KR101937893B1 - Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same - Google Patents

Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same Download PDF

Info

Publication number
KR101937893B1
KR101937893B1 KR1020180072133A KR20180072133A KR101937893B1 KR 101937893 B1 KR101937893 B1 KR 101937893B1 KR 1020180072133 A KR1020180072133 A KR 1020180072133A KR 20180072133 A KR20180072133 A KR 20180072133A KR 101937893 B1 KR101937893 B1 KR 101937893B1
Authority
KR
South Korea
Prior art keywords
mirror
beam splitter
light
polarized
polarization
Prior art date
Application number
KR1020180072133A
Other languages
Korean (ko)
Inventor
박민영
Original Assignee
주식회사 엠젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠젠 filed Critical 주식회사 엠젠
Application granted granted Critical
Publication of KR101937893B1 publication Critical patent/KR101937893B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J2003/451Dispersive interferometric spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The present invention provides a transmissive polarization interferometer capable of adaptively mounting various samples. According to the present invention, the transmissive polarization interferometer comprises: a light input terminal to receive light emitted from a light source; a polarized beam splitter to split the received light; a first mirror installed on a first surface of the polarized beam splitter to reflect a first polarized light penetrating the polarized beam splitter to the polarized beam splitter; a second mirror attached to a second surface of the polarized beam splitter perpendicular to the first surface to reflect a second polarized light reflected from the polarized beam splitter to the polarized beam splitter; and a light output terminal to output a complex wave, which is generated by combining the first and second polarized lights, penetrating a transmissive sample to the outside. The light input and output terminals, the polarized beam splitter, and the first and second mirrors are received in a housing. The second mirror is a fixed mirror fixed with respect to the second surface, the first mirror is a movable mirror capable of being displaced in a direction perpendicular to the first surface, and a difference between path lengths of the first and second polarized lights is able to be adjusted by displacement of the first mirror.

Description

투과형 편광간섭 장치 및 이를 이용한 광위상 측정 장치{Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a transmission type polarization interferometer and a polarization phase interferometer using the same,

본 발명은 측정 대상이 되는 시료를 투과한 광의 분광편광 정보를 나타내는 스토크스 벡터를 측정하기 위한 편광간섭 장치에 관한 것으로, 보다 자세하게는 각각의 구성 부품들을 어셈블리 별로 모듈화하여 휴대 가능한 패키지로 구현한 편광간섭 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization interference apparatus for measuring a Stokes vector representing spectroscopic polarization information of light transmitted through a sample to be measured, To an interfering device.

분광 스펙트럼 측정 기술은, 여러 분야에서 가장 정확하고 기대되는 해결방법 중에 하나로 손꼽히고 있다. 이러한 간섭계를 통한 편광 측정 기술을 조합하기 위하여, SD PS-OCT(spectral domain polarization-sensitive optical coherence tomography), 실시간 고감도 SPR(surface-plasmon resonance) 바이오 센싱 및 CD(circular dichroism) 와 같은 수많은 연구들이 이루어지고 있다. 또한 최근에는, 스토크스 벡터를 유도할 수 있는 분광 타원 측정기의 측정값으로부터 도출하고, 스펙트럼 간섭기와 스캐닝 방법을 대체하기 위하여, 복굴절 결정이나 듀얼 스펙트럼 감지 모듈을 간섭계와 조합한 스펙트럼 접근방식이 제안되고 있다.Spectroscopic spectrometry is one of the most accurate and promising solutions in many fields. Numerous studies such as spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT), real-time high-sensitivity surface-plasmon resonance (SPR) biosensing and CD (circular dichroism) ought. Recently, a spectral approach has been proposed in which a birefringence crystal or a dual spectrum sensing module is combined with an interferometer to derive from the measured values of a spectroscopic ellipsometer capable of deriving a Stokes vector and replace the spectral interferometer and the scanning method have.

그러나, 통상 PEM(photoelastic modulation) 방식을 이용한 기술은 정밀 측정능력을 갖추고 있으나, 단파장의 스토크스 벡터를 측정하는 경우 10ms, 스펙트럼 전 영역의 스토크스 벡터를 구하기 위해서는 수초 이상이 소요됨으로써, 측정 속도 면에서 단점이 있다.However, in general, the technique using the PEM (photoelastic modulation) has precision measurement capability. However, it takes 10 seconds to measure the Stokes vector of short wavelength and more than several seconds to obtain the Stokes vector of the entire spectrum, .

이러한 문제점을 고려하여, 한국특허공보 제1812608호는, 외부 진동 등에 의한 외란에 강인한 일체형 편광간섭계(polarization interferometer) 및 이를 적용한 스냅샷 기반의 편광계(spectrometer)를 제안한 바 있다. 이러한 스냅샷 기반의 분광계를 통해, 종래의 기계적인 편광소자 회전방식이나 전기적인 변조소자 방식의 분광편광 측정기술에서 문제 되었던 측정의 반복도 및 안정도 성능을 제공할 수 있게 되었다.In view of such a problem, Korean Patent Publication No. 1812608 has proposed a polarization interferometer resistant to disturbance due to external vibration and a snapshot-based spectrometer using the same. This snapshot-based spectrometer has been able to provide repeatability and stability of measurement, which has been a problem in conventional mechanical polarization element rotation and spectroscopic polarization measurement techniques of electrical modulation element type.

이러한 편광간섭계 및 분광계를 통해 스냅샷 기반으로 신속하고 안정적인 측정이 가능해진다. 다만, 이러한 편광간섭계 및 분광계는 고가이면서도 대형화된 제품으로 구현되는 것이 일반적이다. 따라서, 신속하고 안정적인 측정이 가능하면서도, 장치의 크기를 소형화하여 휴대가 가능하게 하고, 시료의 장착이나 부품의 교체를 용이하게 할 수 있는 편광간섭계 및 분광계를 개발할 필요가 있다.These polarization interferometers and spectrometers enable fast and reliable measurements based on snapshots. However, such a polarimetric interferometer and a spectrometer are generally realized as an expensive and large-sized product. Therefore, it is necessary to develop a polarization interferometer and a spectrometer which can perform quick and stable measurement, make the size of the apparatus compact and carry it, and easily mount the sample and replace components.

한국특허공보 1812608호 (2017. 12. 20. 등록)Korean Patent Publication No. 1812608 (registered on December 20, 2017)

본 발명이 이루고자 하는 기술적 과제는, 소형화되고 휴대 가능한 스냅샷 기반의 편광간섭 장치를 제공하고자 하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a miniaturized and portable snapshot-based polarization interferometer.

본 발명이 이루고자 하는 다른 기술적 과제는, 상기 편광간섭 장치에 다양한 시료를 적응적으로 장착할 수 있고 부품의 교체나 수리를 용이하게 하는 것이다.Another object of the present invention is to adapt various kinds of samples to the polarization interferometer and to facilitate replacement or repair of parts.

또한, 본 발명이 이루고자 하는 또 다른 기술적 과제는, 편광간섭 장치에 의해 제공되는 광경로 길이의 차이도 정확하게 설정할 수 있게 함으로써 결과적으로 분광계의 분광 측정 성능을 향상시키는 것이다.Another object of the present invention is to accurately set the difference in the optical path length provided by the polarization interferometer, thereby improving spectroscopic measurement performance of the spectrometer.

본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical objects of the present invention are not limited to the technical matters mentioned above, and other technical subjects not mentioned can be clearly understood by those skilled in the art from the following description.

상기 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 투과형 편광간섭 장치는, 광원에서 조사되는 광을 입사하는 광입력 단자; 상기 입사된 광을 분리하는 편광 빔 스플리터; 상기 편광 빔 스플리터의 제1 면에 설치되어, 상기 편광 빔 스플리터를 투과한 제1 편광을 상기 편광 빔 스플리터로 반사하는 제1 미러; 상기 제1 면에 수직으로 상기 편광 빔 스플리터의 제2 면에 부착되어, 상기 편광 빔 스플리터에서 반사된 제2 편광을 상기 편광 빔 스플리터로 반사하는 제2 미러; 상기 제1 편광 및 상기 제2 편광이 복합되어 생성된 복합파가 투과 시료를 투과한 후 상기 투과 시료를 투과한 복합파를 외부로 출사하는 광출력 단자; 및 상기 광입력 단자, 상기 편광 스플리터, 상기 제1 미러, 상기 제2 미러, 상기 광출력 단자를 수용하는 하우징을 포함한다.According to an aspect of the present invention, there is provided a transmission type polarization interferometer comprising: a light input terminal for receiving light emitted from a light source; A polarizing beam splitter for separating the incident light; A first mirror provided on a first surface of the polarizing beam splitter and reflecting the first polarized light transmitted through the polarized beam splitter to the polarized beam splitter; A second mirror attached to the second surface of the polarizing beam splitter perpendicularly to the first surface, the second mirror reflecting the second polarized light reflected by the polarizing beam splitter to the polarizing beam splitter; A light output terminal through which a composite wave generated by combining the first polarized light and the second polarized light transmits a transmission sample and then outputs a composite wave transmitted through the transmission sample to the outside; And a housing for accommodating the optical input terminal, the polarization splitter, the first mirror, the second mirror, and the optical output terminal.

이 때, 상기 제2 미러는 상기 제2 면에 대해 고정된 고정 미러이고, 상기 제1 미러는 상기 제1 면에 대해 수직인 방향으로 변위될 수 있는 가동 미러이며, 상기 제1 미러의 변위에 의해 상기 제1 편광의 경로 길이와 상기 제2 편광의 경로 길이 간의 차이가 조절될 수 있다.Here, the second mirror is a fixed mirror fixed with respect to the second surface, and the first mirror is a movable mirror that can be displaced in a direction perpendicular to the first surface, and the displacement of the first mirror The difference between the path length of the first polarized light and the path length of the second polarized light can be adjusted.

본 발명에 따른 편광간섭 장치에 의하면, 스냅샷 기반으로 신속한 시료의 측정이 가능하면서도, 저비용, 소형화 및 휴대성을 제고할 수 있다.According to the polarization interference apparatus of the present invention, it is possible to rapidly measure a sample on the basis of a snapshot, and to improve the cost, the miniaturization and the portability.

또한, 본 발명에 따른 편광간섭 장치에 의하면, 투과 시료를 용이하게 착탈할 수 있고, 다양한 요인으로 발생하는 광경로 길이에 관한 오차도 용이하게 제거할 수 있기 때문에, 결과적으로 얻어지는 측정 정밀도를 제고할 수 있다.Further, according to the polarization interference apparatus of the present invention, it is possible to easily attach and detach a transmission sample, and to easily eliminate an error relating to the optical path length caused by various factors, and as a result, .

도 1은 본 발명의 일 실시예에 따른 투과형 편광간섭 장치의 개념도이다.
도 2는 투과형 편광간섭 장치, 광원 및 분광계를 함께 패키지화 한 광위상 측정 장치를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 투과형 편광간섭 장치의 세부적인 구성을 도시한 블록도이다.
도 4는 편광 빔 스플리터 및 복수의 미러들을 도시한 도면이다.
도 5a는 본 발명의 일 실시예에 따른 투과형 편광간섭 장치의 사시도이다.
도 5b는 도 5a의 투과형 편광간섭 장치를 저면에서 바라본 사시도이다.
도 6a는 도 5a의 투과형 편광간섭 장치에서 상부 덮개들을 제거하고 상방으로부터 바라본 사시도이다.
도 6b는 도 6a의 투과형 편광간섭 장치를 상방에서 바라본 평면도이다.
도 7a는 편광간섭 어셈블리를 포함한 제1 수용 공간을 도시한 사시도이다.
도 7b는 도 7a에서 편광간섭 어셈블리만을 도시한 사시도이다.
도 8은 지그 어셈블리를 포함하는 제2 수용 공간을 도시한 사시도이다.
도 9는 광출력 어셈블리를 포함하는 제3 수용 공간을 도시한 사시도이다.
1 is a conceptual diagram of a transmission type polarization interference device according to an embodiment of the present invention.
Fig. 2 is a view showing an optical phase measuring apparatus in which a transmission type polarization interferometer, a light source, and a spectrometer are packaged together.
3 is a block diagram showing a detailed configuration of a transmission type polarization interference device according to an embodiment of the present invention.
4 is a view showing a polarization beam splitter and a plurality of mirrors.
5A is a perspective view of a transmission type polarization interference apparatus according to an embodiment of the present invention.
5B is a perspective view of the transmission type polarization interference device of FIG.
FIG. 6A is a perspective view of the transmission type polarization interferometer of FIG. 5A with top covers removed and viewed from above. FIG.
FIG. 6B is a plan view of the transmission type polarization interference device of FIG. 6A as viewed from above. FIG.
7A is a perspective view illustrating a first containment space including a polarization interference assembly.
FIG. 7B is a perspective view showing only the polarization interference assembly in FIG. 7A. FIG.
8 is a perspective view showing a second accommodation space including the jig assembly.
9 is a perspective view showing a third accommodation space including the light output assembly.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless defined otherwise, all terms (including technical and scientific terms) used herein may be used in a sense commonly understood by one of ordinary skill in the art to which this invention belongs. Also, commonly used predefined terms are not ideally or excessively interpreted unless explicitly defined otherwise.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of illustrating embodiments and is not intended to be limiting of the present invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. The terms " comprises "and / or" comprising "used in the specification do not exclude the presence or addition of one or more other elements in addition to the stated element.

