KR101938366B1 - Method for production of 1-deoxynojirimycin derivative with a single glucose - Google Patents

Method for production of 1-deoxynojirimycin derivative with a single glucose Download PDF

Info

Publication number
KR101938366B1
KR101938366B1 KR1020170078011A KR20170078011A KR101938366B1 KR 101938366 B1 KR101938366 B1 KR 101938366B1 KR 1020170078011 A KR1020170078011 A KR 1020170078011A KR 20170078011 A KR20170078011 A KR 20170078011A KR 101938366 B1 KR101938366 B1 KR 101938366B1
Authority
KR
South Korea
Prior art keywords
dnj
glucose
alpha
deoxynojirimycin
leu
Prior art date
Application number
KR1020170078011A
Other languages
Korean (ko)
Other versions
KR20180137997A (en
Inventor
심재훈
최혜정
고담슬
정우재
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020170078011A priority Critical patent/KR101938366B1/en
Publication of KR20180137997A publication Critical patent/KR20180137997A/en
Application granted granted Critical
Publication of KR101938366B1 publication Critical patent/KR101938366B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010254-Alpha-glucanotransferase (2.4.1.25)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 기존에 존재하는 1-데옥시노지리마이신(1-deoxynojirimycin, DNJ) 화합물에 포도당을 한 개 전이함으로써, 포도당이 하나 결합된 1-데옥시노지리마이신을 제조할 수 있는 방법에 관한 것으로, 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈를 사용하여 DNJ(1-deoxynojirimycin) 화합물에 포도당을 한 개 전이함으로써, 포도당이 한 개 결합된 신규의 DNJ 화합물 (G1-DNJ)를 제조할 수 있다. 이렇게 제조된 G1-DNJ 화합물은 기존의 DNJ에 비하여 알파글루코시데이즈의 가수분해능을 더욱 저해하는 반면, 알파아밀레이즈는 저해하지 않는데, 이는 본 발명의 G1-DNJ가 기존 DNJ의 부작용(알파아밀레이즈 저해)을 감소시키고 당뇨병치료제로써 적극 사용될 수 있는 것을 의미한다.The present invention relates to a method for producing 1-deoxynojirimycin (DNJ) compound, which is one-deoxynojirimycin (DNJ) compound, A novel DNJ compound (G1-DNJ) in which one glucose was bound was obtained by transferring glucose to a DNJ (1-deoxynojirimycin) compound one time by using alpha-glucanotransferase comprising the amino acid sequence of SEQ ID NO: Can be manufactured. The thus prepared G1-DNJ compound further inhibits the hydrolysis ability of alpha glucosidease compared to the conventional DNJ, while it does not inhibit alpha amylase. This indicates that G1-DNJ of the present invention has a side effect of existing DNJ Inhibition) and can be actively used as a therapeutic agent for diabetes.

Description

포도당이 하나 결합된 1-데옥시노지리마이신 유도체의 제조방법 {Method for production of 1-deoxynojirimycin derivative with a single glucose}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 1-deoxynojirimycin derivatives,

본 발명은 신규의 1-데옥시노지리마이신 유도체 제조방법에 관한 것으로, 더욱 상세하게는 기존에 존재하는 1-데옥시노지리마이신(1-deoxynojirimycin, DNJ) 화합물에 포도당을 한 개 전이함으로써, 포도당이 하나 결합된 1-데옥시노지리마이신을 제조할 수 있는 방법에 관한 것이다. The present invention relates to a novel process for preparing 1-deoxynojirimycin derivatives, and more particularly, to a process for producing 1-deoxynojirimycin derivatives by transferring glucose to a 1-deoxynojirimycin (DNJ) Deoxynojirimycin in which glucose is bound in one molecule.

1-데옥시노지리마이신 (1-deoxynojirimycin, DNJ)은 단당류와 유사한 구조를 지니고 있는 아자-슈가(aza-sugar)이나 일반적인 단당류와 달리 산소원자가 질소원자로 치환되어 있는 분자이다. 1-deoxynojirimycin (DNJ) is a molecule in which an oxygen atom is substituted with a nitrogen atom, unlike aza-sugar or a common monosaccharide having a structure similar to a monosaccharide.

DNJ는 장내 알파아밀레이즈(α-amylase)와 알파글루코시데이즈(α-glucosidase)의 활성을 저해하여 체내의 혈당을 감소시키는 것으로 보고되어 있다 (Narita, Y., & Inouye, K. (2009). Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J. Agric . Food Chem ., 57(19), 9218-9225). DNJ has been reported to inhibit the activity of α-amylase and α-glucosidase in the intestinal tract, thereby reducing blood sugar in the body (Narita, Y., & Inouye, K. (2009) , J. Agric . Food Chem ., 57 (19), 9218-9225). ≪ / RTI >

상기 두 효소 중 알파글루코시데이즈는 소당류의 알파 1,4 결합을 가수분해하여 비환원성 말단으로부터 글루코오스를 생산하는 최종단계의 효소이므로 알파글루코시데이즈의 저해는 혈당의 급격한 증가에 매우 중요한 역할을 한다 (Yao, Y., Cheng, X., & Ren, G. (2014). α-Glucosidase inhibitory activity of protein-rich extracts from extruded adzuki bean in diabetic KK-Ay mice. Food Funct ., 5(5), 966-971). 따라서, DNJ는 급격한 혈당의 증가가 지양되어야 하는 당뇨병 환자들에게 유의적절하게 사용될 수 있다. 하지만, DNJ의 알파아밀레이즈에 대한 저해능은 체내에 흡수된 전분의 소화 작용을 방해할 수 있어, 오히려 부정적 효과를 불러일으킬 수 있다. Among the two enzymes, alpha glucosidase is the final step enzyme that hydrolyzes the alpha-1,4 bond of bovine sugars to produce glucose from the non-reducing end. Therefore, the inhibition of alpha glucosideases plays an important role in the rapid increase of blood glucose and (. Yao, Y., Cheng, X., & Ren, G. (2014). α-Glucosidase inhibitory activity of protein-rich extracts from extruded adzuki bean in diabetic KK-Ay mice. Food Funct, 5 (5) , 966-971). Thus, DNJ can be used with significant benefit to diabetic patients in which an abrupt increase in blood glucose should be avoided. However, DNJ's inferiority to alpha amylase can interfere with the digestion of the absorbed starch in the body, which can lead to rather negative effects.

이렇듯 DNJ는 당뇨병 환자에게 혈당의 급격한 증가를 방지할 수 있는 긍정적 효과와 전분의 소화 작용을 방해할 수 있는 부정적 효과를 모두 갖고 있다. 따라서, 알파아밀레이즈는 저해하지 않고 알파글루코시데이즈만 저해할 수 있는 DNJ 유사체의 개발 필요성이 있는 것이다. Thus, DNJ has both positive effects to prevent the rapid increase of blood sugar level in diabetic patients and negative effects that may interfere with starch digestion. Thus, there is a need to develop a DNJ analogue that can inhibit alpha glutathione without inhibiting alpha amylase.

대한민국 특허공개번호 제10-2014-0047992호 (공개일자 2014년 04월 23일)에는, 1-데옥시노지리마이신 (DNJ)을 생산하는 Bacillus amyloliquefaciens 335N (KCCM11285P) 균주 및 이를 이용하여 1-데옥시노지리마이신을 포함하는 항당뇨, 항암 및 항바이러스 효과가 있는 기능성 식품이 기재되어 있다.Korean Patent Publication No. 10-2014-0047992 (Apr. 23, 2014) discloses a strain of Bacillus amyloliquefaciens 335N (KCCM11285P) producing 1-deoxynojirimycin (DNJ) A functional food having an antidiabetic, anticancer and antiviral effect including oxinojirimycin is described. 대한민국 특허공개번호 제10-2004-0071953호 (공개일자 2004년 08월 16일)에는, 혈당강하 및 항바이러스 활성을 갖는 1-데옥시노지리마이신(1-Deoxynojirimycin)을 생산하는 신규한 미생물 및 이를 함유하는 조성물에 관한 것으로서, 알파-글리코시데이즈(α-glycosidase)를 유의성 있게 저해하여 당뇨병 질환의 예방 치료에 유용하게 사용될 수 있는 기술이 기재되어 있다.Korean Patent Publication No. 10-2004-0071953 (published on Aug. 16, 2004) discloses a novel microorganism producing 1-deoxynojirimycin having blood glucose lowering and antiviral activity and And a composition containing the same, which is capable of effectively inhibiting alpha-glycosidase and thus being useful for the prevention and treatment of diabetes mellitus. 대한민국 특허공개번호 제10-2002-0071334호 (공개일자 2002년 09월 12일)에는, 누에분말을 에탄올로 추출한 후 여과하고, 계속하여 일련의 이온 교환 칼럼 크로마토그래피를 수행하여 혈당강하 작용이 탁월한 물질인 1-디옥시노지리마이신(1-deoxynojirimycin)을 분리하는 기술 및 이의 혈당강하 활성에 대해 기재되어 있다.Korean Patent Publication No. 10-2002-0071334 (published on September 12, 2002) discloses a method in which a silkworm powder is extracted with ethanol, filtered, and then subjected to a series of ion exchange column chromatography to obtain an excellent blood- Discloses a technique for separating 1-deoxynojirimycin and its hypoglycemic activity.

Narita, Y., & Inouye, K. (2009). Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J. Agric. Food Chem., 57(19), 9218-9225. Narita, Y., & Inouye, K. (2009). Kinetic analysis and mechanism of the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J. Agric. Food Chem., 57 (19), 9218-9225.

본 발명에서는 알파아밀레이즈를 저해하지 않고 알파글루코시데이즈만 저해할 수 있는 DNJ 유사체의 제조방법을 개발하여 제공하고자 한다. In the present invention, a method for producing DNJ analogs capable of inhibiting alpha glutathione without inhibiting alpha amylase is developed and provided.

본 발명은 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈 효소를 이용하여 1-데옥시노지리마이신(1-deoxynojirimycin)에 포도당을 1개 전이시키는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법을 제공한다. The present invention relates to a transglucose 1-deoxy-1-deoxyglucosyltransferase, which is characterized in that 1 glucose is transferred to 1-deoxynojirimycin using an alpha glucanotransferase enzyme comprising the amino acid sequence of SEQ ID NO: A method for producing nojirimycin is provided.

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 포도당은, 일 예로 포도당이 중합되어 형성된 중합체(polymer) 내에 존재하는 것일 수 있다. 이때, 상기 중합체는, 일 예로 전분일 수 있다. In the method for producing glucose-1-deoxynojirimycin of the present invention, the glucose may be present in a polymer formed by polymerizing glucose, for example. At this time, the polymer may be, for example, starch.

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 1-데옥시노지리마이신(1-deoxynojirimycin)은, 일 예로 반응 용액 중 1~3.0% (w/v)의 농도로 준비되고, 상기 전분은, 일 예로 반응 용액 중 0.5~1.5% (w/v)의 농도로 준비되는 것일 수 있다. In the method for producing glucose-1-deoxynojirimycin of the present invention, the 1-deoxynojirimycin is, for example, at a concentration of 1 to 3.0% (w / v) in the reaction solution And the starch may be prepared, for example, at a concentration of 0.5 to 1.5% (w / v) in the reaction solution.

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 반응 용액은, 바람직하게 pH 5.5~6.5의 40~60 mM 소디움 아세테이트 완충용액을 용매로 사용하는 것이 좋다. In the method for preparing glucose trans-1-deoxynojirimycin of the present invention, the reaction solution is preferably a 40 to 60 mM sodium acetate buffer solution having a pH of 5.5 to 6.5 as a solvent.

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 알파글루카노트랜스퍼레이즈 효소는, 바람직하게 반응 용액 1 mL 당 0.5~1.5 U의 알파글루카노트랜스퍼레이즈 효소를 사용하는 것이 좋다. In the method for producing glucose-1-deoxynojirimycin of the present invention, it is preferable that the above-mentioned α-glucanotransferase enzyme is used in an amount of 0.5 to 1.5 U of an α-glucanotransferase enzyme per 1 mL of the reaction solution .

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 포도당 전이 1-데옥시노지리마이신의 제조방법은, 바람직하게 50~60℃에서 5~9시간 동안 수행하는 것이 좋다. In the method for producing glucose-1-deoxynojirimycin of the present invention, it is preferable that the method for producing glucose-1-deoxynojirimycin is carried out at 50 to 60 ° C for 5 to 9 hours.

본 발명에서는 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈를 사용하여 DNJ(1-deoxynojirimycin) 화합물에 포도당을 한 개 전이함으로써, 포도당이 한 개 결합된 신규의 DNJ 화합물 (G1-DNJ)를 제조할 수 있었다. In the present invention, a novel DNJ compound (G1-DNJ) in which one glucose is bound is obtained by transferring glucose to a DNJ (1-deoxynojirimycin) compound by using alpha-glucanotransferase comprising the amino acid sequence of SEQ ID NO: . ≪ / RTI >

이렇게 제조된 G1-DNJ 화합물은 기존의 DNJ에 비하여 알파글루코시데이즈의 가수분해능을 더욱 저해하는 반면, 알파아밀레이즈는 저해하지 않는 것으로 확인되었다. 이러한 특성은 본 발명의 G1-DNJ가 기존 DNJ의 부작용(알파아밀레이즈 저해)을 감소시키고 당뇨병치료제로써 적극 사용될 수 있는 것을 의미한다.It was confirmed that the G1-DNJ compound thus prepared further inhibited the hydrolysis ability of alpha glucosidease compared to the conventional DNJ, but did not inhibit alpha amylase. This property means that G1-DNJ of the present invention can reduce the adverse effect (alpha amylase inhibition) of existing DNJ and can be actively used as a therapeutic agent for diabetes.

도 1은 PCR에 의해 증폭된 bt_2146 유전자 (A) 및 해당 유전자를 포함하는 재조합 발현 플라스미드 pTKNdbt_2146 (B)를 보여준다.
도 2는 정제된 본 발명 알파글루카노트랜스퍼레이즈(BtαGTase)의 SDS-PAGE 분석 (Lane S, protein size standards; lane 1, cellular protein from the crude extract; lane 2, soluble fraction; lane 3, insoluble fraction; lane 4, purified BtαGTase) 결과이다.
도 3은 재조합 BtαGTase의 최적 온도 및 pH 분석 결과이다.
도 4는 재조합 BtαGTase의 양이온에 의한 효과 비교 결과이다.
도 5는 다양한 공여체에 대한 BtαGTase 효소의 반응분석 결과이다.
도 6은 일반 알파글루카노트랜스퍼레이즈와 본 발명에서 사용한 BtαGTase의 반응 결과를 비교한 사진이다.
도 7은 HPAEC를 이용한 당전이 화합물의 분석 결과이다.
도 8은 MALDI-TOF를 이용한 당전이 화합물의 분석 결과이다.
도 9는 Lineweaver-Burk plot을 이용한 알파글루코시데이즈에 대한 DNJ와 G1-DNJ의 저해능 비교 실험 결과이다.
도 10은 Linewiever Burk plot을 변형하여 Dixon plot으로 재구성하고 이를 통해 기질의 저해 정도를 확인한 결과이다.
도 11은 Lineweaver-Burk plot을 이용한 알파아밀레이즈 대한 DNJ와 G1-DNJ의 저해능 비교 결과이다.
도 12는 Dixon plot을 이용한 알파아밀레이즈에 대한 저해능 비교 결과이다.
Figure 1 shows the bt_2146 gene (A) amplified by PCR and the recombinant expression plasmid pTKNdbt_2146 (B) containing the gene.
FIG. 2 is a graph showing SDS-PAGE analysis (Lane S, lane 1, lane 2, soluble fraction, lane 3, insoluble fraction, lane 1) of the purified alpha-glucanotransferase of the present invention (Bt? lane 4, purified Bt [alpha] GTase).
Figure 3 shows the results of the optimal temperature and pH analysis of recombinant Bt [alpha] gTase.
Fig. 4 shows the results of the comparison of the effects of the recombinant Bt [alpha] GTase with the cations.
Figure 5 shows the results of the reaction analysis of Bt [alpha] gTase enzyme for various donors.
FIG. 6 is a photograph showing a comparison of the results of the reaction between the common alpha-glucanotransferase and the Bt alpha GTase used in the present invention.
FIG. 7 shows the results of analysis of the sugar compound using HPAEC.
Fig. 8 shows the results of analysis of the sugar compound using MALDI-TOF.
FIG. 9 shows the results of the comparison of the inhibition of DNJ and G1-DNJ against the alpha Glucosidease using the Lineweaver-Burk plot.
FIG. 10 shows a result of reconstructing a Linewiever Burk plot with a Dixon plot and confirming the extent of inhibition of the substrate.
FIG. 11 shows the results of the comparison of the inhibition of DNJ and G1-DNJ for the alpha amylase using the Lineweaver-Burk plot.
12 shows the results of the comparison of the inhibition against alpha amylase using the Dixon plot.

본 발명에서는 1-데옥시노지리마이신(1-deoxynojirimycin)에 포도당을 1개 전이시켜 포도당이 1개 결합한 1-데옥시노지리마이신의 제조방법으로써, 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈 효소를 이용하는 방법을 제공한다. In the present invention, a method for producing 1-deoxynojirimycin in which 1 glucose is bound to 1-deoxynojirimycin by transferring 1 glucose to it, comprising the steps of: preparing an alpha glue comprising the amino acid sequence of SEQ ID NO: 2 A method using cano transferase enzyme is provided.

본 발명의 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈(BtαGTase)는 박테로이데스 세타이오타오마이크론 (Bacteroides thetaiotaomicron)에서 유래한 것으로, 기존의 알파글루카노트랜스퍼레이즈와 달리 당전이 반응을 연쇄적으로 하는 능력이 현저히 낮음을 알 수 있었다. Alpha glucanotransferase (Bt [alpha] GTase) comprising the amino acid sequence of SEQ ID NO: 2 of the present invention is derived from Bacteroides thetaiotaomicron . Unlike the conventional alpha glucanotransferase, It was found that the ability to chain is significantly low.

일반적인 알파글루카노트랜스퍼레이즈는 포도당(G1)에 다른 포도당을 '연쇄적'으로 전이하여 다양하고 긴 말토올리고당을 형성하나, BtαGTase는 당전이 반응시 다양한 길이의 산물을 사용하지 않아 포도당 1개만 전이된 당전이 산물만을 주로 생산할 수 있기 때문이다 (하기 본 발명의 실시예 6 참조 요망). The common alpha-glucanotransferase transforms other glucose to a 'chain' in glucose (G1) to form a variety of long malto-oligosaccharides. However, BtαGTase does not use products of various lengths during the sugar chain reaction, (See Example 6 of the present invention below).

이는 특정 생산물만을 '집중적'으로 생산함으로써 당전이 산물의 생산성을 높일 수 있는 것을 의미하는데, 이를 통해 본 발명에서는 1-데옥시노지리마이신에 포도당이 1개 결합된 신규의 화합물을 용이하게 제조할 수 있는 것이다. 또한, 본 발명의 알파글루카노트랜스퍼레이즈를 이용할 경우, 여러 종류의 물질을 생산하는 것이 아닌 단일 종류의 물질을 주로 생산하므로, 정제를 더 수월하게 할 수 있는 장점이 있다.This means that only a specific product can be produced intensively, thereby enhancing the productivity of the product. The present invention can easily produce a novel compound in which one glucose is bound to 1-deoxynojirimycin You can. In addition, when the alpha glucano transferase of the present invention is used, a single kind of substance is produced mainly rather than producing various kinds of substances, so that it is advantageous that the purification can be facilitated.

이를 바탕으로, 본 발명은 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈 효소를 이용하여 하기 화학식 1의 구조식을 갖는 1-데옥시노지리마이신(1-deoxynojirimycin)에 포도당을 1개 전이시키는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신 (일 예로, 하기 화학식 2)의 제조방법을 제공한다. 하기 화학식 2로 표시되는 화합물은 포도당 1번 위치의 탄소와 1-데옥시노지리마이신 4번 탄소가 에테르(ether) 결합되어 형성된 것으로, 통상적으로 당업계에서 'α-1,4 결합'이 형성되어 결합되었다라고도 한다. On the basis thereof, the present invention provides a method for producing 1-deoxynojirimycin having the following structural formula 1 by using an alpha-glucanotransferase enzyme comprising the amino acid sequence of SEQ ID NO: 2, (For example, a compound represented by the following formula (2)). The compound represented by the following formula (2) is formed by ether bonding of the carbon at the 1-position of glucose and the 4-carbon of 1-deoxynojirimycin. Usually, It is also said to be combined.

[화학식 1] [Chemical Formula 1]

Figure 112017059159292-pat00001
Figure 112017059159292-pat00001

[화학식 2](2)

Figure 112017059159292-pat00002
Figure 112017059159292-pat00002

본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 상기 포도당은, 일 예로 포도당이 중합되어 형성된 중합체(polymer) 내에 존재하는 것일 수 있다. In the method for producing glucose-1-deoxynojirimycin of the present invention, the glucose may be present in a polymer formed by polymerizing glucose, for example.

본 발명은 포도당 1개를 1-데옥시노지리마이신에 전이시키는 것을 특징으로 하는데, 여기서 사용되는 공여(donor) 포도당은, 포도당 단일 분자로도 사용 가능하나, 포도당이 결합되어 형성된 여러 중합체(polymer)에서 포도당을 분리시킨 후 사용할 수도 있다. The present invention is characterized in that 1 glucose is transferred to 1-deoxynojirimycin. The donor glucose used herein may be used as a single molecule of glucose, but various polymers formed by combining glucose ) May be used after separation of glucose.

본 발명의 서열번호 2에 기재된 아미노산 서열을 갖는 알파글루카노트랜스퍼레이즈는 포도당 중합체(일 예로, 전분)로부터 포도당을 떼어 내는 능력도 있기 때문에, 포도당 중합체를 반응을 위한 기질로 사용할 수 있다. 다만, 포도당을 포함하는 중합체는 반드시 포도당만으로 이루어진 것을 사용할 필요는 없고, 포도당에 다른 분자들이 결합되어 형성된 중합체를 사용할 수도 있다. The alpha glucanotransferase having the amino acid sequence of SEQ ID NO: 2 of the present invention has the ability to remove glucose from a glucose polymer (e.g., starch), so that a glucose polymer can be used as a substrate for the reaction. However, the polymer containing glucose is not necessarily made of only glucose, and a polymer formed by bonding other molecules to glucose may be used.

한편, 본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 1-데옥시노지리마이신(1-deoxynojirimycin)은, 일 예로 반응 용액 중 1~3.0% (w/v)의 농도로 준비되고, 포도당 공여체의 역할을 하는 전분은, 일 예로 반응 용액 중 0.5~1.5% (w/v)의 농도로 준비될 수 있다. 이때, 반응 용액, 즉 용매는 바람직하게 pH 5.5~6.5의 40~60 mM 소디움 아세테이트 완충용액을 사용할 수 있다. On the other hand, in the method for producing glucose-1-deoxynojirimycin of the present invention, 1-deoxynojirimycin is dissolved in a concentration of 1 to 3.0% (w / v) in the reaction solution And the starch serving as a glucose donor can be prepared, for example, at a concentration of 0.5 to 1.5% (w / v) in the reaction solution. At this time, the reaction solution, that is, the solvent, can preferably use a 40 to 60 mM sodium acetate buffer solution having a pH of 5.5 to 6.5.

한편, 본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법에 있어서, 알파글루카노트랜스퍼레이즈 효소는, 바람직하게 반응 용액 1 mL 당 0.5~1.5 U의 알파글루카노트랜스퍼레이즈 효소를 사용하는 것이 좋다. On the other hand, in the method for producing glucose-1-deoxynojirimycin of the present invention, the α-glucanotransferase enzyme preferably uses 0.5 to 1.5 U of an α-glucanotransferase enzyme per 1 mL of the reaction solution good.

한편, 본 발명의 포도당 전이 1-데옥시노지리마이신의 제조방법은, 바람직하게 50~60℃에서 5~9시간 동안 수행하는 것이 좋다. On the other hand, the process for producing glucose-1-deoxynojirimycin of the present invention is preferably performed at 50 to 60 ° C for 5 to 9 hours.

본 발명에서 제조한 포도당 전이 1-데옥시노지리마이신은 기존에 혈당강하 효과가 있는 것으로 알려진 1-데옥시노지리마이신(1-deoxynojirimycin) 화합물에 비해, 알파글루코시데이즈(α-glucosidase)에 대한 활성을 유지하면서도, 알파아밀레이즈(α-amylase)에 대한 활성이 제거된 특징이 있다. The glucose trans-1-deoxynojirimycin prepared in the present invention is more effective than the 1-deoxynojirimycin compound, which is known to have a hypoglycemic effect, as compared to the α-glucosidase (1-deoxynojirimycin) The activity against α-amylase is removed while maintaining the activity for the α-amylase.

1-데옥시노지리마이신은 알파글루코시데이즈에 대한 저해능이 있어, 혈당의 급격한 증가를 방지할 수 있으나, 알파아밀레이즈에 대한 저해 활성도 보유하고 있어, 전분의 소화 작용을 방해할 수 있는 부정적 측면도 있다. 하지만, 본 발명에서 개발한 '포도당이 1개 α-1,4 결합된 1-데옥시노지리마이신(G1-DNJ)'은, 알파아밀레이즈를 저해하지 않고, 알파글루코시데이즈만 저해할 수 있어 상기와 같은 1-데옥시노지리마이신의 부정적 문제를 극복할 수 있다. 1-deoxynojirimycin has an inhibitory effect on alpha-glucosidase and can inhibit the rapid increase of blood sugar, but also has an inhibitory activity against alpha amylase and thus has a negative side that can interfere with the digestive action of starch have. However, the 1-deoxynojirimycin (G1-DNJ) in which one glucose is linked to? -1,4 bond developed by the present invention can inhibit only alpha glucosidease without inhibiting alpha amylase Which can overcome the negative problem of 1-deoxynojirimycin as described above.

이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following embodiments, and includes modifications of equivalent technical ideas.

[실시예 1: 신규 α-1,4-알파글루카노트랜스퍼레이즈의 클로닝][Example 1: Cloning of novel? -1,4-alpha glucanotransferase]

박테로이데스 세타이오타오마이크론 (Bacteroides thetaiotaomicron)의 유전체 DNA에 두 개의 프라이머를 이용하여 α-1,4-알파글루카노트랜스퍼레이즈를 코딩하는 유전자 (bt_2146)를 증폭하였다. 프라이머의 서열은 다음과 같았다. The genomic DNA of Bacteroides thetaiotaomicron was amplified with two primers ( bt_2146 ) encoding alpha-1,4-alpha glucanotransferase. The sequence of the primers was as follows.

프라이머 명Primer name 서열order bt-Forwardbt-Forward 5'-AAAACCATGGCCACTGTATCATTTAAC-3'5'-AAAACCATGGCCACTGTATCATTTAAC-3 ' bt-Reversebt-Reverse 5'-AAAACTCGAGTTTCTTGGGAGCTCTGCC-3'5'-AAAACTCGAGTTTCTTGGGAGCTCTGCC-3 '

PCR의 증폭조건은 변성(denaturation) 98℃ 1분 실시 후, 98℃ 10초 53℃도 30초, 72℃ 1분 30초의 증폭과정을 30회(cycle) 수행하였다. 증폭된 유전자는 NcoI 과 XhoI 제한효소를 처리하여 pTKNd6xHis 벡터에 라이게이션(ligation) 하였다. The amplification conditions of the PCR were 98 ° C for 10 seconds, 53 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds, followed by 30 cycles of denaturation at 98 ° C for 1 minute. The amplified gene was ligated to pTKNd6xHis vector by treatment with Nco I and Xho I restriction enzyme.

도 1은 PCR에 의해 증폭된 bt_2146 유전자 (A) 및 해당 유전자를 포함하는 재조합 발현 플라스미드 pTKNdbt_2146 (B)를 보여준다. 염기서열 분석 결과, bt_2146 유전자는 서열번호 1의 핵산서열을 갖는 것으로 확인되었고, 서열번호 2의 아미노산서열을 갖는 알파글루카노트랜스퍼레이즈를 암호화하는 것으로 확인되었다. Figure 1 shows the bt_2146 gene (A) amplified by PCR and the recombinant expression plasmid pTKNdbt_2146 (B) containing the gene. As a result of the nucleotide sequence analysis, the bt_2146 gene was confirmed to have the nucleic acid sequence of SEQ ID NO: 1 and was confirmed to encode the alpha glucano transferase having the amino acid sequence of SEQ ID NO: 2.

[실시예 2: 재조합단백질의 발현][Example 2: Expression of recombinant protein]

재조합 발현 플라스미드 pTKNdbt_2146를 칼슘이온처리법을 이용하여 대장균에 형질전환(transformation) 한 후, 카나마이신 (50 μg/mL)이 함유된 LB 배지 (10 g/L bacto-tryptone, 5 g/L yeast extract, 5 g/L NaCl)에 접종하고, 30℃에서 30시간 동안 150 rpm으로 교반배양을 실시하였다. The recombinant expression plasmid pTKNdbt_2146 was transformed into E. coli using calcium ion treatment and then transformed into LB medium (10 g / L bacto-tryptone, 5 g / L yeast extract, 5 g / L) supplemented with kanamycin g / L NaCl), and the mixture was stirred at 30 rpm for 30 hours at 150 rpm.

배양된 균주는 원심분리법 (7,000×g, 20 min, 4℃)을 이용하여 수거한 후, 배양액의 1/10일 부피의 라이시스 버퍼(lysis buffer; 300 mM NaCl, 50 mM Tris-HCl buffer (pH 7.5), 10 mM imidazole)에 현탁하였다. 이후, 초음파 분쇄기 (output 12, 5 min, 4 times)를 이용하여 세포를 파쇄하고 조효소액으로 사용하였다. 조효소액은 Ni-NTA 친화성 흡착 크로마토그래피를 이용하여 정제 후 SDS-PAGE를 이용하여 정제 여부 및 순도를 확인하였다.The cultured strains were harvested by centrifugation (7,000 × g, 20 min, 4 ° C) and lysed in a lysis buffer (300 mM NaCl, 50 mM Tris-HCl buffer pH 7.5), 10 mM imidazole). Then, the cells were disrupted using an ultrasonic disintegrator (output 12, 5 min, 4 times) and used as crude enzyme solution. The crude enzyme solution was purified using Ni-NTA affinity adsorption chromatography and purified and its purity was confirmed by SDS-PAGE.

도 2는 정제된 알파글루카노트랜스퍼레이즈(BtαGTase)의 SDS-PAGE 분석 (Lane S, protein size standards; lane 1, cellular protein from the crude extract; lane 2, soluble fraction; lane 3, insoluble fraction; lane 4, purified BtαGTase) 결과이다.Figure 2 shows the results of SDS-PAGE analysis (Lane S, lane 1, lane 2, soluble fraction, lane 3, insoluble fraction, lane 4) of purified alpha-glucanotransferase , purified BtαGTase).

[실시예 3: 재조합 효소 BtαGTase의 역가 측정][Example 3: Measurement of potency of recombinant BtαGTase]

BtαGTase 효소 역가 측정을 위하여 아밀로스 (0.02%, (w/v)) 말토오스 (0.05%, (w/v))를 기질로 하여 citric-NaOH 완충용액 (pH 3.0)에 녹여 혼합액을 만들고 효소와 혼합하여 60℃에서 10분간 반응하였다. 이후, 효소 반응액 100 μL에 1 mL의 Lugol 용액 (0.02% (w/v) iodine 및 0.2% (w/v) potassium iodide)에 혼합하여 620 nm 파장에서의 흡광도를 측정하였다. 1 unit은 효소가 1분 동안 아밀로오스 1 μg을 분해하여 말토오스에 당전이 하는 양으로 정의하였다. BtαGTase was prepared by dissolving amylose (0.02%, (w / v)) maltose (0.05%, (w / v)) as a substrate in citric-NaOH buffer solution (pH 3.0) The reaction was carried out at 60 ° C for 10 minutes. Then, 100 μL of the enzyme reaction mixture was mixed with 1 mL of Lugol solution (0.02% (w / v) iodine and 0.2% (w / v) potassium iodide) and the absorbance at 620 nm was measured. 1 unit was defined as the amount by which 1 μg of amylose was degraded and converted to maltose by enzyme for 1 minute.

한편, 표 2에는 재조합 BtαGTase의 여러 인자들을 정리해서 나타냈다.Table 2 summarizes the various factors of recombinant BtαGTase.

StepStep Volume (mL)Volume (mL) Enzyme activity (U)Enzyme activity (U) Protein concentration (mg/mL)Protein concentration (mg / mL) Protein amount (mg)Protein amount (mg) Specific activity (U/μg)Specific activity (U / μg) Yield (%)Yield (%) Purification foldPurification fold 조효소액Crude enzyme solution 104104 3.573.57 169.44169.44 17621.7617621.76 0.20-3 0.20 -3 100100 1.001.00 Ni-NTA정제Ni-NTA purification 1.51.5 2.032.03 2.262.26 3.393.39 0.590.59 56.856.8 2953.202953.20

[[ 실시예Example 4: 재조합 효소  4: Recombinant enzyme BtαGTase의Of BtαGTase 최적 반응 조건 비교] Comparison of Optimum Reaction Conditions]

재조합 효소 BtαGTase의 최적 반응 조건을 확인하기 위하여 다양한 온도 (40-70℃)와 pH (2.5-6.0)에서 역가를 측정 후 비교하였다. 가장 높은 값을 100%로 하여 상대적 역가를 나타내었다. BtαGTase 효소는 60℃, pH 3.0에서 가장 높은 활성을 보이고 있음을 확인할 수 있었다. To determine the optimal reaction conditions for the recombinant enzyme BtαGTase, the activity was measured at various temperatures (40-70 ° C) and pH (2.5-6.0). The highest value was 100% and the relative titer was shown. BtαGTase enzyme showed the highest activity at 60 ℃ and pH 3.0.

도 3은 재조합 BtαGTase의 최적 온도 및 pH 분석 결과이다. 최적 온도는 60℃로 나타났고, 최적 pH는 3으로 나타났다. Figure 3 shows the results of the optimal temperature and pH analysis of recombinant Bt [alpha] gTase. The optimum temperature was 60 ℃ and the optimum pH was 3.

[[ 실시예Example 5: 재조합 효소  5: Recombinant enzyme BtαGTase의Of BtαGTase 이온 영향 비교] Ion effect comparison]

재조합 효소 BtαGTase가 이온에 의한 영향을 받는지 확인하고자 다양한 2가 양이온과 EDTA를 이용하여 효소 역가를 비교하였다. 이온을 첨가하지 않은 상황을 기준값 (100%)으로 지정하였고, 각 2가 양이온의 최종 농도는 5 mM로 설정하였다. To determine whether the recombinant enzyme BtαGTase is affected by the ions, the enzyme activities were compared using various divalent cations and EDTA. (100%), and the final concentration of each divalent cation was set to 5 mM.

도 4는 재조합 BtαGTase의 양이온에 의한 효과 비교 결과이다. 도 4에서 보듯이 Ca2+, Mg2+, Cu2+를 첨가할 경우 역가가 상승하는 것으로 나타났다. Fig. 4 shows the results of the comparison of the effects of the recombinant Bt [alpha] GTase with the cations. As shown in FIG. 4, the addition of Ca 2+ , Mg 2+ , and Cu 2+ showed an increase in potency.

[실시예 6: 재조합 BtαGTase 효소의 반응 특성][Example 6: Reaction characteristics of recombinant BtαGTase enzyme]

다양한 수용체 (acceptor) 물질에 대하여 당전이 반응을 수행하였고, 그 양상을 박막크로마토그래피 (Thin layer chromatorgraphy)로 분석하였다. 1% (w/v)의 전분을 공여체 (donor molecule)로 하여 포도당 (G1)부터 말토헵타오스 (G7)까지의 수용체 (0.3% (w/v))에 대하여 반응을 실시하였다. Tissue transfer reactions were performed on various acceptor materials, and their pattern was analyzed by thin layer chromatography (Thin layer chromatorgraphy). The reaction was carried out on a receptor (0.3% (w / v)) from glucose (G1) to maltoheptaose (G7) with 1% (w / v) starch as a donor molecule.

도 5에서 보는 바와 본 발명에서 사용한 BtαGTase는 기존의 알파글루카노트랜스퍼레이즈와 달리 당전이 반응을 연쇄적으로 하는 능력이 현저히 낮음을 알 수 있었다. 이는 일견 단점으로 보일 수 있으나, 아래의 내용을 좀더 살펴보면 이것이 큰 장점임을 알 수 있다. 도 5는 다양한 공여체에 대한 BtαGTase 효소의 반응분석 결과이다.As shown in FIG. 5, BtαGTase used in the present invention has a significantly lower ability to chain the glycosylation reaction unlike the conventional alpha glutaryl transferase. This may seem like a disadvantage at first glance, but if you look at the details below, you can see that this is a great advantage. Figure 5 shows the results of the reaction analysis of Bt [alpha] gTase enzyme for various donors.

한편, 더욱 명확한 비교를 위하여 일반적인 알파글루카노트랜스퍼레이즈 (MalQ)와 동일한 조건에서 반응을 실시해 보았다. 도 6은 일반 알파글루카노트랜스퍼레이즈와 본 발명에서 사용한 BtαGTase의 반응 결과를 비교한 사진이다. 도 6에서 보듯이 일반적인 알파글루카노트랜스퍼레이즈는 포도당 (G1)에 다른 포도당을 '연쇄적'으로 전이하여 다양하고 긴 말토올리고당을 형성하나, 본 발명 BtαGTase는 당전이 반응시 다양한 길이의 산물을 사용하지 않아 당이 1개만 전이된 당전이 산물만을 주로 생산할 수 있음을 알 수 있었다. On the other hand, for more clear comparison, the reaction was carried out under the same conditions as those of ordinary alpha glucano transferase (MalQ). FIG. 6 is a photograph showing a comparison of the results of the reaction between the common alpha-glucanotransferase and the Bt alpha GTase used in the present invention. As shown in FIG. 6, the common alpha-glucan transferase transforms other glucose to 'chain' in glucose (G1) to form various long maltooligosaccharides. However, the BtαGTase of the present invention uses various lengths of products It can be seen that only one party of the party can produce mainly the product.

이는 특정 생산물만을 '집중적'으로 생산함으로써 당전이 산물의 생산성을 높일 수 있는 것을 의미한다. 또한, 여러 종류의 물질을 생산하는 것에 비하여 단일 종류의 물질을 주로 생산하므로 정제를 더 수월하게 할 수 있는 장점이 될 수 있음을 의미한다.This means that it is possible to increase the productivity of the product by producing only specific products in an 'intensive' manner. In addition, it means that it is advantageous to make the purification easier because it mainly produces a single kind of substance as compared with producing various kinds of substances.

[[ 실시예Example 7: 신규  7: New DNJDNJ 당전이The party 화합물의 생산 및 정제] Production and purification of the compound]

당전이 반응 수행을 위하여 기질인 1.5% (w/v) DNJ 와 1% (w/v) 전분을 pH 6.0, 50 mM 소디움 아세테이트 완충용액에 반응용액 1 mL 당 1 U의 알파글루카노트랜스퍼레이즈 효소를 넣고 55℃에서 7시간 동안 반응하였다. 이후 반응액을 10분간 끓여 효소반응을 정시시켰다. In order to carry out the reaction, 1.5% (w / v) DNJ and 1% (w / v) starch were added to a pH 6.0, 50 mM sodium acetate buffer solution, and 1 U of αglucanotransferase enzyme And the reaction was carried out at 55 ° C for 7 hours. Then, the reaction solution was boiled for 10 minutes and the enzyme reaction was allowed to take place.

DNJ 당전이화합물은 Triart-C18 컬럼에 (250 ×20 mm, YMC Korea) UV 검출기(ultraviolet detector, 200 and 210 nm)와 결합한 분취용 고성능액체크로마토그래피 (preparative HPLC, YMC Korea, Sungnam, Korea)를 이용하여 정제하였다. 매 실험당 샘플의 주입량은 1 mL로 하였고, 0.1% 암모니움(ammonium)이 포함된 탈이온수 (deionized water)를 이동상으로 사용하였고, 유속을 12.0 mL/min으로 하여 상온에서 분리하였다. The DNJ conjugate was purified by preparative high performance liquid chromatography (YMC Korea, Sungnam, Korea) combined with a UV detector (200 and 210 nm) on a Triart-C18 column (250 × 20 mm, YMC Korea) . The amount of sample injected per experiment was 1 mL, deionized water containing 0.1% ammonium was used as the mobile phase, and the flow rate was 12.0 mL / min and separated at room temperature.

[[ 실시예Example 8: 신규  8: New DNJDNJ 당전이The party 화합물의 분석] Analysis of compound]

상기 실시예 7에서 생산된 당전이 화합물의 정제 여부와 순도를 확인하기 위하여 고성능이온교환크로마토그래피 (High-performance anion exchange chromatography, HPAEC) 분석법을 사용하였다. A high performance anion exchange chromatography (HPAEC) assay was used to determine the purification and purity of the precursor compound produced in Example 7 above.

HPAEC는 CarboPacTM PA1 컬럼 (4 ×250 mm; Dionex, Sunnyvale, CA, USA)에 pulsed aerometric detector (ED40; Dionex) 검출기를 장착한 기기를 사용하였다. 20 μ의 시료를 분석에 사용하였고, 150 mM 농도의 수산화나트륨 용액 이동상에 소디움아세테이트의 농도구배를 통하여 반응산물을 분석하였다. HPAEC was instrumented with a pulsed aerometric detector (ED40; Dionex) detector on a CarboPac ™ PA1 column (4 × 250 mm; Dionex, Sunnyvale, CA, USA). A 20 μ sample was used for the analysis and the reaction products were analyzed by sodium acetate concentration gradient on a 150 mM sodium hydroxide solution mobile phase.

소디움아세테이트 농도구배는 다음과 같았다. 0-2% for 0-20 min, 2-40% for 20-58 min, 40-100% for 58-68 min, 100% for 68-70 min, 100-0% for 70-78 min. 이동상의 유속은 1.0 mL/min으로 설정하였다. Sodium acetate concentration gradient was as follows. 0-2% for 0-20 min, 2-40% for 20-58 min, 40-100% for 58-68 min, 100% for 68-70 min, 100-0% for 70-78 min. The flow rate of the mobile phase was set at 1.0 mL / min.

또한, 말디토프 분석법 (Matrix Assisted Laser Desorption/Ionization Time-of-Flight, MALDI-TOF)을 이용하여 정제된 당전이 산물의 분자량을 확인하였다. 메탄올에 녹인 화합물을 매트릭스와 1:1 비율로 혼합한 후 상온에서 말디토프 분석을 수행하였다. 매트릭스는 α-cyano-4-hydroxycinnamic acid (CHCA)를 사용하였으며, 가속전압 (accelerating voltage)은 20,000 볼트로 설정하였다. In addition, the molecular weight of the purified precursor product was confirmed by using Matrix Assisted Laser Desorption / Ionization Time-of-Flight (MALDI-TOF). The compound dissolved in methanol was mixed with the matrix at a ratio of 1: 1, and then the maltitol was analyzed at room temperature. The matrix used was? -Cyano-4-hydroxycinnamic acid (CHCA) and the accelerating voltage was set at 20,000 volts.

도 7은 HPAEC를 이용한 당전이 화합물의 분석 결과이고, 도 8은 MALDI-TOF를 이용한 당전이 화합물의 분석 결과이다. 생성된 당전이 화합물은 종래 DNJ 화합물에 포도당이 1개 더 붙어 있는 화합물인 것으로 확인되었고, 상기 화학식 2에 기재된 구조식을 갖는 것으로 확인되었다.FIG. 7 shows the results of analysis of the glycidyl compound using HPAEC, and FIG. 8 shows the results of analysis of the glycidyl compound using MALDI-TOF. The resulting precursor compound was confirmed to be a compound having one more glucose added to the conventional DNJ compound, and it was confirmed to have the structural formula shown in the above formula (2).

새롭게 생성된 당전이 화합물을 G1-DNJ로 명명하고, 하기의 효소 저해 실험을 수행하였다. The newly generated prodrug compound was named G1-DNJ and the following enzyme inhibition experiment was carried out.

[[ 실시예Example 9:  9: 알파글루코시데이즈와Alpha Glucose Days and 알파아밀레이즈의Alpha Amylase's 저해효과 확인] Check inhibitory effect]

DNJ 및 G1-DNJ의 효소역가 저해 정도를 확인하기 위하여 'inhibition kinetics'를 수행하였다. 알파글루코시데이즈의 실험에서는 인조기질인 pNPG (p-nitrophenyl-α-D-glucopyranoside)를 기질로 사용하였고, 알파아밀레이즈의 저해도 측정을 확인하기 위해서는 pNPG2 (p-nitrophenyl-α-D-maltoside)를 사용하였다. 각 기질이 가수분해되어 발생하는 pNP는 ELISA plate reader를 이용하여 405 nm 파장에서 그 양을 측정하였다. Inhibition kinetics was performed to confirm the inhibition of enzyme activity of DNJ and G1-DNJ. In the experiment of alpha glucosides, pNPG ( p- nitrophenyl-α-D-glucopyranoside) was used as a substrate and pNPG2 ( p- nitrophenyl-α-D-maltoside ) Was used. The amount of pNP produced by hydrolysis of each substrate was measured at 405 nm using an ELISA plate reader.

기질 저해정도를 확인하는 지표인 Ki value를 확인하고자, 다양한 농도 (0.1-1 μmol)의 저해제를 사용하여 효소 반응을 수행하였고 Dixon-plot을 사용하여 그 값을 계산하였다. To determine the Ki value as an indicator of substrate inhibition, enzymatic reactions were performed using various concentrations (0.1-1 μmol) of inhibitor and the values were calculated using Dixon-plot.

도 9는 Lineweaver-Burk plot을 이용한 알파글루코시데이즈에대한 DNJ와 G1-DNJ의 저해능 비교 실험 결과이다. 도 9에서 보는 바와 같이, DNJ와 G1-DNJ 모두 알파글루코시데이즈에 대하여 저해작용을 지니고 있는 것을 확인할 수 있었다. 또한, 그 패턴으로 보아 이 물질들이 경쟁적저해 (competitive inhibition)를 하고 있음을 확인하였다. 참고적으로, 두 그래프 모두 좌측 한 점에 모임을 알 수 있었는데, 이는 다양한 농도의 저해제를 사용하더라도 궁극적으로는 동일한 Km value를 지님을 의미하며, 기질과 유사하게 생긴 저해제가 '마치 기질인 듯' 기질과 경쟁해서 효소의 활성을 저해하는 '경쟁적저해제'임을 뜻한다. 일반적으로 많은 제약용 물질들이 특정 단백질에 대하여 이렇듯 경쟁적저해제로 작용한다.FIG. 9 shows the results of the comparison of the inhibition of DNJ and G1-DNJ against the alpha Glucosidease using the Lineweaver-Burk plot. As shown in Fig. 9, it was confirmed that both DNJ and G1-DNJ had an inhibitory effect on alpha-glucosidase. In addition, it was confirmed that these materials are competitive inhibition. For reference, both graphs were collected at one point on the left, which means that even with varying concentrations of inhibitor ultimately having the same K m value, inhibitors that are similar to the substrate are "'Competitiveinhibitors' that compete with substrates to inhibit enzyme activity. In general, many pharmaceutical materials act as competitive inhibitors of certain proteins.

한편, 두 물질 (DNJ와 G1-DNJ) 중 어느 물질이 더욱 효과적인 저해제인지를 확인하기 위하여 Dixon plot을 구성하고, 저해상수 (Ki value)를 계산하였다. 도 10은 Linewiever Burk plot을 변형하여 Dixon plot으로 재구성하고, 이를 통해 기질의 저해 정도를 확인한 결과이다. DNJ와 G1-DNJ의 Ki value는 각각 1.1과 0.48임을 알 수 있었다. 이는 G1-DNJ가 DNJ보다 효과적인 저해제임을 뜻한다. 참고적으로로 Ki value가 낮을수록 저해 효율성 (inhibition efficiency)가 높음을 의미한다. On the other hand, a Dixon plot was constructed to determine whether any of the two substances (DNJ and G1-DNJ) were more effective inhibitors, and the inhibition constant (K i value) was calculated. FIG. 10 is a result of modifying the Linewiever Burk plot and restructuring it with Dixon plot, thereby confirming the degree of substrate inhibition. The K i values of DNJ and G1-DNJ were 1.1 and 0.48, respectively. This means that G1-DNJ is an effective inhibitor than DNJ. For reference, K i The lower the value, the higher the inhibition efficiency.

상기의 kinetic study를 통하여 DNJ와 G1-DNJ는 모두 알파글루코시데이즈에 대하여 저해제로 작용하며, G1-DNJ가 더욱 효과적인 알파글루코시데이즈의 저해제임을 알 수 있었다.DNJ and G1-DNJ both act as inhibitors against alpha-glucosidase through the kinetic study described above, indicating that G1-DNJ is a more potent inhibitor of alpha glucosidase.

한편, 상기와 같은 동일한 방법으로 알파아밀레이즈에 대한 kinetic study를 실시하였고, 그 결과는 도 11과 같았다. 도 11은 Lineweaver-Burk plot을 이용한 알파아밀레이즈 대한 DNJ와 G1-DNJ의 저해능 비교 결과이다. 도 11에서 보는 바와 같이, DNJ는 농도가 증가함에 따라 그래프의 기울기가 높아지는 것 (반응속도가 저해되는 것)을 확인할 수 있었으나, G1-DNJ는 저해제의 농도를 증가시켰음에도 불구하고 그래프의 패턴에 변화가 거의 없었다. 이는 G1-DNJ가 알파아밀레이즈에 대하여 특별한 저해능이 없음을 의미한다. On the other hand, a kinetic study on alpha amylase was performed by the same method as described above, and the results were as shown in FIG. FIG. 11 shows the results of the comparison of the inhibition of DNJ and G1-DNJ for the alpha amylase using the Lineweaver-Burk plot. As shown in FIG. 11, it was confirmed that the slope of the graph was increased (the reaction rate was inhibited) as the concentration increased. However, although the concentration of the inhibitor was increased, There was little change. This means that G1-DNJ has no specific inhibitory effect on alpha amylase.

더욱 명확한 증명을 위하여 Dixon-plot으로 변형하였으며 그 결과는 도 12와 같았다. 도 12는 Dixon plot을 이용한 알파아밀레이즈에 대한 저해능 비교 결과이다. 도 12에서 보는 바와 같이 DNJ는 알파아밀레이즈에 대한 저해능이 있으며 Ki 값의 계산이 가능하나, G1-DNJ는 저해능이 없으므로 Ki 값 또한 구할 수 없음을 알 수 있었다. 이는 G1-DNJ가 알파아밀레이즈에 대한 저해능이 없음을 의미한다.Dixon-plot was modified for more definite proof, and the result was as shown in Fig. 12 shows the results of the comparison of the inhibition against alpha amylase using the Dixon plot. As shown in FIG. 12, the DNJ has an inferiority to the alpha amylase and can calculate the K i value. However, since G 1 -DNJ does not have an inferiority, K i Value can not be obtained. This means that G1-DNJ lacks the ability to inhibit alpha amylase.

이상에서 살펴본 알파글루코시데이즈와 알파아밀레이즈에 대한 DNJ와 G1-DNJ의 저해능 비교 결과를 하기 표 3에 일목 요연하게 정리해 제공한다. The results of the comparison between DNJ and G1-DNJ against Alpha Glucosides and Alpha Amylase are summarized in Table 3 below.

inhibitorinhibitor Target enzymeTarget enzyme Ki K i inhibition typeinhibition type DNJ
DNJ
α-glucosidaseα-glucosidase 1.11.1 competitivecompetitive
α-amylaseα-amylase 4.44.4 competitivecompetitive G1-DNJ
G1-DNJ
α-glucosidaeα-glucosidae 0.480.48 competitivecompetitive
α-amylaseα-amylase -- No inhibitionNo inhibition

<110> Industry Academic Cooperation Foundation, Hallym University <120> Method for production of 1-deoxynojirimycin derivative with a single glucose <130> YP-17-076 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 2682 <212> DNA <213> Bacteroides thetaiotaomicron <400> 1 atgactgtat catttaacat cgaatatcgc accagttggg gagaagaagt caggattgcc 60 gggctgctgc cggagtcgat ccccatgcat accacagacg gcatatactg gacggcagac 120 gtggaactgg aagttcccaa agaaggaatg actatcaatt acagctatca gatagaacaa 180 aaccaaatta tcatccgcaa agaatgggac agctttccga gacgtctctt tttatccggt 240 aactctaaaa agaagtatca gattaaagac tgctggaaaa atatccccga acaattgtat 300 tactacagtt cggccttcac ggaagccttg ttagcccatc ccgacagagc tgaaattccg 360 ccttgtcaca gaaaagggct ggtcatcaag gcatacgccc cacgcatcaa caaagactat 420 tgcctggcaa tttgcggaaa tcagaaagca ttgggaaact gggacccgga caaagcgatt 480 cccatgagcg atgccaactt tccggaatgg cagatcgagc tggatgcaag taagctgaaa 540 ttcccgctgg aatacaaatt catcctttac cataaagaag aaaagaaagc ggactgctgg 600 gaaaataacc ccaaccgcta tcttgccgac ccggaactga aaacaaatga gacgctggtc 660 atctccgacc gatatgccta tttcgatatt ccggtatgga aaggggccgg tatagccatc 720 cctgtctttt cactgaaatc agagaacagt ttcggagtag gagatttcgg agatttgaaa 780 cgcatgattg actgggctgt aagtacccaa caaaaggtta tacagatatt accgatcaat 840 gatacgacca tgactcatgc gtggaccgat tcttatccat ataatagtat ctccatttat 900 gctttccacc cgatgtatgc agatataaag cagatgggaa cactgaaaga caagtcagcc 960 gcagcgaagt tcaacaaaaa acagaaagaa ctcaacggcc tgccggcgat ggattatgaa 1020 gctgtcaacc aaacgaaatg ggaatacttc cgactgatct tcaagcagga aggagaaaaa 1080 gtattagcct ccggagagtt cggcgaattc tttaatgcca acaaggaatg gctgcaacct 1140 tacgctgttt tcagctatct gcgcgatgcc tttcagacac ctaatttccg tgaatggccc 1200 agacattccg tttataatgc acaagatata gagaagatgt gccggccaga atctgtagat 1260 tacccgcata tcgcacttta ttattatatc cagtttcacc tgcacctgca attggtagcc 1320 gctacgaaat acgcccgcga acacggtgtc gtactcaaag gagatatccc tatcggcatc 1380 agccgcaaca gtgtggaagc atggaccgaa ccttattact tcaatctcaa cgggcaggcg 1440 ggcgcccctc ccgatgattt ctcggtgaac ggacaaaact ggggattccc cacgtacaac 1500 tgggacgtca tggaaaagga cggctaccgc tggtggatga agcgtttcca aaaaatgtca 1560 gagtacttcg acgcttaccg gattgaccac atcctcggtt tcttccgtat ctgggaaatc 1620 ccgatgcatg ccgtacacgg attactcgga cagttcattc cctccatccc tatgagtcgg 1680 gaggaaatcg aaagttacgg actccccttt cgggaagaat atttgattcc atatattcat 1740 gaatccttcc tcgggcaagt attcggtccg cataccgatt atgtgaaaca gacttttctg 1800 cttcctgccg aaacacccgg tgtttatcac atgaaaccgg agttcaccac ccaacgggaa 1860 gtggagagtt tctttgcagg aaagaatgat gaaaacagtc tttggattcg ggatggacta 1920 tacactttga tcagtgatgt tctttttgta ccggacacga aagaaaaaga taaatatcat 1980 ccgcgcatcg gaatacaacg cgatttcatc ttccgttcac tcaatgaaca ggagcagaat 2040 gcgtttaaca gactgtatga tcagtattat tatcaccgcc acaacgagtt ctggcgccaa 2100 caggctatga agaaactacc gcaactgaca caatcgacac gtatgctggt ttgcggagaa 2160 gacctgggta tgattccgga ttgtgtttcg tccgtcatga atgatcttcg tatcctcagt 2220 ctggagattc agcggatgcc aaagaatccg atgcacgagt tcggatattt aaatgaatac 2280 ccataccggt cggtttgtac catctccact catgatatgt ctactttgcg aggctggtgg 2340 gaagaagatt acctgcagac acagcgttac tacaacacga tgctggggca ttacggaacc 2400 gcaccgacag tcgccactcc cgaattgtgc gaagaagtgg tgcgcaatca tctgaaaagc 2460 aattccatac tttgtattct gtccctgcaa gactggctga gcattgatgg caaatggaga 2520 aatccgaatg tgcaggaaga acggattaat gtaccatcca atccgcgcaa ttattggcgt 2580 taccggatgc acctcactct ggaacagttg atgaaagcag aagaactcaa tgacaagata 2640 cgtgagctaa taaaatacac cggcagagct cccaagaaat aa 2682 <210> 2 <211> 893 <212> PRT <213> Bacteroides thetaiotaomicron <400> 2 Met Thr Val Ser Phe Asn Ile Glu Tyr Arg Thr Ser Trp Gly Glu Glu 1 5 10 15 Val Arg Ile Ala Gly Leu Leu Pro Glu Ser Ile Pro Met His Thr Thr 20 25 30 Asp Gly Ile Tyr Trp Thr Ala Asp Val Glu Leu Glu Val Pro Lys Glu 35 40 45 Gly Met Thr Ile Asn Tyr Ser Tyr Gln Ile Glu Gln Asn Gln Ile Ile 50 55 60 Ile Arg Lys Glu Trp Asp Ser Phe Pro Arg Arg Leu Phe Leu Ser Gly 65 70 75 80 Asn Ser Lys Lys Lys Tyr Gln Ile Lys Asp Cys Trp Lys Asn Ile Pro 85 90 95 Glu Gln Leu Tyr Tyr Tyr Ser Ser Ala Phe Thr Glu Ala Leu Leu Ala 100 105 110 His Pro Asp Arg Ala Glu Ile Pro Pro Cys His Arg Lys Gly Leu Val 115 120 125 Ile Lys Ala Tyr Ala Pro Arg Ile Asn Lys Asp Tyr Cys Leu Ala Ile 130 135 140 Cys Gly Asn Gln Lys Ala Leu Gly Asn Trp Asp Pro Asp Lys Ala Ile 145 150 155 160 Pro Met Ser Asp Ala Asn Phe Pro Glu Trp Gln Ile Glu Leu Asp Ala 165 170 175 Ser Lys Leu Lys Phe Pro Leu Glu Tyr Lys Phe Ile Leu Tyr His Lys 180 185 190 Glu Glu Lys Lys Ala Asp Cys Trp Glu Asn Asn Pro Asn Arg Tyr Leu 195 200 205 Ala Asp Pro Glu Leu Lys Thr Asn Glu Thr Leu Val Ile Ser Asp Arg 210 215 220 Tyr Ala Tyr Phe Asp Ile Pro Val Trp Lys Gly Ala Gly Ile Ala Ile 225 230 235 240 Pro Val Phe Ser Leu Lys Ser Glu Asn Ser Phe Gly Val Gly Asp Phe 245 250 255 Gly Asp Leu Lys Arg Met Ile Asp Trp Ala Val Ser Thr Gln Gln Lys 260 265 270 Val Ile Gln Ile Leu Pro Ile Asn Asp Thr Thr Met Thr His Ala Trp 275 280 285 Thr Asp Ser Tyr Pro Tyr Asn Ser Ile Ser Ile Tyr Ala Phe His Pro 290 295 300 Met Tyr Ala Asp Ile Lys Gln Met Gly Thr Leu Lys Asp Lys Ser Ala 305 310 315 320 Ala Ala Lys Phe Asn Lys Lys Gln Lys Glu Leu Asn Gly Leu Pro Ala 325 330 335 Met Asp Tyr Glu Ala Val Asn Gln Thr Lys Trp Glu Tyr Phe Arg Leu 340 345 350 Ile Phe Lys Gln Glu Gly Glu Lys Val Leu Ala Ser Gly Glu Phe Gly 355 360 365 Glu Phe Phe Asn Ala Asn Lys Glu Trp Leu Gln Pro Tyr Ala Val Phe 370 375 380 Ser Tyr Leu Arg Asp Ala Phe Gln Thr Pro Asn Phe Arg Glu Trp Pro 385 390 395 400 Arg His Ser Val Tyr Asn Ala Gln Asp Ile Glu Lys Met Cys Arg Pro 405 410 415 Glu Ser Val Asp Tyr Pro His Ile Ala Leu Tyr Tyr Tyr Ile Gln Phe 420 425 430 His Leu His Leu Gln Leu Val Ala Ala Thr Lys Tyr Ala Arg Glu His 435 440 445 Gly Val Val Leu Lys Gly Asp Ile Pro Ile Gly Ile Ser Arg Asn Ser 450 455 460 Val Glu Ala Trp Thr Glu Pro Tyr Tyr Phe Asn Leu Asn Gly Gln Ala 465 470 475 480 Gly Ala Pro Pro Asp Asp Phe Ser Val Asn Gly Gln Asn Trp Gly Phe 485 490 495 Pro Thr Tyr Asn Trp Asp Val Met Glu Lys Asp Gly Tyr Arg Trp Trp 500 505 510 Met Lys Arg Phe Gln Lys Met Ser Glu Tyr Phe Asp Ala Tyr Arg Ile 515 520 525 Asp His Ile Leu Gly Phe Phe Arg Ile Trp Glu Ile Pro Met His Ala 530 535 540 Val His Gly Leu Leu Gly Gln Phe Ile Pro Ser Ile Pro Met Ser Arg 545 550 555 560 Glu Glu Ile Glu Ser Tyr Gly Leu Pro Phe Arg Glu Glu Tyr Leu Ile 565 570 575 Pro Tyr Ile His Glu Ser Phe Leu Gly Gln Val Phe Gly Pro His Thr 580 585 590 Asp Tyr Val Lys Gln Thr Phe Leu Leu Pro Ala Glu Thr Pro Gly Val 595 600 605 Tyr His Met Lys Pro Glu Phe Thr Thr Gln Arg Glu Val Glu Ser Phe 610 615 620 Phe Ala Gly Lys Asn Asp Glu Asn Ser Leu Trp Ile Arg Asp Gly Leu 625 630 635 640 Tyr Thr Leu Ile Ser Asp Val Leu Phe Val Pro Asp Thr Lys Glu Lys 645 650 655 Asp Lys Tyr His Pro Arg Ile Gly Ile Gln Arg Asp Phe Ile Phe Arg 660 665 670 Ser Leu Asn Glu Gln Glu Gln Asn Ala Phe Asn Arg Leu Tyr Asp Gln 675 680 685 Tyr Tyr Tyr His Arg His Asn Glu Phe Trp Arg Gln Gln Ala Met Lys 690 695 700 Lys Leu Pro Gln Leu Thr Gln Ser Thr Arg Met Leu Val Cys Gly Glu 705 710 715 720 Asp Leu Gly Met Ile Pro Asp Cys Val Ser Ser Val Met Asn Asp Leu 725 730 735 Arg Ile Leu Ser Leu Glu Ile Gln Arg Met Pro Lys Asn Pro Met His 740 745 750 Glu Phe Gly Tyr Leu Asn Glu Tyr Pro Tyr Arg Ser Val Cys Thr Ile 755 760 765 Ser Thr His Asp Met Ser Thr Leu Arg Gly Trp Trp Glu Glu Asp Tyr 770 775 780 Leu Gln Thr Gln Arg Tyr Tyr Asn Thr Met Leu Gly His Tyr Gly Thr 785 790 795 800 Ala Pro Thr Val Ala Thr Pro Glu Leu Cys Glu Glu Val Val Arg Asn 805 810 815 His Leu Lys Ser Asn Ser Ile Leu Cys Ile Leu Ser Leu Gln Asp Trp 820 825 830 Leu Ser Ile Asp Gly Lys Trp Arg Asn Pro Asn Val Gln Glu Glu Arg 835 840 845 Ile Asn Val Pro Ser Asn Pro Arg Asn Tyr Trp Arg Tyr Arg Met His 850 855 860 Leu Thr Leu Glu Gln Leu Met Lys Ala Glu Glu Leu Asn Asp Lys Ile 865 870 875 880 Arg Glu Leu Ile Lys Tyr Thr Gly Arg Ala Pro Lys Lys 885 890 <110> Industry Academic Cooperation Foundation, Hallym University <120> Method for production of 1-deoxynojirimycin derivative with a          단 glucose <130> YP-17-076 <160> 2 <170> KoPatentin 3.0 <210> 1 <211> 2682 <212> DNA <213> Bacteroides thetaiotaomicron <400> 1 atgactgtat catttaacat cgaatatcgc accagttggg gagaagaagt caggattgcc 60 gggctgctgc cggagtcgat ccccatgcat accacagacg gcatatactg gacggcagac 120 gtggaactgg aagttcccaa agaaggaatg actatcaatt acagctatca gatagaacaa 180 aaccaaatta tcatccgcaa agaatgggac agctttccga gacgtctctt tttatccggt 240 aactctaaaa agaagtatca gattaaagac tgctggaaaa atatccccga acaattgtat 300 tactacagtt cggccttcac ggaagccttg ttagcccatc ccgacagagc tgaaattccg 360 ccttgtcaca gaaaagggct ggtcatcaag gcatacgccc cacgcatcaa caaagactat 420 tgcctggcaa tttgcggaaa tcagaaagca ttgggaaact gggacccgga caaagcgatt 480 cccatgagcg atgccaactt tccggaatgg cagatcgagc tggatgcaag taagctgaaa 540 ttcccgctgg aatacaaatt catcctttac cataaagaag aaaagaaagc ggactgctgg 600 gaaaataacc ccaaccgcta tcttgccgac ccggaactga aaacaaatga gacgctggtc 660 atctccgacc gatatgccta tttcgatatt ccggtatgga aaggggccgg tatagccatc 720 cctgtctttt cactgaaatc agagaacagt ttcggagtag gagatttcgg agatttgaaa 780 cgcatgattg actgggctgt aagtacccaa caaaaggtta tacagatatt accgatcaat 840 gatacgacca tgactcatgc gtggaccgat tcttatccat ataatagtat ctccatttat 900 gctttccacc cgatgtatgc agatataaag cagatgggaa cactgaaaga caagtcagcc 960 gcagcgaagt tcaacaaaaa acagaaagaa ctcaacggcc tgccggcgat ggattatgaa 1020 gctgtcaacc aaacgaaatg ggaatacttc cgactgatct tcaagcagga aggagaaaaa 1080 gtattagcct ccggagagtt cggcgaattc tttaatgcca acaaggaatg gctgcaacct 1140 tacgctgttt tcagctatct gcgcgatgcc tttcagacac ctaatttccg tgaatggccc 1200 agacattccg tttataatgc acaagatata gagaagatgt gccggccaga atctgtagat 1260 tacccgcata tcgcacttta ttattatatc cagtttcacc tgcacctgca attggtagcc 1320 gctacgaaat acgcccgcga acacggtgtc gtactcaaag gagatatccc tatcggcatc 1380 agccgcaaca gtgtggaagc atggaccgaa ccttattact tcaatctcaa cgggcaggcg 1440 ggcgcccctc ccgatgattt ctcggtgaac ggacaaaact ggggattccc cacgtacaac 1500 tgggacgtca tggaaaagga cggctaccgc tggtggatga agcgtttcca aaaaatgtca 1560 gagtacttcg acgcttaccg gattgaccac atcctcggtt tcttccgtat ctgggaaatc 1620 ccgatgcatg ccgtacacgg attactcgga cagttcattc cctccatccc tatgagtcgg 1680 gaggaaatcg aaagttacgg actccccttt cgggaagaat atttgattcc atatattcat 1740 gaatccttcc tcgggcaagt attcggtccg cataccgatt atgtgaaaca gacttttctg 1800 cttcctgccg aaacacccgg tgtttatcac atgaaaccgg agttcaccac ccaacgggaa 1860 gtggagagtt tctttgcagg aaagaatgat gaaaacagtc tttggattcg ggatggacta 1920 tacactttga tcagtgatgt tctttttgta ccggacacga aagaaaaaga taaatatcat 1980 ccgcgcatcg gaatacaacg cgatttcatc ttccgttcac tcaatgaaca ggagcagaat 2040 gcgtttaaca gactgtatga tcagtattat tatcaccgcc acaacgagtt ctggcgccaa 2100 caggctatga agaaactacc gcaactgaca caatcgacac gtatgctggt ttgcggagaa 2160 gacctgggta tgattccgga ttgtgtttcg tccgtcatga atgatcttcg tatcctcagt 2220 ctggagattc agcggatgcc aaagaatccg atgcacgagt tcggatattt aaatgaatac 2280 ccataccggt cggtttgtac catctccact catgatatgt ctactttgcg aggctggtgg 2340 gaagaagatt acctgcagac acagcgttac tacaacacga tgctggggca ttacggaacc 2400 gcaccgacag tcgccactcc cgaattgtgc gaagaagtgg tgcgcaatca tctgaaaagc 2460 aattccatac tttgtattct gtccctgcaa gactggctga gcattgatgg caaatggaga 2520 aatccgaatg tgcaggaaga acggattaat gtaccatcca atccgcgcaa ttattggcgt 2580 taccggatgc acctcactct ggaacagttg atgaaagcag aagaactcaa tgacaagata 2640 cgtgagctaa taaaatacac cggcagagct cccaagaaat aa 2682 <210> 2 <211> 893 <212> PRT <213> Bacteroides thetaiotaomicron <400> 2 Met Thr Val Ser Phe Asn Ile Glu Tyr Arg Thr Ser Trp Gly Glu Glu   1 5 10 15 Val Arg Ile Ala Gly Leu Leu Pro Glu Ser Ile Pro Met His Thr Thr              20 25 30 Asp Gly Ile Tyr Trp Thr Ala Asp Val Glu Leu Glu Val Pro Lys Glu          35 40 45 Gly Met Thr Ile Asn Tyr Ser Tyr Gln Ile Glu Gln Asn Gln Ile Ile      50 55 60 Ile Arg Lys Glu Trp Asp Ser Phe Pro Arg Arg Leu Phe Leu Ser Gly  65 70 75 80 Asn Ser Lys Lys Lys Tyr Gln Ile Lys Asp Cys Trp Lys Asn Ile Pro                  85 90 95 Glu Gln Leu Tyr Tyr Tyr Ser Ser Ala Phe Thr Glu Ala Leu Leu Ala             100 105 110 His Pro Asp Arg Ala Glu Ile Pro Pro Cys His Arg Lys Gly Leu Val         115 120 125 Ile Lys Ala Tyr Ala Pro Arg Ile Asn Lys Asp Tyr Cys Leu Ala Ile     130 135 140 Cys Gly Asn Gln Lys Ala Leu Gly Asn Trp Asp Pro Asp Lys Ala Ile 145 150 155 160 Pro Met Ser Asp Ala Asn Phe Pro Glu Trp Gln Ile Glu Leu Asp Ala                 165 170 175 Ser Lys Leu Lys Phe Pro Leu Glu Tyr Lys Phe Ile Leu Tyr His Lys             180 185 190 Glu Glu Lys Lys Ala Asp Cys Trp Glu Asn Asn Pro Asn Arg Tyr Leu         195 200 205 Ala Asp Pro Glu Leu Lys Thr Asn Glu Thr Leu Val Ile Ser Asp Arg     210 215 220 Tyr Ala Tyr Phe Asp Ile Pro Val Trp Lys Gly Ala Gly Ile Ala Ile 225 230 235 240 Pro Val Phe Ser Leu Lys Ser Glu Asn Ser Phe Gly Val Gly Asp Phe                 245 250 255 Gly Asp Leu Lys Arg Met Ile Asp Trp Ala Val Ser Thr Gln Gln Lys             260 265 270 Val Ile Gln Ile Leu Pro Ile Asn Asp Thr Thr Met Thr His Ala Trp         275 280 285 Thr Asp Ser Tyr Pro Tyr Asn Ser Ile Ser Ile Tyr Ala Phe His Pro     290 295 300 Met Tyr Ala Asp Ile Lys Gln Met Gly Thr Leu Lys Asp Lys Ser Ala 305 310 315 320 Ala Ala Lys Phe Asn Lys Lys Gln Lys Glu Leu Asn Gly Leu Pro Ala                 325 330 335 Met Asp Tyr Glu Ala Val Asn Gln Thr Lys Trp Glu Tyr Phe Arg Leu             340 345 350 Ile Phe Lys Gln Glu Gly Glu Lys Val Leu Ala Ser Gly Glu Phe Gly         355 360 365 Glu Phe Phe Asn Ala Asn Lys Glu Trp Leu Gln Pro Tyr Ala Val Phe     370 375 380 Ser Tyr Leu Arg Asp Ala Phe Gln Thr Pro Asn Phe Arg Glu Trp Pro 385 390 395 400 Arg His Ser Val Tyr Asn Ala Gln Asp Ile Glu Lys Met Cys Arg Pro                 405 410 415 Glu Ser Val Asp Tyr Pro His Ile Ala Leu Tyr Tyr Tyr Ile Gln Phe             420 425 430 His Leu His Leu Gln Leu Val Ala Ala Thr Lys Tyr Ala Arg Glu His         435 440 445 Gly Val Val Leu Lys Gly Asp Ile Pro Ile Gly Ile Ser Arg Asn Ser     450 455 460 Val Glu Ala Trp Thr Glu Pro Tyr Tyr Phe Asn Leu Asn Gly Gln Ala 465 470 475 480 Gly Ala Pro Pro Asp Phe Ser Val Asn Gly Gln Asn Trp Gly Phe                 485 490 495 Pro Thr Tyr Asn Trp Asp Val Met Glu Lys Asp Gly Tyr Arg Trp Trp             500 505 510 Met Lys Arg Phe Gln Lys Met Ser Glu Tyr Phe Asp Ala Tyr Arg Ile         515 520 525 Asp His Ile Leu Gly Phe Phe Arg Ile Trp Glu Ile Pro Met Met His Ala     530 535 540 Val His Gly Leu Leu Gly Gln Phe Ile Pro Ser Ile Pro Met Ser Arg 545 550 555 560 Glu Glu Ile Glu Ser Tyr Gly Leu Pro Phe Arg Glu Glu Tyr Leu Ile                 565 570 575 Pro Tyr Ile His Glu Ser Phe Leu Gly Gln Val Phe Gly Pro His Thr             580 585 590 Asp Tyr Val Lys Gln Thr Phe Leu Leu Pro Ala Glu Thr Pro Gly Val         595 600 605 Tyr His Met Lys Pro Glu Phe Thr Thr Gln Arg Glu Val Glu Ser Phe     610 615 620 Phe Ala Gly Lys Asn Asp Glu Asn Ser Leu Trp Ile Arg Asp Gly Leu 625 630 635 640 Tyr Thr Leu Ile Ser Asp Val Leu Phe Val Pro Asp Thr Lys Glu Lys                 645 650 655 Asp Lys Tyr His Pro Arg Ile Gly Ile Gln Arg Asp Phe Ile Phe Arg             660 665 670 Ser Leu Asn Glu Gln Glu Gln Asn Ala Phe Asn Arg Leu Tyr Asp Gln         675 680 685 Tyr Tyr Tyr His Arg His Asn Glu Phe Trp Arg Gln Gln Ala Met Lys     690 695 700 Lys Leu Pro Gln Leu Thr Gln Ser Thr Arg Met Leu Val Cys Gly Glu 705 710 715 720 Asp Leu Gly Met Ile Pro Asp Cys Val Ser Ser Val Met Asn Asp Leu                 725 730 735 Arg Ile Leu Ser Leu Glu Ile Gln Arg Met Pro Lys Asn Pro Met His             740 745 750 Glu Phe Gly Tyr Leu Asn Glu Tyr Pro Tyr Arg Ser Val Cys Thr Ile         755 760 765 Ser Thr His Asp Met Ser Thr Leu Arg Gly Trp Trp Glu Glu Asp Tyr     770 775 780 Leu Gln Thr Gln Arg Tyr Tyr Asn Thr Met Leu Gly His Tyr Gly Thr 785 790 795 800 Ala Pro Thr Val Ala Thr Pro Glu Leu Cys Glu Glu Val Val Arg Asn                 805 810 815 His Leu Lys Ser Asn Ser Ile Leu Cys Ile Leu Ser Leu Gln Asp Trp             820 825 830 Leu Ser Ile Asp Gly Lys Trp Arg Asn Pro Asn Val Gln Glu Glu Arg         835 840 845 Ile Asn Val Pro Ser Asn Pro Arg Asn Tyr Trp Arg Tyr Arg Met His     850 855 860 Leu Thr Leu Glu Gln Leu Met Lys Ala Glu Glu Leu Asn Asp Lys Ile 865 870 875 880 Arg Glu Leu Ile Lys Tyr Thr Gly Arg Ala Pro Lys Lys                 885 890

Claims (7)

1-데옥시노지리마이신(1-deoxynojirimycin)에 서열번호 2에 기재된 아미노산 서열로 이루어진 알파글루카노트랜스퍼레이즈 효소를 50~60℃에서 5~9시간 동안 처리하여 포도당이 1개 전이된 당전이 산물을 제조하며,
상기 당전이 산물은 하기 화학식 2의 구조를 가지는 포도당 전이 1-데옥시노지리마이신인 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
[화학식 2]
Figure 112019500975077-pat00015

1-deoxynojirimycin was treated with the alpha-glucanotransferase enzyme consisting of the amino acid sequence shown in SEQ ID NO: 2 at 50 to 60 DEG C for 5 to 9 hours to obtain a sugar derivative &Lt; / RTI &gt;
Deoxynojirimycin having a structure represented by the following formula (2): &quot; (1) &quot;
(2)
Figure 112019500975077-pat00015

제1항에 있어서,
상기 포도당은,
포도당이 중합되어 형성된 중합체(polymer) 내에 존재하는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
The method according to claim 1,
The glucose,
Wherein the glucose is present in a polymer formed by polymerization of glucose.
제2항에 있어서,
상기 중합체는,
전분인 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
3. The method of claim 2,
The polymer,
Starch. &Lt; RTI ID = 0.0 &gt; 1. &lt; / RTI &gt;
제3항에 있어서,
상기 1-데옥시노지리마이신(1-deoxynojirimycin)은,
반응 용액 중 1~3.0% (w/v)의 농도로 준비되고,
상기 전분은,
반응 용액 중 0.5~1.5% (w/v)의 농도로 준비되는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
The method of claim 3,
The 1-deoxynojirimycin may be, for example,
Prepared at a concentration of 1 to 3.0% (w / v) in the reaction solution,
The starch,
Wherein the solution is prepared at a concentration of 0.5 to 1.5% (w / v) in the reaction solution.
제4항에 있어서,
상기 반응 용액은,
pH 5.5~6.5의 40~60 mM 소디움 아세테이트 완충용액을 용매로 사용하는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
5. The method of claim 4,
The reaction solution may contain,
A method for preparing glucose trans- &lt; RTI ID = 0.0 &gt; 1-deoxynojirimycin, &lt; / RTI &gt; characterized by using a buffer solution of 40 to 60 mM sodium acetate at a pH of 5.5 to 6.5 as a solvent.
제4항에 있어서,
상기 알파글루카노트랜스퍼레이즈 효소는,
반응 용액 1 mL 당 0.5~1.5 U의 알파글루카노트랜스퍼레이즈 효소를 사용하는 것을 특징으로 하는 포도당 전이 1-데옥시노지리마이신의 제조방법.
5. The method of claim 4,
The above-mentioned alpha-glucanotransferase enzyme can be produced,
A method for producing glucose trans-1-deoxynojirimycin, which comprises using 0.5 to 1.5 U of an α-glucanotransferase enzyme per 1 mL of a reaction solution.
삭제delete
KR1020170078011A 2017-06-20 2017-06-20 Method for production of 1-deoxynojirimycin derivative with a single glucose KR101938366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170078011A KR101938366B1 (en) 2017-06-20 2017-06-20 Method for production of 1-deoxynojirimycin derivative with a single glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170078011A KR101938366B1 (en) 2017-06-20 2017-06-20 Method for production of 1-deoxynojirimycin derivative with a single glucose

Publications (2)

Publication Number Publication Date
KR20180137997A KR20180137997A (en) 2018-12-28
KR101938366B1 true KR101938366B1 (en) 2019-04-11

Family

ID=65008801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170078011A KR101938366B1 (en) 2017-06-20 2017-06-20 Method for production of 1-deoxynojirimycin derivative with a single glucose

Country Status (1)

Country Link
KR (1) KR101938366B1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Agric. Biol. Chem., Vol. 49, pp. 2159-2165 (1985.)*
Carbohydrate Polymers, Vol. 93, pp. 116-121 (2013.01.31.)*
NCBI Reference Sequence No.: WP_011108155.1 (2013.05.15.)*

Also Published As

Publication number Publication date
KR20180137997A (en) 2018-12-28

Similar Documents

Publication Publication Date Title
KR101465805B1 (en) Construction of new variants of dextransucrase dsr-s by genetic engineering
KR101969040B1 (en) Composition comprising isomalto-oligosaccharide and manufacturing method thereof
Kimura et al. Functions of the COOH-terminal region of cyclodextrin glucanotransferase of alkalophilic Bacillus sp.# 1011: relation to catalyzing activity and pH stability
KR101938366B1 (en) Method for production of 1-deoxynojirimycin derivative with a single glucose
KR20180072705A (en) Small molecule glycosylation method
KR101632262B1 (en) Agar-derived neoagarooligosaccharide complex for the prevention and treatment of obesity and/or diabetes comprising enzyme reaction products of beta agarase DagA and agar
JP2012095606A (en) Dextran glucanase
KR101532025B1 (en) Method for production of amlylopectin cluster with novel cyclodextrin glucanotransferase
CN115747236A (en) Alpha-glucosidase, coding gene, vector, host and application thereof
KR100898384B1 (en) Thermostable sulfolobus sulfataricus-derived ?-glycosyl transferase and preparation method of branched cyclodextrin with the same
EP1967583A1 (en) Novel fructofuranosidase activity for obtaining the prebiotic oligosaccharide 6-kestose
KR101693477B1 (en) Method for production of slowly digestible starch with alpha amylase
KR100735819B1 (en) Enzymatic preparation of highly purified maltooligosaccharide
JP4012595B2 (en) Method for producing oligosaccharide composition
KR100699431B1 (en) Brewing method with maltogenic amylase
KR101897765B1 (en) Novel 1-deoxynojirimycin derivative and its usage as hypoglycemic agent
US11505789B2 (en) Enzyme exhibiting alpha-1,6-glucosyl transfer activity
KR101978565B1 (en) Pullulan degrading enzyme from Ruminococcus bromii and use thereof
KR20220121836A (en) Preparation of fructose from oligo-/ and/or polysaccharides
KR101776924B1 (en) Method for production of maltose with novel enzyme
JP2022024332A (en) Method for producing isomaltose
KR20060114026A (en) Protein with the hydrolysis of mutan, inulin and levan, gene encoding said protein, the expressing host cell and methods for producing said protein
EP4008776A1 (en) Protein having activity of catalyzing alpha-1,6-glucosyl transfer reaction
KR101638334B1 (en) Cyclodextrin glucanotransferase mutants and method for preparation of l-ascorbic acid derivative using the same
KR20020002588A (en) Method for production of isomaltooligosaccharides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant