 염기서열로 이루어진 신호전달 단백질 CPY (Carboxypeptide Y)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공하는 것이다.Also, an object of the present invention is to provide a recombinant vector, which comprises a base sequence encoding a signaling protein CPY (Carboxypeptide Y) consisting of the nucleotide sequences of SEQ ID NOS: 9 and 10, and a base sequence of a target protein capable of expression in the vacuole .

또한, 본 발명의 목적은 상기 벡터로 형질주입된 재조합 미생물을 제공하는 것이다.It is also an object of the present invention to provide a recombinant microorganism transformed with said vector.

또한, 본 발명의 목적은 (a) 삽입유전자를 증폭시키는 단계; (b) 상기 증폭된 삽입유전자들을 제한효소로 자르는 단계; (c) 목적 단백질 유전자를 가지는 발현벡터를 상기 제한효소로 자르는 단계; (d) 상기 삽입 유전자와 발현벡터를 클로닝하여 미생물에 형질전환시키는 단계; 및 목적 단백질의 발현 유무를 확인하는 단계를 포함하는 목적 단백질 수득방법을 제공하는 것이다.Also, an object of the present invention is (a) amplifying an inserted gene; (b) cleaving the amplified inserted genes with a restriction enzyme; (c) cleaving the expression vector having the target protein gene with the restriction enzyme; (d) transforming the inserted gene and an expression vector into a microorganism; And confirming the presence or absence of expression of the target protein.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

따라서, 본 발명은 서열번호 5 및 6의 염기서열로 이루어진 신호전달 단백질 PEP4 (Proteinase A)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공한다.Accordingly, the present invention provides a recombinant vector comprising a base sequence encoding a signal transduction protein PEP4 (Proteinase A) comprising the nucleotide sequence of SEQ ID NOS: 5 and 6, and a base sequence of a target protein capable of expression in the vacuole do.

또한, 본 발명은 서열번호 9 및 10의 염기서열로 이루어진 신호전달 단백질 CPY (Carboxypeptide Y)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising a base sequence encoding a signal sequence protein CPY (Carboxypeptide Y) comprising the nucleotide sequences of SEQ ID NOS: 9 and 10, and a base sequence of a target protein capable of expression in the vacuole do.

상기 본 발명의 바람직한 일실시예에 따르면, 상기 PEP4는 목적 단백질 염기서열의 1 내지 76번째 서열에 삽입되는 것일 수 있다.According to a preferred embodiment of the present invention, the PEP4 may be inserted into the 1st to 76th sequences of the target protein base sequence.

상기 본 발명의 바람직한 다른 일실시예에 따르면, 상기 CPY는 목적 단백질 염기서열의 24 내지 27번째 서열에 삽입되는 것일 수 있다.According to another preferred embodiment of the present invention, the CPY may be inserted into the 24th to 27th sequence of the target protein base sequence.

상기 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 신호전달 단백질은 효모 내에 존재하는 액포 단백질로부터 분리된 것일 수 있다.According to another preferred embodiment of the present invention, the signal transduction protein may be isolated from the lipoprotein present in the yeast.

상기 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 목적 단백질은 ALD6인 것일 수 있다.According to another preferred embodiment of the present invention, the target protein may be ALD6.

또한, 본 발명은 상기 벡터로 형질 주입된 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism transformed with said vector.

또한, 본 발명은 (a) 삽입유전자를 증폭시키는 단계; (b) 상기 증폭된 삽입유전자들을 제한효소로 자르는 단계; (c) 목적 단백질 유전자를 가지는 발현벡터를 상기 제한효소로 자르는 단계; (d) 상기 삽입 유전자와 발현벡터를 클로닝하여 미생물에 형질전환시키는 단계; 및 목적 단백질의 발현 유무를 확인하는 단계를 포함하는 목적 단백질 수득방법을 제공한다.Further, the present invention provides a method for producing a transgenic plant, comprising: (a) amplifying an inserted gene; (b) cleaving the amplified inserted genes with a restriction enzyme; (c) cleaving the expression vector having the target protein gene with the restriction enzyme; (d) transforming the inserted gene and an expression vector into a microorganism; And confirming whether the target protein is expressed or not.

상기 본 발명의 바람직한 일실시예에 따르면, 상기 삽입유전자는 PEP4 또는 CPY인 것일 수 있다.According to a preferred embodiment of the present invention, the inserted gene may be PEP4 or CPY.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명은 액포로 수송되는 것을 특징으로 하는 신호전달 펩타이드 및 녹색 형광 단백질을 코딩하는 유전자가 도입된 벡터에 의하여 제조된 형질도입 미생물을 이용하여 세포소기관에서의 녹색 형광 단백질 발현 유무를 통해 목적단백질의 수송 및 방향성을 제시하고자 한다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a signal transduction peptide which is transported in vacuo and a transgenic microorganism produced by a vector into which a gene encoding a green fluorescent protein is introduced The purpose of this paper is to present the transport and orientation of target proteins through the presence or absence of green fluorescence protein expression in the organelle.

또한, 본 발명을 통해 단백질을 수송하는 캐리어(carrier)를 약물 전달체로서 활용할 수 있을 것으로 기대된다.In addition, it is expected that a carrier that transports proteins through the present invention can be utilized as a drug delivery vehicle.

도 1은 Proteinase A (PEP4)의 DNA sequence와 GFP gene을 포함하는 단백질 발현벡터를 나타내는 것이다.
도 2는 pYES2::PSP::GFP(MBTL-DJ-1)가 만들어지는 과정을 나타내는 것이다.
도 3은 Carboxypeptidase Y (CPY)의 DNA sequence와 GFP gene을 포함하는 단백질 발현벡터를 나타내는 것이다.
도 4는 pYES2::QSP::GFP(MBTL-DJ-2)가 만들어지는 과정을 나타내는 것이다.
도 5은 Proteinase A (PEP4)의 DNA sequence와 ALD6, GFP gene을 포함하는 단백질 발현벡터를 나타내는 것이다.
도 6는 pYES2::PSP::ALD6::GFP(MBTL-DJ-3)가 만들어지는 과정을 나타내는 것이다.
도 7은 Carboxypeptidase Y (CPY)의 DNA sequence와 ALD6, GFP gene을 포함하는 단백질 발현벡터를 나타내는 것이다.
도 8는 pYES2::QSP::ALD6::GFP(MBTL-DJ-4)가 만들어지는 과정을 나타내는 것이다.
도 9는 형광현미경의 분석 결과로써 재조합 효모인 MBTL-DJ-1과 MBTL-DJ-2의 형광발현을 나타낸다.
도 10는 형광현미경의 분석 결과로써 재조합 효모인 MBTL-DJ-3과 MBTL-DJ-4의 형광발현을 나타낸다.
도 11는 MBTL-DJ-3과 MBTL-DJ-4를 배양하여 vacuole을 추출한 뒤 포름알데하이드와 반응시켜 Vibrio fischeri의 발광을 통해 단백질의 수송이 완벽히 이루어졌는지 보여주는 그래프이다.
1 shows a DNA sequence of Proteinase A (PEP4) and a protein expression vector containing a GFP gene.
FIG. 2 shows the process of producing pYES2 :: PSP :: GFP (MBTL-DJ-1).
Fig. 3 shows a DNA sequence of Carboxypeptidase Y (CPY) and a protein expression vector containing a GFP gene.
4 shows the process of producing pYES2 :: QSP :: GFP (MBTL-DJ-2).
FIG. 5 shows a DNA expression sequence of Proteinase A (PEP4) and a protein expression vector containing ALD6 and GFP genes.
6 shows the process of producing pYES2 :: PSP :: ALD6 :: GFP (MBTL-DJ-3).
FIG. 7 shows a protein expression vector containing the DNA sequence of Carboxypeptidase Y (CPY) and the ALD6 and GFP genes.
FIG. 8 shows the process of producing pYES2 :: QSP :: ALD6 :: GFP (MBTL-DJ-4).
FIG. 9 shows fluorescence expression of MBTL-DJ-1 and MBTL-DJ-2 as recombinant yeasts as a result of fluorescence microscopy.
Fig. 10 shows fluorescence expression of recombinant yeasts, MBTL-DJ-3 and MBTL-DJ-4, as a result of fluorescence microscopy.
11 shows the results of culturing MBTL-DJ-3 and MBTL-DJ-4, extracting the vacuole and reacting with formaldehyde to obtain Vibrio This is a graph showing that the protein was completely transported through the luminescence of fischeri .

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

상술한 바와 같이, 종래 신호전달 펩타이드에 대한 관심이 증가하면서, 목적 단백질이 세포소기관 또는 세포 밖으로 수송되는 것에 대한 연구가 계속되고 있는 실정이다. 이에 본 발명자들은 세포소기관으로 목적 단백질을 수송할 수 있는 캐리어 개발 및 형광 단백질의 발현유무를 확인함으로써 상술한 문제의 해결을 모색하였다. As described above, research on the transport of the target protein outside the cell organelles or cells has been continuing with increasing interest in the conventional signal transduction peptides. Accordingly, the present inventors sought to solve the above-mentioned problems by developing a carrier capable of transporting a target protein into a cell organelle and confirming the expression of a fluorescent protein.

따라서, 본 발명은 서열번호 5 및 6의 아미노산 서열로 이루어진 신호전달 단백질 PEP4 (Proteinase A)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공한다.Accordingly, the present invention provides a recombinant vector comprising a base sequence encoding a signal transduction protein PEP4 (Proteinase A) comprising the amino acid sequence of SEQ ID NOS: 5 and 6, and a base sequence of a target protein capable of expression in the vacuole do.

또한, 본 발명은 서열번호 9 및 10의 아미노산 서열로 이루어진 신호전달 단백질 CPY (Carboxypeptide Y)을 암호화하는 염기서열과 액포 내에서 발현 가능한 목적 단백질의 염기서열을 포함하는 것을 특징으로 하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising a base sequence encoding a signal transduction protein CPY (Carboxypeptide Y) comprising the amino acid sequences of SEQ ID NOS: 9 and 10, and a base sequence of a target protein capable of expression in the vacuole do.

본 발명의 일실시예에서는 도1 및 도3에 나타낸 모식도와 같이 재조합 벡터를 제조하였다.In one embodiment of the present invention, a recombinant vector was prepared as shown in the schematic diagrams shown in Figs.

본 발명자들은 특정 세포소기관 내로 수송되는 신호전달 단백질을 분리하는 과정에서 액포 내로 수송할 수 있는 신호전달 단백질인 PEP4 및 CPY를 진핵생물인 S.cerevisiae s2805로부터 분리하기 위해 신호전달 단백질 각각의 DNA 정보를 NCBI에서 확인하고 신호전달 단백질을 증폭시켜 확보하기 위해 PCR을 수행하였다. 그 결과, PEP4 신호전달 유전자는 228bp의 DNA 단편을 확보하였고, CPY 신호전달 유전자는 103bp의 DNA 단편을 확보하였다.The present inventors have used DNA information of each signaling protein to separate the signaling proteins PEP4 and CPY, which can be transported into the vacuole, from the eukaryotic S. cerevisiae s2805 in the process of separating the signal transduction proteins transported into specific organelles PCR was performed to confirm and confirm the signal transduction proteins in NCBI. As a result, a DNA fragment of 228 bp was obtained for the PEP4 signaling gene and a DNA fragment of 103 bp for the CPY signaling gene.

상기 재조합 벡터는 이미 시판되고 있거나 공지된 일반적인 미생물 발현 벡터를 기본 골격으로 하여 다양한 프로모터와 함께 PEP4 또는 CPY 단백질을 암호화하는 유전자를 순차적으로 작동가능하게 연결한 재조합 발현 벡터일 수 있다.The recombinant vector may be a commercially available recombinant expression vector in which a general microbial expression vector is used as a basic framework and genes encoding PEP4 or CPY proteins are sequentially and operatively linked together with various promoters.

본 발명에서 상기 용어 "발현벡터"는 본 발명에 따른 서열번호 5 및 6의 아미노산 서열로 이루어진 PEP4 단백질을 암호화하는 염기서열 또는 서열번호 9 및 10의 아미노산 서열로 이루어진 CPY 단백질을 암호화하는 염기서열이 삽입 또는 도입될 수 있는 당분야에 공지된 플라스미드, 코즈미드 벡터, 박테이로파아지 벡터, 바이러스 벡터 또는 기타 매개체를 의미하며, 바람직하게 본 발명의 발현 벡터는 pYES2-GFP일 수 있으나 이에 제한되는 것은 아니다.In the present invention, the term " expression vector " means a nucleotide sequence encoding the PEP4 protein consisting of the amino acid sequences of SEQ ID NOS: 5 and 6 according to the present invention, or a nucleotide sequence encoding the CPY protein consisting of the amino acid sequences of SEQ ID NOS: Refers to plasmids, cosmid vectors, bacteriophage vectors, viral vectors or other vectors known in the art that can be inserted or introduced, preferably the expression vector of the invention is pYES2-GFP, but is not limited thereto no.

본 발명에 따른 서열번호 5 및 6의 염기서열로 이루어진 PEP4 단백질 또는 서열번호 9 및 10의 염기서열로 이루어진 CPY 단백질을 암호화하는 염기서열은 발현 조절 서열에 작동가능하게 연결될 수 있으며, 상기 작동가능하게 연결된 염기서열과 발현 조절 서열은 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함될 수 있다. 상기 "작동가능하게 연결(operably linked)"된다는 것은 적절한 분자가 발현 조절 서열에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 발현 조절 서열일 수 있다. "발현 조절 서열(expression control sequence)"이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA서열을 의미한다. 이러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다. The base sequence encoding the PEP4 protein consisting of the nucleotide sequences of SEQ ID NOS: 5 and 6 or the CPY protein consisting of the nucleotide sequences of SEQ ID NOS: 9 and 10 according to the present invention may be operably linked to an expression control sequence, The linked nucleotide sequence and expression control sequence may be contained within an expression vector containing a selectable marker and a replication origin. Said "operably linked" may be a gene and expression control sequence linked in such a way as to enable gene expression when a suitable molecule is coupled to an expression control sequence. &Quot; Expression control sequence " means a DNA sequence that regulates the expression of a polynucleotide sequence operably linked to a particular host cell. Such regulatory sequences include promoters for conducting transcription, any operator sequences for regulating transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences controlling transcription and translation termination.

본 발명에서 상기 PEP4 신호전달 단백질은 목적 단백질 염기서열의 1 내지 76번째 아미노산 서열에 삽입되는 것을 특징으로 하며, 삽입시키기 위하여 제한효소 HindⅢ 및 NotⅠ을 사용하는 것이 바람직하나, 이에 제한되는 것은 아니다. In the present invention, the PEP4 signaling protein is inserted into the 1 to 76th amino acid sequence of the target protein base sequence. Preferably, restriction enzymes HindIII and NotI are used for the insertion, but the present invention is not limited thereto.

본 발명에서 상기 CPY 신호전달 단백질은 목적 단백질 염기서열의 24 내지 27번째 아미노산 서열에 삽입되는 것을 특징으로 하며, 삽입시키기 위하여 제한효소 NotⅠ 및 EarⅠ을 사용하는 것이 바람직하나, 이에 제한되는 것은 아니다.In the present invention, the CPY signal transduction protein is inserted into the 24th to 27th amino acid sequences of the target protein base sequence. Preferably, restriction enzymes Not I and Ear I are used for the insertion, but the present invention is not limited thereto.

본 발명에서 상기 신호전달 단백질은 효모 내에 존재하는 액포 단백질로부터 분리된 것임을 특징으로 하며, 상기 용어 "액포"란, 일부 진핵세포가 가지고 있는 막으로 싸인 거대한 세포소기관을 말한다. 아울러, 액포는 영양분, 세포 주변의 부적당한 파편을 감싸거나, 세포에 독이 될 수도 있는 물질을 격리, 팽압이라고 불리는 세포 내의 유체 균형 유지, 또는 세포로부터 부적절한 물질을 배출하는 등의 역할을 할 수 있다.In the present invention, the signal transduction protein is separated from the vacuole protein present in the yeast, and the term " vacuole " refers to a giant cell organelle surrounded by a membrane possessed by some eukaryotic cells. In addition, vacuoles can act as nutrients, wrap undesirable fragments around cells, isolate substances that may be toxic to cells, maintain fluid balance in cells called pressure, or release inappropriate substances from cells .

또한, 본 발명은 상기 벡터로 형질 전환된 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism transformed with said vector.

본 발명의 재조합 벡터는 당업계 공지된 방법을 사용하여 숙주세포에 도입할 수 있다. 숙주세포로의 도입방법은 바람직하게는 염화칼슘법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method) 등 공지의 방법를 이용할 수 있다.The recombinant vector of the present invention can be introduced into a host cell using methods known in the art. Methods for introduction into host cells are preferably selected from the group consisting of calcium chloride method, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome mediated method liposome-mediated method) can be used.

또한, 본 발명은 (a) 삽입유전자를 증폭시키는 단계; (b) 상기 증폭된 삽입유전자들을 제한효소로 자르는 단계; (c) 목적 단백질 유전자를 가지는 발현벡터를 상기 제한효소로 자르는 단계; (d) 상기 삽입 유전자와 발현벡터를 클로닝하여 미생물에 형질전환시키는 단계; 및 목적 단백질의 발현 유무를 확인하는 단계를 포함하는 목적 단백질 수득방법을 제공한다.Further, the present invention provides a method for producing a transgenic plant, comprising: (a) amplifying an inserted gene; (b) cleaving the amplified inserted genes with a restriction enzyme; (c) cleaving the expression vector having the target protein gene with the restriction enzyme; (d) transforming the inserted gene and an expression vector into a microorganism; And confirming whether the target protein is expressed or not.

먼저 진핵세포의 액포 내에 존재하는 신호전달과 관련된 펩타이드를 분리한 다음 중합효소 연쇄반응을 이용하여 관련 유전자 부위를 증폭시켜 클로닝하였다. 구체적으로 상기 삽입유전자는 PEP4 또는 CPY 로서, 상기 유전자는 세포질에 존재하는 단백질들이 수송소포(transport vesicle)에 의해 리소좀으로 이동하는 CPT pathway 방식에 따라 이동한다.First, peptides related to signal transduction in the vacuole of eukaryotic cells were isolated and amplified by amplifying the related gene region using polymerase chain reaction. Specifically, the inserted gene is PEP4 or CPY, and the gene moves according to the CPT pathway method in which proteins present in the cytoplasm are transported to the lysosome by transport vesicles.

본 발명의 재조합 벡터를 만들기 위해 사용되는 상기 제한효소는 HindⅢ, SphlⅠ, NotⅠ, BamHⅠ으로 이루어진 군 중 2종 이상 선택되는 것이 바람직하나, 이에 제한되는 것은 아니다The restriction enzyme used to make the recombinant vector of the present invention is preferably selected from two or more selected from the group consisting of HindIII, SphI I, Not I and BamHI, but is not limited thereto

상기에서 목적 단백질은 생산하고자 하는 단백질을 의미하는 용어로서, 특정 단백질로 한정되지 않는다. 또한, 상기 목적 단백질로서 리포터 단백질들이 포함될 수 있는데, 상기 리포터 단백질은 리포터 유전자에 의해 발현되는 단밸질로서 그 존재에 의해서 세포 내에서의 그의 활성을 알려주는 표지 단백질을 의미한다. 본 발명의 일실시예에서는 상기 목적 단백질로 GFP를 사용하였으나, 목적 단백질이 이에 한정되는 것은 아니며, 의료용, 산업용 단백질을 포함하여 액포 내에서 발현될 수 있는 단백질이라면 제한 없이 사용할 수 있다. The term " target protein " refers to a protein to be produced, and is not limited to a specific protein. In addition, reporter proteins may be included as the target protein, which is a protein expressed by a reporter gene, and indicates a marker protein that indicates its activity in a cell by its presence. In an embodiment of the present invention, GFP is used as the target protein. However, the target protein is not limited thereto, and any protein that can be expressed in the lump including medical and industrial proteins can be used without limitation.

상기 본 발명의 일실시예에서, 재조합 효모의 액포 내에 목적 단백질이 발현되는지 여부를 확인해보고자 하였다. 이를 위하여, 상기 목적 단백질 ALD6 염기서열의 24 내지 27번째 아미노산 서열에 신호전달 단백질 CPY 유전자를 삽입한 재조합 벡터로 형질 전환된 재조합 효모를 제조하였다(도 8). 제조된 재조합 효모의 액포를 추출하고 포름알데히드를 농도 별로 처리한 용액에 상기 액포를 첨가하여 포름알데히드 감소 효능을 평가하였다. 그 결과, 재조합 효모의 ALD6가 리소좀으로 수송됨으로써 포름알데히드의 농도가 감소하였음을 확인할 수 있었다(도 11)In one embodiment of the present invention, it was tried to confirm whether a target protein is expressed in the vacuole of the recombinant yeast. To this end, a recombinant vector transformed with a recombinant vector in which a signal transduction protein CPY gene was inserted into the 24th to 27th amino acid sequences of the ALD6 base sequence of the target protein was prepared (FIG. 8). The vacuole of the prepared recombinant yeast was extracted and the liquid vacuole was added to a solution prepared by treating the formaldehyde with concentration to evaluate the formaldehyde reducing effect. As a result, it was confirmed that the concentration of formaldehyde was reduced by transporting the recombinant yeast ALD6 to the lysosome (Fig. 11)

이하, 본 발명의 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. However, these examples are intended to further illustrate the present invention, and the scope of the present invention is not limited to these examples.

실시예Example 1.  One. SaccharomycesSaccharomyces cerevisiaecerevisiae on 신호전달펩타이드Signal transduction peptide (( signalsignal peptidepeptide sequencesequence )인 PEP4서열(PSP)과 ) PEP4 sequence (PSP) and GFP를GFP 함께 포함하는 재조합 벡터의 제작 Production of recombinant vectors containing together

진핵미생물인 S. cerevisiae s2805를 사용하였고, 신호전달펩타이드(signal peptide sequence)는 NCBI의 genebank (www.ncbi.nlm.nih.gov)로부터 proteinase A (PEP4)의 DNA sequence 확인 후, DNA 서열의 앞 76AA인 신호전달펩타이드를 증폭시켜 확보하기 위하여 서열번호 5 및 서열번호 6을 사용하여 PCR(Polymerase chain reaction)을 수행하였다. 또한 pEGFP-C1 (BD Bioscience Clontech, USA) 벡터로부터 GFP gene을 확보하기 위해 서열번호7 및 서열번호 8을 사용하여 PCR을 통한 증폭으로 유전자를 얻을 수 있었으며, 그 결과는 하기 표 1에 나타낸다. 상기 PCR증폭 산물을 아가로즈 겔(agarose gel)에서 전기영동 하였으며, PEP4 signal peptide gene 은 228 bp의 DNA단편을 얻었고, GFP gene은 711 bp의 단편을 가지는 유전자를 확인하였다.Was used as the eukaryotic microorganism is S. cerevisiae s2805, signaling peptides (signal peptide sequence) is then DNA sequence confirmation of proteinase A (PEP4) from genebank (www.ncbi.nlm.nih.gov) of NCBI, in front of the DNA sequence PCR (Polymerase chain reaction) was carried out using SEQ ID NO: 5 and SEQ ID NO: 6 in order to amplify and secure the signal transduction peptide having 76AA. In order to obtain the GFP gene from pEGFP-C1 (BD Bioscience Clontech, USA) vector, the gene could be obtained by amplification by PCR using SEQ ID NO: 7 and SEQ ID NO: 8, and the results are shown in Table 1 below. The PCR amplification product was electrophoresed on agarose gel. The PEP4 signal peptide gene was 228 bp DNA fragment and the GFP gene was 711 bp fragment.

프라이머 서열Primer sequence 서열번호SEQ ID NO: PEP4-F1PEP4-F1 5‘- CGC AAG CTT ATG TTC AGC TTG AAA GCA T -3'5'-CGC AAG CTT ATG TTC AGC TTG AAA GCA T-3 ' 55 PEP4-R1PEP4-R1 5'- TAT GCG GCC GCT TTC ACT GAA GAA AGG A -3'5'-TAT GCG GCC GCT TTC ACT GAA GAA AGGA -3 ' 66 GFP-F1GFP-F1 5'- AAT GCG GCC GCT GTG AGC AAG GGC GAG GAG -3'5'-AAT GCG GCC GCT GTG AGC AAG GGC GAG GAG -3 ' 77 GFP-R1GFP-R1 5'- ATT GCA TGC TTA CTT GTA CAG CTC GTC -3'5'-ATT GCA TGC TTA CTT GTA CAG CTC GTC -3 ' 88

상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.All of the above genes were purified using GeneAll PCR DNA purification kit.

실시예Example 2.  2. SaccharomycesSaccharomyces cerevisiaecerevisiae on 신호전달펩타이드Signal transduction peptide (( signalsignal peptidepeptide sequencesequence )인 QRPL(CAA) QRPL (CAA 2424 -AGA-CCG-TTG-AGA-CCG-TTG 2727 )서열(QSP)을 삽입한 ) Sequence (QSP) inserted GFPGFP 재조합 벡터의 제작 Production of recombinant vector

진핵미생물인 S. cerevisiae s2805에서 신호전달펩타이드(signal peptide sequence)를 얻기 위하여 Carboxypeptidase Y (CPY)의 DNA정보를 NCBI의 genebank (www.ncbi.nlm.nih.gov)로부터 확인하였으며, GFP DNA sequence에 AA24-AA27에 신호전달펩타이드 인 QRPL(CAA24-AGA-CCG-TTG27)를 삽입시키기 위하여 제한효소를 EarI(New England Biolabs, England)를 사용하였다. 서열번호 10 및 서열번호 11을 사용하여 AA24의 앞부분 DNA를 증폭시켰으며, 서열번호 12 및 서열번호 13으로 AA27의 뒷부분을 각각 PCR로 증폭시켜 얻을 수 있었으며, 그 결과는 하기 표 2에 나타내었다. 상기 PCR증폭 산물을 0.7% 아가로즈 겔(agarose gel)에서 전기영동 하였으며, CPY의 signal peptide gene인 QRPL이 삽입된 앞부분 103 bp의 DNA단편을 얻었고, GFP gene은 673 bp의 단편을 가지는 유전자를 확인하였다.The DNA information of Carboxypeptidase Y (CPY) was confirmed from NCBI's genebank (www.ncbi.nlm.nih.gov) in order to obtain a signal peptide sequence in S. cerevisiae s2805, a eukaryotic microorganism, and the GFP DNA sequence A restriction enzyme, EarI (New England Biolabs, England), was used to insert the signal transduction peptide QRPL (CAA 24 -AGA-CCG-TTG 27 ) into AA24-AA27. SEQ ID NO: 10 and SEQ ID NO: 11 were used to amplify the front DNA of AA 24 , and SEQ ID NO: 12 and SEQ ID NO: 13, respectively, and the rear portion of AA 27 was respectively amplified by PCR. . The PCR amplification product was electrophoresed on 0.7% agarose gel to obtain a 103 bp DNA fragment with a QRPL inserted as a signal peptide gene of CPY and a GFP gene with 673 bp fragment Respectively.

프라이머 서열Primer sequence 서열번호SEQ ID NO: CPY-F1CPY-F1 5‘- TTT AGC GGC CGC ATG GTG AGC AAG GGC GAG -3'5'-TTT AGC GGC CGC ATG GTG AGC AAG GGC GAG-3 ' 99 CPY-R1CPY-R1 5'- ATA CTC TTC TCA ACG GTC TTT GTA CGT CGC CGT CCA GCT C -3'5'-ATA CTC TTC TCA ACG GTC TTT GTA CGT CGC CGT CCA GCT C -3 ' 1010 CPY-F2CPY-F2 5'- TTT CTC TTC TTT GAA CGG CCA CAA GTT CAG C -3'5'- TTT CTC TTC TTT GAA CGG CCA CAA GTT CAG C -3 ' 1111 CPY-R2CPY-R2 5'- ATT GCA TGC TTA CTT GTA CAG CTC GTC -3'5'-ATT GCA TGC TTA CTT GTA CAG CTC GTC -3 ' 1212

상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.All of the above genes were purified using GeneAll PCR DNA purification kit.

실시예Example 3.  3. 신호전달펩타이드Signal transduction peptide (( signalsignal peptidepeptide sequencesequence ) ) PEP4서열(PSP)과PEP4 sequence (PSP) and 세포질단백질인A cytoplasmic protein 알데하이드Aldehyde 디하이드로지네이즈Dihydrogenase 6 ( 6 ( AldehydeAldehyde dehydrogenasedehydrogenase , , ALD6ALD6 )가 포함된 재조합 벡터의 제작) ≪ / RTI >

상기 실시예 1에서 확보된 proteinase A (PEP4)의 신호전달 펩타이드(signal peptide sequence) DNA sequence를 세포질단백질인 알데하이드 디하이드로지 네이즈 6 (Aldehyde dehydrogenase, ALD6)의 앞에 삽입시켜 보았으며, DNA sequence를 증폭시키기 위하여 서열번호 14 및 서열번호 15을 사용하였으며, 그 결과는 하기 표 3에 나타내었다. 상기 PCR증폭 산물들을 아가로즈 겔(agarose gel)에서 전기영동 하였다.The DNA sequence of the signal peptide sequence of the proteinase A (PEP4) obtained in Example 1 was inserted in front of the cytoplasmic protein, Aldehyde dehydrogenase (ALD6), and the DNA sequence was amplified SEQ ID NO: 14 and SEQ ID NO: 15 were used in order to obtain the nucleotide sequence of SEQ ID NO. The PCR amplification products were electrophoresed on an agarose gel.

프라이머 서열Primer sequence 서열번호SEQ ID NO: PEP4-F1PEP4-F1 5‘- CGC AAG CTT ATG TTC AGC TTG AAA GCA T -3'5'-CGC AAG CTT ATG TTC AGC TTG AAA GCA T-3 ' 55 PEP2-R2PEP2-R2 5'- GCT GGA TCC TTC AGT GAA GAA AGG ATG -3'5'-GCT GGA TCC TTC AGT GAA GAA AGG ATG -3 ' 1313 ALD6-FALD6-F 5'- GGC GGA TCC ATG ACT AAG CTA CAC TTT -3'5'-GGC GGA TCC ATG ACT AAG CTA CAC TTT -3 ' 1414 ALD6-RALD6-R 5'- GGT GCG GCC GCC AAC TTA ATT CTG ACA -3'5'-GGT GCG GCC GCC AAC TTA ATT CTG ACA -3 ' 1515 GFP-F2GFP-F2 5'- ATT GCG GCC GC GTG AGC AAG GGC GAG G ?3'5'-ATT GCG GCC GC GTG AGC AAG GGC GAG 3 ' 1616 GFP-R2GFP-R2 5'- GGT GCA TGC CTT GTA CAG CTC ATC CAT ?3'5'-GGT GCA TGC CTT GTA CAG CTC ATC CAT? 3 ' 1717

상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.All of the above genes were purified using GeneAll PCR DNA purification kit.

실시예Example 4.  4. 신호전달펩타이드Signal transduction peptide (( signalsignal peptidepeptide sequencesequence ) ) QRPL서열(QSP)과The QRPL sequence (QSP) and 세포질단백질인A cytoplasmic protein 알데하이드Aldehyde 디하이드로지네이즈Dihydrogenase 6 ( 6 ( AldehydeAldehyde dehydrogenasedehydrogenase , , ALD6ALD6 )가 포함된 재조합 벡터의 제작) ≪ / RTI >

상기 실시예 2에서 확보된 Carboxypeptidase Y (CPY)의 신호전달펩타이 드(signal peptide sequence)인 QRPL(CAA24-AGA-CCG-TTG27)를 프라이머에 포함시켜 디자인하였으며 이를 사용하여 세포질단백질로 알려진 알데하이드 디하이드로지네이즈 6(Aldehyde dehydrogenase, ALD6)의 AA24-AA27에 삽입시켜 DNA fragment를 만들었다. 이 때, DNA sequence를 증폭시키기 위하여 AA24앞부분은 서열번호 14 및 서열번호 18을 사용하였고, AA27의 뒷부분은 서열번호 19와 서열번호 17을 사용하여 PCR증폭을 통한 산물들을 얻었으며, 0.7% 아가로즈 겔(agarose gel)에서 전기영동을 통하여 확인하였다. 그 결과는 하기 표 4에 나타냈다.(CAA 24 -AGA-CCG-TTG 27 ), which is a signal peptide sequence of Carboxypeptidase Y (CPY) obtained in Example 2, was designed as a primer. DNA fragments were prepared by inserting them into AA 24 -AA 27 of aldehyde dehydrogenase (ALD6). At this time, AA 24 earlier to amplify the DNA sequence was used to SEQ ID NO: 14 and SEQ ID NO: 18, later in AA 27 were obtained the products through the PCR amplification using SEQ ID NO: 19 and SEQ ID NO: 17, 0.7% Was confirmed by electrophoresis on an agarose gel. The results are shown in Table 4 below.

프라이머 서열Primer sequence 서열번호SEQ ID NO: ALD6-FALD6-F 5‘- GGC GGA TCC ATG ACT AAG CTA CAC TTT -3'5'-GGC GGA TCC ATG ACT AAG CTA CAC TTT -3 ' 1414 ACPY-RACPY-R 5'- GCG CTC TTC A CAA CGG TCT TTG CTC GTA TGT CAA -3'5'-GCG CTC TTC A CAA CGG TCT TTG CTC GTA TGT CAA -3 ' 1818 ACPY-FACPY-F 5'- CCA CTC TTC TTT GCA ACC AAC CGG TCT A -3'5'-CCA CTC TTC TTT GCA ACC AAC CGG TCTA -3 ' 1919 ALD6-RALD6-R 5'- GGT GCG GCC GCC AAC TTA ATT CTG ACA -3'5'-GGT GCG GCC GCC AAC TTA ATT CTG ACA -3 ' 1515 GFP-F2GFP-F2 5'- ATT GCG GCC GC GTG AGC AAG GGC GAG G ?3'5'-ATT GCG GCC GC GTG AGC AAG GGC GAG 3 ' 1616 GFP-R2GFP-R2 5'- GGT GCA TGC CTT GTA CAG CTC ATC CAT ?3'5'-GGT GCA TGC CTT GTA CAG CTC ATC CAT? 3 ' 1717

상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.All of the above genes were purified using GeneAll PCR DNA purification kit.

실시예Example 5.  5. 신호전달펩타이드를Signal transduction peptides 삽입한 재조합  Inserted recombinant backbonebackbone 벡터( vector( pYES2pYES2 ::PSP:::: PSP :: GFPGFP , pYES2::QSP::GFP, , pYES2 :: QSP :: GFP, pYES2pYES2 ::PSP:::: PSP :: ALD6ALD6 :::: GFPGFP , , pYESpYES :::: QSPQSP :::: ALD6ALD6 :::: GFPGFP )의 제조)

효모-단백질 발현벡터인 pYES2 (Invitogen, Carlsbad, CA, USA)를 기본 벡터로 사용하여 두 가지 종류의 신호전달펩타이드(signal peptide sequence)를 삽입시킨 pYES2::PSP::GFP, pYES2::QSP::GFP를 제작하였으며, 세포질단백질중의 하나인 알데하이드 디하이드로지네이즈 6 (Aldehyde dehydrogenase, ALD6)를 제작하였고, 그 제작과정은 다음과 같다.PYES2 :: PSP :: GFP, pYES2 :: QSP: pYES2 :: PSP :: GFP in which two kinds of signal peptide sequences were inserted using yeast-protein expression vector pYES2 (Invitogen, Carlsbad, CA, USA) : GFP was prepared. Aldehyde dehydrogenase (ALD6), one of the cytoplasmic proteins, was prepared.

실시예 5-1. MBTL-DJ-1의 제작Example 5-1. Manufacture of MBTL-DJ-1

상기 실시예 1에서 증폭한 PEP4유래 signal peptide가 삽입된 GFP gene DNA절편을 HindIII과 SphI으로 절단하여 동일한 제한 부위를 절단한 pYES2 벡터에 삽입함으로써 pYES2::PSP::GFP를 제작하였다.PYES2 :: PSP :: GFP was prepared by digesting the GFP gene DNA fragment with the PEP4 signal peptide amplified in Example 1 into HindIII and SphI and inserting the same restriction site into the cleaved pYES2 vector.

실시예 5-2. MBTL-DJ-2의 제작Example 5-2. Production of MBTL-DJ-2

상기 실시예 2에서 CPY유래 signal peptide가 삽입된 GFP gene DNA절편을 NotI과 SphI으로 절단하여 동일한 제한 부위를 절단한 pYES2 벡터에 삽입함으로써 pYES2::QSP::GFP를 제작하였다.In Example 2, pGES2 :: QSP :: GFP was prepared by inserting the CPY-derived signal peptide-inserted GFP gene DNA fragment into NotI and SphI and inserting the same restriction site into the cleaved pYES2 vector.

실시예 5-3. MBTL-DJ-3의 제작Example 5-3. Production of MBTL-DJ-3

상기 실시예 3에서 증폭한 PEP4유래 signal peptide와 세포질단백질인 ALD6을 GFP gene와 함께 합성을 하였으며 각각의 DNA절편을 HindIII, BamHI, NotI, 및 SphI으로 절단하여 동일한 제한 부위를 절단한 pYES2 벡터에 삽입함으로써 pYES2::PSP::ALD6::GFP를 제작하다.The signal peptide derived from PEP4 amplified in Example 3 and the cytoplasmic protein ALD6 were synthesized together with the GFP gene. Each DNA fragment was digested with HindIII, BamHI, NotI, and SphI and inserted into a pYES2 vector To produce pYES2 :: PSP :: ALD6 :: GFP.

실시예 5-4. MBTL-DJ-4의 제작Example 5-4. Manufacture of MBTL-DJ-4

상기 실시예 4에서 증폭한 CPY유래 signal peptide와 세포질단백질인 ALD6을 GFP gene와 함께 합성을 하였으며 각각의 DNA절편을 BamHI, NotI, EarI 및 SphI으로 절단하여 동일한 제한 부위를 절단한 pYES2 벡터에 삽입함으로써 pYES2::QSP:: ALD6::GFP를 제작하였다.CPY-derived signal peptide amplified in Example 4 and ALD6, a cytoplasmic protein, were synthesized together with a GFP gene. Each DNA fragment was digested with BamHI, NotI, EarI, and SphI and inserted into a cleaved pYES2 vector pYES2 :: QSP :: ALD6 :: GFP.

비교예. MBTL-DJ-의 제작Comparative Example. Production of MBTL-DJ-

pYES2 벡터만을 포함하는 재조합 미생물을 제작하였다.a recombinant microorganism containing only the pYES2 vector was prepared.

또한, 상기 실시예 5-1 내지 5-4에서 제조한 벡터 pYES2::PSP::GFP, pYES2::QSP::GFP, pYES2::PSP::ALD6::GFP, pYES::QSP::ALD6::GFP를 효모인 S. cereviaie s2805에 전기천공법 (Electroporation)으로 형질전환 하였으며, SD 고체평판배지에서 얻은 콜로니를 새로운 배지에 옮겨 단일콜로니를 얻었다. DNA Sequencing 방법으로 pYES2::PSP::GFP, pYES2::QSP::GFP, pYES2::PSP::ALD6::GFP, pYES2::QSP::ALD6::GFP에 삽입 된 signal peptide를 포함하고 있는 DNA의 염기서열을 정확히 확인하였다.In addition, the vectors pYES2 :: PSP :: GFP, pYES2 :: QSP :: GFP, pYES2 :: PSP :: ALD6 :: GFP, pYES :: QSP :: ALD6 :: GFP was transformed into S. cereviae s2805, a yeast strain, by electroporation, and the colonies obtained from the SD solid plate culture medium were transferred to a fresh medium to obtain a single colony. DNA sequencing method, which contains a signal peptide inserted into pYES2 :: PSP :: GFP, pYES2 :: QSP :: GFP, pYES2 :: PSP :: ALD6 :: GFP and pYES2 :: QSP :: ALD6 :: GFP The nucleotide sequence of the DNA was precisely confirmed.

실시예Example 6.  6. 신호전달펩타이드에To signal transduction peptides 의해  due to vacuole로into the vacuole 수송된 단백질의 발현 확인 Expression of the transfected protein

상기 실시예 5에서 제조한 재조합 미생물을 SD액체 배지 (Yeast nitrogen base 6.7 g/L , amino acid 5 g/L 및 glucose 20 g/L ) 10 mL에 접종하여 30 ℃, 160 rpm으로 OD값이 0.6-0.8이 될 때까지 진탕 배양하였다. 얻어진 배양액에서 미생물만 남기고 제거한 다음 SG 액체 배지 (Yeast nitrogen base 6.7 g/L , amino acid 5 g/L 및 galactose 20 g/L ) 15mL을 넣어준다. 이렇게 얻어진 배양액 6.67mL (OD값이 0.4가 되도록 계산)을 SG액체 배지 50 mL에 넣어 30 ℃에서 160 rpm으로 10시간 동안 본 배양한 하여 배양을 진행하였다. 배양이 진행된 세포를 리소좀에만 특이적으로 반응하는 LysoTracker를 처리하여 target단백질의 발현정도와 본 단백질이 리소좀 내로 잘 targeting되어 들어가는지 형광현미경으로 관찰한 결과 단백질이 과발현 되는 것을 형광현미경으로 확인하였고, Merged된 모습에서 리소좀 내의 리소좀이 활성화 된 것을 확인하였다. 즉, MBTL-DJ-1과 MBTL-DJ-2의 결과로써 세포가 가지고 있지 않은 단백질인 GFP단백질이 신호전달 펩타이드에 의해 효모의 vacuole로 수송된 것을 확인 할 수 있으며, MBTL-DJ-3과 MBTL-DJ-4의 결과로써 세포질에서 발현되는 단백질인 ALD6단백질이 신호전달 펩타이드에 의해서 효모의 vacuole로 수송된 것을 확인 할 수 있었다.The recombinant microorganism prepared in Example 5 was inoculated in 10 mL of SD liquid medium (6.7 g / L of yeast nitrogen base, 5 g / L of amino acid and 20 g / L of glucose) Lt; / RTI > until shaking at -0.8. After removing the microorganism from the resulting culture, add 15 mL of SG liquid medium (yeast nitrogen base 6.7 g / L, amino acid 5 g / L and galactose 20 g / L). 6.67 mL of the thus-obtained culture (OD value: 0.4) was added to 50 mL of SG liquid medium and incubated at 30 DEG C and 160 rpm for 10 hours. LysoTracker, which specifically reacts with cultured cells, was treated with LysoTracker to examine the expression level of the target protein and whether the protein was well targeted in the lysosome. Fluorescence microscopy confirmed that the protein was overexpressed, and Merged The lysosomes in the lysosomes were activated. As a result of MBTL-DJ-1 and MBTL-DJ-2, it can be confirmed that the GFP protein, which is not a cell-possessing protein, is transported into the yeast vacuole by a signal transduction peptide. MBTL-DJ-3 and MBTL As a result of -DJ-4, it was confirmed that the ALD6 protein expressed in the cytoplasm was transported into the yeast vacuole by the signal transduction peptide.

실시예Example 7.  7. 신호전달펩타이드에To signal transduction peptides 의해  due to vacuole로into the vacuole 수송된  Transported 알데하이드Aldehyde 디하이드로지네이즈Dihydrogenase 6 ( 6 ( AldehydeAldehyde dehydrogenasedehydrogenase , , ALD6ALD6 )의 활성비교)

상기 실시예 5에서 제조한 재조합 효모(MBTL-DJ-3, MBTL-DJ-4)에서 vacuole을 추출하였으며 이 추출한 vacuole에 의한 포름알데하이드 감소효능을 평가하였고, 그 과정은 다음과 같다.The vacuole was extracted from the recombinant yeast (MBTL-DJ-3, MBTL-DJ-4) prepared in Example 5, and the formaldehyde reducing effect by the extracted vacuole was evaluated.

상기 실시예 5에서 제조한 재조합 효모(MBTL-DJ-3, MBTL-DJ-4)를 제시된 배양조건으로 진탕 배양하였다. 이후 galactose로 유도된 재조합효모에서 초음파파쇄기로 세포를 분쇄하여 vacoule을 원심분리를 통해 회수하였다.The recombinant yeast (MBTL-DJ-3, MBTL-DJ-4) prepared in Example 5 was shake cultured under the proposed culture conditions. The cells were then pulverized with an ultrasonic disrupter in galactose-derived recombinant yeast and the vacoule was recovered by centrifugation.

생물발광(bioluminescence)인 vibrio fischeri를 LB배지에 12시간 내지 15시간 동안 종배양을 하고, 본 배양에서 2시간 내지 3시간을 배양하여 O.D.(Optical Density)값이 0.4내지 0.6가 되게 배양 후에 추출된 효모의 vacuole과 포를알데하이드를 농도별(62.5ppm, 125ppm, 250ppm, 500ppm) 로 처리한 용액에 첨가하여 1시간 내지 1시간30분간 반응을 시키게 되면 이를 통해 포름알데하이드의 감소를 확인 할 수 있다.The bioluminescence, vibrio fischeri were cultivated in LB medium for 12 hours to 15 hours, cultured for 2 hours to 3 hours in the present culture, cultured to have an OD (Optical Density) value of 0.4 to 0.6, Is added to the solution treated with concentration (62.5 ppm, 125 ppm, 250 ppm, 500 ppm) and reacted for 1 hour to 1 hour and 30 minutes, thereby confirming reduction of formaldehyde.

이로써 본 발명의 재조합 효모 MBTL-DJ-3과 MBTL-DJ-4의 ALD6가 리소좀으로 수송되었음을 포름알데하이드를 감소시켜 vibrio fischeri에 대한 독성을 나타낼 수 있으며, 이를 Luminometer에서 빛을 내는 정도를 비교함으로써 알 수 있다.This reduces the formaldehyde that ALD6 is transported to the lysosome of the recombinant yeast MBTL-DJ-3 and MBTL-DJ-4 of the present invention vibrio fischeri , which can be determined by comparing the degree of light emitted by a luminometer.

도 11에 나타난 바와 같이, MBTL-DJ-3 및 MBTL-DJ-4의 경우 포름알데하이드의 농도 63ppm 내지 500ppm에서 대조군에 비해 유의적으로 상승한 수준의 결과를 나타냈다. 즉, 포름알데하이드의 농도가 증가함에 따라 대조군의 경우에는 vibrio fischeri 의 생존률이 감소함으로써 Luminescene의 발광정도가 감소하였으나, 재조합 효모인 MBTL-DJ-3 및 MBTL-DJ-4의 경우에는 포름알데하이드 농도 63ppm 내지 125ppm에서는 Luminescene이 다소 감소하거나 오히려 증가하는 결과를 나타냈다. 따라서, 목적 단백질 ALD6가 signal peptide에 의해 효모의 액포 내로 이동함을 확인할 수 있다.As shown in Fig. 11, MBTL-DJ-3 and MBTL-DJ-4 exhibited significantly higher levels of formaldehyde than those of the control group at concentrations of 63 ppm to 500 ppm. That is, the control group with increasing the concentration of formaldehyde is a decrease in the survival rate of vibrio fischeri decreased the light emission amount of Luminescene, in the case of the recombinant yeast MBTL-DJ-3 and MBTL-DJ-4 include formaldehyde concentration 63ppm To 125 ppm, Luminescene decreased or rather increased. Therefore, it can be confirmed that the target protein ALD6 is migrated into the yeast cell membrane by the signal peptide.

<110> INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY <120> A recombinant vector for expressing, signal protein transformed by the recombinant vector and Biosensor detecting signal peptide sequence <130> 1060573 <160> 23 <170> KopatentIn 2.0 <210> 1 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> signal peptide sequence for PEP4 (PSP) <400> 1 atgttcagct tgaaagcatt attgccattg gccttgttgt tggtcagcgc caaccaagtt 60 gctgcaaaag tccacaaggc taaaatttat aaacacgagt tgtccgatga gatgaaagaa 120 gtcactttcg agcaacattt agctcattta ggccaaaagt acttgactca atttgagaaa 180 gctaaccccg aagttgtttt ttctagggag catcctttct tcactgaa 228 <210> 2 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> signal peptide sequence for CPY (QSP) <400> 2 caacggtctt tg 12 <210> 3 <211> 720 <212> DNA <213> Artificial Sequence <220> <223> sequence for GFP <400> 3 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 720 720 <210> 4 <211> 1503 <212> DNA <213> Artificial Sequence <220> <223> signal peptide sequence for ALD6 <400> 4 atgactaagc tacactttga cactgctgaa ccagtcaaga tcacacttcc aaatggtttg 60 acatacgagc aaccaaccgg tctattcatt aacaacaagt ttatgaaagc tcaagacggt 120 aagacctatc ccgtcgaaga tccttccact gaaaacaccg tttgtgaggt ctcttctgcc 180 accactgaag atgttgaata tgctatcgaa tgtgccgacc gtgctttcca cgacactgaa 240 tgggctaccc aagacccaag agaaagaggc cgtctactaa gtaagttggc tgacgaattg 300 gaaagccaaa ttgacttggt ttcttccatt gaagctttgg acaatggtaa aactttggcc 360 ttagcccgtg gggatgttac cattgcaatc aactgtctaa gagatgctgc tgcctatgcc 420 gacaaagtca acggtagaac aatcaacacc ggtgacggct acatgaactt caccacctta 480 gagccaatcg gtgtctgtgg tcaaattatt ccatggaact ttccaataat gatgttggct 540 tggaagatcg ccccagcatt ggccatgggt aacgtctgta tcttgaaacc cgctgctgtc 600 acacctttaa atgccctata ctttgcttct ttatgtaaga aggttggtat tccagctggt 660 gtcgtcaaca tcgttccagg tcctggtaga actgttggtg ctgctttgac caacgaccca 720 agaatcagaa agctggcttt taccggttct acagaagtcg gtaagagtgt tgctgtcgac 780 tcttctgaat ctaacttgaa gaaaatcact ttggaactag gtggtaagtc cgcccatttg 840 gtctttgacg atgctaacat taagaagact ttaccaaatc tagtaaacgg tattttcaag 900 aacgctggtc aaatttgttc ctctggttct agaatttacg ttcaagaagg tatttacgac 960 gaactattgg ctgctttcaa ggcttacttg gaaaccgaaa tcaaagttgg taatccattt 1020 gacaaggcta acttccaagg tgctatcact aaccgtcaac aattcgacac aattatgaac 1080 tacatcgata tcggtaagaa agaaggcgcc aagatcttaa ctggtggcga aaaagttggt 1140 gacaagggtt acttcatcag accaaccgtt ttctacgatg ttaatgaaga catgagaatt 1200 gttaaggaag aaatttttgg accagttgtc actgtcgcaa agttcaagac tttagaagaa 1260 ggtgtcgaaa tggctaacag ctctgaattc ggtctaggtt ctggtatcga aacagaatct 1320 ttgagcacag gtttgaaggt ggccaagatg ttgaaggccg gtaccgtctg gatcaacaca 1380 tacaacgatt ttgactccag agttccattc ggtggtgtta agcaatctgg ttacggtaga 1440 gaaatgggtg aagaagtcta ccatgcatac actgaagtaa aagctgtcag aattaagttg 1500 taa 1503 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> PEP4-F1(forward primer) <400> 5 cgcaagctta tgttcagctt gaaagcat 28 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> PEP4-R1(reverse primer) <400> 6 tatgcggccg ctttcactga agaaagga 28 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> GFP-F1(forward primer) <400> 7 aatgcggccg ctgtgagcaa gggcgaggag 30 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GFP-R1(reverse primer) <400> 8 attgcatgct tacttgtaca gctcgtc 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CPY-F1(forward primer) <400> 9 tttagcggcc gcatggtgag caagggcgag 30 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CPY-R1(reverse primer) <400> 10 atactcttct caacggtctt tgtacgtcgc cgtccagctc 40 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> CPY-F2(forward primer) <400> 11 tttctcttct ttgaacggcc acaagttcag c 31 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CPY-R2(reverse primer) <400> 12 attgcatgct tacttgtaca gctcgtc 27 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PEP4-R2(reverse primer) <400> 13 gctggatcct tcagtgaaga aaggatg 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ALD6-F(forward primer) <400> 14 ggcggatcca tgactaagct acacttt 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ALD6-R(reverse primer) <400> 15 ggtgcggccg ccaacttaat tctgaca 27 <210> 16 <211> 2268 <212> DNA <213> Artificial Sequence <220> <223> GFP-F2(forward primer) <400> 16 ggcggatcca tgactaagct acactttgac actgctgaac cagtcaagat cacacttcca 60 aatggtttga catacgagca aagaccgcca ctcttctttg caaccaaccg gtctattcat 120 taacaacaag tttatgaaag ctcaagacgg taagacctat cccgtcgaag atccttccac 180 tgaaaacacc gtttgtgagg tctcttctgc caccactgaa gatgttgaat atgctatcga 240 atgtgccgac cgtgctttcc acgacactga atgggctacc caagacccaa gagaaagagg 300 ccgtctacta agtaagttgg ctgacgaatt ggaaagccaa attgacttgg tttcttccat 360 tgaagctttg gacaatggta aaactttggc cttagcccgt ggggatgtta ccattgcaat 420 caactgtcta agagatgctg ctgcctatgc cgacaaagtc aacggtagaa caatcaacac 480 cggtgacggc tacatgaact tcaccacctt agagccaatc ggtgtctgtg gtcaaattat 540 tccatggaac tttccaataa tgatgttggc ttggaagatc gccccagcat tggccatggg 600 taacgtctgt atcttgaaac ccgctgctgt cacaccttta aatgccctat actttgcttc 660 tttatgtaag aaggttggta ttccagctgg tgtcgtcaac atcgttccag gtcctggtag 720 aactgttggt gctgctttga ccaacgaccc aagaatcaga aagctggctt ttaccggttc 780 tacagaagtc ggtaagagtg ttgctgtcga ctcttctgaa tctaacttga agaaaatcac 840 tttggaacta ggtggtaagt ccgcccattt ggtctttgac gatgctaaca ttaagaagac 900 tttaccaaat ctagtaaacg gtattttcaa gaacgctggt caaatttgtt cctctggttc 960 tagaatttac gttcaagaag gtatttacga cgaactattg gctgctttca aggcttactt 1020 ggaaaccgaa atcaaagttg gtaatccatt tgacaaggct aacttccaag gtgctatcac 1080 taaccgtcaa caattcgaca caattatgaa ctacatcgat atcggtaaga aagaaggcgc 1140 caagatctta actggtggcg aaaaagttgg tgacaagggt tacttcatca gaccaaccgt 1200 tttctacgat gttaatgaag acatgagaat tgttaaggaa gaaatttttg gaccagttgt 1260 cactgtcgca aagttcaaga ctttagaaga aggtgtcgaa atggctaaca gctctgaatt 1320 cggtctaggt tctggtatcg aaacagaatc tttgagcaca ggtttgaagg tggccaagat 1380 gttgaaggcc ggtaccgtct ggatcaacac atacaacgat tttgactcca gagttccatt 1440 cggtggtgtt aagcaatctg gttacggtag agaaatgggt gaagaagtct accatgcata 1500 cactgaagta aaagctgtca gaattaagtt ggcggccgca ccggccgcag tgagcaaggg 1560 cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg 1620 ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct 1680 gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct 1740 gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt 1800 caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg 1860 caactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga 1920 gctgaagggc atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa 1980 ctacaacagc cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa 2040 cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca 2100 gaacaccccc atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca 2160 gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt 2220 gaccgccgcc gggatcactc tcggcatgga cgagctgtac aaggcatg 2268 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GFP-R2(reverse primer) <400> 17 ggtgcatgcc ttgtacagct catccat 27 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> ACPY-R(reverse primer) <400> 18 gcgctcttca caacggtctt tgctcgtatg tcaa 34 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> ACPY-F(forward primer) <400> 19 ccactcttct ttgcaaccaa ccggtcta 28 <210> 20 <211> 945 <212> DNA <213> Artificial Sequence <220> <223> sequence for PSP::GFP <400> 20 atgttcagct tgaaagcatt attgccattg gccttgttgt tggtcagcgc caaccaagtt 60 gctgcaaaag tccacaaggc taaaatttat aaacacgagt tgtccgatga gatgaaagaa 120 gtcactttcg agcaacattt agctcattta ggccaaaagt acttgactca atttgagaaa 180 gctaaccccg aagttgtttt ttctagggag catcctttct tcactgaagt gagcaagggc 240 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 300 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 360 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 420 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 480 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 540 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 600 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 660 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 720 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 780 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 840 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 900 accgccgccg ggatcactct cggcatggac gagctgtaca agtaa 945 <210> 21 <211> 735 <212> DNA <213> Artificial Sequence <220> <223> Sequence for QSP::GFP <400> 21 ggccgcatgg tgagcaaggg cgagctgttc accggggtgg tgcccatcct ggtcgagctg 60 gacggcgacg tacaaagacc gttgaacggc cacaagttca gcgtgtccgg cgagggcgag 120 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 180 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 240 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 300 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 360 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 420 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 480 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 540 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 600 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 660 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 720 gagctgtaca agtaa 735 <210> 22 <211> 2227 <212> DNA <213> Artificial Sequence <220> <223> Sequence for PSP::ALD6::GFP <400> 22 gatccatgac taagctacac tttgacactg ctgaaccagt caagatcaca cttccaaatg 60 gtttgacata cgagcaacca accggtctat tcattaacaa caagtttatg aaagctcaag 120 acggtaagac ctatcccgtc gaagatcctt ccactgaaaa caccgtttgt gaggtctctt 180 ctgccaccac tgaagatgtt gaatatgcta tcgaatgtgc cgaccgtgct ttccacgaca 240 ctgaatgggc tacccaagac ccaagagaaa gaggccgtct actaagtaag ttggctgacg 300 aattggaaag ccaaattgac ttggtttctt ccattgaagc tttggacaat ggtaaaactt 360 tggccttagc ccgtggggat gttaccattg caatcaactg tctaagagat gctgctgcct 420 atgccgacaa agtcaacggt agaacaatca acaccggtga cggctacatg aacttcacca 480 ccttagagcc aatcggtgtc tgtggtcaaa ttattccatg gaactttcca ataatgatgt 540 tggcttggaa gatcgcccca gcattggcca tgggtaacgt ctgtatcttg aaacccgctg 600 ctgtcacacc tttaaatgcc ctatactttg cttctttatg taagaaggtt ggtattccag 660 ctggtgtcgt caacatcgtt ccaggtcctg gtagaactgt tggtgctgct ttgaccaacg 720 acccaagaat cagaaagctg gcttttaccg gttctacaga agtcggtaag agtgttgctg 780 tcgactcttc tgaatctaac ttgaagaaaa tcactttgga actaggtggt aagtccgccc 840 atttggtctt tgacgatgct aacattaaga agactttacc aaatctagta aacggtattt 900 tcaagaacgc tggtcaaatt tgttcctctg gttctagaat ttacgttcaa gaaggtattt 960 acgacgaact attggctgct ttcaaggctt acttggaaac cgaaatcaaa gttggtaatc 1020 catttgacaa ggctaacttc caaggtgcta tcactaaccg tcaacaattc gacacaatta 1080 tgaactacat cgatatcggt aagaaagaag gcgccaagat cttaactggt ggcgaaaaag 1140 ttggtgacaa gggttacttc atcagaccaa ccgttttcta cgatgttaat gaagacatga 1200 gaattgttaa ggaagaaatt tttggaccag ttgtcactgt cgcaaagttc aagactttag 1260 aagaaggtgt cgaaatggct aacagctctg aattcggtct aggttctggt atcgaaacag 1320 aatctttgag cacaggtttg aaggtggcca agatgttgaa ggccggtacc gtctggatca 1380 acacatacaa cgattttgac tccagagttc cattcggtgg tgttaagcaa tctggttacg 1440 gtagagaaat gggtgaagaa gtctaccatg catacactga agtaaaagct gtcagaatta 1500 agttgtaagt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc 1560 tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca 1620 cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc gtgccctggc 1680 ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac cccgaccaca 1740 tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag gagcgcacca 1800 tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc gagggcgaca 1860 ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc aacatcctgg 1920 ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc gacaagcaga 1980 agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc agcgtgcagc 2040 tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca 2100 accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag cgcgatcaca 2160 tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac gagctgtaca 2220 aggcatg 2227 <210> 23 <211> 2268 <212> DNA <213> Artificial Sequence <220> <223> Sequence for QSP::ALD6::GFP <400> 23 ggcggatcca tgactaagct acactttgac actgctgaac cagtcaagat cacacttcca 60 aatggtttga catacgagca aagaccgcca ctcttctttg caaccaaccg gtctattcat 120 taacaacaag tttatgaaag ctcaagacgg taagacctat cccgtcgaag atccttccac 180 tgaaaacacc gtttgtgagg tctcttctgc caccactgaa gatgttgaat atgctatcga 240 atgtgccgac cgtgctttcc acgacactga atgggctacc caagacccaa gagaaagagg 300 ccgtctacta agtaagttgg ctgacgaatt ggaaagccaa attgacttgg tttcttccat 360 tgaagctttg gacaatggta aaactttggc cttagcccgt ggggatgtta ccattgcaat 420 caactgtcta agagatgctg ctgcctatgc cgacaaagtc aacggtagaa caatcaacac 480 cggtgacggc tacatgaact tcaccacctt agagccaatc ggtgtctgtg gtcaaattat 540 tccatggaac tttccaataa tgatgttggc ttggaagatc gccccagcat tggccatggg 600 taacgtctgt atcttgaaac ccgctgctgt cacaccttta aatgccctat actttgcttc 660 tttatgtaag aaggttggta ttccagctgg tgtcgtcaac atcgttccag gtcctggtag 720 aactgttggt gctgctttga ccaacgaccc aagaatcaga aagctggctt ttaccggttc 780 tacagaagtc ggtaagagtg ttgctgtcga ctcttctgaa tctaacttga agaaaatcac 840 tttggaacta ggtggtaagt ccgcccattt ggtctttgac gatgctaaca ttaagaagac 900 tttaccaaat ctagtaaacg gtattttcaa gaacgctggt caaatttgtt cctctggttc 960 tagaatttac gttcaagaag gtatttacga cgaactattg gctgctttca aggcttactt 1020 ggaaaccgaa atcaaagttg gtaatccatt tgacaaggct aacttccaag gtgctatcac 1080 taaccgtcaa caattcgaca caattatgaa ctacatcgat atcggtaaga aagaaggcgc 1140 caagatctta actggtggcg aaaaagttgg tgacaagggt tacttcatca gaccaaccgt 1200 tttctacgat gttaatgaag acatgagaat tgttaaggaa gaaatttttg gaccagttgt 1260 cactgtcgca aagttcaaga ctttagaaga aggtgtcgaa atggctaaca gctctgaatt 1320 cggtctaggt tctggtatcg aaacagaatc tttgagcaca ggtttgaagg tggccaagat 1380 gttgaaggcc ggtaccgtct ggatcaacac atacaacgat tttgactcca gagttccatt 1440 cggtggtgtt aagcaatctg gttacggtag agaaatgggt gaagaagtct accatgcata 1500 cactgaagta aaagctgtca gaattaagtt ggcggccgca ccggccgcag tgagcaaggg 1560 cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg 1620 ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct 1680 gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct 1740 gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt 1800 caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg 1860 caactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga 1920 gctgaagggc atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa 1980 ctacaacagc cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa 2040 cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca 2100 gaacaccccc atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca 2160 gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt 2220 gaccgccgcc gggatcactc tcggcatgga cgagctgtac aaggcatg 2268 <110> INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY <120> A recombinant vector for expressing, signal protein transformed          by the recombinant vector and Biosensor detecting signal peptide          sequence <130> 1060573 <160> 23 <170> Kopatentin 2.0 <210> 1 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> signal peptide sequence for PEP4 (PSP) <400> 1 atgttcagct tgaaagcatt attgccattg gccttgttgt tggtcagcgc caaccaagtt 60 gctgcaaaag tccacaaggc taaaatttat aaacacgagt tgtccgatga gatgaaagaa 120 gtcactttcg agcaacattt agctcattta ggccaaaagt acttgactca atttgagaaa 180 gctaaccccg aagttgtttt ttctagggag catcctttct tcactgaa 228 <210> 2 <211> 12 <212> DNA <213> Artificial Sequence <220> Signal peptide sequence for CPY (QSP) <400> 2 caacggtctt tg 12 <210> 3 <211> 720 <212> DNA <213> Artificial Sequence <220> <223> sequence for GFP <400> 3 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 720                                                                          720 <210> 4 <211> 1503 <212> DNA <213> Artificial Sequence <220> <223> signal peptide sequence for ALD6 <400> 4 atgactaagc tacactttga cactgctgaa ccagtcaaga tcacacttcc aaatggtttg 60 acatacgagc aaccaaccgg tctattcatt aacaacaagt ttatgaaagc tcaagacggt 120 aagacctatc ccgtcgaaga tccttccact gaaaacaccg tttgtgaggt ctcttctgcc 180 accactgaag atgttgaata tgctatcgaa tgtgccgacc gtgctttcca cgacactgaa 240 tgggctaccc aagacccaag agaaagaggc cgtctactaa gtaagttggc tgacgaattg 300 gaaagccaaa ttgacttggt ttcttccatt gaagctttgg acaatggtaa aactttggcc 360 ttagcccgtg gggatgttac cattgcaatc aactgtctaa gagatgctgc tgcctatgcc 420 gacaaagtca acggtagaac aatcaacacc ggtgacggct acatgaactt caccacctta 480 gagccaatcg gtgtctgtgg tcaaattatt ccatggaact ttccaataat gatgttggct 540 tggaagatcg ccccagcatt ggccatgggt aacgtctgta tcttgaaacc cgctgctgtc 600 acacctttaa atgccctata ctttgcttct ttatgtaaga aggttggtat tccagctggt 660 gtcgtcaaca tcgttccagg tcctggtaga actgttggtg ctgctttgac caacgaccca 720 agaatcagaa agctggcttt taccggttct acagaagtcg gtaagagtgt tgctgtcgac 780 tcttctgaat ctaacttgaa gaaaatcact ttggaactag gtggtaagtc cgcccatttg 840 gtctttgacg atgctaacat taagaagact ttaccaaatc tagtaaacgg tattttcaag 900 aacgctggtc aaatttgttc ctctggttct agaatttacg ttcaagaagg tatttacgac 960 gaactattgg ctgctttcaa ggcttacttg gaaaccgaaa tcaaagttgg taatccattt 1020 gacaaggcta acttccaagg tgctatcact aaccgtcaac aattcgacac aattatgaac 1080 tacatcgata tcggtaagaa agaaggcgcc aagatcttaa ctggtggcga aaaagttggt 1140 gacaagggtt acttcatcag accaaccgtt ttctacgatg ttaatgaaga catgagaatt 1200 gttaaggaag aaatttttgg accagttgtc actgtcgcaa agttcaagac tttagaagaa 1260 ggtgtcgaaa tggctaacag ctctgaattc ggtctaggtt ctggtatcga aacagaatct 1320 ttgagcacag gtttgaaggt ggccaagatg ttgaaggccg gtaccgtctg gatcaacaca 1380 tacaacgatt ttgactccag agttccattc ggtggtgtta agcaatctgg ttacggtaga 1440 gaaatgggtg aagaagtcta ccatgcatac actgaagtaa aagctgtcag aattaagttg 1500 taa 1503 <210> 5 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> PEP4-F1 (forward primer) <400> 5 cgcaagctta tgttcagctt gaaagcat 28 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > PEP4-R1 (reverse primer) <400> 6 tatgcggccg ctttcactga agaaagga 28 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> GFP-F1 (forward primer) <400> 7 aatgcggccg ctgtgagcaa gggcgaggag 30 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> GFP-R1 (reverse primer) <400> 8 attgcatgct tacttgtaca gctcgtc 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CPY-F1 (forward primer) <400> 9 tttagcggcc gcatggtgag caagggcgag 30 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> CPY-R1 (reverse primer) <400> 10 atactcttct caacggtctt tgtacgtcgc cgtccagctc 40 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> CPY-F2 (forward primer) <400> 11 tttctcttct ttgaacggcc acaagttcag c 31 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> CPY-R2 (reverse primer) <400> 12 attgcatgct tacttgtaca gctcgtc 27 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > PEP4-R2 (reverse primer) <400> 13 gctggatcct tcagtgaaga aaggatg 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> ALD6-F (forward primer) <400> 14 ggcggatcca tgactaagct acacttt 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> ALD6-R (reverse primer) <400> 15 ggtgcggccg ccaacttaat tctgaca 27 <210> 16 <211> 2268 <212> DNA <213> Artificial Sequence <220> <223> GFP-F2 (forward primer) <400> 16 ggcggatcca tgactaagct acactttgac actgctgaac cagtcaagat cacacttcca 60 aatggtttga catacgagca aagaccgcca ctcttctttg caaccaaccg gtctattcat 120 taacaacaag tttatgaaag ctcaagacgg taagacctat cccgtcgaag atccttccac 180 tgaaaacacc gtttgtgagg tctcttctgc caccactgaa gatgttgaat atgctatcga 240 atgtgccgac cgtgctttcc acgacactga atgggctacc caagacccaa gagaaagagg 300 ccgtctacta agtaagttgg ctgacgaatt ggaaagccaa attgacttgg tttcttccat 360 tgaagctttg gacaatggta aaactttggc cttagcccgt ggggatgtta ccattgcaat 420 caactgtcta agagatgctg ctgcctatgc cgacaaagtc aacggtagaa caatcaacac 480 cggtgacggc tacatgaact tcaccacctt agagccaatc ggtgtctgtg gtcaaattat 540 tccatggaac tttccaataa tgatgttggc ttggaagatc gccccagcat tggccatggg 600 taacgtctgt atcttgaaac ccgctgctgt cacaccttta aatgccctat actttgcttc 660 tttatgtaag aaggttggta ttccagctgg tgtcgtcaac atcgttccag gtcctggtag 720 aactgttggt gctgctttga ccaacgaccc aagaatcaga aagctggctt ttaccggttc 780 tacagaagtc ggtaagagtg ttgctgtcga ctcttctgaa tctaacttga agaaaatcac 840 tttggaacta ggtggtaagt ccgcccattt ggtctttgac gatgctaaca ttaagaagac 900 tttaccaaat ctagtaaacg gtattttcaa gaacgctggt caaatttgtt cctctggttc 960 tagaatttac gttcaagaag gtatttacga cgaactattg gctgctttca aggcttactt 1020 ggaaaccgaa atcaaagttg gtaatccatt tgacaaggct aacttccaag gtgctatcac 1080 taaccgtcaa caattcgaca caattatgaa ctacatcgat atcggtaaga aagaaggcgc 1140 caagatctta actggtggcg aaaaagttgg tgacaagggt tacttcatca gaccaaccgt 1200 tttctacgat gttaatgaag acatgagaat tgttaaggaa gaaatttttg gaccagttgt 1260 cactgtcgca aagttcaaga ctttagaaga aggtgtcgaa atggctaaca gctctgaatt 1320 cggtctaggt tctggtatcg aaacagaatc tttgagcaca ggtttgaagg tggccaagat 1380 gttgaaggcc ggtaccgtct ggatcaacac atacaacgat tttgactcca gagttccatt 1440 cggtggtgtt aagcaatctg gttacggtag agaaatgggt gaagaagtct accatgcata 1500 cactgaagta aaagctgtca gaattaagtt ggcggccgca ccggccgcag tgagcaaggg 1560 cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg 1620 ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct 1680 gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct 1740 gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt 1800 caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg 1860 cactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga 1920 gctgaagggc atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa 1980 ctacaacagc cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa 2040 cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca 2100 gaacaccccc atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca 2160 gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt 2220 gaccgccgcc gggatcactc tcggcatgga cgagctgtac aaggcatg 2268 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> GFP-R2 (reverse primer) <400> 17 ggtgcatgcc ttgtacagct catccat 27 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> ACPY-R (reverse primer) <400> 18 gcgctcttca caacggtctt tgctcgtatg tcaa 34 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > ACPY-F (forward primer) <400> 19 ccactcttct ttgcaaccaa ccggtcta 28 <210> 20 <211> 945 <212> DNA <213> Artificial Sequence <220> <223> sequence for PSP :: GFP <400> 20 atgttcagct tgaaagcatt attgccattg gccttgttgt tggtcagcgc caaccaagtt 60 gctgcaaaag tccacaaggc taaaatttat aaacacgagt tgtccgatga gatgaaagaa 120 gtcactttcg agcaacattt agctcattta ggccaaaagt acttgactca atttgagaaa 180 gctaaccccg aagttgtttt ttctagggag catcctttct tcactgaagt gagcaagggc 240 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 300 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 360 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 420 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 480 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 540 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 600 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 660 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 720 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 780 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 840 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 900 accgccgccg ggatcactct cggcatggac gagctgtaca agtaa 945 <210> 21 <211> 735 <212> DNA <213> Artificial Sequence <220> <223> Sequence for QSP :: GFP <400> 21 ggccgcatgg tgagcaaggg cgagctgttc accggggtgg tgcccatcct ggtcgagctg 60 gacggcgacg tacaaagacc gttgaacggc cacaagttca gcgtgtccgg cgagggcgag 120 ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc 180 gtgccctggc ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac 240 cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag 300 gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc 360 gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc 420 aacatcctgg ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc 480 gacaagcaga agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc 540 agcgtgcagc tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg 600 ctgcccgaca accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag 660 cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac 720 gagctgtaca agtaa 735 <210> 22 <211> 2227 <212> DNA <213> Artificial Sequence <220> <223> Sequence for PSP :: ALD6 :: GFP <400> 22 gatccatgac taagctacac tttgacactg ctgaaccagt caagatcaca cttccaaatg 60 gtttgacata cgagcaacca accggtctat tcattaacaa caagtttatg aaagctcaag 120 acggtaagac ctatcccgtc gaagatcctt ccactgaaaa caccgtttgt gaggtctctt 180 ctgccaccac tgaagatgtt gaatatgcta tcgaatgtgc cgaccgtgct ttccacgaca 240 ctgaatgggc tacccaagac ccaagagaaa gaggccgtct actaagtaag ttggctgacg 300 aattggaaag ccaaattgac ttggtttctt ccattgaagc tttggacaat ggtaaaactt 360 tggccttagc ccgtggggat gttaccattg caatcaactg tctaagagat gctgctgcct 420 atgccgacaa agtcaacggt agaacaatca acaccggtga cggctacatg aacttcacca 480 ccttagagcc aatcggtgtc tgtggtcaaa ttattccatg gaactttcca ataatgatgt 540 tggcttggaa gatcgcccca gcattggcca tgggtaacgt ctgtatcttg aaacccgctg 600 ctgtcacacc tttaaatgcc ctatactttg cttctttatg taagaaggtt ggtattccag 660 ctggtgtcgt caacatcgtt ccaggtcctg gtagaactgt tggtgctgct ttgaccaacg 720 acccaagaat cagaaagctg gcttttaccg gttctacaga agtcggtaag agtgttgctg 780 tcgactcttc tgaatctaac ttgaagaaaa tcactttgga actaggtggt aagtccgccc 840 atttggtctt tgacgatgct aacattaaga agactttacc aaatctagta aacggtattt 900 tcaagaacgc tggtcaaatt tgttcctctg gttctagaat ttacgttcaa gaaggtattt 960 acgacgaact attggctgct ttcaaggctt acttggaaac cgaaatcaaa gttggtaatc 1020 catttgacaa ggctaacttc caaggtgcta tcactaaccg tcaacaattc gacacaatta 1080 tgaactacat cgatatcggt aagaaagaag gcgccaagat cttaactggt ggcgaaaaag 1140 ttggtgacaa gggttacttc atcagaccaa ccgttttcta cgatgttaat gaagacatga 1200 gaattgttaa ggaagaaatt tttggaccag ttgtcactgt cgcaaagttc aagactttag 1260 aagaaggtgt cgaaatggct aacagctctg aattcggtct aggttctggt atcgaaacag 1320 aatctttgag cacaggtttg aaggtggcca agatgttgaa ggccggtacc gtctggatca 1380 acacatacaa cgattttgac tccagagttc cattcggtgg tgttaagcaa tctggttacg 1440 gtagagaaat gggtgaagaa gtctaccatg catacactga agtaaaagct gtcagaatta 1500 agttgtaagt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc 1560 tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca 1620 cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc gtgccctggc 1680 ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac cccgaccaca 1740 tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag gagcgcacca 1800 tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc gagggcgaca 1860 ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc aacatcctgg 1920 ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc gacaagcaga 1980 agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc agcgtgcagc 2040 tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca 2100 accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag cgcgatcaca 2160 tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac gagctgtaca 2220 aggcatg 2227 <210> 23 <211> 2268 <212> DNA <213> Artificial Sequence <220> <223> Sequence for QSP :: ALD6 :: GFP <400> 23 ggcggatcca tgactaagct acactttgac actgctgaac cagtcaagat cacacttcca 60 aatggtttga catacgagca aagaccgcca ctcttctttg caaccaaccg gtctattcat 120 taacaacaag tttatgaaag ctcaagacgg taagacctat cccgtcgaag atccttccac 180 tgaaaacacc gtttgtgagg tctcttctgc caccactgaa gatgttgaat atgctatcga 240 atgtgccgac cgtgctttcc acgacactga atgggctacc caagacccaa gagaaagagg 300 ccgtctacta agtaagttgg ctgacgaatt ggaaagccaa attgacttgg tttcttccat 360 tgaagctttg gacaatggta aaactttggc cttagcccgt ggggatgtta ccattgcaat 420 caactgtcta agagatgctg ctgcctatgc cgacaaagtc aacggtagaa caatcaacac 480 cggtgacggc tacatgaact tcaccacctt agagccaatc ggtgtctgtg gtcaaattat 540 tccatggaac tttccaataa tgatgttggc ttggaagatc gccccagcat tggccatggg 600 taacgtctgt atcttgaaac ccgctgctgt cacaccttta aatgccctat actttgcttc 660 tttatgtaag aaggttggta ttccagctgg tgtcgtcaac atcgttccag gtcctggtag 720 aactgttggt gctgctttga ccaacgaccc aagaatcaga aagctggctt ttaccggttc 780 tacagaagtc ggtaagagtg ttgctgtcga ctcttctgaa tctaacttga agaaaatcac 840 tttggaacta ggtggtaagt ccgcccattt ggtctttgac gatgctaaca ttaagaagac 900 tttaccaaat ctagtaaacg gtattttcaa gaacgctggt caaatttgtt cctctggttc 960 tagaatttac gttcaagaag gtatttacga cgaactattg gctgctttca aggcttactt 1020 ggaaaccgaa atcaaagttg gtaatccatt tgacaaggct aacttccaag gtgctatcac 1080 taaccgtcaa caattcgaca caattatgaa ctacatcgat atcggtaaga aagaaggcgc 1140 caagatctta actggtggcg aaaaagttgg tgacaagggt tacttcatca gaccaaccgt 1200 tttctacgat gttaatgaag acatgagaat tgttaaggaa gaaatttttg gaccagttgt 1260 cactgtcgca aagttcaaga ctttagaaga aggtgtcgaa atggctaaca gctctgaatt 1320 cggtctaggt tctggtatcg aaacagaatc tttgagcaca ggtttgaagg tggccaagat 1380 gttgaaggcc ggtaccgtct ggatcaacac atacaacgat tttgactcca gagttccatt 1440 cggtggtgtt aagcaatctg gttacggtag agaaatgggt gaagaagtct accatgcata 1500 cactgaagta aaagctgtca gaattaagtt ggcggccgca ccggccgcag tgagcaaggg 1560 cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg 1620 ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct 1680 gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct 1740 gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt 1800 caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg 1860 cactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga 1920 gctgaagggc atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa 1980 ctacaacagc cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa 2040 cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca 2100 gaacaccccc atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca 2160 gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt 2220 gaccgccgcc gggatcactc tcggcatgga cgagctgtac aaggcatg 2268

Claims (9)

도 7의 개열지도로 표시되는 재조합 발현벡터로서,
Carboxypeptidase Y (CPY)의 신호전달 펩타이드 (signal peptide sequence)를 코딩하는 서열번호 2번의 염기서열; 및
알데하이드 디하이드로지네이즈 6(Aldehyde dehydrogenase, ALD6)를 코딩하는 서열번호 4의 염기서열; 을 포함하고,
상기 Carboxypeptidase Y (CPY)의 신호전달 펩타이드 (signal peptide sequence)는 상기 알데하이드 디하이드로지네이즈 6의 23 번째 아미노산 잔기와 24 번째 아미노산 잔기 사이에 삽입되는, 재조합 발현벡터.
As a recombinant expression vector represented by a cleavage map in Fig. 7,
A nucleotide sequence of SEQ ID NO: 2 encoding a signal peptide sequence of Carboxypeptidase Y (CPY); And
A nucleotide sequence of SEQ ID NO: 4 which codes for aldehyde dehydrogenase (ALD6); / RTI &gt;
Wherein the signal peptide sequence of Carboxypeptidase Y (CPY) is inserted between the 23rd amino acid residue and the 24th amino acid residue of the aldehyde dehydrogenase 6.
제 1항에 있어서, 상기 재조합 발현벡터의 QSP::ALD6::GFP의 염기서열은 서열번호 23번의 염기서열로 표시되는, 재조합 벡터.
2. The recombinant vector according to claim 1, wherein the base sequence of QSP :: ALD6 :: GFP of the recombinant expression vector is represented by the nucleotide sequence of SEQ ID NO: 23.
제 1항의 발현벡터로 형질전환된 형질전환체.
A transformant transformed with the expression vector of claim 1.
(a) 서열번호 14로 표시되는 정방향 프라이머 및 서열번호 18로 표시되는 역방향 프라이머의 프라이머 세트를 이용하여 ADL6의 1 번째 아미노산 잔기 내지 23번째 아미노산 잔기 및 CPY의 신호전달 단백질 24 번째 아미노산 잔기 내지 26번째 아미노산 잔기를 코딩하는 염기서열의 단편을 증폭하는 단계;
(b) 서열번호 19로 표시되는 정방향 프라이머 및 서열번호 17로 표시되는 역방향 프라이머의 프라이머 세트를 이용하여 CPY의 신호전달 단백질 27번째 아미노산 잔기를 코딩하는 염기서열; ADL6의 24번째 아미노산 잔기 내지 27번째 아미노산 잔기를 코딩하는 염기서열의 단편; 및 GFP의아미노산을 코딩하는 염기서열의 단편을 증폭하는 단계;
(c) 상기 증폭된 유전자들을 제한효소로 자르는 단계;
(d) 발현벡터를 상기 제한효소로 자르는 단계; 및
(e) 상기 유전자와 발현벡터를 클로닝하여 미생물에 형질전환시키는 단계를 포함하는 재조합 벡터를 제조하는 방법.
(a) a first primer set forth in SEQ ID NO: 14 and a primer set of a reverse primer set forth in SEQ ID NO: 18 are used to amplify the first to 23rd amino acid residues and the CPY signaling protein of ADL6, Amplifying a fragment of a base sequence encoding an amino acid residue;
(b) a nucleotide sequence encoding the 27th amino acid residue of the signal transduction protein of CPY using the forward primer represented by SEQ ID NO: 19 and the primer set of the reverse primer represented by SEQ ID NO: 17; A fragment of the nucleotide sequence encoding the 24th amino acid residue to the 27th amino acid residue of ADL6; And amplifying a fragment of the base sequence encoding the amino acid of GFP;
(c) cleaving the amplified genes with a restriction enzyme;
(d) trimming the expression vector with the restriction enzyme; And
(e) cloning the gene and an expression vector to transform the microorganism.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020160085689A 2016-07-06 2016-07-06 Development of transfer vector for targeting vacuole by signal peptide sequence KR101953950B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160085689A KR101953950B1 (en) 2016-07-06 2016-07-06 Development of transfer vector for targeting vacuole by signal peptide sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160085689A KR101953950B1 (en) 2016-07-06 2016-07-06 Development of transfer vector for targeting vacuole by signal peptide sequence

Publications (2)

Publication Number Publication Date
KR20180005497A KR20180005497A (en) 2018-01-16
KR101953950B1 true KR101953950B1 (en) 2019-05-17

Family

ID=61066903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160085689A KR101953950B1 (en) 2016-07-06 2016-07-06 Development of transfer vector for targeting vacuole by signal peptide sequence

Country Status (1)

Country Link
KR (1) KR101953950B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719687B1 (en) 2005-12-09 2007-05-17 주식회사 효성 26- Method for Preparing Aldehyde Dehydrogenage Derived from Bacillus subtilis and Method for Purification of 26-Naphthalane Dicarboxylic Acid by Using It

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20080055A1 (en) * 2008-03-13 2009-09-14 Transactiva S R L PROCEDURE FOR THE PRODUCTION OF A HUMAN PROTEIN ON THE PLANT, IN PARTICULAR A RECOMBINANT HUMAN LYSOSOMIAL ENZYME IN CEREALS ENDOSPERMA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719687B1 (en) 2005-12-09 2007-05-17 주식회사 효성 26- Method for Preparing Aldehyde Dehydrogenage Derived from Bacillus subtilis and Method for Purification of 26-Naphthalane Dicarboxylic Acid by Using It

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Molecular and Cellular Biology, Vol.8, No.5, pp.2105-2116 (1998)*
New Biotechnology, Vol.33, Supplement, p.S106, Abstract of the 17th European Congress on Biotechnology, P8-36 (2016.06.29.)*
The Journal of Biological Chemistry, Vol.279, NO.16, pp.16071-16076 (2004)
The Journal of Cell Biology, Vol.11, pp.361-368 (1990)*

Also Published As

Publication number Publication date
KR20180005497A (en) 2018-01-16

Similar Documents

Publication Publication Date Title
CN101679992A (en) Expression system
EP3594351B1 (en) Yeast promoters from pichia pastoris
US11697803B2 (en) Method of protein purification from E.coli
WO2020243792A1 (en) Recombinant yeast
WO2023045682A1 (en) Method for increasing soluble expression quantity of polypeptide
US20230340481A1 (en) Systems and methods for transposing cargo nucleotide sequences
KR101087760B1 (en) Novel recombinant yeasts and methods of simultaneously producing ethanols and target proteins using them
JP5662363B2 (en) Method for clarifying protein fusion factor (TFP) for secretion of difficult-to-express protein, method for producing protein fusion factor (TFP) library, and method for recombinant production of difficult-to-express protein
KR20080039879A (en) Method for preparing soluble and active recombinant proteins using pdi as a fusion partner
DK2831262T3 (en) SECRETION OF FUNCTIONAL INSULIN GLARGIN DIRECTLY IN THE CULTIVATION MEDIUM THROUGH INTRACELLULAR OVERPRESSION OF KEX2P
CN110305855B (en) Gastrodia elata GeCPR gene and application thereof
KR101953950B1 (en) Development of transfer vector for targeting vacuole by signal peptide sequence
EP3228707A1 (en) Vector containing centromere dna sequence and use thereof
CN110903993A (en) Saccharomyces cerevisiae engineering bacterium for producing brassicasterol and construction method and application thereof
EP4032982A1 (en) Novel promoter hasp1 of phaeodactylum tricornutum and signal peptide thereof, and use thereof
JP5997140B2 (en) Production cell line
EP3872185A1 (en) Compound library and method for producing compound library
KR101753327B1 (en) Expression cassette including rrnA promoter from Vibrio natriegens for improving growth efficiency of Escherichia coli and recombinant Escherichia coli introduced with the same
CN110241062A (en) New escherichia expression system
KR20200086591A (en) Isolated polynucleotide comprising promoter region, host cell comprising the same and method of expressing a target gene using the host cell
CN116515841B (en) Promoter element from fungi and application thereof
KR101885878B1 (en) Method for producing gamma aminobutyric acid using E.coli transformant and method for producing feed additives including gamma aminobutyric acid
CN114369562B (en) Method for improving expression quantity of 5-aminolevulinic acid
KR102302827B1 (en) Compositon for inhibiting gene expression using CRISPRi
WO2024099089A1 (en) Genetically engineered strain for producing pseudouridine, construction method therefor and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
R401 Registration of restoration