이하 첨부된 도면들을 참조하여 본 발명의 일 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 투과형 편광간섭 장치(100)의 개념도이다. 투과형 편광간섭 장치(100)는 광원에서 조사되는 광을 입사하는 광입력 단자(101), 편광간섭 장치(100)로부터 광을 분광계(spectrometer)로 출사하는 광출력 단자(102) 및 양 단자(101, 102)를 장착한 하우징(190)을 포함하여 구성될 수 있다. 이와 같이, 투과형 편광간섭 장치(100)는 상기 광원이나 분광계로부터 착탈 가능한 하우징(190)으로 구성될 수 있기 때문에 소형화 및 휴대가 가능하다는 장점이 있다.1 is a conceptual diagram of a transmission type polarization interferometer 100 according to an embodiment of the present invention. The transmission type polarization interferometer 100 includes a light input terminal 101 for inputting light irradiated from a light source, a light output terminal 102 for outputting light from the polarization interferometer 100 to a spectrometer, , And a housing (190) equipped with a housing (102). Since the transmission type polarization interferometer 100 can be constituted by the light source or the housing 190 detachable from the spectrometer, it is advantageous in that it can be downsized and carried.

도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 투과형 편광간섭 장치(100)는 광원(200) 및 분광계(300)와 함께 광위상 측정 장치(500) 내에 패키지화 될 수도 있다. 이 때, 광원(200)의 광출력 단자(201)와 투과형 편광간섭 장치(100)의 광입력 단자(101) 사이, 그리고 투과형 편광간섭 장치(100)의 광출력 단자(102)와 분광계(300)의 광입력 단자(301) 사이에는, 광을 전달하는 매체로서 광 파이버(optical fiber) 내지 광 케이블(optical cable, 10, 20)이 연결될 수 있다. 2, the transmission type polarization interferometer 100 according to an exemplary embodiment of the present invention may be packaged in the optical phase measuring apparatus 500 together with the light source 200 and the spectrometer 300. FIG. The optical output terminal 201 of the light source 200 and the optical input terminal 101 of the transmission type polarization interference device 100 and the optical output terminal 102 of the transmission type polarization interference device 100 and the optical path between the optical output terminal 102 and the spectrometer 300 An optical fiber or an optical cable 10 or 20 can be connected as a medium for transmitting light.

광원(200)으로는 백색 광원(white light source), 예를 들면 100W 텅스텐-할로겐 램프(100W Tungsten-Halogen lamp)를 사용할 수 있으나, 이에 한하지 않고 다른 종류의 광원을 사용하는 것도 가능하다. 또한, 분광계(300)는, 한국특허공보 1812608호에서도 언급된 바와 같이, 스냅샷(snapshot/single shot) 방식으로 측정 대상이 되는 투과 시료의 분광편광 정보를 나타내는 스토크스 벡터(Stokes vector)를 실시간/고속으로 측정하기 위한 장치로 구성될 수 있다.As the light source 200, a white light source such as a 100 W tungsten-halogen lamp may be used, but it is also possible to use other types of light sources. The spectrometer 300 may also be configured to measure a Stokes vector representing spectroscopic polarization information of a transmission sample to be measured in a snapshot / single shot manner, in real time, as described in Korean Patent Publication No. 1812608 / A device for measuring at high speed.

따라서, 광위상 측정 장치(500)는 기계적 회전기구나 전기적인 변조소자를 이용하지 않고, 단일의 간섭분광 데이터만을 통해 다파장에 대한 정보를 갖는 스토크스 벡터(Stokes vector)를 실시간으로 측정할 수 있다.Therefore, the optical phase measuring apparatus 500 can measure a Stokes vector having information on multiple wavelengths in real time through only a single interference spectral data, without using a mechanical rotator or an electric modulation element .

도 3은 본 발명의 일 실시예에 따른 투과형 편광간섭 장치(100)의 세부적인 구성을 도시한 블록도이다. 투과형 편광간섭 장치(100)는 광입력 단자(101), 편광 빔 스플리터(125), 제1 미러(127), 제2 미러(129), 광출력 단자(102)를 포함하여 구성되고, 모든 구성요소들(101, 102, 125, 127, 129)은 하우징 내에 수용되어 설치될 수 있다.3 is a block diagram showing a detailed configuration of a transmission type polarization interferometer 100 according to an embodiment of the present invention. The transmission type polarization interferometer 100 includes a light input terminal 101, a polarization beam splitter 125, a first mirror 127, a second mirror 129, and an optical output terminal 102, Elements 101, 102, 125, 127, 129 may be housed within the housing.

광입력 단자(101)는 광원(200)에서 조사되는 광을 입사하고, 상기 입사된 광은 편광 빔 스플리터(125)에서 분리된다. 이 때, 편광 빔 스플리터(125)를 구성하는 면들 중에서 2개의 면에는 2개의 미러(127, 129)가 설치되어 있다. 이 중에서 제1 미러(127)는 편광 빔 스플리터(125)의 제1 면에 설치되어, 상기 편광 빔 스플리터(125)를 투과한 제1 편광을 상기 편광 빔 스플리터(125)로 반사한다. 또한, 제2 미러(129)는 상기 제1 면에 수직으로 상기 편광 빔 스플리터(125)의 제2 면에 부착되어, 상기 편광 빔 스플리터(125)에서 반사된 제2 편광을 상기 편광 빔 스플리터(125)로 반사한다.The light input terminal 101 receives the light emitted from the light source 200, and the incident light is separated from the polarization beam splitter 125. At this time, two mirrors 127 and 129 are provided on two surfaces of the surfaces constituting the polarizing beam splitter 125. The first mirror 127 is provided on the first surface of the polarizing beam splitter 125 and reflects the first polarized light transmitted through the polarizing beam splitter 125 to the polarizing beam splitter 125. The second mirror 129 is attached to the second surface of the polarizing beam splitter 125 perpendicularly to the first surface so that the second polarized light reflected by the polarizing beam splitter 125 is incident on the polarizing beam splitter 125 125).

상기 제1 편광은 다시 편광 빔 스플리터(125)에서 반사되어 투과 시료(132) 쪽으로 향하고, 상기 제2 편광은 다시 편광 빔 스플리터(125)를 투과하여 투과 시료(132) 쪽으로 향하게 된다. 따라서, 상기 제1 편광 및 상기 제2 편광은 서로 간섭되면서 복합파의 형태로 투과 시료(132)를 투과한 후, 광출력 단자(102)를 통해 외부의 분광계(300)로 출사된다.The first polarized light is reflected by the polarized beam splitter 125 to be directed toward the transmission sample 132 and the second polarized light is transmitted through the polarized beam splitter 125 to be directed toward the transmitted sample 132. Accordingly, the first polarized light and the second polarized light interfere with each other and transmit the transmitted sample 132 in the form of a complex wave, and then are output to the external spectrometer 300 through the optical output terminal 102.

여기서, 상기 광입력 단자(101)와 상기 편광 빔 스플리터(125) 사이에는 제1 광학계(121, 122, 123)가 추가로 배치될 수 있고, 상기 투과 시료(132)와 상기 광출력 단자(102) 사이에는 제2 광학계(152)가 추가로 배치될 수 있다.The first optical systems 121, 122 and 123 may be additionally disposed between the optical input terminal 101 and the polarization beam splitter 125 and the transmission sample 132 and the optical output terminal 102 A second optical system 152 may be additionally disposed.

제1 광학계(121, 122, 123)는 예를 들어, 콜리메이팅 렌즈(collimating lens)(121), 선형 편광자(Linear Polarizer)(122), 아이리스(iris)(123)로 구성될 수 있다. 광입력 단자(101)를 통해 입력된 광은 콜리메이팅 렌즈(121)에서 평행광으로 변환된다. 이 평행광은 선형 편광자(122)에서 45° 방향으로 선형 편광될 수 있다. 또한, 아이리스(123)는 선형 편광자(122)를 통과한 선형 편광의 크기를 조절한다. 아이리스(123)에 의해 적정 크기로 조절된 선형 편광은 편광 빔 스플리터(125)로 입사된다.The first optical systems 121, 122 and 123 may be composed of, for example, a collimating lens 121, a linear polarizer 122, and an iris 123. The light input through the optical input terminal 101 is converted into parallel light by the collimating lens 121. This parallel light can be linearly polarized in the 45 DEG direction in the linear polarizer 122. [ In addition, the iris 123 adjusts the size of the linearly polarized light passing through the linear polarizer 122. The linearly polarized light adjusted to an appropriate size by the iris 123 is incident on the polarizing beam splitter 125.

한편, 제2 광학계(152)도 투과 시료(132)를 통과한 복합파를 45° 방향으로 선형 편광시키기 위한 선형 편광자(152)를 더 포함할 수 있으며, 이외에도 다양한 종류의 렌즈를 더 포함할 수도 있다.The second optical system 152 may further include a linear polarizer 152 for linearly polarizing the composite wave that has passed through the transmission sample 132 in the direction of 45 °. In addition, the second optical system 152 may further include various types of lenses have.

본 발명의 일 실시예에 따른 편광 빔 스플리터(125)는 제1 광학계(121, 122, 123)를 통과한 광을 편광 변조하는 일체형 편광 간섭계로서, 제1 면 및 제2 면에 각각 제1 미러(127) 및 제2 미러(129)가 설치되어 있다. 이러한 편광 빔 스플리터(125)는 제1 편광(P 편광)은 투과시켜 제1 미러(127)로 입사시키고, 제2 편광(S 편광)은 반사하여 제2 미러(129)로 입사시킨다. 구체적으로, 제1 미러(127)은 편광 빔 스플리터(125)의 일 측면에 부착되어 상기 P 편광을 반사하고, 제2 미러(129)는 편광 빔 스플리터(125)의 하면에 부착되어 상기 S 편광을 반사할 수 있다.The polarization beam splitter 125 according to an embodiment of the present invention is an integrated polarization interferometer that polarization-modulates light that has passed through the first optical systems 121, 122, and 123. The polarization beam splitter 125 includes first and second surfaces, A second mirror 127 and a second mirror 129 are provided. The polarized beam splitter 125 transmits the first polarized light (P polarized light), enters the first mirror 127, reflects the second polarized light (S polarized light), and enters the second mirror 129. Specifically, the first mirror 127 is attached to one side of the polarizing beam splitter 125 to reflect the P polarized light, and the second mirror 129 is attached to the lower surface of the polarizing beam splitter 125, Can be reflected.

분광편광 신호에 고주파 신호를 생성하기 위해, 편광 빔 스플리터(125)를 투과한 후 제1 미러(127)에서 반사된 후 다시 편광 빔 스플리터(125)에서 상방으로 반사되는 P 편광의 광경로 길이와, 편광 빔 스플리터(125)에서 반사된 후 제2 미러(129)에서 반사되는 S 편광의 광경로 길이는 차이가 있다. 즉, 어느 한 광경로 길이가 다른 한 광경로 길이보다 대략 20~60μm 길게 형성할 수 있다. 이 때, P 편광의 광경로 길이가 길어도 무방하고 S 편광의 광경로 길이가 길어도 무방하다.In order to generate a high-frequency signal in the spectroscopically polarized signal, the length of the optical path of the P-polarized light that is transmitted through the polarizing beam splitter 125, reflected by the first mirror 127, and then reflected upward by the polarizing beam splitter 125 , The S-polarized light reflected from the polarizing beam splitter 125 and then reflected by the second mirror 129 has a different optical path length. That is, the length of one optical path can be longer than the length of one optical path of the other optical path length by about 20 to 60 m. At this time, the length of the optical path of the P polarized light may be long, and the length of the optical path of the S polarized light may be long.

이러한 광경로 길이 차이를 발생시키기 위해, 편광 빔 스플리터(125)의 제1 면과 제1 미러(127)의 간격과, 편광 빔 스플리터(125)의 제2 면과 제2 미러(129) 간의 간격에 차이를 둘 수 있다. 즉, 제1 미러(127)와 제2 미러(129) 중 어느 하나가 다른 하나 보다 편광 빔 스플리터(125)의 해당 면으로부터 상기 광경로 길이의 차이(대략 20~60μm) 만큼 더 떨어져 있을 수 있다.The distance between the first surface of the polarizing beam splitter 125 and the first mirror 127 and the distance between the second surface of the polarizing beam splitter 125 and the second mirror 129 . In other words, any one of the first mirror 127 and the second mirror 129 may be further apart from the corresponding surface of the polarizing beam splitter 125 by the difference in the optical path length (about 20 to 60 袖 m) than the other one .

그런데, 투과형 편광간섭 장치(100)에 의해 제공되는 광경로 길이의 차이는 미세한 차이만으로도 최종 측정 결과에 상당한 영향을 미칠 수 있다. 따라서, 제조 오차나 외부 온도 등 다양한 요인에 의해 발생할 수 있는 투과형 편광간섭 장치(100)에서의 광경로 길이의 차이에 관한 오차를, 사전에 수행되는 캘리브레이션 과정을 통해 제거할 필요가 있다.However, the difference in optical path length provided by the transmission-type polarization interferometer 100 may have a considerable influence on the final measurement result even with a slight difference. Therefore, it is necessary to eliminate an error relating to the difference in the optical path length in the transmission type polarization interferometer 100, which may be caused by various factors such as manufacturing error and external temperature, through a calibration process performed in advance.

이를 위하여 본 발명에서는, 도 4에 도시된 바와 같이, 편광 빔 스플리터(125)의 서로 다른 면에 형성된 미러들(127, 129) 중 적어도 하나를 가동 미러로 구현하는 것이 바람직하다. 예를 들어, 편광 빔 스플리터(125)의 하면에 형성된 제2 미러(129)는 편광 빔 스플리터(125)에 대해 고정된 고정 미러이고, 상기 제1 미러(127)는 편광 빔 스플리터(125)의 측면에 대해 수직인 방향으로 변위될 수 있는 가동 미러이다. 이와 같이, 제1 미러(127)를 가동 미러로 구현하여 편광 빔 스플리터(125)와의 간격을 조절함으로써 상기 광경로 길이의 차이를 최적으로 설정할 수 있는 것이다.4, it is preferable that at least one of the mirrors 127 and 129 formed on different surfaces of the polarizing beam splitter 125 is implemented as a movable mirror. For example, the second mirror 129 formed on the lower surface of the polarization beam splitter 125 is a fixed mirror fixed to the polarization beam splitter 125, and the first mirror 127 is a fixed mirror fixed to the polarization beam splitter 125 And is movable in the direction perpendicular to the side surface. As described above, the first mirror 127 is implemented as a movable mirror, and the gap between the first mirror 127 and the polarizing beam splitter 125 is adjusted to optimize the difference in the optical path length.

결국, 편광 빔 스플리터(125)에서 편광 변조된 두 개의 편광(P 편광, S 편광)은 복합파로서 편광 빔 스플리터(125)에서 상방으로 방출된 후 투과 시료(132)를 통과한다. 이와 같이 투과 시료(132)를 통과한 복합파는 선형 편광자(152)에서 45°방향으로 선형편광 됨으로써 간섭이 발생한다. 이러한 간섭파는 분광 센싱 모듈 내지 분광계(spectrometer, 300)로 입사된다. 분광계(300)는 예를 들어 센서 어레이 타입일 수 있으며, 투과 시료(132)의 분광편광 정보를 나타내는 스토크스 벡터를 스냅샷 방식으로(실시간 및 고속으로) 측정할 수 있다.As a result, the two polarized lights (P polarized light and S polarized light) polarized in the polarizing beam splitter 125 are emitted upward from the polarizing beam splitter 125 as composite waves, and then pass through the transmission sample 132. As a result, the complex wave having passed through the transmission sample 132 is linearly polarized in the direction of 45 degrees by the linear polarizer 152, thereby causing interference. These interference waves are incident on the spectroscopic sensing module or the spectrometer 300. The spectrometer 300 can be, for example, a sensor array type and can measure the Stokes vector representing the spectroscopic polarization information of the transmitted sample 132 in a snapshot manner (real time and at high speed).

이하 도 5a 내지 도 9는 본 발명의 일 실시예에 따른 투과형 편광간섭 장치(100)의 구체적인 구성을 도시한 도면들이다. 전술한 광입력 단자(101), 제1 광학계(121, 122, 123), 편광 스플리터(125), 제1 미러(127), 제2 미러(129), 제2 광학계(127) 및 광출력 단자(102)는 하우징(190) 내에 수용된다.5A to 9 are views showing a specific configuration of a transmission type polarization interferometer 100 according to an embodiment of the present invention. The first optical system 121, the first optical system 121, the second optical system 121, the second optical system 121, the first optical system 121, the polarizing splitter 125, the first mirror 127, the second mirror 129, (102) is received in a housing (190).

도 5a는 본 발명의 일 실시예에 따른 투과형 편광간섭 장치(100)의 사시도이다. 상기 장치(100)의 하우징(190)은 복수의 수용 공간(110, 130, 150)으로 구성될 수 있다. 제1 수용 공간(110)은 광입력 단자(101), 편광 스플리터(125), 제1 미러(127) 및 제2 미러(129)를 수용하기 위한 공간이다. 또한, 제2 수용 공간(130)은 상기 편광 스플리터(125)로부터 출사되는 복합파의 진행 방향과 나란하게 상기 투과 시료(132)를 고정하는 지그 어셈블리(140)를 수용하기 위한 공간이며, 제3 수용 공간(150)은 상기 투과 시료(132)를 투과한 복합파를 외부로 출사하는 광출력 단자(102)를 수용하기 위한 수용 공간이다.5A is a perspective view of a transmission type polarization interferometer 100 according to an embodiment of the present invention. The housing 190 of the apparatus 100 may include a plurality of receiving spaces 110, 130, and 150. The first accommodation space 110 is a space for accommodating the optical input terminal 101, the polarization splitter 125, the first mirror 127 and the second mirror 129. The second accommodation space 130 is a space for accommodating the jig assembly 140 that fixes the transmission sample 132 in parallel with the traveling direction of the composite wave emitted from the polarization splitter 125, The accommodation space 150 is an accommodation space for accommodating the optical output terminal 102 for emitting the composite wave transmitted through the transmission sample 132 to the outside.

이 때, 제1 수용 공간(110)에 형성된 광입력 단자(101)로 광이 입사되는 방향과, 제3 수용 공간(150)에 형성된 광출력 단자(102)로부터 광이 출사되는 방향은 서로 수직이다.The direction in which the light is incident on the optical input terminal 101 formed in the first accommodation space 110 and the direction in which the light is emitted from the optical output terminal 102 formed in the third accommodation space 150 are perpendicular to be.

상기 제2 수용 공간(130)은 투과 시료(132)의 출납이 용이하도록 상기 제2 수용 공간(130)의 일면에 형성된 도어(139)를 포함한다. 이러한 도어(139)는 상기 편광 스플리터(125)로부터 출사되는 복합파의 진행 방향과 평행한 방향으로 연장되는 힌지부(131)에 의해 회동 가능하게 지지될 수 있다. 그리고, 후술하는 도 6b에서 보여지는 바와 같이, 사용자가 투과형 편광간섭 장치(100)를 편리하게 휴대하거나 이동할 수 있도록, 상기 도어(139)가 형성된 상기 제2 수용 공간(130)의 일면과 수직인 다른 면에 핸들(135)이 형성되어 있다. 또한, 제1 수용 공간(110)의 상면에는 상기 제1 수용 공간(110) 내부에 축적된 열을 외부로 배출할 수 있는 통기구(103)가 형성될 수 있다.The second accommodating space 130 includes a door 139 formed on one side of the second accommodating space 130 so that the permeated sample 132 can be easily inserted and removed. The door 139 may be rotatably supported by a hinge 131 extending in a direction parallel to the traveling direction of the composite wave emitted from the polarization splitter 125. 6B, the user can easily carry or move the transmission type polarizing interference device 100 by moving the door 139 in a direction perpendicular to one surface of the second accommodation space 130 in which the door 139 is formed And a handle 135 is formed on the other surface. In addition, the upper surface of the first housing space 110 may have a vent hole 103 through which the heat accumulated in the first housing space 110 can be discharged to the outside.

도 5a의 투과형 편광간섭 장치(100)를 저면에서 바라본 도 5b를 참조하면, 하우징(190)의 저면에는 상기 제1 내지 제3 수용 공간(110, 130, 150)을 일체로 커버하는 일체형 패널(105)이 형성된다. 즉, 하우징(190)의 상면은 각각의 수용 공간 별로 덮개(lid)가 형성되어 각 수용 공간 별 착탈이 가능한 구조로 되어 있음에 비해, 하우징(190)의 저면은 공통으로 된 일체형 패널(105)로 커버되므로, 조립이 보다 간편하고 견고한 구조를 제공할 수 있다.Referring to FIG. 5B, which is a bottom view of the transmission type polarization interferometer 100 of FIG. 5A, an integrated panel (not shown) covering the first to third accommodating spaces 110, 130 and 150 integrally is formed on the bottom surface of the housing 190 105 are formed. In other words, the upper surface of the housing 190 has a structure in which a lid is formed for each accommodating space to be detachable for each accommodating space, while the bottom surface of the housing 190 has a common integrated panel 105, It is possible to provide a more simple and rigid structure for assembly.

이러한 일체형 패널(105)에는 상기 하우징(190)을 바닥으로부터 지지하기 위한 복수의 탄성 지지부(108)와, 상기 투과 시료(132)의 크기가 다소 큰 경우를 대비하여 투과 시료(132)가 외부로 연장되어 돌출될 수 있도록 투과창(107)이 형성될 수 있다.The integrated panel 105 includes a plurality of elastic supports 108 for supporting the housing 190 from the bottom and a plurality of elastic supports 108 for supporting the transparent specimen 132 to the outside in comparison with a case where the size of the transmission specimen 132 is somewhat large. A transmission window 107 may be formed so as to extend and protrude.

도 6a는 도 5a의 투과형 편광간섭 장치(100)에서 상부 덮개들을 제거하고 상방으로부터 바라본 사시도이다. 여기서, 제1 수용 공간(110)과 제2 수용 공간(130)은 제1 격벽(104a)에 의해 구획되어 있으며, 제2 수용 공간(130)과 제3 수용 공간(150)은 상기 제1 격벽(104a)에 평행하게 대향하는 제2 격벽(104b)에 의해 구획되어 있다.FIG. 6A is a perspective view of the transmission type polarization interferometer 100 of FIG. 5A with top covers removed and viewed from above. FIG. The first accommodation space 110 and the second accommodation space 130 are defined by the first partition wall 104a and the second accommodation space 130 and the third accommodation space 150 are defined by the first partition wall 104a, Is partitioned by a second partition 104b opposed in parallel to the second partition 104a.

또한, 상기 제1 격벽(104a)에는 상기 제1 수용 공간(110)과 상기 제2 수용 공간(130) 사이에 연통할 수 있는 제1 연통구(106a)가 형성되고, 상기 제2 격벽(104b)에는 상기 제2 수용 공간(130)과 상기 제3 수용 공간(150) 사이에 연통할 수 있는 제2 연통구(106b)가 형성된다. 이러한 연통구(106a, 106b)의 존재로 인해, 각각 분리된 수용 공간(110, 130, 150)에도 불구하고, 상호 간의 광 전달에는 장애가 발생하지 않는다.The first partition wall 104a is formed with a first communication hole 106a which can communicate with the first accommodation space 110 and the second accommodation space 130. The second partition wall 104b Is formed with a second communication hole 106b which can communicate with the second accommodation space 130 and the third accommodation space 150. [ Due to the presence of the communication ports 106a, 106b, the optical transmission between the two does not occur despite the separate receiving spaces 110, 130, 150, respectively.

또한, 투과형 편광간섭 장치(100)의 상하 방향의 압축력을 지지하기 위한 충분한 강성을 확보하기 위해, 각각의 수용 공간(110, 130, 150)의 코너 부분에는 복수의 코너 빔들(117a 내지 117d, 137a, 157a 내지 157d)이 형성되어 있다. 하우징(190)은 기본적으로, 이러한 복수의 코너 빔들(117a 내지 117d, 137a, 157a 내지 157d) 사이에 전술한 격벽들(104a, 104b)을 포함한 복수의 평면 패널들이 덮혀지는 구조로 되어 있다.A plurality of corner beams 117a to 117d and 137a are formed in corners of the accommodating spaces 110, 130, and 150 in order to secure sufficient rigidity for supporting a vertical compressive force of the transmission type polarizing interference device 100. [ , 157a to 157d are formed. The housing 190 basically has a structure in which a plurality of flat panels including the partition walls 104a and 104b described above are covered between the plurality of corner beams 117a to 117d, 137a and 157a to 157d.

도 6b는 도 6a의 투과형 편광간섭 장치(100)를 상방에서 바라본 평면도이다. 도 6b를 참조하면 제1 수용 공간(110)에는 편광간섭 어셈블리(120)가, 제2 수용 공간(130)에는 지그 어셈블리(140)가, 제3 수용 공간(150)에는 광출력 어셈블리(160)가 각각 수용될 수 있다. 이와 같이, 복수의 어셈블리(120, 140, 160)들이 기능적으로 분리되어 각각의 수용 공간에 수용되는 구조로 인하여, 일부 부품의 교체가 필요하거나 투과 시료(132)의 투입/배출이 필요한 경우에 전체 하우징을 개방하지 않고도 해당 수용 공간만을 개방하여 필요한 작업을 수행할 수 있게 된다.6B is a plan view of the transmission type polarization interferometer 100 of FIG. 6A as viewed from above. 6B, the polarizing interference assembly 120 is installed in the first housing space 110, the jig assembly 140 is housed in the second housing space 130, the light output assembly 160 is housed in the third housing space 150, Respectively. In this way, due to the structure in which the plurality of assemblies 120, 140, and 160 are functionally separated and accommodated in the respective accommodating spaces, when replacement of some parts is necessary or when input / discharge of the permeated sample 132 is required, It is possible to perform necessary work by opening only the accommodation space without opening the housing.

도 7a는 편광간섭 어셈블리(120)를 포함한 제1 수용 공간(130)을 도시한 사시도이고, 도 7b는 편광간섭 어셈블리(120)만을 도시한 사시도이다.7A is a perspective view showing a first accommodation space 130 including a polarization interference assembly 120, and FIG. 7B is a perspective view showing only a polarization interference assembly 120. FIG.

상기 제1 수용 공간(110)에 수용되는 상기 광입력 단자(101), 상기 제1 선형 편광자(122), 상기 편광 스플리터(125), 상기 제1 미러(127) 및 상기 제2 미러(129)는, 함께 단일의 편광간섭 어셈블리(120)로 형성된다. 편광간섭 어셈블리(120)에는 다양한 렌즈(121a, 121b) 및 아이리스(123)도 더 포함될 수 있다. 상기 렌즈(121a, 121b)는 대표적으로 콜리메이팅 렌즈를 포함할 수 있다. 여기서, 복수의 광학계들(121a, 121b, 122, 123)은 서로 나란하게 일렬로 배열되며, 복수의 지지 바(128) 상에서 함께 고정되어 지지될 수 있다.The optical input terminal 101, the first linear polarizer 122, the polarization splitter 125, the first mirror 127, and the second mirror 129, which are accommodated in the first accommodation space 110, Are formed together into a single polarization interference assembly (120). The polarization interference assembly 120 may further include various lenses 121a and 121b and an iris 123. The lenses 121a and 121b may typically include a collimating lens. Here, the plurality of optical systems 121a, 121b, 122, and 123 are arranged in a row in parallel to each other, and can be fixedly supported on the plurality of support bars 128 together.

상기 편광 스플리터(125)는 상기 제1 선형 편광자(122)를 투과하는 광을 입사하는 제1 개구부(124a)와, 상기 제1 미러(127)와 상기 제2 미러(126)에서 반사되어 복합된 상기 복합파가 상기 투과 시료(132) 쪽으로 출사하기 위한 제2 개구부(124b)를 포함한다. 이 때, 상기 제1 개구부(124a) 및 상기 제2 개구부(124b)는 서로 수직인 방향으로 배치된다.The polarizing splitter 125 includes a first opening 124a for receiving the light transmitted through the first linear polarizer 122 and a second opening 124a for reflecting the combined light reflected from the first mirror 127 and the second mirror 126 And a second opening 124b through which the composite wave is emitted toward the transmission sample 132. At this time, the first opening 124a and the second opening 124b are arranged in directions perpendicular to each other.

상기 편광간섭 어셈블리(120)는, 상기 제1 미러(127)가 상기 제1 면에 대해 수직인 방향으로 변위 가능하도록 가이드하는 가이드 바(1271)와, 사용자가 희망하는 값만큼 상기 제1 미러(127)가 상기 가이드 바(1271) 상에서 변위될 수 있도록 조절하는 조절 핀(1273)을 포함한다. 조절 핀(1273)을 이용하여 제1 미러(127)가 가이드 바(1271) 상에서 이동하게 하는 구조는 예를 들어 볼트-너트 메커니즘에 의해 구현될 수 있다.The polarization interference assembly 120 includes a guide bar 1271 for guiding the first mirror 127 to be displaceable in a direction perpendicular to the first surface, 127) to be displaced on the guide bar (1271). The structure in which the first mirror 127 is moved on the guide bar 1271 using the adjustment pin 1273 can be realized by, for example, a bolt-nut mechanism.

도 8은 지그 어셈블리(140)를 포함한 제2 수용 공간(130)을 도시한 사시도이다. 상기 지그 어셈블리(140)는 브라켓(141)과 조절 핀(143)을 포함하여 구성될 수 있다. 상기 브라켓(141)은 투과 시료(132)를 지지하기 위해 제2 수용 공간(130)의 일측에 고정되고, 상기 조절 핀(140b)은 투과 시료(132)를 상기 브라켓(141) 상에 고정하되, 투과 시료(132)의 두께에 따라 조절 가능하도록 구성된다.8 is a perspective view showing the second accommodation space 130 including the jig assembly 140. As shown in FIG. The jig assembly 140 may include a bracket 141 and an adjusting pin 143. The bracket 141 is fixed to one side of the second accommodation space 130 to support the transmission sample 132 and the adjustment pin 140b fixes the transmission sample 132 on the bracket 141 And the thickness of the transmitted specimen 132. [0064]

도 9는 광출력 어셈블리(160)를 포함한 제3 수용 공간(150)을 도시한 사시도이다. 광출력 어셈블리(160)는 기본적으로, 상기 투과 시료(132)와 상기 광출력 단자(102) 사이에 배치되어 상기 투과 시료(132)를 투과한 복합파를 간섭시키는 제2 선형 편광자(152)와 광출력 단자(102)를 포함하며, 추가적으로 렌즈 등 다양한 광학 요소(154)를 더 포함할 수 있다.9 is a perspective view showing a third accommodation space 150 including the light output assembly 160. FIG. The optical output assembly 160 basically includes a second linear polarizer 152 disposed between the transmission sample 132 and the optical output terminal 102 to interfere with a complex wave transmitted through the transmission sample 132, Optical output terminal 102, and may further include various optical elements 154, such as a lens.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, You will understand. It is therefore to be understood that the embodiments described above are in all respects illustrative and not restrictive.

100: 투과형 편광간섭 장치 101: 광입력 단자
102: 광출력 단자 103: 통기구
104a, 104b: 격벽 105: 일체형 패널
106a, 106b: 연통구 107: 투과창
108: 탄성 지지부 110, 130, 150: 수용 공간
117, 137, 157: 코너 빔 120: 편광간섭 어셈블리
121: 콜리메이팅 렌즈 122, 152: 선형 편광자
123: 아이리스 124a, 124b: 개구부
125: 편광 빔 스플리터 127: 가동 미러
128: 지지 바 129: 고정 미러
131: 힌지부 132: 투과 시료
135: 핸들 139: 도어
140: 지그 어셈블리 141: 브라켓
143: 조절 핀 160: 광출력 어셈블리
100: transmission type polarization interference device 101: optical input terminal
102: light output terminal 103:
104a, 104b: partition wall 105: integral panel
106a, 106b: communication hole 107: transmission window
108: elastic support 110, 130, 150:
117, 137, 157: Corner beam 120: Polarization interference assembly
121: Collimating lens 122, 152: Linear polarizer
123: iris 124a, 124b: opening
125: polarized beam splitter 127: movable mirror
128: Support bar 129: Fixed mirror
131: Hinge part 132: Permeated sample
135: handle 139: door
140: jig assembly 141: bracket
143: regulating pin 160: light output assembly

Claims (5)

광원에서 조사되는 광을 입사하는 광입력 단자;
상기 입사된 광을 분리하는 편광 빔 스플리터;
상기 편광 빔 스플리터의 제1 면에 설치되어, 상기 편광 빔 스플리터를 투과한 제1 편광을 상기 편광 빔 스플리터로 반사하는 제1 미러;
상기 제1 면에 수직으로 상기 편광 빔 스플리터의 제2 면에 부착되어, 상기 편광 빔 스플리터에서 반사된 제2 편광을 상기 편광 빔 스플리터로 반사하는 제2 미러;
상기 제1 편광 및 상기 제2 편광이 복합되어 생성된 복합파가 투과 시료를 투과한 후 상기 투과 시료를 투과한 복합파를 외부로 출사하는 광출력 단자; 및
상기 광입력 단자, 상기 편광 빔 스플리터, 상기 제1 미러, 상기 제2 미러, 상기 광출력 단자를 수용하는 하우징을 포함하되,
상기 제2 미러는 상기 제2 면에 대해 고정된 고정 미러이고, 상기 제1 미러는 상기 제1 면에 대해 수직인 방향으로 변위될 수 있는 가동 미러이며,
상기 제1 미러의 변위에 의해 상기 제1 편광의 경로 길이와 상기 제2 편광의 경로 길이 간의 차이가 조절될 수 있으며,
상기 광입력 단자로 광이 입사되는 방향과, 상기 광출력 단자로부터 광이 출사되는 방향은 서로 수직이며,
상기 하우징은,
상기 광입력 단자, 상기 편광 빔 스플리터, 상기 제1 미러 및 상기 제2 미러를 수용하기 위한 제1 수용 공간;
상기 편광 빔 스플리터로부터 출사되는 복합파의 진행 방향과 나란하게 상기 투과 시료를 고정하는 지그 어셈블리를 수용하기 위한 제2 수용 공간; 및
상기 투과 시료를 투과한 복합파를 외부로 출사하는 광출력 단자를 수용하기 위한 제3 수용 공간을 포함하는, 투과형 편광간섭 장치.
A light input terminal for inputting light irradiated from a light source;
A polarizing beam splitter for separating the incident light;
A first mirror provided on a first surface of the polarizing beam splitter and reflecting the first polarized light transmitted through the polarized beam splitter to the polarized beam splitter;
A second mirror attached to the second surface of the polarizing beam splitter perpendicularly to the first surface, the second mirror reflecting the second polarized light reflected by the polarizing beam splitter to the polarizing beam splitter;
A light output terminal through which a composite wave generated by combining the first polarized light and the second polarized light transmits a transmission sample and then outputs a composite wave transmitted through the transmission sample to the outside; And
And a housing for accommodating the optical input terminal, the polarization beam splitter, the first mirror, the second mirror, and the optical output terminal,
The second mirror is a stationary fixed mirror with respect to the second surface, and the first mirror is a movable mirror which can be displaced in a direction perpendicular to the first surface,
The difference between the path length of the first polarized light and the path length of the second polarized light can be adjusted by the displacement of the first mirror,
A direction in which light is incident on the optical input terminal and a direction in which light is emitted from the optical output terminal are perpendicular to each other,
The housing includes:
A first accommodation space for accommodating the optical input terminal, the polarization beam splitter, the first mirror, and the second mirror;
A second accommodating space for accommodating a jig assembly fixing the transmission sample parallel to the traveling direction of the composite wave emitted from the polarizing beam splitter; And
And a third accommodating space for accommodating a light output terminal for externally outputting the composite wave transmitted through said transmission sample.
삭제delete 제1항에 있어서,
상기 제2 수용 공간은 상기 투과 시료의 출납이 용이하도록 상기 제2 수용 공간의 일면에 형성된 도어를 포함하고,
상기 하우징은 상기 도어가 형성된 상기 일면의 반대쪽에서, 상기 제1 내지 제3 수용 공간을 일체로 커버하는 일체형 패널을 포함하는, 투과형 편광간섭 장치.
The method according to claim 1,
Wherein the second accommodating space includes a door formed on one surface of the second accommodating space for facilitating insertion and removal of the permeated sample,
Wherein the housing includes an integral panel that integrally covers the first to third accommodating spaces on the opposite side of the one surface on which the door is formed.
제1항에 있어서, 상기 지그 어셈블리는
상기 제2 수용 공간 내의 일측에 고정되어 상기 투과 시료를 지지하기 위한 브라켓; 및
상기 투과 시료의 두께에 따라 조절 가능하며 상기 투과 시료를 상기 브라켓에 대해 고정하기 위한 조절 핀을 포함하는, 투과형 편광간섭 장치.
2. The apparatus of claim 1, wherein the jig assembly
A bracket fixed to one side of the second accommodation space to support the permeated sample; And
And a control pin adjustable according to a thickness of the transmission sample and fixing the transmission sample to the bracket.
제1항에 있어서,
상기 제1 수용 공간에 수용되는 상기 광입력 단자, 상기 편광 빔 스플리터, 상기 제1 미러 및 상기 제2 미러는 단일의 편광간섭 어셈블리로 형성되고,
상기 편광간섭 어셈블리는, 상기 제1 미러가 상기 제1 면에 대해 수직인 방향으로 변위 가능하도록 가이드하는 가이드 바; 및
사용자가 희망하는 값만큼 상기 제1 미러가 상기 가이드 바 상에서 변위될 수 있도록 조절하는 조절 핀을 포함하는, 투과형 편광간섭 장치.
The method according to claim 1,
The optical input terminal, the polarization beam splitter, the first mirror, and the second mirror, which are housed in the first accommodation space, are formed of a single polarization interference assembly,
The polarization interference assembly includes a guide bar for guiding the first mirror to be displaceable in a direction perpendicular to the first surface; And
And an adjustment pin for adjusting the first mirror to be displaced on the guide bar by a value desired by the user.
KR1020180072133A 2018-03-02 2018-06-22 Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same KR101937893B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180025317 2018-03-02
KR20180025317 2018-03-02

Publications (1)

Publication Number Publication Date
KR101937893B1 true KR101937893B1 (en) 2019-01-11

Family

ID=65027959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180072133A KR101937893B1 (en) 2018-03-02 2018-06-22 Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same

Country Status (1)

Country Link
KR (1) KR101937893B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082399A (en) * 2018-12-28 2020-07-08 연세대학교 산학협력단 Real time phase-sensitive GMR biosensor device and sensing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082399A (en) * 2018-12-28 2020-07-08 연세대학교 산학협력단 Real time phase-sensitive GMR biosensor device and sensing method thereof
KR102166527B1 (en) 2018-12-28 2020-10-15 전북대학교산학협력단 Real time phase-sensitive GMR biosensor device and sensing method thereof

Similar Documents

Publication Publication Date Title
JP6893667B2 (en) Integrated polarization interferometer and snapshot spectroscopic polarization meter to which it is applied
US7230701B2 (en) Compact spectroscopic ellipsometer
EP0681166B1 (en) Improvements in or relating to optical interferometers
US6043883A (en) Wavemeter and an arrangement for the adjustment of the wavelength of the signals of an optical source
EP1200796A1 (en) Birefringement interferometer
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
US7498561B2 (en) Arrangement for the detection of illumination radiation in a laser scanning microscope
KR101798957B1 (en) Apparatus and method for snapshot interferometric spectro-polarimetry
US20220252459A1 (en) Spectroscopic polarimeter and device for automatically adjusting optical path difference
KR101937893B1 (en) Polarization interferometer for measuring transmissive objects and optical phase metrology device using the same
KR101937894B1 (en) Spectropolarimeter apparatus having integrated polarizing interferometer
CN107917757A (en) A kind of portable terahertz light spectrometer
US7209233B2 (en) High-sensitivity reflection measurement apparatus
KR102124764B1 (en) Integrated spectropolarimeter apparatus and spectropolarimeter system using the same
KR101825994B1 (en) Luminance and color meter with wave plate
US11112231B2 (en) Integrated reflectometer or ellipsometer
WO2004104563A1 (en) Spectrometer
KR100395442B1 (en) Ultra high speed spectroscopic ellipsometer
KR102158520B1 (en) Apparatus for automatically adjusting optical path difference of spectropolarimeter
EP3757533B1 (en) Back-to-back spectrometer arrangement
CN116804588A (en) Grating diffraction efficiency measuring device
JPH05126641A (en) Spectral ellipsometer
JPH11101740A (en) Polarization-analyzing apparatus
JP2000065727A (en) Polarization-analyzing device
JPH02257024A (en) Light spectrum analyzer

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant