KR101945292B1 - Biomarker for therapy of recurrent cancer after radiation treatment - Google Patents
Biomarker for therapy of recurrent cancer after radiation treatment Download PDFInfo
- Publication number
- KR101945292B1 KR101945292B1 KR1020170030837A KR20170030837A KR101945292B1 KR 101945292 B1 KR101945292 B1 KR 101945292B1 KR 1020170030837 A KR1020170030837 A KR 1020170030837A KR 20170030837 A KR20170030837 A KR 20170030837A KR 101945292 B1 KR101945292 B1 KR 101945292B1
- Authority
- KR
- South Korea
- Prior art keywords
- amino acid
- protein
- acid sequence
- mutation
- cancer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7004—Monosaccharides having only carbon, hydrogen and oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4748—Details p53
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/54—Determining the risk of relapse
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에 관한 것이다.The present invention provides information for identifying a patient suffering from radiation-resistant recurrent cancer that is suitable for the administration of a target drug for metabolism, including the step of confirming the mutation of the amino acid sequence or the gene sequence of p53 protein in cancer cells surviving radiation irradiation separated from the patient The method comprising:
Description
본 발명은 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에 관한 것으로서, 구체적으로 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에 관한 것이다.The present invention relates to a method of providing information for identifying a patient suffering from radiation-resistant resistant recurrent cancer, which is suitable for the administration of a glucose metabolism target drug. More particularly, the present invention relates to a method for identifying a cancer- To a method of providing information for identifying a radiation-resistant resistant relapse cancer patient suitable for administration of a metabolic target drug, including identifying a mutation.
암은 전 세계적으로 가장 치명적인 질병으로 국내에선 사망원인 1위를 차지하며, 외과수술, 약물치료 (항암화학요법, 표적약물치료), 방사선치료, 면역치료 등 새로운 치료 기술들이 비약적으로 발전함에도 불구하고, 암 사망률은 크게 줄지 않고 있다. 특히 방사선 치료는 curative 또는 adjuvant 목적으로 시행되며, 두경부암 환자를 대상으로 기관보존 (organ preservation)과 기능 보존을 위하여 중요한 치료법으로 부각되고 있다.Cancer is the most fatal disease in the world and is the number one cause of death in the country. Despite the breakthrough of new therapeutic technologies such as surgery, drug therapy (chemotherapy, target medication), radiation therapy and immunotherapy , The cancer mortality rate has not been reduced significantly. Radiation therapy, especially for curative or adjuvant purposes, has become an important treatment for organ preservation and function in patients with head and neck cancer.
악성 종양에 대해서 방사선 치료시, 생존한 종양이 방사선 저항성을 획득하는 것이 암치료 실패 및 재발암의 주요 원인으로 알려져 있으며, 게다가 재발암의 치료 방법은 매우 제한적이므로 재발암에 대한 치료 향상을 위해서는 상기 방사선 저항성 획득을 감소시키기 위해서 방사선 저항성 기전에 대한 연구가 필수적이라고 할 수 있다.In radiation therapy for malignant tumors, survival of the tumor to obtain radiation resistance is known to be a major cause of cancer treatment failure and recurrent cancer. In addition, since the treatment method for recurrent cancer is very limited, Studies on the mechanism of radiation resistance are essential to reduce the acquisition of radiation resistance.
그러나, 현재까지는 방사선 치료후 재발암의 경우 재발암에 대한 구제 수술 (salvage surgery)이 가능한 경우 암에 대한 치료를 기대할 수 있으나, 대부분의 경우 수술적 치료와 방사선 치료가 불가능한 상태에서 재발암이 진단되므로 보조적인 치료 방법인 병합항암화학요법, 표적약물치료, 최근에는 면역치료를 시행하여 재발암 환자의 생존 기간을 연장하는 방법만이 가능할 뿐이었다. However, in the case of recurrent cancer after radiotherapy, salvage surgery for recurrent cancer is possible. However, in most cases, recurrent cancer is diagnosed in a state in which surgical treatment and radiation therapy are impossible Therefore, it is only possible to perform survival of patients with relapsed cancer by adjuvant chemotherapy, target drug therapy and recently immunotherapy.
또한, 상기 방사선 치료후 재발암에서 시행되는 병합항암화학요법을 사용하는 경우에도, docetaxel, cisplatin, 및 5-fluorouracil의 세가지 약물의 병합치료를 시행할 수 있으나 약물 부작용인 독성으로 인하여 그 사용이 제한적인 문제가 있었다.Concomitant chemotherapy with docetaxel, cisplatin, and 5-fluorouracil may be used in combination with adjuvant chemotherapy for recurrent cancer after radiation therapy. However, due to toxicity, There was a problem.
이상과 같이, 현재까지는 방사선 치료후 재발암에 대한 치료 방법은 극히 제한적이다.As described above, the treatment method for recurrent cancer after radiation therapy is extremely limited so far.
상기와 같은 문제점을 해결하여 방사선 치료 후 재발암을 치료하기 위해서, 본 발명자들은 방사선 치료 후 재발암에서 p53 유전자 돌연변이의 확인을 통한 표적치료 방법을 제공하는 기술을 개발하였다. 이와 같은 기술을 통해서 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공할 수 있다.In order to solve the above problems and to treat recurrent cancer after radiation therapy, the present inventors have developed a technique for providing a target treatment method by confirming mutation of p53 gene in relapse cancer after radiation therapy. Such a technique can provide information for identifying a patient with radiation-resistant recurrent cancer who is suitable for the administration of a drug target metabolite.
또한, 본 발명의 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이의 확인을 통한 방사선 재발암의 표적치료 방법의 제공은 방사선 치료 내성을 극복하는 새로운 대사 특이적 치료법과 약물개발에 중요한 기초 자료로 활용될 수 있을 것으로 예상된다.In addition, the provision of a target treatment method for the recurrence of cancer by confirming the mutation of the amino acid sequence or the gene sequence of the p53 protein of the present invention can be used as an important basic data for the development of new metabolism-specific therapeutic methods and drugs, It is expected to be possible.
본 발명의 일례는 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 방사선 치료 저항성 재발암 치료의 정보를 제공하는 방법에 관한 것이다. 다른 측면은, 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자를 확인 (또는 진단)하기 위한 정보를 제공하는 방법에 관한 것이다. 상기 방법은 상기 확인하는 단계 이전에 환자로부터 분리된 방사선 조사후 생존한 암세포를 준비하는 단계를 추가로 포함할 수 있다.An example of the present invention relates to a method for providing information on radiation therapy resistant recurrent cancer therapy, comprising the step of confirming the mutation of the amino acid sequence or gene sequence of p53 protein in cancer cells surviving radiation irradiation separated from the patient. Another aspect is to identify a patient with radiotherapy resistant relapse cancer who is suitable for the administration of the drug target metabolite, including identifying a mutation in the amino acid sequence or gene sequence of the p53 protein in the surviving cancer cells after radiation irradiation separated from the patient Diagnosis) of a disease. The method may further comprise preparing surviving cancer cells after radiation irradiation separated from the patient prior to the identifying step.
다른 구현예로, 당대사 표적약물을 포함하는 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물로서, 상기 방사선 치료 저항성 재발암은 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 포함하는 것인, 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물에 관한 것이다.In another embodiment, there is provided a composition for the prevention or treatment of radiation therapy resistant recurrent cancer comprising a glucose metabolism target drug, wherein the radiation therapy resistant recurrent cancer comprises a mutation in the amino acid sequence or gene sequence of the p53 protein, And to a composition for preventing or treating resistance to recurrent cancer.
다른 구현예로, p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인용 조성물 및 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제를 포함하는 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 진단키트에 관한 것이다.In another embodiment, there is provided a composition for identifying a radiation therapy resistant recurrent cancer patient suitable for administration of a glucose metabolism target drug, the composition comprising a preparation for detecting a mutation in the amino acid sequence or gene sequence of the p53 protein and a composition for identifying an amino acid sequence or gene sequence To a diagnostic kit for detecting a mutation in the amino acid sequence or gene sequence of p53 protein in a cancer cell surviving after irradiation containing an agent for detecting mutation.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에 관한 것이다.The present invention provides information for identifying a patient suffering from radiation-resistant recurrent cancer that is suitable for the administration of a target drug for metabolism, including the step of confirming the mutation of the amino acid sequence or the gene sequence of p53 protein in cancer cells surviving radiation irradiation separated from the patient The method comprising:
상기 방법은 상기 확인하는 단계 이전에 환자로부터 분리된 방사선 조사후 생존한 암세포를 준비하는 단계를 추가로 포함할 수 있다. The method may further comprise preparing surviving cancer cells after radiation irradiation separated from the patient prior to the identifying step.
상기 'p53'은 암 억제 단백질로 인간은 TP53 유전자로 암호화 되어 있고, 사람의 p53유전자는 17번염색체 단완 (17p13.1)에 존재한다. p53은 다세포 생물의 세포 주기에서 암 억제자로서 암을 예방는 중요한 기능을 한다. 유전체의 돌연변이를 예방하여 유전체의 안정성을 보존하는 역할을 하기에 p53은 "유전체의 수호자"라고 불리기도 한다. p53의 이름은 분자량에서 유래한 것이다. SDS-PAGE에서 53,000 달톤 정도의 분자량을 보여준다. 그러나 아미노산 잔기들을 기초로 하여 계산해보면 p53의 질량은 단지 43,700 달톤 정도밖에 나오지 않는다. 이 차이는 단백질에 많은 수의 프롤린 잔기 때문인데, 이 때문에 SDS-PAGE에서 느린 진행 때문에 실제의 질량보다 더 무겁게 나온다. 이 현상은 사람, 설치류, 개구리, 그리고 어류를 포함하여 다양한 종류에서 관찰된다. G1기가 끝날 무렵, p53유전자에 의해 생성된 단백질은 세포의 DNA가 손상을 입었는지 점검한다. DNA가 건강하다면 p53은 세포분열을 진행시키고, 손상된 DNA를 발견할 경우에는 DNA를 활성화시켜 수선하기위한 다른 단백질의 발현을 유도한다. 만약 손상이 수선하기에 너무 치명적이면 p53단백질은 세포가 스스로 파괴되도록 유도한다. 이를 세포사멸 (apoptosis)라고 부른다. 상기 세포사멸은 손상된 유전 정보를 가진 세포를 제거하는 역할을 수행한다. 다른 건강한 세포는 손상된 세포를 대체하기 위해 세포분열을 촉진한다.The 'p53' is a cancer-suppressing protein, the human being is encoded by the TP53 gene, and the human p53 gene is present in the 17th chromosome short arm (17p13.1). p53 plays an important role in preventing cancer as a cancer suppressor in the cell cycle of multicellular organisms. P53 is also called the "protector of the genome" to prevent the mutation of the genome and preserve the stability of the genome. The name of p53 is derived from molecular weight. SDS-PAGE shows a molecular weight of about 53,000 Daltons. However, based on amino acid residues, the mass of p53 is only about 43,700 daltons. This difference is due to the large number of proline residues in the protein, which makes it more heavier than the actual mass due to the slow progression in SDS-PAGE. This phenomenon is observed in a wide variety of species, including humans, rodents, frogs, and fish. At the end of the G1 phase, the protein produced by the p53 gene checks whether the DNA in the cell is damaged. If the DNA is healthy, p53 promotes cell division, and if it finds damaged DNA, it activates DNA and induces the expression of other proteins to repair. If the damage is too lethal to repair, the p53 protein induces the cell to self-destruct. This is called apoptosis. The cell death plays a role in removing cells having damaged genetic information. Other healthy cells promote cell division to replace damaged cells.
만약 p53 유전자 서열의 돌연변이에 의해 p53 단백질이 정상적으로 작동하지 못한다면 손상을 입은 p53 DNA를 가진 세포는 세포분열을 진행할 수 있게 된다. 이러한 손상된 세포가 계속 분열을 할수혹 손상된 DNA를 감지할 능력이 없으므로 더 많은 돌연변이를 낳게 된다. 이와 같은 돌연변이는 암을 유발한다. 인체에서 발생하는 암의 약 50%이상에서 p53 유전자 서열의 돌연변이가 관찰된다. If the p53 protein does not function normally due to a mutation in the p53 gene sequence, cells with damaged p53 DNA will be able to progress cell division. These damaged cells continue to divide and are not capable of detecting damaged DNA, resulting in more mutations. Such mutations cause cancer. Mutations in the p53 gene sequence are observed in approximately 50% or more of cancers occurring in the human body.
또한, p53은 에너지 대사작용 및 산화적 스트레스를 조절함을 통해서 세포의 대사를 조절하는 역할을 함이 알려져 있다. p53은 암세포의 당대사 과정 중 glycolysis, pentose phosphate pathway (PPP), mitochondrial oxidation phosphorylation, 및 지방 대사 (lipid metabolism) 과정 등을 조절하는 핵심 단백질임이 보고되었다.It is also known that p53 regulates cell metabolism by regulating energy metabolism and oxidative stress. It has been reported that p53 is a key protein that controls glycolysis, pentose phosphate pathway (PPP), mitochondrial oxidation phosphorylation, and lipid metabolism during the glucose metabolism of cancer cells.
p53에 의한 DNA 손상 복구 기전의 하나로, TIGAR (TP-53-induced glycolysis and apoptosis regulator)의 발현을 증가시켜 glycolysis 또는 당대사를 억제하고 G6P (glucose-6-phoshate)가 PPP 과정을 통해 산화되게 함으로써 손상 DNA 복구에 필요한 핵산 합성의 재로인 리보스와 NADPH의 생산을 유도하는 것이 알려져 있다.One of the mechanisms of DNA damage repair by p53 is to increase the expression of TIGAR (TP-53-induced glycolysis and apoptosis regulator) to inhibit glycolysis or glucose metabolism and to oxidize G6P (glucose-6-phoshate) It is known to induce the production of asbestos ribosyl and NADPH in the synthesis of nucleic acids necessary for repairing damaged DNA.
그 외 p53은 PGM (phosphoglycerate mutase), GLUT1/4 (glucose transporter-1/4), hexokinase, SCO2 (synthesis of cytochrome c oxidase 2), AIF (apoptosis-inducing factor), GLS2 (glutaminase 2), 및 G6PD (glucose-6-phosphate dehydrogenase)와 같은 metabolic effector들을 조절하여 미토콘드리아의 산화적 인산화와 지방산 대사를 증가시키는 반면 글루코스 흡수 및 해당과정은 억제하고 세포내 글루타민의 흡수와 산화는 촉진 시키는 것으로 알려져 있다.In addition, p53 is expressed by phosphoglycerate mutase (PGM), glucose transporter-1/4, hexokinase, SCO2, apoptosis-inducing factor (AIF), glutaminase 2 (glucose-6-phosphate dehydrogenase), thereby increasing the oxidative phosphorylation and fatty acid metabolism of mitochondria, while inhibiting glucose uptake and related processes and promoting absorption and oxidation of intracellular glutamine.
상기 p53 단백질은 인간 (Homo sapiens) 등을 포함하는 영장류, 마우스 (Mus musculus), 래트 (Rattus norvegicus) 등을 포함하는 설치류 등의 포유류, 개구리 (Xenopus laevis) 등의 양서류 등으로부터 유래한 것일 수 있다. 예컨대, p53은 인간 p53 (예컨대, NP_000537.3. (유전자: NM_000546.5. ) 등), 마우스 p53 (예컨대, NP_001120705.1. (유전자: NM_001127233.1. ) 등), 래트 p53 (예컨대, NP_112251.2. (유전자: NM_030989.3. ) 등), 초파리 (예컨대 NP_001163694.1. (유전자: NM_001170223.1.) 등) 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.The p53 protein may be derived from a mammal such as a primate including a human (Homo sapiens), a rodent including a mouse (Mus musculus), a rat (Rattus norvegicus), an amphibian such as a frog (Xenopus laevis) . For example, p53 is a human p53 (e.g., NP_000537.3. (Gene: NM_000546.5.)), Mouse p53 (e.g., NP_001120705.1 (Gene: NM_030989.3.) And the like), fruit flies (for example, NP_001163694.1. (Gene: NM_001170223.1.)), And the like, but the present invention is not limited thereto.
상기 '돌연변이'는 긴 사슬형의 디옥시리보핵산 (DNA) 분자에 있는 유전자에서 자연발생적으로, 또는 전자기 방사선이나 화학물질 등과 같은 외부요인으로 발생하는 것으로, DNA에 존재하는 뉴클레오타이드의 결실, 치환, 또는 삽입에 의해서 발생한다. 유성생식하는 사람 또는 다른 동물들의 돌연변이 형태는 체세포 돌연변이와 생식세포 돌연변이로 나뉜다. 체세포 돌연변이는 생식세포 외의 몸을 구성하는 세포들에서 일어나며, 신체의 국부적 변화를 초래한다. 돌연변이가 일어난 체세포로부터 분열된 세포는 돌연변이를 갖고 있지만 자손에게 전달되지는 않는다. 생식세포 돌연변이는 생식세포, 즉 난자나 정자의 유전물질에 돌연변이가 일어나기 때문에 자손에게 전달될 수 있다. 생식세포 돌연변이가 개체를 변화시킬 때 일반적으로 그 효과는 치명적이다. 많은 종류의 유전병이 생식세포 돌연변이 때문에 발생한다.The 'mutation' occurs naturally in a gene in a long chain type deoxyribonucleic acid (DNA) molecule, or by an external factor such as electromagnetic radiation or chemicals, and is a phenomenon in which deletion, substitution, or insertion of a nucleotide existing in DNA Lt; / RTI > Mutant forms of oocysts or other animals are divided into somatic mutations and germ cell mutations. Somatic cell mutations occur in the cells that make up the body outside the germ cell, leading to local changes in the body. Cells that divide from mutated somatic cells have mutations but are not transmitted to their offspring. Germ cell mutations can be transmitted to offspring because mutations occur in the genetic material of germ cells, oocytes or sperm. When a germ cell mutation changes an individual, the effect is generally fatal. Many genetic diseases are caused by germ cell mutations.
상기 결실은 유전자에 뉴클레오타이드 쌍이 소실되는 현상이다. 뉴클레오타이드가 소실되면 읽기틀 (frame shift)이 변화되므로 치명적인 영향을 미치는 경우가 많다. 소실되는 뉴클레오타이드 쌍의 수가 3의 배수가 아니면 읽기틀이 이동되어 비정상적인 코돈이 형성되므로 광범위한 아미노산 서열의 변화가 발생하며, 정상보다 짧게 종결되는 경우가 많다.The deletion is a phenomenon in which a nucleotide pair is deleted in a gene. The disappearance of nucleotides often causes catastrophic effects because the frame shift is altered. If the number of nucleotide pairs to be deleted is not a multiple of 3, the reading frame shifts and abnormal codons are formed, resulting in a wide variation in amino acid sequence, often terminating shorter than normal.
상기 치환은 한 뉴클레오타이드 쌍이 다른 쌍의 뉴클레오타이드로 바뀌는 것이다. 코돈의 융통성으로 인해 치환이 되어도 암호화된 단백질에 영향을 미치지 않는 경우도 있다. 치환으로 발생한 대표적인 질환으로 낫 모양 적혈구 빈혈증이 있는데, 염기 한 쌍이 치환되어 헤모글로빈을 구성하는 아미노산 중 글루탐산이 발린으로 되고, 결과적으로 낫 모양 적혈구가 형성되는 것이다. 아미노산 서열에 변화가 없는 경우를 중립 돌연변이라고 하며, 대부분은 다른 아미노산으로 변경되는 미스센스 (missense) 돌연변이이고, 돌연변이의 결과 아미노산을 암호화하는 코돈이 종결 코돈으로 바뀌는 난센스 (nonsense) 돌연변이 등이 있다.The substitution is that one nucleotide pair is replaced with another pair of nucleotides. Due to the flexibility of the codon, substitution does not affect the encoded protein. As a representative disease caused by substitution, there is sickle cell anemia. A pair of bases is substituted, and among the amino acids constituting hemoglobin, glutamic acid becomes valine, resulting in formation of sickle-shaped red blood cells. The absence of a change in the amino acid sequence is referred to as a neutral mutation, most of which is a missense mutation that changes to another amino acid, and a nonsense mutation that changes the codon encoding the amino acid as a termination codon as a result of the mutation.
상기 삽입은 유전자에 뉴클레오타이드 쌍이 추가되는 현상이다. 읽기틀 (frame shift)이 변화되므로 치명적인 영향을 미치는 경우가 많다. 삽입되는 뉴클레오타이드 쌍의 수가 3의 배수가 아니면 읽기틀이 이동되어 비정상적인 코돈이 이용되므로 광범위한 아미노산 서열의 변화가 발생하며, 정상보다 짧게 종결되는 경우가 많다.The insertion is a phenomenon in which a nucleotide pair is added to a gene. Since the frame shift is changed, it often has a fatal effect. If the number of inserted nucleotide pairs is not a multiple of 3, the reading frame shifts and an abnormal codon is used, so that a wide range of amino acid sequence changes and is often terminated shorter than normal.
상기 '방사선 조사'란 암세포의 DNA 손상을 통하여 세포분열을 억제하여 세포사멸을 유도하는 기전을 통하여 고형암의 근치적 (curative), 보조적 (adjuvant), 고식적 (palliative)목적으로 단독 또는 수술적 치료와 함께, 항암화학요법이나 방사선 민감제 (radiation sensitizer)와의 병합요법으로 50-60%이상의 암 환자에게 시행되는 중요한 치료방법이다.The above-mentioned 'radiation irradiation' refers to the treatment of curative, adjuvant, and palliative purposes of solid cancer through a mechanism of inhibiting cell division and inducing apoptosis through DNA damage of cancer cells, Together, this combination therapy with chemotherapy or a radiation sensitizer is an important treatment for cancer patients in the 50-60% range.
상기 '방사선 치료 저항성 재발암'이란 방사선 치료 동안 암세포의 재증식(repopulation)과 유전자 돌연변이를 통하여 방사선 치료 이후에도 손상된 DNA를 포함한 세포분열이 지속되어 방사선에 대한 저항성 획득하여, 방사선 치료후 재발하는 모든 암을 칭하는 것이다.The term 'radiation therapy-resistant recurrence cancer' refers to the development of cancer cells after reprocessing of cancer cells and gene mutation during radiation therapy, and even after radiation therapy, cell division including damaged DNA is continued to acquire resistance to radiation, .
상기 p53 단백질의 아미노산 서열은 서열번호 1에 기재되어 있고, p53 단백질의 염기서열은 서열번호 2에 기재되어 있다.The amino acid sequence of the p53 protein is shown in SEQ ID NO: 1, and the base sequence of p53 protein is shown in SEQ ID NO: 2.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이는 p53 유전자의 전체 또는 일부의 결실, 치환, 또는 삽입에 의한 p53 단백질 활성의 저해를 포함하는 것으로서, 상기 p53 단백질 활성의 저해는 방사선 조사에 의한 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하는 것 일수 있으나, 이에 제한되는 것은 아니다.The mutation of the amino acid sequence or the gene sequence of the p53 protein includes inhibition of p53 protein activity by deletion, substitution, or insertion of all or a part of the p53 gene. Inhibition of the p53 protein activity is inhibited by Parkin Activation or induction of the expression of Bnip3, but is not limited thereto.
상기 p53 단백질 활성의 저해는 방사선 조사에 의한 Parkin의 활성화 또는 Bnip3의 발현를 유도하지 못하는 것의 의미는 정상적인 세포는 방사선 조사에 의해서 유발된 세포 손상에 반응하여 미토콘드리아 항상성 유지에 관여하는 Parkin의 활성화 또는 Bnip3의 발현이되지만, p53 단백질 활성이 저해된 세포는 방사선 조사에 의해서 유발된 세포 손상에 반응하여 미토콘드리아 항상성 유지에 관여하는 Parkin의 활성화 또는 Bnip3의 발현이 되지 못하는 것을 의미할 수 있다.Inhibition of p53 protein activity by radiation does not induce activation of Parkin or expression of Bnip3. In normal cells, activation of Parkin involved in maintenance of mitochondrial homeostasis in response to cytotoxicity induced by irradiation, or activation of Bnip3 However, cells with inhibited p53 protein activity may mean that Parkin activation or Bnip3 expression is not involved in mitochondrial homeostasis in response to radiation induced cell damage.
상기 Parkin의 활성화는 Parkin Ser54의 인산화를 통해 확인할 수 있고, Parkin의 활성화 또는 Bnip3의 발현의 측정은 통상적으로 단백질의 인산화 또는 발현을 측정하는 방법으로 수행이 가능할 수 있으나, 이에 제한되는 것은 아니다.Activation of Parkin may be confirmed by phosphorylation of Parkin Ser54, and activation of Parkin or measurement of expression of Bnip3 may be performed by a method of measuring protein phosphorylation or expression, but the present invention is not limited thereto.
상기 p53 단백질 활성의 저해는 p53 단백질의 아미노산 서열 또는 유전자 서열 전체 결실 (p53 null), 또는 일부 결실, p53 유전자 중 DNA-binding domain의 치환 (p53 mutant)된 것일 수 있으나, 이에 제한되는 것은 아니다.The inhibition of the p53 protein activity may be a deletion (p53 null) or partial deletion of the amino acid sequence or gene sequence of the p53 protein, or a substitution (p53 mutation) of the DNA-binding domain in the p53 gene (p53 mutant).
일 구체예에서, 상기 p53 단백질 활성의 저해는 다음과 같은 p53 아미노산 서열 또는 유전자의 돌연변이에 의해 유도될 수 있다:In one embodiment, the inhibition of the p53 protein activity may be induced by mutation of the p53 amino acid sequence or gene as follows:
1) 서열번호 1의 p53 단백질의 아미노산 서열 또는 유전자 서열 전체가 결실된 돌연변이 (p53 null); 1) a mutation (p53 null) in which the amino acid sequence or the entire gene sequence of the p53 protein of SEQ ID NO: 1 is deleted;
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이;2) a mutant in which amino acid is not expressed from glycine, which is the 293rd amino acid in the amino acid sequence of p53 protein of SEQ ID NO: 1;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 돌연변이; 또는3) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이일 수 있으며, 이에 제한되는 것은 아니다. 4) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is replaced by the tryptophan amino acid residue and the 293rd amino acid is glycan but the amino acid is not expressed, is not limited thereto.
상기 2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이는 293번째 아미노산인 글리신을 암호화하는 뉴클레오타이드 중 한 개가 결실되어 293번째 아미노산인 글리신 이후의 아미노산이 번역되지 않는 것일 수 있으며, 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 393번째 아미노산인 아스파르트산까지 발현이 되지 않는 것 또는 서열번호 1의 p53 단백질의 아미노산 서열중에서 1번째 아미노산부터 292번째 아미노산까지 발현되는 것일 수 있으나, 이에 제한되는 것은 아니다.2) In the amino acid sequence of the p53 protein of SEQ ID NO: 1, a mutation in which the amino acid is not expressed from glycine, which is the 293rd amino acid, deletes one of the nucleotides encoding glycine, which is the 293rd amino acid, It may not be expressed and may not be expressed from the 293rd amino acid glycine to the 393rd amino acid aspartic acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1 or the first amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 292 < th > amino acid, but is not limited thereto.
상기 p53 유전자 서열의 돌연변이 확인은 p53 유전자 염기서열 분석법을 통해 확인 할 수 있다.Mutation confirmation of the p53 gene sequence can be confirmed by p53 gene sequencing.
상기 암세포는 두경부암, 또는 상부 호흡기계 또는 상부 소화기계에서 발병한 편평상피세포암일 수 있으나, 이에 제한되는 것은 아니다.The cancer cells may be, but are not limited to, head and neck cancer, or squamous cell carcinoma of the upper respiratory tract or upper gastrointestinal tract.
상기 상부 호흡기계는 코에서 기관까지 이르는 부위를 지칭하는 것으로서, 예를 들면 코, 부비동, 비인두, 구강, 구인두, 하인두, 또는 후두를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. The upper respiratory tract refers to the area from the nose to the organs and may include, but is not limited to, nose, sinus, nasopharynx, oral cavity, oropharynx, hypopharynx, or larynx.
상기 상부 소화기계는 입에서 식도까지 이르는 부위를 지칭하는 것으로서, 예를 들면 구강, 구인두, 하인두, 또는 식도를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. The upper gastrointestinal tract refers to the area from the mouth to the esophagus, and may include, but is not limited to, oral, ophthalmic, hypopharyngeal, or esophageal.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계는 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제를 사용하여 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.The step of confirming the mutation of the amino acid sequence or the gene sequence of the p53 protein may be performed using an agent for detecting mutation of the amino acid sequence or gene sequence of the p53 protein, but is not limited thereto.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제는 방사선 조사후 생존한 암세포 시료에 적용되는 것일 수 있으며, 상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제는 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질) 및/또는 상기 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)을 암호화하는 유전자와 상호작용하는 물질일 수 있다.The agent for detecting the mutation of the amino acid sequence or the gene sequence of the p53 protein may be applied to a cancer cell sample surviving the irradiation, and the agent for detecting the mutation of the amino acid sequence or the gene sequence of the p53 protein may be a p53 protein (E. G., Wild type or mutated p53 protein) and / or a gene encoding the p53 protein (e. G., Wild type or mutated p53 protein).
상기 돌연변이를 검출하기 위한 제제가 야생형 p53 단백질 또는 이를 암호화하는 유전자와 상호작용하는 물질인 경우, 상기 상호작용하는 물질에 의하여 검출되는 단백질 또는 유전자는 돌연변이를 갖지 않는 것일 수 있으며, 반면 상기 상호작용하는 물질에 의하여 검출되지 않는 경우 돌연변이를 갖는 것으로 확인할 수 있다.When the agent for detecting the mutation is a substance that interacts with a wild-type p53 protein or a gene encoding the same, the protein or gene detected by the interacting substance may not have a mutation, If it is not detected by the substance, it can be confirmed that it has a mutation.
반면, 상기 돌연변이를 검출하기 위한 제제가 p53 단백질 아미노산 서열 또는 이를 암호화하는 유전자 서열의 돌연변이와 상호작용하는 물질인 경우, 상기 상호작용하는 물질에 의하여 검출되는 단백질 또는 유전자는 돌연변이를 갖는 것일 수 있으며, 반면 상기 상호작용하는 물질에 의하여 검출되지 않는 경우 돌연변이를 갖지 않는 것으로 확인할 수 있다.On the other hand, when the agent for detecting the mutation is a substance that interacts with a mutation of a p53 protein amino acid sequence or a gene sequence encoding the same, the protein or gene detected by the interacting substance may have a mutation, On the other hand, if it is not detected by the interacting substance, it can be confirmed that it has no mutation.
상기 돌연변이를 검출하기 위한 제제가 야생형 p53 단백질 또는 이를 암호화하는 유전자와 상호작용하는 물질인 경우 이를 사용하여 검출되지 않는 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이가 존재하는 환자를 선별할 수 있고, 상기 환자는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자로 확인할 수 있다.When the agent for detecting the mutation is a substance that interacts with the wild-type p53 protein or a gene encoding the mutant, it is possible to select a patient in which a mutation of the amino acid sequence or gene sequence of the p53 protein is detected, Patients may be identified with a radiotherapy-resistant recurrent cancer patient who is eligible for a glucose metabolism target drug.
반면, 상기 돌연변이를 검출하기 위한 제제가 p53 단백질 아미노산 서열 또는 이를 암호화하는 유전자 서열의 돌연변이와 상호작용하는 물질인 경우 이를 사용하여 검출되는 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이가 존재하는 환자를 선별할 수 있고, 상기 환자는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자로 확인할 수 있다.On the other hand, when the agent for detecting the mutation is a substance that interacts with a mutation of the p53 protein amino acid sequence or a gene sequence encoding the same, a patient in which the mutation of the amino acid sequence or gene sequence of the p53 protein to be detected is detected And the patient can be identified as a patient with radiation therapy resistant relapsing cancer who is suitable for the administration of a glucose metabolism target drug.
상기 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에서 상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이가 검출된 환자는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자라고 확인할 수 있고, 따라서 이를 치료하기 위해서 당대사 표적약물을 처리할 수 있으나, 이에 제한되는 것은 아니다.In a method for providing information for identifying a patient suffering from a radiation therapy-resistant relapse cancer suitable for administration of the above-described glucose metabolism target drug, a patient in which a mutation in the amino acid sequence or gene sequence of the p53 protein has been detected, Can be identified as a cancer patient, and thus can be, but is not limited to, treating a metabolic target drug to treat it.
반면, 상기 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에서 상기 p53 단백질의 아미노산 서열 또는 유전자 서열이 야생형인 환자는 당대사 표적약물 투여에 적합하지 않은 방사선 치료 저항성 재발암 환자라고 확인할 수 있고, 따라서 이를 치료하기 위해서 당대사 표적약물을 처리하지 않을 수 있으나, 이에 제한되는 것은 아니다.On the other hand, in a method for providing information for identifying a patient suffering from a radiation therapy-resistant recurrent cancer, which is suitable for the administration of the sugar metabolism target drug, a patient in which the amino acid sequence or gene sequence of the p53 protein is wild- Resistant recurrent cancer patient, and thus may not treat the glucose metabolism target drug to treat it, but it is not limited thereto.
또한, 본 발명은 당대사 표적약물을 포함하는 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물로서, 상기 방사선 치료 저항성 재발암은 p53 단백질 또는 유전자의 돌연변이를 포함하는 것인, 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물에 관한 것이다.The present invention also relates to a composition for the prevention or treatment of radiation therapy-resistant recurrent cancer comprising a sugar metabolism target drug, wherein said radiation therapy-resistant recurrent cancer comprises a mutation of p53 protein or gene. Prevention or treatment of cancer.
상기 당대사 표적약물을 포함하는 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물은 p53 단백질 또는 유전자의 돌연변이를 포함하는 방사선 치료 저항성 재발암 환자에 대하여 방사선 치료 저항성 재발암의 예방 또는 치료를 의한 목적 및/또는 용도로 사용할 수 있으나, 이에 제한되는 것은 아니다.A composition for preventing or treating radiation-induced resistance recurrence cancer, which comprises the above-described sugar metabolism target drug, is a composition for preventing or treating radiation-induced resistance relapse cancer in a patient suffering from radiation therapy-resistant relapsed cancer including mutation of p53 protein or gene, / Or may be used for, but not limited to.
상기 당대사 표적약물을 포함하는 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물을 방사선 치료 저항성 재발암 환자에 사용하기 위해서 p53 단백질 또는 유전자의 돌연변이를 포함하는 방사선 치료 저항성 재발암 환자를 확인하는 방법은 상기 기재된 방법과 동일한 방법일 수 있다. A method for identifying a patient suffering from a radiation therapy resistant relapse cancer comprising a mutation of a p53 protein or a gene in order to use a composition for preventing or treating radiation therapy resistant relapsing cancer, May be the same method as described above.
상기 당대사는 암세포의 당대사를 의미할 수 있으나, 이에 제한되는 것은 아니다.The above-mentioned genes may mean glucose metabolism of cancer cells, but the present invention is not limited thereto.
상기 '암세포의 당대사'는 대부분의 정상 조직 세포와 달리 암 세포에서 특징적으로 나타나는 세포 대사 경로로 암세포가 빠르게 성장하기 위해 미토콘드리아를 통해 TCA cycle을 돌리는게 아니라, 증식에 필요한 biomass (protein, lipid, nucleic acid들)를 만들기 위해 glycolysis 의존적으로 ATP를 생성하는 것을 의미한다.Unlike most normal tissue cells, the 'sugar metabolism of cancer cells' is a cellular metabolic pathway that is characteristic of cancer cells. Instead of turning the TCA cycle through mitochondria to rapidly grow cancer cells, biomass (protein, lipid, nucleic acids) to produce glycolysis-dependent ATP.
상기 당대사 표적약물은 해당과정 (Glycolysis)을 억제하는 것일 수 있으나, 이에 제한되는 것은 아니다. The sugar metabolism target drug may inhibit the process (Glycolysis), but is not limited thereto.
상기 '표적약물'은 암의 대사과정 중 해당과정에 속하는 특정 위치의 대사경로를 막음으로써 암의 증식을 억제시키는 것이다.The 'target drug' inhibits the growth of cancer by blocking the metabolic pathway at a specific site belonging to the corresponding process during the metabolism of the cancer.
상기 당대사 표적약물은 2-Deoxy-D-glucose (2-DG), 또는 (R)-1,1',6,6',7,7'-Hexahydroxy-3,3'-dimethyl-5,5'-bis(1-methylethyl)-[2,2'-binaphthalene]-8,8'-dicarboxaldehyde (AT101)이거나 암의 대사과정 중 해당과정에 속하는 특정 위치의 대사경로를 막음으로써 암의 증식을 억제시키는 효과가 있는 약물일 수 있으나, 이에 제한되는 것은 아니다.The sugar metabolizing target drug may be 2-Deoxy-D-glucose (2-DG) or (R) -1,1 ', 6,6', 7,7'-Hexahydroxy-3,3'- It has been shown that by inhibiting the metabolic pathway at a specific site belonging to the corresponding process during the metabolism of 5'-bis (1-methylethyl) - [2,2'-binaphthalene] -8,8'-dicarboxaldehyde (AT101) But it is not limited thereto.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이는 p53 유전자의 전체 또는 일부의 결실, 치환, 또는 삽입에 의한 p53 단백질 활성의 저해를 포함하는 것으로서, 상기 p53 단백질 활성의 저해는 방사선 조사에 의한 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하는 것 일수 있으나, 이에 제한되는 것은 아니다.The mutation of the amino acid sequence or the gene sequence of the p53 protein includes inhibition of p53 protein activity by deletion, substitution, or insertion of all or a part of the p53 gene. Inhibition of the p53 protein activity is inhibited by Parkin Activation or induction of the expression of Bnip3, but is not limited thereto.
상기 p53 단백질 활성의 저해는 p53 단백질의 아미노산 서열 또는 유전자 서열 전체 결실 (p53 null), 또는 일부 결실, p53 유전자 중 DNA-binding domain의 치환 (p53 mutant)된 것일 수 있으나, 이에 제한되는 것은 아니다.The inhibition of the p53 protein activity may be a deletion (p53 null) or partial deletion of the amino acid sequence or gene sequence of the p53 protein, or a substitution (p53 mutation) of the DNA-binding domain in the p53 gene (p53 mutant).
일 구체예에서, 상기 p53 단백질 활성의 저해는 다음과 같은 p53 아미노산 서열 또는 유전자의 돌연변이에 의해 유도될 수 있다:In one embodiment, the inhibition of the p53 protein activity may be induced by mutation of the p53 amino acid sequence or gene as follows:
1) 서열번호 1의 p53 단백질의 아미노산 서열 또는 유전자 서열 전체가 결실된 돌연변이 (p53 null); 1) a mutation (p53 null) in which the amino acid sequence or the entire gene sequence of the p53 protein of SEQ ID NO: 1 is deleted;
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이;2) a mutant in which amino acid is not expressed from glycine, which is the 293rd amino acid in the amino acid sequence of p53 protein of SEQ ID NO: 1;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 돌연변이; 또는3) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이일 수 있으며, 이에 제한되는 것은 아니다.4) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is replaced by the tryptophan amino acid residue and the 293rd amino acid is glycan but the amino acid is not expressed, is not limited thereto.
상기 p53 유전자 서열의 전체 결실 (p53 null), 또는 일부 결실, p53 유전자 중 DNA-binding domain의 치환 (p53 mutant)된 경우, 해당 세포는 방사선 조사에 의한 p53 단백질의 Parkin의 활성화 또는 Bnip3의 발현를 유도하지 못하는 것일 수 있으나, 이에 제한되는 것은 아니다.When p53 null or partial deletion of the p53 gene sequence, or DNA-binding domain substitution (p53 mutation) in the p53 gene, the cells express the Parkin activation of p53 protein or the expression of Bnip3 by irradiation But it is not limited to this.
상기 암은 두경부암, 또는 상부 호흡기계 또는 상부 소화기계에서 발병한 편평상피세포암일 수 있으나, 이에 제한되는 것은 아니다.The cancer may be, but is not limited to, head and neck cancer, or squamous cell carcinoma of the upper respiratory tract or upper gastrointestinal tract.
상기 상부 호흡기계는 코에서 기관까지 이르는 부위를 지칭하는 것으로서, 예를 들면 코, 부비동, 비인두, 구강, 구인두, 하인두, 후두를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. The upper respiratory tract refers to a region from the nose to the trachea and may include, but is not limited to, nose, sinus, nasopharynx, oral cavity, oropharynx, hypopharynx, and larynx.
상기 상부 소화기계는 입에서 식도까지 이르는 부위를 지칭하는 것으로서, 예를 들면 구강, 구인두, 하인두, 또는 식도를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The upper gastrointestinal tract refers to the area from the mouth to the esophagus, and may include, but is not limited to, oral, ophthalmic, hypopharyngeal, or esophageal.
상기 당대사 표적약물은 해당과정 (Glycolysis)을 억제하는 것일 수 있으나, 이에 제한되는 것은 아니다. The sugar metabolism target drug may inhibit the process (Glycolysis), but is not limited thereto.
상기 당대사 표적약물은 2-Deoxy-D-glucose (2-DG), 또는 (R)-1,1',6,6',7,7'-Hexahydroxy-3,3'-dimethyl-5,5'-bis(1-methylethyl)-[2,2'-binaphthalene]-8,8'-dicarboxaldehyde (AT101)이거나 암의 대사과정 중 해당과정에 속하는 특정 위치의 대사경로를 막음으로써 암의 증식을 억제시키는 효과가 있는 약물일 수 있으나, 이에 제한되는 것은 아니다.The sugar metabolizing target drug may be 2-Deoxy-D-glucose (2-DG) or (R) -1,1 ', 6,6', 7,7'-Hexahydroxy-3,3'- It has been shown that by inhibiting the metabolic pathway at a specific site belonging to the corresponding process during the metabolism of 5'-bis (1-methylethyl) - [2,2'-binaphthalene] -8,8'-dicarboxaldehyde (AT101) But it is not limited thereto.
또한, 본 발명은 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인(또는 진단)용 조성물에 관한 것이다.The present invention also relates to a composition for the identification (or diagnosis) of a radiation therapy resistant relapsing cancer patient suitable for administration of a sugar metabolism target drug, comprising an agent for detecting a mutation in the amino acid sequence or gene sequence of the p53 protein.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제는 방사선 조사후 생존한 암세포 시료에 적용되는 것일 수 있으며, 상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제는 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질) 및/또는 상기 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)을 암호화하는 유전자와 상호작용하는 물질일 수 있다.The agent for detecting the mutation of the amino acid sequence or the gene sequence of the p53 protein may be applied to a cancer cell sample surviving the irradiation, and the agent for detecting the mutation of the amino acid sequence or the gene sequence of the p53 protein may be a p53 protein (E. G., Wild type or mutated p53 protein) and / or a gene encoding the p53 protein (e. G., Wild type or mutated p53 protein).
상기 돌연변이를 검출하기 위한 제제가 야생형 p53 단백질 또는 이를 암호화하는 유전자와 상호작용하는 물질인 경우, 상기 상호작용하는 물질에 의하여 검출되는 단백질 또는 유전자는 돌연변이를 갖지 않는 것일 수 있으며, 반면, 상기 상호작용하는 물질에 의하여 검출되지 않는 경우 돌연변이를 갖는 것으로 확인할 수 있다.When the agent for detecting the mutation is a substance that interacts with a wild-type p53 protein or a gene encoding the same, the protein or gene detected by the interacting substance may not have a mutation, while the interaction And that the mutant has a mutation if it can not be detected by the substance that is involved in the mutation.
반면, 상기 돌연변이를 검출하기 위한 제제가 p53 단백질 아미노산 서열 또는 이를 암호화하는 유전자 서열의 돌연변이와 상호작용하는 물질인 경우, 상기 상호작용하는 물질에 의하여 검출되는 단백질 또는 유전자는 돌연변이를 갖는 것일 수 있으며, 반면, 상기 상호작용하는 물질에 의하여 검출되지 않는 경우 돌연변이를 갖지 않는 것으로 확인할 수 있다.On the other hand, when the agent for detecting the mutation is a substance that interacts with a mutation of a p53 protein amino acid sequence or a gene sequence encoding the same, the protein or gene detected by the interacting substance may have a mutation, On the other hand, if it is not detected by the interacting substance, it can be confirmed that it does not have a mutation.
상기 돌연변이를 검출하기 위한 제제가 야생형 p53 단백질 또는 이를 암호화하는 유전자와 상호작용하는 물질인 경우 이를 사용하여 검출되지 않는 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이가 존재하는 환자를 선별할 수 있고, 상기 환자는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자라고 판단할 수 있고, 따라서 이를 치료하기 위해서 당대사 표적약물을 처리할 수 있으나, 이에 제한되는 것은 아니다.When the agent for detecting the mutation is a substance that interacts with the wild-type p53 protein or a gene encoding the mutant, it is possible to select a patient in which a mutation of the amino acid sequence or gene sequence of the p53 protein is detected, The patient may be considered to be a patient with radiotherapy-resistant relapsing cancer that is suitable for the administration of the drug, and thus may be, but is not limited to, treating the drug with a target metabolite.
반면, 상기 돌연변이를 검출하기 위한 제제가 p53 단백질 아미노산 서열 또는 이를 암호화하는 유전자 서열의 돌연변이와 상호작용하는 물질인 경우 이를 사용하여 검출되는 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이가 존재하는 환자를 선별할 수 있고, 상기 환자는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자라고 판단할 수 있고, 따라서 이를 치료하기 위해서 당대사 표적약물을 처리할 수 있으나, 이에 제한되는 것은 아니다.On the other hand, when the agent for detecting the mutation is a substance that interacts with a mutation of the p53 protein amino acid sequence or a gene sequence encoding the same, a patient in which the mutation of the amino acid sequence or gene sequence of the p53 protein to be detected is detected And the patient may be determined to be a radiotherapy resistant relapsing cancer patient suitable for the administration of a glucose metabolism target drug, and thus the glucose metabolism target drug may be treated, but is not limited thereto.
상기 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)과 상호작용하는 물질은 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)에 특이적으로 결합하는 소분자 화학물질 (chemical, small molecule), 단백질, 펩타이드, 핵산 분자 (폴리뉴클레오타이드, 올리고뉴클레오타이드, 등), 및 항체로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. A substance that interacts with the p53 protein (e. G., A wild-type or mutated p53 protein) is a chemical, small molecule, protein, peptide, or protein that specifically binds to a p53 protein (e. G., Wild type or mutated p53 protein) , A nucleic acid molecule (polynucleotide, oligonucleotide, etc.), and an antibody, but the present invention is not limited thereto.
상기 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)을 암호화하는 유전자와 상호작용하는 물질은 p53 단백질 (예컨대, 야생형 또는 돌연변이된 p53 단백질)을 암호화하는 유전자에 특이적으로 결합하는 특이적으로 결합하는 프라이머, 프로브, 압타머 및 안티센스 올리고뉴클레오티드로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.A substance that interacts with a gene encoding the p53 protein (e. G., Wild-type or mutated p53 protein) specifically binds specifically to a gene encoding a p53 protein (e. G., Wild type or mutated p53 protein) But are not limited to, one or more selected from the group consisting of primers, probes, platamers, and antisense oligonucleotides.
p53 단백질을 및/또는 p53 단백질을 암호화하는 유전자의 돌연변이 여부는 상기 단백질 또는 유전자와 상호작용하는 물질을 이용하는 통상적인 모든 단백질 또는 유전자 분석 방법에 의하여 측정될 수 있으며, 예컨대 p53 단백질을 암호화하는 유전자와 혼성화 가능한 프라이머, 프로브, 또는 압타머를 사용하는 통상적인 유전자 분석 방법, 예컨대, 폴리머레이즈 연쇄 반응법 (PCR; 예컨대 qPCR, real-time PCR 등), FISH (Fluorescent in situ hybridization), 마이크로어레이법, 등을 이용하여 측정할 수 있으나, 이에 제한되는 것은 아니다The mutation of the gene encoding the p53 protein and / or the p53 protein can be determined by any conventional protein or gene analysis method using a substance that interacts with the protein or gene. For example, (PCR) (e.g., qPCR, real-time PCR, etc.), fluorescence in situ hybridization (FISH), microarray method, and hybridization method using conventional hybridization methods using hybridizable primers, probes, , But is not limited thereto
상기 프라이머는 p53 단백질을 암호화 하는 유전자 (전장 DNA, cDNA, 또는 mRNA)의 염기서열 중 연속하는 5 내지 1000 bp 예컨대 10 내지 500 bp, 20 내지 200 bp, 또는 50 내지 200 bp의 유전자 단편을 검출할 수 있는 것으로, 상기 유전자 단편의 3'-말단 및 5'-말단 각각의 연속하는 5 내지 100 bp, 예컨대, 5 내지 50 bp, 5 내지 30 bp, 또는 10 내지 25 bp 부위와 혼성화 가능한 (예컨대, 상보적인) 염기서열을 포함하는 프라이머쌍일 수 있다. 상기 프로브 또는 압타머는 총 길이가 5 내지 100 bp, 5 내지 50 bp, 5 내지 30 bp, 또는 5 내지 25 bp인 것일 수 있으며, p53 단백질을 암호화 하는 유전자 (전장 DNA, cDNA, 또는 mRNA)의 염기서열 중 연속하는 5 내지 100 bp, 5 내지 50 bp, 5 내지 30 bp, 또는 5 내지 25 bp의 유전자 단편과 결합 가능 또는 혼성화 가능한 (예컨대, 상보적) 염기서열을 갖는 것일 수 있으며, 상기 프로브 또는 압타머가 결합 가능 또는 혼성화 가능한 위치는 p53 단백질을 암호화 하는 유전자의 돌연변이된 위치를 포함하는 부위일 수 있으나, 이에 제한되는 것은 아니다.The primers are designed to detect 5 to 1000 bp, for example 10 to 500 bp, 20 to 200 bp, or 50 to 200 bp of the gene fragments in the nucleotide sequence of the gene encoding the p53 protein (full-length DNA, cDNA or mRNA) Which is capable of hybridizing with a consecutive 5 to 100 bp, such as 5 to 50 bp, 5 to 30 bp, or 10 to 25 bp sites of the 3'-terminal and 5'-terminal ends of the gene fragment (for example, Complementary) base sequence. The probe or the aptamer may have a total length of 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp, and may be a base of a gene (full-length DNA, cDNA or mRNA) (For example, a complementary) base sequence with a 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp consecutive gene fragment of the sequence, The site where the aptamer is capable of binding or hybridizing may be, but is not limited to, a site that contains the mutated position of the gene encoding the p53 protein.
상기 '결합 가능'하다 함은 상기 유전자 부위와 공유결합 등의 화학적 및/또는 물리적 결합에 의하여 결합할 수 있음을 의미할 수 있고, 상기 '혼성화 가능'하다 함은 상기 유전자 부위의 염기서열과 80% 이상, 예컨대 90% 이상, 95% 이상, 98% 이상, 99% 이상, 또는 100%의 서열 상보성을 가짐으로써 상보적 결합이 가능함을 의미할 수 있다.The term " hybridizable " means that the gene can bind to the gene site by chemical and / or physical bonding such as covalent bond, and the 'hybridization possible' means that the base sequence of the gene region is 80 Or more, such as 90%, 95%, 98%, 99%, or 100% complementarity.
상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이는 p53 유전자의 전체 또는 일부의 결실, 치환, 또는 삽입에 의한 p53 단백질 활성의 저해를 포함하는 것으로서, 상기 p53 단백질 활성의 저해는 방사선 조사에 의한 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하는 것 일수 있으나, 이에 제한되는 것은 아니다.The mutation of the amino acid sequence or the gene sequence of the p53 protein includes inhibition of p53 protein activity by deletion, substitution, or insertion of all or a part of the p53 gene. Inhibition of the p53 protein activity is inhibited by Parkin Activation or induction of the expression of Bnip3, but is not limited thereto.
상기 p53 단백질 활성의 저해는 p53 단백질의 아미노산 서열 또는 유전자 서열 전체 결실 (p53 null), 또는 일부 결실, p53 유전자 중 DNA-binding domain의 치환 (p53 mutant)된 것일 수 있으나, 이에 제한되는 것은 아니다.The inhibition of the p53 protein activity may be a deletion (p53 null) or partial deletion of the amino acid sequence or gene sequence of the p53 protein, or a substitution (p53 mutation) of the DNA-binding domain in the p53 gene (p53 mutant).
일 구체예에서, 상기 p53 단백질 활성의 저해는 다음과 같은 p53 아미노산 서열 또는 유전자의 돌연변이에 의해 유도될 수 있다:In one embodiment, the inhibition of the p53 protein activity may be induced by mutation of the p53 amino acid sequence or gene as follows:
1) 서열번호 1의 p53 단백질의 아미노산 서열 또는 유전자 서열 전체가 결실된 돌연변이 (p53 null); 1) a mutation (p53 null) in which the amino acid sequence or the entire gene sequence of the p53 protein of SEQ ID NO: 1 is deleted;
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이;2) a mutant in which amino acid is not expressed from glycine, which is the 293rd amino acid in the amino acid sequence of p53 protein of SEQ ID NO: 1;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 돌연변이; 또는3) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이일 수 있으며, 이에 제한되는 것은 아니다.4) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is replaced by the tryptophan amino acid residue and the 293rd amino acid is glycan but the amino acid is not expressed, is not limited thereto.
또한, 본 발명은 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 제제를 포함하는 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 검출하기 위한 진단키트에 관한 것이다.The present invention also relates to a diagnostic kit for detecting a mutation of an amino acid sequence or gene sequence of a p53 protein in a cancer cell surviving radiation after irradiation comprising an agent for detecting mutation of the amino acid sequence or gene sequence of p53 protein.
또한, 본 발명은 서열번호 2의 p53 단백질을 암호화하는 유전자 서열의 전부 또는 일부를 포함하는 올리고뉴클레오티드 또는 그의 상보적인 올리고뉴클레오티드가 집적된 방사선 조사후 생존한 암세포에서 p53 아미노산 서열 또는 유전자의 돌연변이를 검출하기 위한 진단용 마이크로어레이를 제공하는 것일 수 있으며, 상기 집적된 올리고뉴클레오티드는 p53 유전자 서열의 돌연변이와 결합 가능 또는 혼성화 가능한 것일 수 있으나, 이에 제한되는 것은 아니다.Also, the present invention provides a method for detecting a mutation of p53 amino acid sequence or gene in a cancer cell surviving irradiation with an oligonucleotide containing all or a part of the gene sequence encoding the p53 protein of SEQ ID NO: 2 or a complementary oligonucleotide thereof integrated therein And the integrated oligonucleotide may be capable of binding to or hybridizing with a mutation of the p53 gene sequence, but is not limited thereto.
상기 올리고뉴클레오티드 또는 이의 상보가닥 분자는 상기 바이오마커 유전자의 15 내지 50개, 바람직하게는 15 내지 30개, 더욱 바람직하게는 18 내지 25개의 핵산을 포함할 수 있으나, 이에 제한되지 않는다.The oligonucleotide or its complementary strand molecule may comprise, but is not limited to, 15 to 50, preferably 15 to 30, more preferably 18 to 25 nucleotides of the biomarker gene.
상기 마이크로어레이는 당업자에게 알려진 방법으로 제작할 수 있다. 예를 들면, 상기 마이크로어레이를 칩으로 제작하는 경우, 상기 탐색된 유전자 마커를 탐침 DNA 분자로 이용하여 DNA 칩의 기판상에 고정화시키기 위해 파이조일렉트릭(piezoelectric) 방식을 이용한 마이크로파이펫팅(micropipetting)법 또는 핀(pin) 형태의 스폿터(spotter)를 이용한 방법 등을 사용하는 것이 바람직하나 이에 한정되는 것은 아니다. The microarray can be produced by a method known to a person skilled in the art. For example, when the microarray is fabricated as a chip, a micropipetting method using a piezo electric method is used to immobilize the DNA marker on a substrate using the detected gene marker as a probe DNA molecule Or a method using a spotter in the form of a pin is preferably used, but the present invention is not limited thereto.
상기 마이크로어레이 칩의 기판은 아미노-실란(amino-silane), 폴리-L-라이신(poly-L-lysine) 및 알데히드(aldehyde)로 이루어진 군에서 선택되는 하나의 활성기가 코팅된 것이 바람직하나 이에 한정되는 것은 아니다. The substrate of the microarray chip is preferably coated with one activator selected from the group consisting of amino-silane, poly-L-lysine and aldehyde, It is not.
또한, 상기 기판은 슬라이드 글래스, 플라스틱, 금속, 실리콘, 나일론 막, 및 니트로셀룰로스 막(nitrocellulose membrane)으로 이루어진 군에서 선택될 수 있으나 이에 제한되는 것은 아니다.The substrate may be selected from the group consisting of slide glass, plastic, metal, silicon, nylon film, and nitrocellulose membrane, but is not limited thereto.
상기 진단키트는 지지체, 완충용액, 발색 효소 또는 형광물질로 표지된 2차 항체, 발색 기질액, 또는 1,6-N-아세틸글루코사민 당쇄가지 변화를 측정하기 위한 L4-PHA, 폴리(A) RNA 분리시약 등을 추가적으로 포함할 수 있다.The diagnostic kit may include a support, a buffer solution, a secondary antibody labeled with a coloring enzyme or a fluorescent substance, a coloring substrate solution, or L4-PHA, poly (A) RNA for measuring the change of the 1,6-N-acetylglucosamine sugar chain Separation reagents, and the like.
상기 지지체는 니트로셀룰로오즈막, 폴리비닐수지로 합성된 96웰 플레이트(96 well plate), 폴리스티렌수지로 합성된 96 웰 플레이트, 또는 유리로 된 슬라이드글라스 등일 수 있고, 상기 발색효소는 퍼옥시다아제 (peroxidase), 또는 알칼라인 포스파타아제(alkaline phosphatase) 등일 수 있으며, 상기 형광물질은 FITC, 또는 RITC 등일 수 있고, 상기 발색 기질액은 ABTS(2,2'-Azino-bis(3-ethylbenzenzothiazoline-6-sulfonic acid)), OPD(o-Phenylenediamine), 또는 TMB(Tetramethyl Benzidine) 등일 수 있으나 이에 한정되지 않는다.The support may be a nitrocellulose membrane, a 96-well plate synthesized from a polyvinyl resin, a 96-well plate synthesized from a polystyrene resin, a glass slide glass, or the like. The chromogenic enzyme may be peroxidase, Or alkaline phosphatase, and the fluorescent material may be FITC, RITC or the like, and the coloring substrate solution may be ABTS (2,2'-Azino-bis (3-ethylbenzenzothiazoline-6-sulfonic acid ), OPD (o-Phenylenediamine), TMB (Tetramethyl Benzidine), and the like.
상기 상기 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이는 Wherein the mutation of the amino acid sequence or gene sequence of the p53 protein comprises
1) 서열번호 1의 p53 단백질의 아미노산 서열 또는 유전자 서열 전체가 결실된 돌연변이 (p53 null); 1) a mutation (p53 null) in which the amino acid sequence or the entire gene sequence of the p53 protein of SEQ ID NO: 1 is deleted;
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이;2) a mutant in which amino acid is not expressed from glycine, which is the 293rd amino acid in the amino acid sequence of p53 protein of SEQ ID NO: 1;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 돌연변이; 또는3) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 돌연변이일 수 있으며, 이에 제한되는 것은 아니다.4) a mutation in which the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is replaced by the tryptophan amino acid residue and the 293rd amino acid is glycan but the amino acid is not expressed, is not limited thereto.
본 발명은 환자로부터 분리된 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열 또는 유전자 서열의 돌연변이를 확인하는 단계를 포함하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법에 관한 것으로서, 본 발명의 방법에 의하면 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인이 가능하다.The present invention provides information for identifying a patient suffering from radiation-resistant recurrent cancer that is suitable for the administration of a target drug for metabolism, including the step of confirming the mutation of the amino acid sequence or the gene sequence of p53 protein in cancer cells surviving radiation irradiation separated from the patient The method of the present invention makes it possible to confirm a patient with radiation-resistant relapsing-remitting cancer who is suitable for the administration of a glucose metabolism target drug.
도 1은 본 발명의 실시예에 따라 방사선 조사후 생존한 세포들을 선별하는 과정에서 방사선 조사 후 생존율을 나타내는 그림이다.
도 2은 본 발명의 실시예에 따라 방사선 조사후 생존한 암세포주에 당대사 표적약물을 처리시 세포 성장의 변화를 나타내는 그림이다.
도 3은 본 발명의 실시예에 따라 p53 부존재 암세포에 p53 도입하고 방사선 조사후 생존한 암세포주에 당대사 표적약물 처리시 세포 성장의 변화를 나타내는 그림이다.
도 4은 본 발명의 실시예에 따라 in vivo 상에서 방사선 저항성 암세포에 당대사 표적약물 처리시 세포 성장의 변화를 나타내는 그림이다.
도 5은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 당흡수의 차이를 확인한 그림이다.
도 6은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 젖산의 생성 차이를 확인한 그림이다.
도 7은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 세포외기질 산화도 (ECAR) 발생의 차이를 확인한 그림이다.
도 8은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 당대사 중간산물의 생성을 측정한 그림이다.
도 9은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 당대사 과정에 관여하는 효소들의 발현 변화를 real-time PCR을 사용하여 측정한 그림이다.
도 10은 본 발명의 실시예에 따라 p53 돌연변이형 또는 비존재형 방사선 치료 저항성 재발암 모델에서 증가되는 당대사 과정을 도식화한 그림이다.
도 11은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델의 산소 소모율 (OCR)을 측정한 그림이다.
도 12은 본 발명의 실시예에 따라 p53 비존재형 방사선 치료 저항성 재발암 모델에서 미토콘드리아 형태를 전자현미경을 통하여 관찰한 그림이다. M은 미토콘드리아를 나타내고, N은 핵을 나타낸다.
도 13은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 미토콘드리아의 양 (Mass)를 측정한 그림이다.
도 14은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 미토콘드리아의 ROS 및 세포의 ATP 생성을 측정한 그림이다.
도 15은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 mitochondrial dynamics와 mitophagy 관련 단백질의 발현을 확인한 그림이다.
도 16은 본 발명의 실시예에 따라 방사선 치료 저항성 재발암 모델에서 mitophagy의 flux를 확인한 그림이다.
도 17은 본 발명의 실시예에 따라 p53 야생형 방사선 치료 저항성 재발암 모델에서 p53 녹다운 후 mitophagy 관련 단백질의 발현 변화를 웨스턴 블롯을 통해 확인한 그림이다.
도 18은 본 발명의 실시예에 따라 p53 야생형 방사선 치료 저항성 재발암 모델에서 p53 녹다운 후 mitophagy 관련 단백질의 발현 변화를 면역세포화학분석 (immunocytochemistry)을 통해 확인한 그림이다.
도 19은 본 발명의 실시예에 따라 p53 부존재형형 방사선 치료 저항성 재발암 모델에서 p53 유전자를 형질주입 후 mitophagy 관련 단백질의 발현 변화를 웨스턴 블롯을 통해 확인한 그림이다.
도 20은 본 발명의 실시예에 따라 방사선 조사후 생존한 유방암세포주에 당대사 표적약물을 처리시 세포 성장의 변화를 나타내는 그림이다.FIG. 1 is a graph showing the survival rate after irradiation in the process of selecting cells surviving after irradiation according to an embodiment of the present invention. FIG.
FIG. 2 is a graph showing changes in cell growth upon treatment of a drug-metabolizing target drug in a cancer cell surviving after irradiation according to an embodiment of the present invention. FIG.
FIG. 3 is a graph showing the change of cell growth upon treatment with a glucose-metabolizing target drug in a cancer cell surviving after irradiation with p53 by introducing p53 into p53-deficient cancer cells according to an embodiment of the present invention.
FIG. 4 is a graph showing changes in cell growth upon treatment of a drug-metabolizing target drug with radiation-resistant cancer cells in vivo according to an embodiment of the present invention. FIG.
FIG. 5 is a graph showing a difference in glucose uptake in a radiation therapy resistant relapse cancer model according to an embodiment of the present invention. FIG.
FIG. 6 is a graph showing a difference in production of lactic acid in a radiation therapy-resistant relapse-cancer model according to an embodiment of the present invention. FIG.
FIG. 7 is a graph showing differences in the extracellular matrix oxidation (ECAR) occurrence in a radiation therapy resistant relapse cancer model according to an embodiment of the present invention.
FIG. 8 is a graph showing the production of a glucose metabolism intermediate in a radiation therapy resistant relapse cancer model according to an embodiment of the present invention. FIG.
FIG. 9 is a graph showing changes in expression of enzymes involved in glucose metabolism in a radiation-resistant resistant relapse cancer model using real-time PCR according to an embodiment of the present invention.
FIG. 10 is a graphical representation of an increased glucose metabolism process in a p53 mutant or non-existing radiotherapy resistant relapse cancer model according to an embodiment of the present invention.
FIG. 11 is a graph showing the Oxygen Consumption Rate (OCR) of a radiation therapy resistant relapse cancer model according to an embodiment of the present invention.
FIG. 12 is an electron micrograph of a mitochondrial morphology observed in a p53 non-existing radiotherapy resistant relapse cancer model according to an embodiment of the present invention. M represents mitochondria, and N represents nuclei.
FIG. 13 is a graph showing the amount of mitochondria in a radiation-resistant relapse-cancer model according to an embodiment of the present invention. FIG.
FIG. 14 is a graph showing the ATP production of ROS and cells in mitochondria in a radiation therapy resistant relapse cancer model according to an embodiment of the present invention. FIG.
FIG. 15 is a graph showing the expression of mitochondrial dynamics and mitophagy-related proteins in a radiation-resistant resistant relapse cancer model according to an embodiment of the present invention.
16 is a graph showing the flux of mitophagy in a radiation-resistant relapse-cancer model according to an embodiment of the present invention.
FIG. 17 is a graph showing the expression of mitophagy-related protein after p53 knockdown in a p53 wild-type radiation therapy-resistant relapse cancer model by Western blotting according to an embodiment of the present invention.
FIG. 18 is a graph showing the expression of mitophagy-related protein after p53 knockdown in the p53 wild-type radiation therapy-resistant relapse cancer model according to an embodiment of the present invention through immunocytochemistry.
FIG. 19 is a graph showing a change in expression of mitophagy-related protein after Western blot analysis of p53 gene in a p53 non-resident type radiation therapy-resistant relapse cancer model according to an embodiment of the present invention.
FIG. 20 is a graph showing changes in cell growth upon treatment with a glucose metabolism target drug in a breast cancer cell line survived after irradiation according to an embodiment of the present invention. FIG.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나, 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
실시예Example 1. 방사선 치료 저항성 1. Resistance to radiation therapy 재발암Recurrent cancer 모델 구축 Model building
1-1: 암세포의 배양 1-1: Culture of cancer cells
p53 야생형 (HN30 (wild type p53, Dr. Jeffrey N. Myers from the University of Texas M. D. Anderson Cancer Center에서 제공 받음), p 53 부존재형 (UM-SCC-1 (p53 null type, Dr. Thomas E. Carey from the University of Michigan에서 제공), p53 돌연변이형 (AMC-HN-3 (서열번호 1의 p53 단백질 아미노산 서열중에서 282번째 아미노산인 아르기닌이 트립토판으로 치환된 형태의 돌연변이 p53 단백질을 발현, R282W) 및 AMC-HN-8 (서열번호 1의 p53 단백질 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 형태의 돌연변이 p53 단백질을 발현)은 아산병원에서 larynx 환자로 부터 확립한 세포주) 암세포를 배양하기 위해서, 상기 암세포들을 2 mM L-glutamine, 1% (v/v) nonessential amino acids, 100 U/ml penicillin, 100 ug/ml streptomycin, 및 10% fetal bovine serum를 포함하는 Dulbecco's modified eagle 배지 (DMEM, Gibco Life Technologies, Grad Island, NY) containing]상에서 5% CO2, 37℃ 온도의 세포 배양기에서 배양하였다.(p53 null type, Dr. Thomas E. Carey), p53 wild type (HN30, wild type p53, provided by Dr. Jeffrey N. Myers from the University of Texas MD Anderson Cancer Center) from the University of Michigan), a p53 mutant (AMC-HN-3 (expression of a mutant p53 protein in which the 282nd amino acid arginine was replaced with tryptophan in the p53 protein amino acid sequence of SEQ ID NO: 1, R282W) -HN-8 (a mutant p53 protein expressed in a form in which amino acid is not expressed from glycine, which is the 293rd amino acid in the p53 protein amino acid sequence of SEQ ID NO: 1) is cultured in a cell line established from larynx patients in Asan Hospital) The cancer cells were cultured in Dulbecco's modified eagle medium (DMEM, Sigma) supplemented with 2 mM L-glutamine, 1% (v / v) nonessential amino acids, 100 U / ml penicillin, 100 ug / ml streptomycin and 10% fetal bovine serum Gibco Life Technologi Es, Grad Island, NY) at 5
1-2: 암세포에 방사선 조사1-2: Irradiation of Cancer Cells
상기 배양한 암세포에 대하여 X-RAD 320 방사선 조사기 (Precision X-ray Inc., North Branford, CT, USA)를 사용하여, 100-mm dish에 50% 컨프루언시 (confluency)로 세포가 자라게 되면 2 Gy의 방사선을 2-3일 간격으로 지속적으로 조사하여 총 70Gy가 되도록 장기간 반복적으로 방사선을 조사하였다. 또한 암세포들이 70-80% 컨프루언시로자라게 되면 새로운 디시 (dish)로 계대배양 하였다. When the cultured cancer cells were grown in a 100-mm dish with 50% confluency using an X-RAD 320 radiator (Precision X-ray Inc., North Branford, CT, USA) Gy radiation was continuously irradiated at intervals of 2-3 days and irradiated for a long period of time so as to be 70 Gy in total. When cancer cells grew to 70-80% confluence, they were subcultured into new dishes.
1-3: 암세포에 방사선 1-3: Radiation to Cancer Cells 조사후After investigation 생존한 Alive 암세포주Cancer cell line 선별 (확립) Selection (establishment)
상기 방사선 조사후 생존한 세포들을 모아서, 1-1의 세포 배양 방법과 동일하게 세포를 배양하였다.After surviving the irradiation, the surviving cells were collected and cultured in the same manner as in the cell culture method of 1-1.
상기 암세포주들을 60-mm 디시에 방사선 조사랑에 따라 서로다른 세포수를 심은 (seeding) 후 3, 6, 9 Gy의 방사선을 조사하여 적어도 50개 이상의 세포들이 모여 하나의 콜로니 (colony)를 형성하는 10-14일 뒤, 0.5% (w/v) cyrystal violet을 50% (v/v) methanol 와 10% (v/v) glacial acetic acid에 녹인 용액으로 상기 콜로니들을 염색하여 그 수를 세고 나서, 그 모세포의 방사선 저항성 커브 (방사선 조사후 시간에 따른 생존한 세포의 비율)와 70Gy를 조사받은 후 생존한 세포의 방사선 저항성 커브를 각각 그려서, 상기 70Gy를 조사받은 후 생존한 방사선 저항성이 그에 대응되는 모세포보다 저항성이 높으면 그 생존한 세포를 방사선 저항성 세포로 선별한다.The cancer cells were seeded at different cell numbers according to the radiation therapy of 60-mm dyshi, and irradiated with radiation of 3, 6, and 9 Gy to collect at least 50 cells to form a single colony After 10-14 days of incubation, the colonies were stained with a solution of 0.5% (w / v) cyristal violet in 50% (v / v) methanol and 10% (v / v) glacial acetic acid, , The radiation resistance curve of the parent cell (the percentage of surviving cells after irradiation) and the radiation resistance curve of the surviving cell after the irradiation of 70 Gy were plotted, respectively. Resistant cells, the surviving cells are selected as radiation-resistant cells.
상기 저항성이 확인된 세포주에 대해서는 모 암세포 명칭에 R을 붙여 구분하였다.For the resistance-confirmed cell lines, R was assigned to the parental cell name.
1-4: p53 1-4: p53 부존재형Absent type 암세포에 p53을 형질주입하고, 방사선 조사한 후 생존한 암세포주 선별 P53 was transfected into cancer cells, and surviving cancer cells sorted by irradiation
실시예 1-1에서 사용한 p53 부존재형 (UM-SCC-1) 세포에 대하여 pBABE 벡터를 주입한 세포, 또는 p53 야생형 유전자가 포함된 pBABE 벡터를 주입한 세포는 Dr. Jeffrey N. Myers from the University of Texas M. D. Anderson Cancer Centerd로 부터 제공받았다. 상기 세포들은 실시예 1-1에서 사용한 것과 동일한 방법으로 배양하고, 실시예 1-2 및 1-3과 같은 방법으로 방사선을 조사하고, 생존한 세포주를 선별하였다. 저항성이 확인된 세포주들에 대해서는 모 암세포 명칭에 R을 붙여 구분하였다. Cells injected with the pBABE vector or pBABE vector containing the p53 wild-type gene were used for the p53 non-survival type (UM-SCC-1) cells used in Example 1-1. Jeffrey N. Myers from the University of Texas MD Anderson Cancer Centerd. The cells were cultured in the same manner as in Example 1-1, irradiated with the same method as in Examples 1-2 and 1-3, and survived cell lines were selected. For cell lines with resistance confirmed, R was assigned to the parental cell name.
실시예Example 2. in vitro 및 in 2. in vitro and in vivovivo 상에서 당대사 On the right 표적약물에On the target drug 대한 방사선 치료 저항성 Resistance to radiation therapy 재발암의Recurrent cancer 반응성 확인 Check reactivity
2-1: 방사선 2-1: Radiation 조사후After investigation 생존한 Alive 암세포주에Cancer cell 당대사 Party ambassador 표적약물Target drug 처리시 세포 성장의 변화 Changes in cell growth during treatment
실시예 1에서 선별한 각각의 방사선 저항성 세포주에 대하여 당대사 표적약물을 처리하여 암세포의 성장을 억제하는지 확인하였다.Each of the radiation resistant cell lines selected in Example 1 was treated with a glucose metabolism target drug to inhibit the growth of cancer cells.
구체적으로, 상기 방사선 저항성 세포주에 대하여 해당과정 (Glycolysis)에 관여하는 헤소키나아제 저해제인 2-DG (2-DG; hexokinase inhibitor, Sigma-Aldrich)를 처리하거나, 젖산 디하이드로제내이즈 A (Lactate dehydrogenase A) 저해제인 AT101 (AT101; LDHA inhibitor, TOCRIS)을 하기와 같은 방법으로 세포에 처리하였다. 상기 선별된 p53 야생형, 부존재형, 돌연변이형의 방사선 저항성 암세포를 6 well plate에 1 X 105개씩 심고, 배지[(DMEM, Gibco Life Technologies, Grad Island, NY) containing 2 mM L-glutamine, 1% nonessential amino acids, 100U/ml penicillin, 100 ug/ml streptomycin, and 10% fetal bovine serum]에 10 mM의 2-DG 또는 5 uM의 AT101을 주입하여, 각 세포에 대하여 DMSO를 48시간, 10 mM의 2-DG를 48시간, 또는 5 uM의 AT101을 48시간동안 각각 처리하였다.Specifically, 2-DG (2-DG; hexokinase inhibitor, Sigma-Aldrich), which is a hsokinase inhibitor involved in Glycolysis, is treated with the radiation-resistant cell line or Lactate dehydrogenase A ) Inhibitor AT101 (AT101; LDHA inhibitor, TOCRIS) was treated in the following manner. The selected p53 wild-type, absent-type, and mutant-type radiation-resistant cancer cells were seeded on a 6-well plate at a density of 1 × 10 5 cells and cultured in a medium containing 2 mM L-glutamine, 1% 10 mM 2-DG or 5 μM of AT101 was injected into each cell and the cells were treated with DMSO for 48 hours, 10 mM 2-DG for 48 hours, or 5 uM of AT101 for 48 hours.
당대사 표적약물을 처리한 후, 암세포의 성장의 억제를 확인하기 위해서, 상기 당대사 표적약물을 처리한 세포를 trypsinized 한 뒤 trypan blue로 염색하여 Countess II automated cell counter (Life technology, Bothell, WA, USA)를 이용하여 세포수를 계산하였다.Cells treated with the glucose metabolism target drug were trypsinized, stained with trypan blue, and counted in a Countess II automated cell counter (Life technology, Bothell, WA, USA) USA) was used to calculate the number of cells.
그 결과, 도 2에 나타난 것과 같이, p53 야생형의 R 세포주에 대하여 당대사 표적약물인 2-DG 또는 AT101을 처리했을 때, p53 야생형 세포 (모세포)에 2-DG 또는 AT101을 처리했을 때 암세포의 성장의 변화에 비해서 암세포의 성장의 유의한 감소가 관찰되지 않았지만, p53 돌연변이형 또는 부존재형의 R 세포주에서는 암세포 표적약물인 2-DG 또는 AT101를 처리한 경우, p53 돌연변이형 또는 부존재형 세포 (모세포)에 2-DG 또는 AT101을 처리했을 때 암세포의 성장의 변화에 비해서 암세포 성장이 0.5배 내지 0.8배가량 억제되는 것을 확인할 수 있었다.As a result, as shown in Fig. 2, when 2-DG or AT101, which is a glucose metabolism target drug, was treated with the p53 wild type R cell line, when 2-DG or AT101 was treated with p53 wild type cells (parent cells) Although no significant decrease in the growth of cancer cells was observed compared with the change in growth, the p53 mutant or absent R cell line showed a decrease in the expression of p53 mutant or absent cells (blastocysts) when 2-DG or AT101, ) Treated with 2-DG or AT101 inhibited cancer cell growth by 0.5 to 0.8 times as compared to the growth of cancer cells.
2-2: p53 부존재 암세포에 p53 도입하고 방사선 2-2: No p53 P53 was introduced into cancer cells, 조사후After investigation 생존한 Alive 암세포주에Cancer cell 당대사 Party ambassador 표적약물Target drug 처리시 세포 성장의 변화 Changes in cell growth during treatment
실시예 1-4에서 제작한, p53 부존재형 암세포에 p53을 형질주입한후 방사선 조사하고 생존한 암세포주에 대하여 실시예 2-1과 같은 방법으로 당대사 표적약물을 처리하고 암세포의 성장이 억제되는지 확인하였다.The cancer cell line survived after irradiation with p53 was transfected with p53 in the p53 non-cancerous cell prepared in Example 1-4, and the drug was treated with the drug in the same manner as in Example 2-1, and the growth of cancer cells was inhibited Respectively.
그 결과 도 3에서 볼 수 있는바와 같이, 도 2의 결과에서 p53 야생형 세포에 2-DG 또는 AT101을 처리했을 때에 비해서 p53 야생형에서 유래한 R 세포주에 2-DG 또는 AT101을 처리했을 때에 암세포 성장 변화의 유의한 감소가 없었던 것과 마찬가지로, p53 부존재형 암세포인 UMSCC1에 p53 유전자를 형질주입하고, 방사선 조사후 생존한 R 세포주에 대하여 2-DG 또는 AT101를 처리했을 때 p53 야생형을 형질주입한 UMSCC1 암세포에 2-DG 또는 AT101을 처리했을 때 암세포의 성장 변화와 비교해서 암세포 성장의 유의한 감소가 나타나지 않았다.As a result, as shown in FIG. 3, in the results of FIG. 2, when 2-DG or AT101 was treated with R-cell line derived from p53 wild type as compared to treatment with 2-DG or AT101 to p53 wild type cells, , P53 gene was transfected into UMSCC1, a p53-absent cancer cell, and UMSCC1 tumor cells transfected with p53 wild-type were transfected with 2-DG or AT101 after survival of the surviving R cell line Treatment with 2-DG or AT101 did not show a significant decrease in cancer cell growth compared to the growth of cancer cells.
2-3: in 2-3: in vivovivo 상에서 방사선 저항성 암세포에 당대사 On radiation-resistant cancer cells 표적약물Target drug 처리시 세포 성장의 변화 Changes in cell growth during treatment
실시예 1에서 제작한 p53 야생형 세포주 또는 p53 비존재형 방사선 저항성 세포주를 in vivo 마우스 모델에 이식시켜, 암세포의 성장에 미치는 영향을 확인하였다.The p53 wild type cell line or the p53 non-existing type radiation resistant cell line prepared in Example 1 was transplanted into an in vivo mouse model to confirm the effect on cancer cell growth.
구체적으로, 6주령의 수컷 (male NOD/SCID gamma) 마우스 (NOD.Cg-Prkdcscid Il2rgtm1 Wjl/SzJ, The Jacson Laboratory, Bar Harbor, ME, USA)의 오른쪽 옆구리에 세포주를 1x107 심은 뒤 종양 (tumor) 크기가 100-200 mm3정도가 되면 500 mg/kg의 2-DG를 매일 2주간 intraperitoneal (IP)로 주고 이틀에 한 번씩 종양 크기를 측정하였다. 종양 크기는 하기 식을 이용하여 계산하였다 .Specifically, cells were seeded at 1 x 10 7 cells in the right flank of 6-week old male NOD / SCID gamma mice (NOD.Cg-Prkdcscid Il2rgtm1 Wjl / SzJ, The Jacson Laboratory, Bar Harbor, ME, USA) When the size was 100-200 mm 3 , 500 mg / kg 2-DG was administered intraperitoneally (IP) daily for 2 weeks, and tumor size was measured every other day. Tumor size was calculated using the following equation.
V = D x d2 x 0.52; D = 장경, d = 단경.V = D x d2 x 0.52; D = long diameter, d = short diameter.
그 결과, 도 4에서 볼 수 있는 바와 같이, p53 야생형 세포주 (HN30)와 p53 비존재형의 R 세포주 (UMSCC1R)를 마우스에 심고 500 ㎎/㎏ 2-DG를 처리한 결과, p53 비존재형의 R 세포주 (UMSCC1R)의 경우 2-DG처리에 의해서 암세포 성장이 저해되는 반면 p53 야생형의 세포주 (HN30)의 경우 2-DG 처리에 의해서 암세포 성장 변화에 큰 차이가 없음을 확인할 수 있었다.As a result, as shown in FIG. 4, when the p53 wild type cell line (HN30) and the p53 non-existing type R cell line (UMSCC1R) were planted in the mouse and treated with 500 mg / kg 2-DG, R-cell line (UMSCC1R) inhibited the growth of cancer cells by 2-DG treatment, whereas 2-DG treatment of p53 wild-type cell line (HN30) showed no significant difference in cancer cell growth.
비교예Comparative Example 1. One.
p53 야생형 유전자를 가지고 있는 유방암세포인 MCF-7 세포를 실시예 1과 같은 방법으로 배양, 방사선 조사, 및 생존한 암세포주를 선별하고, 실시예 2와 같은 방법으로 당대사 표적약물을 처리하고 암세포의 성장의 변화를 관찰하였다.MCF-7 cells, which are breast cancer cells having the p53 wild-type gene, were cultured, irradiated, and survived cancer cell lines in the same manner as in Example 1, and treated with a glucose metabolism target drug in the same manner as in Example 2, Were observed.
그 결과 도 20의 왼쪽에서 볼 수 있는 바와 같이, p53 야생형 유전자를 가지고 있는 MCF-7에서 유래한 방사선 저항성 세포주에 당대사를 표적으로 하는 약물 (2-DG, AT-101)을 처리했을 때 암세포 성장의 억제 정도는, 그 모세포에 동일한 약물을 처리했을 때에 암세포 성장의 억제 정도에 비해서 유의성 있는 변화가 없었다.As a result, when the drug (2-DG, AT-101) that targets glucose metabolism is treated with a radiation-resistant cell line derived from MCF-7 having the p53 wild-type gene, cancer cells The degree of inhibition of growth was not significantly different from the degree of inhibition of cancer cell growth when the same drug was administered to the parent cells.
비교예Comparative Example 2. 2.
p53 돌연변이형 유전자 (p53 단백질의 280번째 아미노산 아르기닌이 리신으로 치환됨, R280K) 를 가지고 있는 유방암세포인 MDA-MB-231 세포를 실시예 1과 같은 방법으로 배양, 방사선 조사, 및 생존한 암세포주를 선별하고, 실시예 2와 같은 방법으로 당대사 표적약물을 처리하고 암세포의 성장의 변화를 관찰하였다.MDA-MB-231 cells, which are breast cancer cells having a p53 mutant gene (arginine 280-substituted by arginine at the 280th amino acid of the p53 protein, R280K), were cultured and irradiated in the same manner as in Example 1, And the glucose metabolism target drug was treated in the same manner as in Example 2, and the growth of cancer cells was observed.
그 결과 도 20의 오른쪽에서 볼 수 있는 바와 같이, p53 돌연변이형 유전자를 가지고 있는 MDA-MB-231 세포에서 유래한 방사선 저항성 세포주에 당대사를 표적으로 하는 약물 (2-DG, AT-101)을 처리했을 때 암세포 성장의 억제 정도는, 그 모세포에 동일한 약물을 처리했을 때에 암세포 성장의 억제 정도에 비해서 유의성 있는 변화가 없었다.As a result, as shown in the right side of FIG. 20, a drug (2-DG, AT-101) targeting glucose metabolism to a radiation resistant cell line derived from MDA-MB-231 cell having a p53 mutant gene The degree of inhibition of cancer cell growth when treated with the same drug was not significantly different from that of cancer cell growth inhibition.
실시예Example 3. 당대사의 변화 확인 3. Confirm the change of the contemporary history
3-1: 3-1: 세포내Intracellular 당 유입 및 젖산의 생성량 측정 Measurement of sugar intake and lactate production
실시예 1에서 제작한 방사선 치료 저항성 재발암 모델에 대하여 당대사 의존도의 차이가 있는지 확인하기 위해서 하기와 같은 방법으로 포도당 흡수 (glucose uptake), 젖산 생성 (lactate production), 및 세포외기질 산화도 (ECAR)를 확인하였다.In order to determine whether there is a difference in glucose metabolism in the radiation therapy-resistant relapse cancer model prepared in Example 1, glucose uptake, lactate production, and extracellular matrix oxidation degree (glucose uptake, ECAR) was confirmed.
구체적으로, 실시예 1과 같은 방법으로 p53 야생형의 R 세포주와 모세포주, 그리고 p53 돌연변이형 부존재형의 R 세포주와 모세포주를 배양한 후 제조사에서 제공한 프로토콜을 사용하여 포도당 흡수 (세포내 당 유입)는 glucose colorimetric uptake assay kit (abcam)를 통해 측정하고, 젖산 생성량은 lactate colorimetric assay kit (Biovision, Inc., Milipas, CA, USA)를 통해 측정하였다.Specifically, the R cell line and the parental cell line of p53 wild type, the parent cell line, and the p53 mutant non-existent R cell line and the parent cell line were cultured in the same manner as in Example 1, and glucose uptake ) Were measured by the glucose colorimetric uptake assay kit (abcam) and the lactate production was measured by the lactate colorimetric assay kit (Biovision, Inc., Milipas, CA, USA).
한편, 세포외기질 산화도(ECAR)는 XF-24 extracellular flux analyzer (Seahorse Bioscience, North Billerica, MA, USA)를 이용하여 다음과 같은 방법으로 수행하였다. Assay 하기 전, cartridge sensor에 웰 (well) 당 1 ml Seahorse Bioscience XF-24 Calibrant solution을 넣고 37 C°, CO2가 없는 배양기에서 하루밤 배양시켰다. 분석 당일 웰 당 2X104 세포가 되게 심은 다음 24 well plate를 37 C°, CO2가 없는 배양기에서 1시간 배양하였다. ECAR은 분석동안 주입되는 화합물에 따라 측정하였다. 25 mM glucose, 0.5 ug/ml oligomycin, 1 M 2-DG, Seahorse XF-24 분석기의 프로그램은 제조업체에서 제공된 지침에 따라 설정하였다. 또한 ECAR은 mpH/min로 표현하였다. Micro BCA protein assay kit (Thermo-Fisher Scientific)을 이용하여 각 웰에 대한 단백질 농도를 측정하여 단백질 농도로 보정하였다.On the other hand, the extracellular matrix oxidation (ECAR) was performed by the following method using XF-24 extracellular flux analyzer (Seahorse Bioscience, North Billerica, MA, USA). Before assaying, 1 ml of Seahorse Bioscience XF-24 Calibrant solution was added to the cartridge sensor per well and incubated overnight at 37 ° C in a CO2-free incubator. On the day of analysis, cells were seeded to 2 × 10 4 cells per well and then cultured in a 24-well plate at 37 ° C for 1 hour in a CO2-free incubator. The ECAR was measured according to the compound injected during the analysis. The program of 25 mM glucose, 0.5 μg / ml oligomycin, 1 M 2 -DG and Seahorse XF-24 analyzer was set according to the manufacturer's instructions. The ECAR was expressed in terms of mpH / min. Protein concentrations were measured for each well using Micro BCA protein assay kit (Thermo-Fisher Scientific) and corrected for protein concentration.
그 결과 도 5 내지 7에서 확인할 수 있는 바와 같이, p53 야생형의 R 세포주는 그 모세포에 비하여 세포내 세포내 당 유입, 젖산 생성량, 및 세포외기질 산화도에 있어 유의한 변화가 관찰되지 않았지만, p53 돌연변이형 또는 부존재형의 R 세포주는 그 모세포에 비하여 세포내 당 유입과 젖산 생성량이 1.2배 내지 1.5배가량 증가하였으며 세포외기질산화도도 p53 부존재형에서는 1.2배, p53 돌연변이형 에서는 1.7배 증가하였다.As a result, as shown in Figs. 5 to 7, there was no significant change in intracellular intracellular sugar flux, lactic acid production, and extracellular substrate oxidation rate compared to the parent cell of the p53 wild type R cell line, Mutant or absent R cell lines increased intracellular glucose and lactate production by 1.2 to 1.5 times compared to their parental cells and increased 1.2 times in the absence of p53 and 1.7 times in the p53 mutant type.
3-2: 당대사 중간산물의 생성 측정3-2: Measurement of production of sugar metabolite intermediates
실시예 1에서 제작한 방사선 치료 저항성 재발암 모델에 대하여 당대사 의존도의 차이가 있는지 확인하기 위해서 하기와 같은 방법으로 실험을 수행하였다.In order to confirm whether there is a difference in glucose metabolism dependency on the radiation therapy resistant relapse cancer model prepared in Example 1, the following experiment was performed.
구체적으로, 세포내 대사산물 (Metabolite) 농도를 측정하기 위해서, 실시예 1의 방법으로 제작 및 배양한 세포를 순차적으로 PBS 와 H2O로 세척한 후, 상기 세포를 80% (v/v) cold methanol로 수확하였다. 대사산물들은 CHCl3/H2O (35% v/v)을 첨가하여 액체-액체 추출에 의해 액상만을 모아 vacuum centrifuge로 건조한 후, LC-MS/MS [liquid chromatography-mass tandem mass spectrometry; 1290 HPLC (AgilentTechnologies, Palo Alto, CA), Qtrap 5500 (AB Sciexm Concord, Ontrario, CAN), 그리고 reverse phase column (Synergi fusion RP 50 x 2 mm, Phenoenex, Torrance,CA)]를 이용하여 상기 대사산물의 생성을 측정하였다.Specifically, in order to measure intracellular metabolite concentration, cells prepared and cultured by the method of Example 1 were sequentially washed with PBS and H2O, and then the cells were suspended in 80% (v / v) cold methanol Lt; / RTI > The metabolites were collected by liquid-liquid extraction with CHCl3 / H2O (35% v / v), dried in a vacuum centrifuge, and analyzed by LC-MS / MS [liquid chromatography-mass tandem mass spectrometry; (Synergi fusion RP 50 x 2 mm, Phenoenex, Torrance, Calif.), Using a 1290 HPLC (Agilent Technologies, Palo Alto, CA), Qtrap 5500 (AB Sciexm Concord, Ontrario, Production was measured.
3 uL를 LC-MS/MS 시스템에 주입한 후 trubo spary ionization source로 이온화했다. 메탄올 중 5 mM ammonium acetate in H2O 및 5 mM ammonium acetate in methanol을 각각 이동상 A 및 B로 사용하였다. 분리구배는 다음과 같음 : 0 % B에서 5 분간, 0 % 내지 90 % B에서 2 분간 유지, 90 분간 8 분간, 90 % 내지 0 % B에서 1 분간 유지 한 후 0 % B에서 유지 9 분. LC 흐름은 7-15 분 사이에 140 uL/분을 제외하고는 70 uL/분이었고, 컬럼 온도는 23로 유지하였다. 다중 반응 모니터링 (MRM)은 음이온 모드에서 사용되었으며 추출된 이온 크로마토 그래피 (EIC)는 각 대사 물질의 특정 전이와 일치하여 정량화에 사용되었다. 각 EIC의 곡선 아래 면적은 내부 표준의 EIC에 대해 표준화되었으며, 각 대사 물질의 내부 표준 물질에 대한 피크 면적비는 샘플에서 Bradford 분석 (Bio-Rad)을 수행하여 결정된 단백질 함량을 사용하여 표준화 한 다음 상대 비교를 위해 사용되었다. 3 μL was injected into the LC-MS / MS system and ionized with a trubo spary ionization source. 5 mM ammonium acetate in H 2 O and 5 mM ammonium acetate in methanol were used as mobile phases A and B, respectively. The separation gradient was as follows: 0% B for 5 min, 0% to 90% B for 2 min, 90 min for 8 min, 90% to 0% B for 1 min and 0% B for 9 min. LC flow was 70 uL / min except for 140 uL / min between 7-15 min, and the column temperature was maintained at 23. Multiple reaction monitoring (MRM) was used in anion mode and extracted ion chromatography (EIC) was used for quantification consistent with specific transitions of each metabolite. The area under the curve of each EIC was standardized for the EIC of the internal standard and the peak area ratio for each internal standard of each metabolite was standardized using the protein content determined by Bradford analysis (Bio-Rad) on the sample, It was used for comparison.
또한, 실시예 1에서 제작한 방사선 치료 저항성 재발암 모델에 대하여 유전자 발현의 변화를 qRT-PCR를 수행하여 확인하였다. 구체적으로, 실시예 1의 방법으로 제작 및 배양한 세포내의 RNA를 PureLinkTMRNA mini kit (Thermo-Fisher Scientific)을 이용하여 추출하였고 cDNA는 First-Strand cDNA Synthesis Kit by reverse transcription-polymerase chain reaction (RT-PCR: iNtRON Biotechnology)을 이용하여 합성하였다. SYBR Green Master Mix (Applied Biosystems, Branchburg, NY)가 qPCR에 사용되었다. 모든 반응은 96-well plate에서 3 회 수행되었고, 평균값을 mRNA 발현의 계산에 사용되었다. qPCR은 Applied Biosystems Prism 7500 Sequence Detection System (Applied Biosystems)을 사용하여 수행하였다.In addition, the change in gene expression was confirmed by performing qRT-PCR on the radiation therapy resistant relapse cancer model prepared in Example 1. Specifically, RNA in cells prepared and cultured by the method of Example 1 was extracted using a PureLink ™ RNA mini kit (Thermo-Fisher Scientific), and the cDNA was amplified using the First-Strand cDNA Synthesis Kit by reverse transcription-polymerase chain reaction -PCR: iNtRON Biotechnology). SYBR Green Master Mix (Applied Biosystems, Branchburg, NY) was used in qPCR. All reactions were performed in 96-well plates three times and the mean values were used to calculate mRNA expression. qPCR was performed using an Applied Biosystems Prism 7500 Sequence Detection System (Applied Biosystems).
그 결과 도 8 내지 도 9에서 확인할 수 있는바와 같이, p53 야생형의 R 세포주는 그 모세포에 비하여 당대사 과정중 중간물질들의 생성의 변화 및 당대사 과정과 관련된 효소들의 발현 변화가 관찰되지 않았으나, p53 돌연변이형 또는 부존재형의 R 세포주는 그 모세포에 비하여 당대사 과정중 중간물질인 G6P/F6P, 및 3PG의 생성이 현저하게 증가했고, p53 돌연변이형 또는 부존재형의 R 세포주는 그 모세포에 비하여 당대사 과정과 관련된 효소인 Glut1, Glu3, HKII, 및 LDHA의 유전자 발현 또한 현저하게 증가하였다.As a result, as shown in FIG. 8 to FIG. 9, there was no change in the production of intermediates and the expression of enzymes related to the glucose metabolism during the glucose metabolism in the R cell line of p53 wild type, Mutant or absent R cells were significantly increased in the production of G6P / F6P and 3PG intermediates in the glucose metabolism than in the parental cells. The R cell line of the p53 mutant or absent type showed a higher glucose metabolism Gene expression of Glut1, Glu3, HKII, and LDHA, the enzymes involved in the process, also increased significantly.
상기 실시예 3의 결과를 바탕으로, p53 야생형 세포주에 비해서 p53 돌연변이형 또는 부존재형 세포주는 방사선 저항성을 획득함을 통해서 당대사가 증가하는 대사 리모델링 (Metabolic remodeling)이 발생했음을 알 수 있다.Based on the results of Example 3 above, it can be seen that the metabolic remodeling of the p53 mutant or non-p53 cell line was increased by acquiring radiation resistance as compared with the p53 wild type cell line.
실시예Example 4. 미토콘드리아의 기능 및 형태 변화 확인 4. Identification of changes in function and morphology of mitochondria
4-1: 산소 소모율 (OCR; O4-1: Oxygen consumption rate (OCR: O 22 consumption rate)의 변화 확인 consumption rate
p53 야생형 세포주에 비해서 p53 돌연변이형 또는 부존재형 세포주는 방사선 저항성을 획득함을 통해서 당대사가 증가하므로, 당대사의 증가에 따라서 산소 소모율이 증가하는지 하기의 방법으로 확인하였다.Compared with the p53 wild-type cell line, the p53 mutant or absent cell line was increased by increasing the resistance to radiation, and thus the oxygen consumption rate was increased according to the increase in the number of days.
구체적으로, 산소 소모율 (OCR)측정을 위해 XF-24 extracellular flux analyzer (Seahorse Bioscience, North Billerica, MA, USA)를 이용하여 측정 하였다. Assay 하기 전, cartridge sensor에 웰 당 1 ml Seahorse Bioscience XF-24 Calibrant solution을 넣고 37이며, CO2가 없는 배양기에서 하루밤 배양시켰다. 분석 당일 웰당 2 X 104 세포가 되게 심은 다음 24 웰 플레이트를 37이며, CO2가 없는 배양기에서 1시간 배양하였다. Seahorse XF-24 분석기의 프로그램은 제조업체에서 제공된 지침에 따라 설정하였다. 또한 OCR은 pmol/min로 표현하였다. Micro BCA protein assay kit (Thermo-Fisher Scientific)을 이용하여 각 웰에 대한 단백질 농도를 측정하여 단백질 농도로 보정하였다.Specifically, the oxygen consumption rate (OCR) was measured using an XF-24 extracellular flux analyzer (Seahorse Bioscience, North Billerica, MA, USA). Before assaying, add 1 ml of Seahorse Bioscience XF-24 Calibrant solution per well to the cartridge sensor. , And incubated overnight in a CO2 free incubator. The cells were seeded to 2
Oligomycin은 미토콘드리아의 F0 부분 ATP synthase의 양자채널을 차단하여 ATP 합성을 억제하는 역할을 하고, Carbonyl cyanide p-trifluoromethoxyphenenylhydrazone (FCCP)는 ATP synthase의 양자채널에 걸쳐 수소이온을 운반하여 ATP합성을 방해하기 때문에 uncoupling으로 작용하여 미토콘드리아의 ATP 생성없이 에너지와 산소를 급속하게 소비시켜 OCR또는 ECAR이 증가하게 하는 역할을 하고, Rotenone은 NADH로부터 전자와 양성자를 최초로 수용하는 FMN에서 CoQ로 전자가 이동하는 것을 방해하여 산소와 ATP 생성이 모두 억제하는 역할을 하고, Antimycin A는 cyt b에서 cyt c1으로 전자의 이동을 막아 산소와 ATP생성을 모두 억제하는 역할을 한다.Oligomycin inhibits ATP synthesis by blocking the proton channel of the F0 partial ATP synthase of mitochondria and Carbonyl cyanide p-trifluoromethoxyphenenylhydrazone (FCCP) transports hydrogen ions across the proton channels of ATP synthase to interfere with ATP synthesis It acts as an uncoupling and plays a role in increasing OCR or ECAR by rapidly consuming energy and oxygen without producing mitochondrial ATP. Rotenone prevents the transfer of electrons from FMN to CoQ, which is the first to accept electrons and protons from NADH It inhibits both oxygen and ATP production, and Antimycin A inhibits both oxygen and ATP production by blocking the movement of electrons from cyt b to cyt c1.
그 결과 도 11에서 나타난바와 같이, p53 야생형 R 세포주는 그 모세포에 비해서 최대 산소 소비량 (최대 산소 소비량은 FCCP를 처리했을 때의 OCR 값에서 Rotenone/antimycin A를 처리했을 때의 OCR 값의 차이)수치의 차이가 없었지만, p53 돌연변이형 또는 부존재형 R 세포주는 그 모세포에 비해서 최대 산소 소비량 수치가 현저하게 낮음을 확인할 수 있었다.As a result, as shown in Fig. 11, the p53 wild-type R cell line exhibited the maximum oxygen consumption (the maximum oxygen consumption was the difference in the OCR value when the rotenone / antimycin A was treated at the OCR value when FCCP was treated) , But it was confirmed that the maximum amount of oxygen consumption was significantly lower in the p53 mutant or absent R cell line than that of the parent cell.
4-2: 미토콘드리아 형태 관찰4-2: Observation of mitochondrial morphology
미토콘드리아의 형태 변화는 미토콘드리아의 기능 및 그 항상성 유지와 밀접한 관련이 있으며, 방사선에 의한 스트레스에 의해서 미토콘드리아의 형태 변화가 유발됨이 알려져 있다. 따라서, 방사선에 의해서 미토콘드리아 손상을 통해 p53 돌연변이형 또는 부존재형 세포주가 그 모세포에 비해서 당대사가 증가된 것인지 여부를 하기와 같은 방법으로 확인하였다.It is known that the morphological changes of the mitochondria are closely related to the function of the mitochondria and maintenance of their homeostasis, and the morphological changes of the mitochondria are induced by the radiation stress. Therefore, whether or not the p53 mutant or non-p53 mutant cell line was increased compared to the parent cell through mitochondrial damage by radiation was confirmed by the following method.
구체적으로, 세포들을 150 mM cacodylate 완충액에 용해된 2.5% (v/v) glutaraldehyde로 고정시킨 후 4℃에서 2% (w/v) osmium tetroxide에 1시간 노출시키고, 2% (w/v) uranyl acetate 수용액으로 블록 염색을 수행하였다. 그리고 나서, 에탄올 시리즈 (70, 80, 90, 96, 100% 에탄올)에 탈수시키고 spurr's resin 시리즈 (Spurr/에탄올 1:1, 2:1, 100%, Sigma-aldrich EM0300)에 침투시키고, 60℃에서 8시간동안 중합시켰다. Embedded 세포는 ultramicrotome (MTX-L, RMC)에서 다이아몬드 칼로 잘랐다. 절편들은 150 mesh copper grids (Gilder, G200)에 직접 mount하였고, 50% (v/v) 메탄올에 2% (w/v) uranyl acetate로 20분 동안 염색하고 Reynold's lead citrate에 10분 동안 염색하였다. Grid는 120 kV에서 JEOL JEM1400 전자현미경(FRED HUTCH Research Institute, Seattle, WA)를 사용하여 배율은 2 um로 관찰하였다.Specifically, cells were fixed with 2.5% (v / v) glutaraldehyde in 150 mM cacodylate buffer, exposed to 2% (w / v) osmium tetroxide for 1 hour at 4 ° C, acetate was used for block staining. Then, dehydrated in an ethanol series (70, 80, 90, 96, 100% ethanol) and impregnated with spurr's resin series (Spurr / ethanol 1: 1, 2: 1, 100%, Sigma-aldrich EM0300) For 8 hours. Embedded cells were cut with a diamond knife in an ultramicrotome (MTX-L, RMC). The sections were directly mounted on 150 mesh copper grids (Gilder, G200), stained with 50% (v / v) methanol, 2% (w / v) uranyl acetate for 20 min and stained with Reynold's lead citrate for 10 min. Grids were observed at a magnification of 2 μm using a JEOL JEM1400 electron microscope (FRED HUTCH Research Institute, Seattle, Wash.) At 120 kV.
그 결과 도 12에 나타난 바와 같이, p53 부존재형의 R 세포주는 그 모세포에 비하여 전체 미토콘드리아 중 비정상적인 미토콘드리아의 비율이 약 2배 정도 증가하였다.As a result, as shown in Fig. 12, the ratio of abnormal mitochondria among the whole mitochondria was about two times higher than that of the parental cells of the R cell line without p53.
4-3: 미토콘드리아의 양 (Mass) 및 4-3: Mass of mitochondria and ROSROS (Reactive oxygen species)의 생성 변화 확인 (Reactive oxygen species)
방사선 조사에 의해서 암세포 미토콘드리아의 기능 변화를 확인을 위해 미토콘드리아의 양 (mass) 및 미토콘드리아에만 생성되는 ROS의 양적 변화를 확인했고, p53 null 형태를 발현하는 세포의 경우 미토콘드라의 기능이 저해되어 있음에도 불구하고 glycolysis shift를 통해 ATP가 유지되고 있는지를 확인하기 위해 총 ATP발현 양을 확인하는 실험을 하기와 같은 방법으로 수행하였다.The quantitative changes of mitochondrial mass and ROS produced only in mitochondria were confirmed in order to confirm the change of function of cancer cell mitochondria by irradiation. Although the function of mitochondrion was inhibited in cells expressing p53 null form However, in order to confirm whether or not ATP is maintained through the glycolysis shift, an experiment for confirming total ATP expression level was performed as follows.
구체적으로, 실시예 1과 같은 방법으로 배양한 암세포 배지에 200 nM 농도가 되도록 MitoTracker Green FM (Invitrogen)을 주입하여 37에서 20분간 배양한 후, 제조사가 제공하는 방법을 이용하여 fluorescence activated flow cytometer (FACScan; Becton Dickinson, Franklin Lakes, NJ)로 미토콘드리아 양을 측정하였다. 미토콘드리아에서 발생하는 ROS는 5 uM 농도가 되도록 MitoSOXTM Red Mitochondrial Superoxide indicator (Thermo-Fisher)를 암세포 배지에 주입하고 제조사가 제공하는 방법을 이용하여 FACScan으로 미토콘드리아에서 발생한 ROS의 양을 측정하였다. Specifically, MitoTracker Green FM (Invitrogen) was injected into a cancer cell culture medium cultivated in the same manner as in Example 1 at a concentration of 200 nM, and cultured at 37 for 20 minutes. Then, a fluorescence activated flow cytometer FACScan; Becton Dickinson, Franklin Lakes, NJ). The amount of ROS produced in the mitochondria was measured by FACScan using the method provided by the manufacturer and the MitoSOX ™ Red Mitochondrial Superoxide Indicator (Thermo-Fisher) was injected into the mitochondrial ROS at a concentration of 5 μM.
또한, ATP assay kit (Biovision,K354-100)을 이용하여 제조사가 제공하는 방법을 사용하여 ATP 생성변화를 확인하였다.In addition, ATP assay kit (Biovision, K354-100) was used to confirm ATP production by the manufacturer.
그 결과 도 13 내지 14에 나타난 것과 같이, p53 돌연변이형의 R 세포주에서 세포당 미토콘드리아의 양 및 세포내 생성된 미토콘드리아에서만 생성되는 ROS가 그 모세포의 것에 비해서 1.3 배가량 증가하였으나, 반면에 p53 야생형 R 세포주는 그 모세포에 비해서 유의한 증가를 나타내지 않았다.As a result, as shown in Figs. 13 to 14, the amount of mitochondria per cell and ROS produced in intracellularly produced mitochondria in the R cell line of the p53 mutant type increased 1.3-fold compared to that of the parental cells, whereas the p53 wild type R The cell line did not show a significant increase compared to the parental cells.
또한, 총 ATP 생산량은 p53 야생형 및 부존재형의 R 세포주와 각각의 모세포주간에 큰 차이가 관찰되지 않았다.In addition, total ATP production was not significantly different between the p53 wild type and the non - surviving R cell line and each parental cell line.
실시예Example 5. p53 돌연변이와 5. p53 mutation and mitophagymitophagy 의 발생 Occurrence of
5-1: 5-1: MitophagyMitophagy 의 발생 측정 Measurement of occurrence of
p53 돌연변이형 암세포가 방사선 저항성을 획득하는 과정에서 미토콘드리아의 형태적 및 기능적 이상으로 인해서, mitophagy의 발생이 증가하는지 확인하기 위해서 하기와 같은 실험을 수행하였다.The following experiment was carried out to confirm that the occurrence of mitophagy increases due to the morphological and functional abnormality of mitochondria in the process of acquiring radiation resistance of p53 mutant cancer cells.
구체적으로, 실시예 1-1과 같은 방법으로 암세포를 배양하고, 암세포에 대하여 X-RAD 320 irradiator (Precision X-ray Inc., North Branford, CT)를 이용하여 4Gy의 방사선을 조사하였다. 웨스턴 블롯을 수행하기 위해서 세포내 단백질은 protease와 phosphatase inhibitor (Thermo Scientific, Rockford, IL)가 포함된 RIPA buffer를 이용하여 추출하였고, Bradford protein assay kit (Bio-Rad, Hercules, CA)을 이용하여 정량하였다. 20 ug의 단백질을 10~13% SDS-polyacrylamide gel을 이용하여 분리하였다. Nitrocellulose membrane (Amersham International Plc., Little Chalfont, UK)에 trasnfer 한 후 5% (w/v) bovine serum albumin (BSA, Bio-world, Dublin, OH) in 1X TBS containing 0.05% Tween-20 (TBST)에 50 분간 blocking 한 후 1차 항체를 배양했다 (Cell signaling Larboratories, Danvers, MA: phospho-p53 (Ser15)(9284S), Drp1(8570); Abcam, Cambridge, UK: phospho-parkin (Ser65)(ab154995), parkin(ab15954) 및 Bnip3 (ab10433); Santa Cruz Biotechnologies, La Jolla, CA: p53 (sc-126), Fis1 (sc-376469) 및 Tom20 (sc-17764); Sigma-Aldrich, St. Louis, MO: β-actin (A5441)). Membrane을 TBST로 washing한 후 2차 항체 (anti-mouseor anti-rabbit IgG HRP conjugate; Bethyl Laboratories, Inc., Montgomery, TX)를 붙였다. TBST로 washing한 후 SuperSignal®West Pico Trial kit (Thermo-Fisher Scientific, Rockford, IL)을 이용하여 현상하였다. Specifically, cancer cells were cultured in the same manner as in Example 1-1, and cancer cells were irradiated with 4 Gy of radiation using an X-RAD 320 irradiator (Precision X-ray Inc., North Branford, CT). To perform Western blotting, intracellular proteins were extracted with RIPA buffer containing protease and phosphatase inhibitor (Thermo Scientific, Rockford, IL) and quantified using a Bradford protein assay kit (Bio-Rad, Hercules, CA) Respectively. 20 ug of protein was separated using 10-13% SDS-polyacrylamide gel. (TBST) containing 5% (w / v) bovine serum albumin (BSA, Bio-world, Dublin, OH) in 1X TBS after transfection on nitrocellulose membrane (Amersham International Plc., Little Chalfont, UK) (Ser65) (ab154995), and the primary antibody was cultured for 50 minutes (Cell signaling Larboratories, Danvers, MA: phospho-p53 Sigma-Aldrich, St. Louis, Mo.), parkin (ab15954) and Bnip3 (ab10433); Santa Cruz Biotechnologies, La Jolla, CA; p53 (sc- MO: beta-actin (A5441)). Membrane was washed with TBST and then added with a secondary antibody (anti-rabbit anti-rabbit IgG HRP conjugate; Bethyl Laboratories, Inc., Montgomery, TX). After washing with TBST, the cells were developed using SuperSignal®West Pico Trial kit (Thermo-Fisher Scientific, Rockford, IL).
한편, 방사선 스트레스로 인하여 세포가 손상되면 탈분극된 미토콘드리아가 발생하면서 mitophagy가 유도되는데, 상기 mitophage 유도 여부를 확인하는 방법은 다음과 같다.On the other hand, when cells are damaged due to radiation stress, depolarized mitochondria are generated and mitophagy is induced.
첫번째는 Parkin 의존적인 mitophagy로 PINK1 (PTEN-induced putative kinase 1)이 활성화되어 Parkin의 N-terminal ubiquitin ligase domain의 Ser65 및 Ubiquitin의 Ser65를 인산화시켜 mitophagy를 유도된다. 따라서, Parkin Ser54의 인산화 및 Ubiquitin Ser65의 인산화 양의 증가를 확인하여 mitophagy의 유도 여부를 확인할 수 있다.The first is a Parkin-dependent mitophagy that activates PINK1 (PTEN-induced putative kinase 1) and induces mitophagy by phosphorylating Ser65 of the N-terminal ubiquitin ligase domain of Parkin and Ser65 of Ubiquitin. Therefore, the phosphorylation of Parkin Ser54 and the increase of the amount of phosphorylation of Ubiquitin Ser65 can be confirmed to confirm the induction of mitophagy.
두번째는 Parkin의 비의존적인 mitophagy로 Bnip3의 발현의 증가를 확인하여 mitophagy의 유도 여부를 확인할 수 있다.Secondly, it is possible to confirm the induction of mitophagy by confirming the increase of Bnip3 expression by Parkin's independent mitophagy.
세번째는, mitophagy 유도에 의해서 미토콘드리아가 감소되는데, 상기 미토콘드리아의 감소를 Tom20의 발현 감소를 통해 확인하여 mitophagy가 유도되는 것을 확인할 수 있다.Third, mitochondria are reduced by mitophagy induction. Mitochondria reduction is confirmed by reduction of Tom20 expression, and mitophagy is induced.
그 결과 도 15에서 확인할 수 있는 바와 같이, p53 야생형 (HN30) 및 p53 비존재형 (UMSCC1) 세포주에 방사선 조사 후 mitophagy (phosphor-Parkin, 또는 Bnip3)의 발현을 확인해본 결과, p53 야생형 암세포에 방사선을 조사한 경우에서만 방사선에 의해 Bnip3 및 p-Parkin의 발현이 각각 4.2배, 4.7배가량 증가하여, Tom20의 발현은 0.5배 감소하는 것을 통해 mitophagy의 발생이 증가하였으나, p53 비존재형 (UMSCC1) 세포주에 방사선 조사 한 경우에는 Bnip3 및 p-Parkin 그리고 Tom20의 발현 변화를 확인할 수 없었다.As a result, as shown in FIG. 15, the expression of mitophagy (phosphor-Parkin, or Bnip3) was observed in p53 wild type (HN30) and p53 non-existing (UMSCC1) The expression of Bnip3 and p-Parkin increased 4.2-fold and 4.7-fold, respectively, and the expression of Tom20 was decreased 0.5-fold by irradiation. However, the expression of p53-noninfected (UMSCC1) The expression of Bnip3, p-Parkin and Tom20 could not be detected.
5-2: 5-2: MitophagyMitophagy 유동(flux)의 변화 Changes in flux
p53 돌연변이형 암세포가 방사선 저항성을 획득하는 과정에서 미토콘드리아의 형태적 및 기능적 이상으로 인해서, 미토콘드리아 분열과 mitophagy의 발생이 증가함을 상기 실시예 5-1에서 확인하였다. 상기 mitophagy 발생의 변화를 정량적으로 분석하기 위해서 lysosome 억제제와 mitophagy 억제제를 처리하여 mitophagy가 분해되는 것을 막은 다음 CCCP로 mitophagy를 임의적으로 증가시켰을때 증가되는 정도를 통해 mitophagy 유동의 변화를 하기와 같은 방법으로 확인하였다.In Example 5-1, it was confirmed that mitochondrial division and mitophagy were increased due to morphological and functional abnormalities of mitochondria in the process of acquiring radiation resistance of p53 mutant cancer cells. The mitophag y In order to quantitatively analyze the evolution of mitophagy, mitophagy was inhibited by treatment with lysosome inhibitor and mitophagy inhibitor, and mitophagy flow was increased by increasing the amount of mitochondria by CCCP. .
구체적으로, 실시예 1과 같은 방법으로 제작하여 배양한 암세포에 10 nM MitoTracker Deep Red (Invitrogen, M22426)를 처리하고 37C°에서 15분간 배양 하고 이를 PBS로 세척한 다음 30 uM CQ (lysosome inhibitor인 chloroquine) 또는 5 uM CsA (mitophagy inhibitor인 cyclosporine A)를 3시간 처리하고, CCCP (carbonyl cyanide m-chlorophenyl hydrazine)를 6, 20 시간 처리후 변화하는 MitoTracker Deep Red의 양을 실시예 4-1과 같은 방법으로 FACScan를 이용하여 측정하였다.Specifically, the cancer cells prepared and cultured in the same manner as in Example 1 were treated with 10 nM MitoTracker Deep Red (Invitrogen, M22426), cultured at 37 ° C for 15 minutes, washed with PBS, and washed with 30 μM CQ ) Or 5 uM CsA (cyclosporine A, mitophagy inhibitor) was treated for 3 hours and the amount of MitoTracker Deep Red changed after 6, 20 hours of treatment with CCCP (carbonyl cyanide m-chlorophenyl hydrazine) , And the measurement was performed using FACScan.
Mitophagy flux를 확인하기 위해 mitophagy 유도시 감소되는 미토콘드리아 막전위를 MitoTracker Deep Red를 이용하여 FACScan으로 측정하였으며, 이때 lysosome 억제제와 mitophagy 억제제가 존재하지 않았을때에 비해 lysosome 억제제와 mitophagy 억제제가 존재하였을때의 MitoTracker Deep Red의 측정값의 비율을 control로 normalization하여 mitophagy flux의 증감을 확인하였다. The mitochondrial membrane potential, which is decreased during mitophagy induction, was measured by FACScan using MitoTracker Deep Red. In this case, MitoTracker Deep Red when the lysosome inhibitor and mitophagy inhibitor were present compared with the absence of the lysosome inhibitor and mitophagy inhibitor The ratio of the measured value of red was normalized by control to confirm the increase or decrease of mitophagy flux.
그 결과 도 16에서 확인할 수 있는 바와 같이, p53 야생형 (HN30) 세포주에 방사선 조사 후의 경우에서만 mitophagy flux가 증가하였고, p53 비존재형 (UMSCC1) 세포주에 방사선 조사 후의 경우에는 mitophagy flux의 유의한 변화가 관찰되지 않았다.As a result, as shown in Fig. 16, the mitophagy flux was increased only in the p53 wild-type (HN30) cell line after irradiation, and in the p53 non-existing (UMSCC1) cell line, a significant change in the mitophagy flux Not observed.
5-3: p53 녹다운 후 5-3: After p53 knockdown MitophagyMitophagy 의 발현 변화 Of expression
p53 야생형 암세포에서 p53의 발현을 감소시킨 후에, 방사선을 조사한 경우 mitophagy 의 발현이 p53 야생형 암세포에 비해서 어떻게 변화하는지 확인하기 위해서 하기와 같은 실험을 수행하였다.After reduction of p53 expression in p53 wild-type cancer cells, mitophagy Of wild-type cancer cells was compared with that of p53 wild-type cancer cells.
구체적으로, On-target plus smart pool p53 과 non-targeting siRNA는 Darmacon (Lafayette, CO)에서 구매하였다. 실시예 1과 같은 방법으로 배양한 HN30 또는 UMSCC1 세포를 antibiotics가 없는 배지에서 24시간 전에 seeding한 후 Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA)를 이용하여 siRNAs을 transiently transfection을 수행 하였다. 하기 표 2에 기재된 siRNAs를 포함하는 On-target plus smart pool p53 또는 non-targeting siRNA를 처리하고 48시간 후 4 Gy의 방사선을 조사한 후 6, 12, 24 시간마다 샘플링하여 웨스턴 블롯 및 면역형광 염색 (immunofluocrescence)를 수행하였다.Specifically, On-target plus smart pool p53 and non-targeting siRNA were purchased from Darmacon (Lafayette, CO). HN30 or UMSCC1 cells cultured in the same manner as in Example 1 were seeded in a medium without
웨스턴 블롯은 상기 (실시예 5-1) 방법과 동일하게 수행하였고, 면역형광 염색 (immunofluorescence)의 경우 샘플링한 세포를 3.7% formaldehyde (Sigma-Aldrich)에서 15분간 고정시킨 후, 0.1% (v/v) triton-X 100 (Sigma-Aldrich)에 10분간 permeablilization시켰다. 세포는 PBS로 3번 세척 한 후 1% (w/v) BSA에 1시간 blocking시키고 Tom20 (Santa Cruze, sc-17764)과 LAMP2 (Abcam, ab25631)를 2시간 배양한 후 PBS로 세척한 후 rabbit 또는 mouse Alexa-Fluor-488- 및 Alexa-Fluor-633-conjugate secondary antibodies (Life Technologies)를 1시간 배양하였다. PBS로 세척 후 10 ug/ml DAPI (Sigma)를 5분간 염색한 후 슬라이드를 fluorescent solution (Dako Cytomation, Carpinteria, CA)로 mount하였다. 이미지화를 위해서 제조사의 방법에 따라서 confocal laser microscopy (Leica, St-Gallen, Switzerland)를 이용하여 관찰하였다.In the case of immunofluorescence, the sampled cells were fixed in 3.7% formaldehyde (Sigma-Aldrich) for 15 minutes, and then 0.1% (v / v) triton-X 100 (Sigma-Aldrich) for 10 minutes. Cells were washed 3 times with PBS, blocked with 1% (w / v) BSA for 1 hour, and incubated with Tom20 (Santa Cruze, sc-17764) and LAMP2 (Abcam, ab25631) Or mouse Alexa-Fluor-488- and Alexa-Fluor-633-conjugate secondary antibodies (Life Technologies) for 1 hour. After washing with PBS, 10 μg / ml DAPI (Sigma) was stained for 5 minutes, and the slides were mounted with a fluorescent solution (Dako Cytomation, Carpinteria, CA). For imaging, we used confocal laser microscopy (Leica, St-Gallen, Switzerland) according to the manufacturer's method.
그 결과 도 17 내지 18에 나타난 것과 같이, p53 야생형 암세포 (HN30)에서 p53 발현을 siRNA를 이용하여 감소시킨 후 방사선을 조사하게 되면, p53 야생형 암세포에서 방사선 조사후 증가되던 mitophagy의 발생이 반대로 감소함을 확인할 수 있었다.As a result, as shown in Figs. 17 to 18, reduction of p53 expression in p53 wild-type cancer cell line (HN30) using siRNA, and then irradiation, inversely reduces the occurrence of mitophagy after irradiation in p53 wild-type cancer cells .
또한, 도 19에 나타난 것과 같이, p53 부존재형 암세포 (UMSCC1)에 p53 유전자를 실시예 1-4와 같은 방법으로 형질주입한 후 방사선을 조사하면, p53 부존재형 암세포에서 방사선 조사후 변화없던 mitophagy의 발생이 p53 유전자의 발현에 의해서 증가하는 것을 확인 할 수 있었다.As shown in Fig. 19, when the p53 gene was transfected into the p53 non-cancerous cancer cell (UMSCC1) in the same manner as in Example 1-4 and irradiated with radiation, the mitochondrial And the expression of p53 gene was increased.
<110> THE ASAN FOUNDATION University of Ulsan Foundation For Industry Cooperation <120> Biomarker for therapy of recurrent cancer after radiation treatment <130> DPP20165083KR <160> 19 <170> KoPatentIn 3.0 <210> 1 <211> 393 <212> PRT <213> Homo sapiens <400> 1 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15 Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu 20 25 30 Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp 35 40 45 Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro 50 55 60 Arg Met Pro Glu Ala Ala Pro Arg Val Ala Pro Ala Pro Ala Ala Pro 65 70 75 80 Thr Pro Ala Ala Pro Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser 85 90 95 Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly 100 105 110 Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro 115 120 125 Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln 130 135 140 Leu Trp Val Asp Ser Thr Pro Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160 Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys 165 170 175 Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln 180 185 190 His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp 195 200 205 Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu 210 215 220 Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240 Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr 245 250 255 Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val 260 265 270 His Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn 275 280 285 Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr 290 295 300 Lys Arg Ala Leu Ser Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 305 310 315 320 Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu 325 330 335 Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp 340 345 350 Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser Ser His 355 360 365 Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met 370 375 380 Phe Lys Thr Glu Gly Pro Asp Ser Asp 385 390 <210> 2 <211> 2451 <212> DNA <213> Homo sapiens <400> 2 cgtgctttcc acgacggtga cacgcttccc tggattggcc agactgcctt ccgggtcact 60 gccatggagg agccgcagtc agatcctagc gtcgagcccc ctctgagtca ggaaacattt 120 tcagacctat ggaaactact tcctgaaaac aacgttctgt cccccttgcc gtcccaagca 180 atggatgatt tgatgctgtc cccggacgat attgaacaat ggttcactga agacccaggt 240 ccagatgaag ctcccagaat gccagaggct gctccccgcg tggcccctgc accagcagct 300 cctacaccgg cggcccctgc accagccccc tcctggcccc tgtcatcttc tgtcccttcc 360 cagaaaacct accagggcag ctacggtttc cgtctgggct tcttgcattc tgggacagcc 420 aagtctgtga cttgcacgta ctcccctgcc ctcaacaaga tgttttgcca actggccaag 480 acctgccctg tgcagctgtg ggttgattcc acacccccgc ccggcacccg cgtccgcgcc 540 atggccatct acaagcagtc acagcacatg acggaggttg tgaggcgctg cccccaccat 600 gagcgctgct cagatagcga tggtctggcc cctcctcagc atcttatccg agtggaagga 660 aatttgcgtg tggagtattt ggatgacaga aacacttttc gacatagtgt ggtggtgccc 720 tatgagccgc ctgaggttgg ctctgactgt accaccatcc actacaacta catgtgtaac 780 agttcctgca tgggcggcat gaaccggagg cccatcctca ccatcatcac actggaagac 840 tccagtggta atctactggg acggaacagc tttgaggtgc atgtttgtgc ctgtcctggg 900 agagaccggc gcacagagga agagaatctc cgcaagaaag gggagcctca ccacgagctg 960 cccccaggga gcactaagcg agcactgtcc aacaacacca gctcctctcc ccagccaaag 1020 aagaaaccac tggatggaga atatttcacc cttcagatcc gtgggcgtga gcgcttcgag 1080 atgttccgag agctgaatga ggccttggaa ctcaaggatg cccaggctgg gaaggagcca 1140 ggggggagca gggctcactc cagccacctg aagtccaaaa agggtcagtc tacctcccgc 1200 cataaaaaac tcatgttcaa gacagaaggg cctgactcag actgacattc tccacttctt 1260 gttccccact gacagcctcc cacccccatc tctccctccc ctgccatttt gggttttggg 1320 tctttgaacc cttgcttgca ataggtgtgc gtcagaagca cccaggactt ccatttgctt 1380 tgtcccgggg ctccactgaa caagttggcc tgcactggtg ttttgttgtg gggaggagga 1440 tggggagtag gacataccag cttagatttt aaggttttta ctgtgaggga tgtttgggag 1500 atgtaagaaa tgttcttgca gttaagggtt agtttacaat cagccacatt ctaggtaggg 1560 gcccacttca ccgtactaac cagggaagct gtccctcact gttgaatttt ctctaacttc 1620 aaggcccata tctgtgaaat gctggcattt gcacctacct cacagagtgc attgtgaggg 1680 ttaatgaaat aatgtacatc tggccttgaa accacctttt attacatggg gtctagaact 1740 tgaccccctt gagggtgctt gttccctctc cctgttggtc ggtgggttgg tagtttctac 1800 agttgggcag ctggttaggt agagggagtt gtcaagtctc tgctggccca gccaaaccct 1860 gtctgacaac ctcttggtga accttagtac ctaaaaggaa atctcacccc atcccacacc 1920 ctggaggatt tcatctcttg tatatgatga tctggatcca ccaagacttg ttttatgctc 1980 agggtcaatt tcttttttct tttttttttt ttttttcttt ttctttgaga ctgggtctcg 2040 ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc 2100 ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc 2160 atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg 2220 gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta 2280 caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca 2340 tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg 2400 atctcttatt ttacaataaa actttgctgc caaaaaaaaa aaaaaaaaaa a 2451 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLUT1_F <400> 3 ctttgtggcc ttctttgaag 20 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT1_R <400> 4 ccacacagtt gctccacat 19 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT3_F <400> 5 cggcttcctc attaccttc 19 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT3_R <400> 6 ggcacgactt agacattgg 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HKII_F <400> 7 caaagtgaca gtgggtgtgg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HKII_R <400> 8 gccaggtcct tcactgtctc 20 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PFK_F <400> 9 ggattactga ccgcctcttt agtt 24 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PFK_R <400> 10 gcattccgtg aattgtccat c 21 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LDHA_F <400> 11 acaacaggat tctaggtgga ggtt 24 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LDHA_R <400> 12 gagttgatgt ttttcccagt ccat 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> b-actin-F <400> 13 agatgaccca gatcatgttt gaga 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> b-actin-R <400> 14 atagggacat gcggagaccg 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA #1 <400> 15 gaaauuugcg uguggagua 19 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA #2 <400> 16 gugcagcugu ggguugauu 19 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA #3 <400> 17 gcagucagau ccuagcguc 19 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA #4 <400> 18 ggagaauauu ucacccuuc 19 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Non-targeting siRNA <400> 19 ugguuuacau gucgacuaa 19 <110> THE ASAN FOUNDATION University of Ulsan Foundation for Industry Cooperation <120> Biomarker for therapy of recurrent cancer after radiation treatment <130> DPP20165083KR <160> 19 <170> KoPatentin 3.0 <210> 1 <211> 393 <212> PRT <213> Homo sapiens <400> 1 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15 Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu 20 25 30 Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp 35 40 45 Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro 50 55 60 Arg Met Pro Glu Ala Ala Pro Arg Val Ala Pro Ala Pro Ala Ala Pro 65 70 75 80 Thr Pro Ala Ala Pro Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser 85 90 95 Val Ser Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly 100 105 110 Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro 115 120 125 Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln 130 135 140 Leu Trp Val Asp Ser Thr Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160 Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys 165 170 175 Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln 180 185 190 His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp 195 200 205 Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu 210 215 220 Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240 Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr 245 250 255 Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val 260 265 270 His Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn 275 280 285 Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr 290 295 300 Lys Arg Ala Leu Ser Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys 305 310 315 320 Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu 325 330 335 Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp 340 345 350 Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Ser Ala His Ser Ser His 355 360 365 Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met 370 375 380 Phe Lys Thr Glu Gly Pro Asp Ser Asp 385 390 <210> 2 <211> 2451 <212> DNA <213> Homo sapiens <400> 2 cgtgctttcc acgacggtga cacgcttccc tggattggcc agactgcctt ccgggtcact 60 gccatggagg agccgcagtc agatcctagc gtcgagcccc ctctgagtca ggaaacattt 120 tcagacctat ggaaactact tcctgaaaac aacgttctgt cccccttgcc gtcccaagca 180 atggatgatt tgatgctgtc cccggacgat attgaacaat ggttcactga agacccaggt 240 ccagatgaag ctcccagaat gccagaggct gctccccgcg tggcccctgc accagcagct 300 cctacaccgg cggcccctgc accagccccc tcctggcccc tgtcatcttc tgtcccttcc 360 cagaaaacct accagggcag ctacggtttc cgtctgggct tcttgcattc tgggacagcc 420 aagtctgtga cttgcacgta ctcccctgcc ctcaacaaga tgttttgcca actggccaag 480 acctgccctg tgcagctgtg ggttgattcc acacccccgc ccggcacccg cgtccgcgcc 540 atggccatct acaagcagtc acagcacatg acggaggttg tgaggcgctg cccccaccat 600 gagcgctgct cagatagcga tggtctggcc cctcctcagc atcttatccg agtggaagga 660 aatttgcgtg tggagtattt ggatgacaga aacacttttc gacatagtgt ggtggtgccc 720 tatgagccgc ctgaggttgg ctctgactgt accaccatcc actacaacta catgtgtaac 780 agttcctgca tgggcggcat gaaccggagg cccatcctca ccatcatcac actggaagac 840 tccagtggta atctactggg acggaacagc tttgaggtgc atgtttgtgc ctgtcctggg 900 agagaccggc gcacagagga agagaatctc cgcaagaaag gggagcctca ccacgagctg 960 cccccaggga gcactaagcg agcactgtcc aacaacacca gctcctctcc ccagccaaag 1020 aagaaaccac tggatggaga atatttcacc cttcagatcc gtgggcgtga gcgcttcgag 1080 atgttccgag agctgaatga ggccttggaa ctcaaggatg cccaggctgg gaaggagcca 1140 ggggggagca gggctcactc cagccacctg aagtccaaaa agggtcagtc tacctcccgc 1200 cataaaaaac tcatgttcaa gacagaaggg cctgactcag actgacattc tccacttctt 1260 gttccccact gacagcctcc cacccccatc tctccctccc ctgccatttt gggttttggg 1320 tctttgaacc cttgcttgca ataggtgtgc gtcagaagca cccaggactt ccatttgctt 1380 tgtcccgggg ctccactgaa caagttggcc tgcactggtg ttttgttgtg gggaggagga 1440 tggggagtag gacataccag cttagatttt aaggttttta ctgtgaggga tgtttgggag 1500 atgtaagaaa tgttcttgca gttaagggtt agtttacaat cagccacatt ctaggtaggg 1560 gcccacttca ccgtactaac cagggaagct gtccctcact gttgaatttt ctctaacttc 1620 aaggcccata tctgtgaaat gctggcattt gcacctacct cacagagtgc attgtgaggg 1680 ttaatgaaat aatgtacatc tggccttgaa accacctttt attacatggg gtctagaact 1740 tgaccccctt gagggtgctt gttccctctc cctgttggtc ggtgggttgg tagtttctac 1800 agttgggcag ctggttaggt agagggagtt gtcaagtctc tgctggccca gccaaaccct 1860 gtctgacaac ctcttggtga accttagtac ctaaaaggaa atctcacccc atcccacacc 1920 ctggaggatt tcatctcttg tatatgatga tctggatcca ccaagacttg ttttatgctc 1980 agggtcaatt tcttttttct tttttttttt ttttttcttt ttctttgaga ctgggtctcg 2040 ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc 2100 ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc 2160 atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg 2220 gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta 2280 caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca 2340 tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg 2400 atctcttatt ttacaataaa actttgctgc caaaaaaaaa aaaaaaaaaa a 2451 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLUT1_F <400> 3 ctttgtggcc ttctttgaag 20 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT1_R <400> 4 ccacacagtt gctccacat 19 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT3_F <400> 5 cggcttcctc attaccttc 19 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GLUT3_R <400> 6 ggcacgactt agacattgg 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HKII_F <400> 7 caaagtgaca gtgggtgtgg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HKII_R <400> 8 gccaggtcct tcactgtctc 20 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PFK_F <400> 9 ggattactga ccgcctcttt agtt 24 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PFK_R <400> 10 gcattccgtg aattgtccat c 21 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LDHA_F <400> 11 acaacaggat tctaggtgga ggtt 24 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> LDHA_R <400> 12 gagttgatgt ttttcccagt ccat 24 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> ≪ 223 > b-actin-F <400> 13 agatgaccca gatcatgttt gaga 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> B-actin-R <400> 14 atagggacat gcggagaccg 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA # 1 <400> 15 gaaauuugcg uguggagua 19 <210> 16 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA # 2 <400> 16 gugcagcugu ggguugauu 19 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA # 3 <400> 17 gcagucagau ccuagcguc 19 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 siRNA # 4 <400> 18 ggagaauauu ucacccuuc 19 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Non-targeting siRNA <400> 19 ugguuuacau gucgacuaa 19
Claims (20)
상기 p53 단백질의 아미노산 서열의 돌연변이는 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하며,
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 것; 또는
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것을 특징으로 하는, 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인을 위한 정보를 제공하는 방법.Confirming the mutation of the amino acid sequence or gene sequence of the p53 protein in the surviving cancer cells after radiation irradiation separated from the patient,
The mutation of the amino acid sequence of the p53 protein does not induce Parkin activation or Bnip3 expression,
2) the amino acid is not expressed from the 293rd amino acid glycine in the amino acid sequence of the p53 protein of SEQ ID NO: 1;
3) the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) A method for producing a glycoprotein which is suitable for administration of a sugar metabolism target drug, characterized in that the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue and the amino acid is not expressed from glycine, A method of providing information for identifying a patient with a recurrence-resistant cancer.
상기 p53 단백질의 아미노산 서열의 돌연변이는 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하며,
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 것; 또는
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것을 특징으로 하는 당대사 표적약물을 포함하는 방사선 치료 저항성 재발암의 예방 또는 치료용 조성물.A composition for the prophylaxis or treatment of radiation therapy-resistant recurrent cancer comprising a glucose metabolism target drug, said radiation therapy-resistant recurrent cancer comprising a mutation in the amino acid sequence of the p53 protein,
The mutation of the amino acid sequence of the p53 protein does not induce Parkin activation or Bnip3 expression,
2) the amino acid is not expressed from the 293rd amino acid glycine in the amino acid sequence of the p53 protein of SEQ ID NO: 1;
3) the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) A method for treating cancer, comprising administering to a subject a radiation therapy comprising a sugar metabolizing target drug, wherein the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue and the amino acid is not expressed from glycine, A composition for preventing or treating resistance to recurrent cancer.
상기 p53 단백질의 아미노산 서열의 돌연변이는 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하며,
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 것; 또는
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것을 특징으로 하는 당대사 표적약물 투여에 적합한 방사선 치료 저항성 재발암 환자 확인용 조성물.an agent for detecting an amino acid sequence mutation of a p53 protein,
The mutation of the amino acid sequence of the p53 protein does not induce Parkin activation or Bnip3 expression,
2) the amino acid is not expressed from the 293rd amino acid glycine in the amino acid sequence of the p53 protein of SEQ ID NO: 1;
3) the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) A method for producing a glycoprotein which is suitable for the administration of a sugar metabolizing target drug, characterized in that the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue and the amino acid is not expressed from the 293rd amino acid glycine A composition for identifying a patient suffering from resistance to recurrent cancer.
상기 p53 단백질의 아미노산 서열의 돌연변이는 Parkin의 활성화 또는 Bnip3의 발현을 유도하지 못하며,
2) 서열번호 1의 p53 단백질의 아미노산 서열중에서 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것;
3) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환된 것; 또는
4) 서열번호 1의 p53 단백질의 아미노산 서열중에서 282번째 아미노산인 아르기닌 잔기가 트립토판 아미노산 잔기로 치환되고 293번째 아미노산인 글리신부터 아미노산이 발현이 되지 않는 것을 특징으로 하는 방사선 조사후 생존한 암세포에서 p53 단백질의 아미노산 서열의 돌연변이를 검출하기 위한 진단키트.An agent for detecting a mutation in the amino acid sequence of a p53 protein,
The mutation of the amino acid sequence of the p53 protein does not induce Parkin activation or Bnip3 expression,
2) the amino acid is not expressed from the 293rd amino acid glycine in the amino acid sequence of the p53 protein of SEQ ID NO: 1;
3) the arginine residue, which is the 282nd amino acid in the amino acid sequence of the p53 protein of SEQ ID NO: 1, is substituted with a tryptophan amino acid residue; or
4) In the amino acid sequence of p53 protein of SEQ ID NO: 1, the arginine residue, which is the 282nd amino acid, is replaced with a tryptophan amino acid residue and the amino acid is not expressed from the 293rd amino acid glycine. Of the amino acid sequence of SEQ ID NO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170030837A KR101945292B1 (en) | 2017-03-10 | 2017-03-10 | Biomarker for therapy of recurrent cancer after radiation treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170030837A KR101945292B1 (en) | 2017-03-10 | 2017-03-10 | Biomarker for therapy of recurrent cancer after radiation treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180103627A KR20180103627A (en) | 2018-09-19 |
KR101945292B1 true KR101945292B1 (en) | 2019-02-08 |
Family
ID=63718912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170030837A KR101945292B1 (en) | 2017-03-10 | 2017-03-10 | Biomarker for therapy of recurrent cancer after radiation treatment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101945292B1 (en) |
-
2017
- 2017-03-10 KR KR1020170030837A patent/KR101945292B1/en active IP Right Grant
Non-Patent Citations (3)
Title |
---|
Cen Zhang et al., ‘Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect’, PNAS, 2011, Vol. 108, pp 16259-64. 1부.* |
Vlad C. Sandulache et al., ‘Individualizing Antimetabolic Treatment Strategies for Head and Neck Squamous Cell Carcinoma Based on TP53 Mutational Status’, Cancer, 2012, Vol. 118, pp 711-21. 1부.* |
YONG XU et al., 'p53 is an important factor for the radiosensitization effect of 2-deoxy-D-glucose', Int J Oncol., 2009, Vol. 35, pp 609-615. |
Also Published As
Publication number | Publication date |
---|---|
KR20180103627A (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Widden et al. | The multiple mechanisms of MCL1 in the regulation of cell fate | |
Pabla et al. | ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis | |
Germain et al. | Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways ana activating transcription factor 3 | |
Hinkel et al. | Cdx2 controls expression of the protocadherin Mucdhl, an inhibitor of growth and β-catenin activity in colon cancer cells | |
Ding et al. | Lamp2a is required for tumor growth and promotes tumor recurrence of hepatocellular carcinoma | |
Zhang et al. | The zinc transporter ZIP7 (Slc39a7) controls myocardial reperfusion injury by regulating mitophagy | |
CA2263744A1 (en) | Process for identification of genes encoding proteins having cell proliferation-promoting activity | |
Mizutani et al. | Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs | |
Wang et al. | CLEC5A knockdown protects against cardiac dysfunction after myocardial infarction by suppressing macrophage polarization, NLRP3 inflammasome activation, and pyroptosis | |
KR101945292B1 (en) | Biomarker for therapy of recurrent cancer after radiation treatment | |
Rao et al. | The role of PICT1 in RPL11/Mdm2/p53 pathway-regulated inhibition of cell growth induced by topoisomerase IIα inhibitor against cervical cancer cell line | |
Zhang et al. | Upregulation of the putative oncogene COTE1 contributes to human hepatocarcinogenesis through modulation of WWOX signaling | |
Yin et al. | Mitochondrial‐Derived Peptide MOTS‐c Suppresses Ovarian Cancer Progression by Attenuating USP7‐Mediated LARS1 Deubiquitination | |
TW202327606A (en) | Screening method for senolytic agents and senolytic agents | |
CN114306611A (en) | ABHD2 gene expression inhibitor, application and medicine thereof | |
Wang et al. | Nucleophosmin/B23 contributes to hepatic insulin resistance through the modulation of NF-κB pathway | |
KR102241681B1 (en) | Composotion comprising α1-antitrypsin inhibitor for preventing or treating lung cancer and biomarker composition for diagnosing comprising α1-antitrypsin | |
EP1739186B1 (en) | Method of screening compound capable of accelerating or inhibiting apoptosis, apoptosis accelerator and apoptosis inhibitor | |
CN117462683B (en) | Use of EIF3H in colorectal cancer treatment | |
CN115414485B (en) | use of uN2CpolyG protein inhibitors | |
US10006089B2 (en) | MCL-1 as a therapeutic target in SCFFBW7 deficient neoplasm | |
Cai et al. | TCEB3 initiates ovarian cancer apoptosis by mediating ubiquitination and degradation of MCL‐1 | |
KR101224637B1 (en) | Method for screening cancer therapeutic agent using Galectin-3, GSK-3β and fascin-1 | |
Han et al. | WBP2 Negatively Regulates Hippo Pathway By Competitively Binding To WWC3 With LATS1 To Promote The Malignant Phenotype Of Non-Small Cell Lung Cancer | |
EP2525224A1 (en) | VDAC1-S as a cell marker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |