KR101937362B1 - Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin - Google Patents

Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin Download PDF

Info

Publication number
KR101937362B1
KR101937362B1 KR1020170043086A KR20170043086A KR101937362B1 KR 101937362 B1 KR101937362 B1 KR 101937362B1 KR 1020170043086 A KR1020170043086 A KR 1020170043086A KR 20170043086 A KR20170043086 A KR 20170043086A KR 101937362 B1 KR101937362 B1 KR 101937362B1
Authority
KR
South Korea
Prior art keywords
fdca
gold
exchange resin
palladium
anion exchange
Prior art date
Application number
KR1020170043086A
Other languages
Korean (ko)
Other versions
KR20180112891A (en
Inventor
조진구
앤젤 안토니 라제가나탄 처칠
박석규
티엔냔 흐위탄
김용진
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020170043086A priority Critical patent/KR101937362B1/en
Publication of KR20180112891A publication Critical patent/KR20180112891A/en
Application granted granted Critical
Publication of KR101937362B1 publication Critical patent/KR101937362B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • B01J35/0006
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 HMF(5-Hydroxymethylfurfural)를 용매 하에서 촉매를 사용하여 산화반응시켜 하기 화학식 2로 표시되는 FDCA(2,5-Furan dicarboxylic acid)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDCA의 제조방법에 관한 것으로, 골드(Au)-팔라듐(Pd) 바이메탈릭 몰 비율을 조절하여 90% 이상의 고수율의 FDCA를 얻을 수 있는 효과가 있으며, 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자 촉매는 재사용하여도 높은 활성이 유지되는 특성이 있다.
[화학식 1]

Figure 112018099219609-pat00019

[화학식 2]
Figure 112018099219609-pat00020
The present invention relates to a process for preparing 2,5-furan dicarboxylic acid (FDCA) represented by the following formula (2) by an oxidation reaction of HMF (5-Hydroxymethylfurfural) represented by the following formula Wherein the catalyst comprises an anion exchange resin and AuPd Bimetallic nanoparticles carried on the anion exchange resin, wherein the gold (Au) -palladium (Pd) bimetallic moles (Au) -Palladium (Pd) bimetallic nanoparticle catalyst supported on anion exchange resin has a characteristic of maintaining high activity even when reused. have.
[Chemical Formula 1]
Figure 112018099219609-pat00019

(2)
Figure 112018099219609-pat00020

Description

음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 HMF로부터 FDCA의 제조방법{METHOD FOR PREPARING FDCA FROM HMF USING GOLD-PALLADIUM BIMETALLIC NANOPARTICLES SUPPORTED ON AN ANION EXCHANGE RESIN}Technical Field [0001] The present invention relates to a method for preparing FDCA from HMF using gold palladium bimetallic nanoparticles supported on an anion exchange resin, and a method for producing FDCA from HMF using gold palladium bimetallic nanoparticles supported on an anion exchange resin.

본 발명은 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 이용한 HMF로부터 FDCA의 제조방법에 관한 것으로, 보다 상세하게는 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자를 촉매로 사용하여, 보다 간단한 공정으로 HMF로부터 FDCA를 높은 수율로 얻는 제조방법에 관한 것이다.The present invention relates to a process for preparing FDCA from HMF using gold palladium bimetallic nanoparticles supported on an anion exchange resin, and more particularly to a process for preparing FDCA from gold phalladium bimetallic nanoparticles supported on an anion exchange resin, And a process for obtaining FDCA from HMF at a high yield by a simple process.

한정된 매장량의 석유자원의 지속적인 감소와 신흥 개발도상국의 성장에 따른 석유수요 급증은 시장 수급의 불균형을 유발하며 고유가 시대를 초래하고 있다. 더욱이 석유의 무분별한 사용으로 인해 발생하는 비가역적 온실가스는 지구온난화와 같은 심각한 환경문제를 일으키고 있다.The steep decline in petroleum resources with limited reserves and the surge in oil demand due to the growth of emerging economies are leading to an era of high oil prices, triggering an imbalance in market supply and demand. Moreover, irreversible greenhouse gases arising from the indiscriminate use of oil are causing serious environmental problems such as global warming.

이미 세계 각국은 재생 및 지속사용이 가능한 바이오매스를 통해 석유자원을 대체하기 위한 많은 노력을 기울이고 있으며, 바이오에탄올, 바이오디젤과 같은 바이오연료와 락틱산, 프로판다이올과 같은 바이오플라스틱 단량체 등을 산업적으로 생산하여 수송용 연료 또는 석유화학물질을 대체하고 있다.Already, countries around the world are making efforts to replace petroleum resources through renewable and sustainable biomass. Biofuels such as bioethanol and biodiesel, and bioplastic monomers such as lactic acid and propanediol, To replace transportation fuels or petrochemicals.

이와 같은 노력의 일환으로, 최근 각광받고 있는 물질이 바이오매스 유래 퓨란계 화합물인 하기 반응식으로 표시되는 5-히드록시메틸-2-푸르푸랄 (5-hydroxymethyl-2-furfural, HMF)과 그의 유도체인 2,5-퓨란다이카르복실산(2,5-Furandicarboxylic acid, FDCA)가 있다.As a result of this effort, it has been proposed that a substance which has recently been spotlighted is 5-hydroxymethyl-2-furfural (HMF) represented by the following reaction formula, which is a biomass-derived furan compound, 2,5-Furandicarboxylic acid (FDCA).

[반응식][Reaction Scheme]

Figure 112017032541467-pat00001
Figure 112017032541467-pat00001

FDCA는 HMF의 알데하이드기와 알코올기가 산화되어 두개의 카르복실산을 포함하는 퓨란계 유도체 화합물로, 폴리에스테르 중합체를 제조하는데 이용될 수 있고, FDCA 에스테르는 PVC를 프탈레이트 가소제에 대한 대체제로 이용될 수 있는 특성이 있다.FDCA can be used to prepare polyester polymers with furan derivatives containing two carboxylic acids by oxidizing the aldehyde groups and alcohol groups of HMF, and FDCA esters can be used as substitutes for phthalate plasticizers There are characteristics.

종래에 HMF와 아세트산 용매와의 반응을 통해 형성된 5-(아세톡시메틸) 푸르푸랄(AMF) 에스테르로부터 FDCA를 제조(WO 2011/043661)하는 연구가 진행되었으나, 수율이 낮아 생산성이 낮은 문제점이 있었다.Studies have been conducted to prepare FDCA from 5- (acetoxymethyl) furfural (AMF) ester formed through the reaction of HMF with an acetic acid solvent (WO 2011/043661), but the yield is low and the productivity is low .

또한, 코발트 및 망간을 기반으로 하고 브롬화물을 함유하는 산화촉매를 이용하여 140℃보다 높은 온도에서 FDCA를 제조하는 기술이 연구되었으나, 이러한 방법을 이용하여 얻은 FDCA는 최대 수율에 70%에 그친 단점이 있었다.In addition, a technique for manufacturing FDCA at a temperature higher than 140 ° C. by using an oxidation catalyst based on cobalt and manganese and containing bromide has been studied. However, the FDCA obtained using this method has a disadvantage of only 70% .

따라서, 재활용도가 높은 촉매의 개발과 이를 이용하여 HMF로부터 FDCA를 제조하고, 공정의 간소화, 높은 생산성으로 산업에 이용 가능성을 향상시킬 수 있는 FDCA 제조방법을 개발할 필요가 있다.Therefore, it is necessary to develop an FDCA manufacturing method which can improve the usability to industry by simplifying the process and high productivity, by developing a highly recyclable catalyst and manufacturing FDCA from HMF using the same.

본 발명의 목적은 상기 문제점을 해결하기 위한 것으로, 음이온 교환수지에서 담지된 골드팔라듐 바이메탈릭 나노입자를 촉매로 이용함으로써, HMF로부터 FDCA를 제조하는 공정을 단순화하고, 골드(Au)-팔라듐(Pd) 비율(몰비)을 조절하여 90% 이상의 고수율의 FDCA를 얻으며, 우수한 선택성을 가지는 HMF로부터 FDCA의 제조방법을 제공한다.Disclosure of the Invention The object of the present invention is to solve the above problems, and it is an object of the present invention to simplify the process of producing FDCA from HMF by using gold palladium bimetallic nanoparticles supported on an anion exchange resin as a catalyst, ) Ratio (molar ratio) is controlled to obtain FDCA of 90% or higher yield, and a method for producing FDCA from HMF having excellent selectivity is provided.

또한, 약염기성을 갖는 음이온 교환수지를 포함하는 금속 촉매를 사용함으로써, 적은 양의 염기를 사용하여 HMF로부터 FDCA를 제조하는 방법을 제공한다.Also provided is a method for preparing FDCA from HMF using a small amount of base, by using a metal catalyst comprising an anion exchange resin with weak basicity.

또한, 재사용하여도 높은 활성이 유지되며, 상업적 연속 공정에 사용될 수 있는 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 촉매를 제공한다.Also provided is a gold palladium bimetallic nanoparticle catalyst supported on an anion exchange resin which can be used for commercial continuous processes while maintaining high activity even after reuse.

본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 HMF(5-Hydroxymethylfurfural)를 용매 하에서 촉매를 사용하여 산화반응시켜 하기 화학식 2로 표시되는 FDCA(2,5-Furandicarboxylic acid)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDCA의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a process for producing 2,5-furandicarboxylic acid (FDCA) represented by the following formula (2) by oxidizing HMF (5-Hydroxymethylfurfural) represented by the following formula Wherein the catalyst comprises an anion exchange resin and gold palladium bimetallic nanoparticles carried on the anion exchange resin.

[화학식 1]][Formula 1]

Figure 112017032541467-pat00002
Figure 112017032541467-pat00002

[화학식 2](2)

Figure 112017032541467-pat00003
Figure 112017032541467-pat00003

상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비가 0.5:1.0 내지 6.0:1.0일 수 있다.The molar ratio of gold (Au): palladium (Pd) of the gold palladium bimetallic nanoparticles may be 0.5: 1.0 to 6.0: 1.0.

상기 음이온 교환수지가 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함할 수 있다.The anion exchange resin may comprise a support and an amine group covalently bonded on the support.

상기 음이온 교환수지가 하기 구조식 1로 표시되는 것 또는 그의 염일 수 있다.The anion exchange resin may be one represented by the following structural formula 1 or a salt thereof.

[구조식 1][Structural formula 1]

Figure 112017032541467-pat00004
Figure 112017032541467-pat00004

구조식 1에서,In formula 1,

X가 원자가결합, C1 내지 C10의 알킬렌기, 또는 C6 내지 C10의 아릴렌기이고,X is an atomic bond, a C1 to C10 alkylene group, or a C6 to C10 arylene group,

R1 및 R2가 서로가 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이다.R 1 and R 2 are the same or different from each other, and each is a hydrogen atom, a substituted or unsubstituted C 1 to C 15 linear alkyl group with a hydroxy group, or a substituted or unsubstituted C 3 to C 15 branched alkyl group having a hydroxy group.

상기 음이온 교환수지가 하기 구조식 2로 표시되는 것 또는 그의 염일 수 있다.The anion exchange resin may be one represented by the following structural formula 2 or a salt thereof.

[구조식 2][Structural formula 2]

Figure 112017032541467-pat00005
Figure 112017032541467-pat00005

구조식 2에서,In formula 2,

R1 및 R2가 서로가 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이고,R 1 and R 2 are the same or different from each other and each is a hydrogen atom, a substituted or unsubstituted C1 to C15 linear alkyl group with a hydroxy group, or a substituted or unsubstituted C3 to C15 branched alkyl group having a hydroxy group,

m은 1 내지 3의 정수 중 어느 하나이다.m is an integer of 1 to 3;

상기 음이온 교환수지가 하기 구조식 3으로 표시되는 것 또는 그의 염일 수 있다.The anion exchange resin may be one represented by the following structural formula 3 or a salt thereof.

[구조식 3][Structural Formula 3]

Figure 112017032541467-pat00006
Figure 112017032541467-pat00006

구조식 3에서,In Structure 3,

R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.R 3 is a hydrogen atom, a C1 to C10 straight chain alkyl group, or a C3 to C10 branched alkyl group.

m 및 n은 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,m and n are the same or different and each independently is an integer of 1 to 3,

q는 1 내지 10의 정수 중 어느 하나이다.and q is an integer of 1 to 10.

상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합된 것일 수 있다.The anion exchange resin may be covalently bonded with a glucamine group or a salt thereof on the support.

상기 지지체가 다공성 또는 젤형이고, 용매 하에서 스웰링(swelling)될 수 있다.The support may be porous or gel-like and may be swelled under a solvent.

상기 지지체가 폴리스티렌, 가교된 폴리스티렌, 공중합된 폴리스티렌 및 그래프트된 폴리스티렌 중에서 선택된 1종 이상의 고분자를 포함할 수 있다.The support may comprise at least one polymer selected from polystyrene, cross-linked polystyrene, copolymerized polystyrene and grafted polystyrene.

상기 음이온 교환수지가 염기성일 수 있다.The anion exchange resin may be basic.

상기 산화반응 시 용매에 탄산 나트륨(Na2Co3), 소듐 메톡사이드(sodium methoxide), 탄산수소 나트륨(NaHCO3), 탄산 칼륨 (K2CO3), 중탄산 칼륨(KHCO3), 수산화 나트륨(NaOH) 및 수산화 칼륨(KOH)중에서 선택된 1종 이상의 염기를 추가로 투입하여 산화반응을 수행할 수 있다.During the oxidation reaction, sodium carbonate (Na 2 CO 3 ), sodium methoxide, sodium hydrogencarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium bicarbonate (KHCO 3 ) NaOH) and potassium hydroxide (KOH) may be further added to perform the oxidation reaction.

상기 용매가 극성용매일 수 있다.The solvent may be a polar solvent.

상기 촉매가 재사용될 수 있다.The catalyst can be reused.

상기 FDCA(2,5-Furandicarboxylic acid)의 수율이 80 내지 99% 일 수 있다.The yield of 2,5-furandicarboxylic acid (FDCA) may be 80 to 99%.

상기 FDCA(2,5-Furandicarboxylic acid)를 제조하는 퓨란계 화합물의 제조가 상온에서 수행될 수 있다.The preparation of the furan-based compound for preparing 2,5-furandicarboxylic acid (FDCA) can be carried out at room temperature.

상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조할 수 있다.The catalyst may be prepared by reacting a reducing agent, an anion exchange resin, a gold (Au) precursor and a palladium (Pd) precursor in a solvent.

상기 골드(Au) 전구체가 골드 클로라이드(AuCl3) 및 골드 브로마이드(AuBr3) 중에서 선택된 1종 이상을 포함할 수 있다.The gold (Au) precursor may include at least one selected from gold chloride (AuCl 3 ) and gold bromide (AuBr 3 ).

상기 팔라듐(Pd) 전구체가 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2) 및 팔라듐 아세테이트(Pd(OAc)2) 중에서 선택된 1종 이상을 포함할 수 있다.The palladium (Pd) precursor may include at least one selected from the group consisting of palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ) and palladium acetate (Pd (OAc) 2 ).

상기 환원제가 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4) 및 하이드라진(N2H4) 중에서 선택된 1종 이상일 수 있다.Wherein the reducing agent is selected from the group consisting of sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium aluminum hydride (LiAlH 4 ) and hydrazine (N 2 H 4 ) It may be at least one selected.

본 발명의 퓨란계 화합물의 제조방법은 음이온 교환수지에서 담지된 골드(Au)-팔라듐(Pd)의 바이메탈릭(bimetallic) 나노입자를 촉매로 이용함으로써, HMF로부터 FDCA를 제조하는 공정을 단순화하고, 골드(Au)-팔라듐(Pd) 비율을 조절하여 90% 이상의 고수율의 FDCA를 얻으며, 우수한 선택성을 가지는 효과가 있다.The method of producing the furan compound of the present invention can simplify the process for producing FDCA from HMF by using bimetallic nanoparticles of gold (Au) -palladium (Pd) supported on an anion exchange resin as a catalyst, By controlling the ratio of gold (Au) to palladium (Pd), FDCA having a yield of 90% or more is obtained, and it has an effect of having excellent selectivity.

또한, 약염기성을 갖는 음이온 교환수지를 사용함으로써, 적은 양의 염기를 사용하여 HMF로부터 FDCA를 제조할 수 있는 효과가 있다.Further, by using an anion exchange resin having weak basicity, FDCA can be produced from HMF using a small amount of a base.

또한, 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 나노입자 촉매는 재사용하여도 높은 활성이 유지되며, 상업적 연속 공정에 적용이 가능한 효과가 있다.In addition, the gold palladium bimetallic nanoparticle nanoparticle catalyst supported on the anion exchange resin maintains high activity even after reuse, and is applicable to a commercial continuous process.

도 1은 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 나노입자 촉매의 XPS 이미지를 나타낸 것이다.
도 2는 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 나노입자 촉매의 TEM 이미지를 나타낸 것이다.
도 3은 HMF가 FDCA로 산화되는 과정을 시간에 따라 분석한 그래프를 나타낸 것이다.
도 4는 골드팔라듐 바이메탈릭 나노입자가 담지되는 음이온 교환수지의 종류에 따른 HMF의 전환율 및 FDCA의 선택성을 분석한 것이다.
도 5는 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 촉매 재활용성을 분석한 것이다.
1 is an XPS image of a gold palladium bimetallic nanoparticle nanoparticle catalyst supported on an anion exchange resin.
2 is a TEM image of a gold palladium bimetallic nanoparticle nanoparticle catalyst supported on an anion exchange resin.
FIG. 3 is a graph showing a time-dependent analysis of the oxidation of HMF to FDCA.
FIG. 4 is a graph showing the conversion of HMF and the selectivity of FDCA according to the type of anion exchange resin carrying gold palladium bimetallic nanoparticles.
FIG. 5 is an analysis of the catalyst recyclability of gold palladium bimetallic nanoparticles carried on an anion exchange resin.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description does not limit the present invention to specific embodiments. In the following description of the present invention, detailed description of related arts will be omitted if it is determined that the gist of the present invention may be blurred .

본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms " comprises ", or " having ", and the like, specify that the presence of stated features, integers, steps, operations, elements, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, or combinations thereof.

본 발명의 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 이용하여 2,5-Furandicarboxylicacid(FDCA)제조하는 방법에 대하여 설명하도록 한다.A method for producing 2,5-furandicarboxylic acid (FDCA) using gold palladium bimetallic nanoparticles supported on an anion exchange resin of the present invention will be described.

본 발명은 하기 화학식 1로 표시되는 HMF(Hydroxy Methyl Furfural)를 용매 하에서 촉매를 사용하여 산화반응시켜 하기 화학식 2로 표시되는 FDCA(2,5-Furandicarboxylic acid)를 제조하는 단계를 포함하고, 상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하는 것인 FDCA의 제조방법을 제공한다.The present invention relates to a process for preparing 2,5-furandicarboxylic acid (FDCA) represented by the following formula (2) by oxidation reaction of HMF (Hydroxy Methyl Furfural) represented by the following formula (1) Wherein the anion exchange resin comprises an anion exchange resin and gold palladium bimetallic nanoparticles carried on the anion exchange resin.

[화학식 1][Chemical Formula 1]

Figure 112017032541467-pat00007
Figure 112017032541467-pat00007

[화학식 2](2)

Figure 112017032541467-pat00008
Figure 112017032541467-pat00008

상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비는 0.5:1.0 내지 6.0:1.0 일 수 있다.The molar ratio of gold (Au): palladium (Pd) of the gold palladium bimetallic nanoparticles may be 0.5: 1.0 to 6.0: 1.0.

상기 음이온 교환수지는 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함할 수 있다.The anion exchange resin may comprise a support and an amine group covalently bonded to the support.

상기 음이온 교환수지는 하기 구조식 1로 표시되는 것 또는 그의 염일 수 있으며,The anion exchange resin may be one represented by the following structural formula 1 or a salt thereof,

[구조식 1][Structural formula 1]

Figure 112017032541467-pat00009
Figure 112017032541467-pat00009

구조식 1에서,In formula 1,

X가 원자가결합, C1 내지 C10의 알킬렌기, 또는 C6 내지 C10의 아릴렌기이고,X is an atomic bond, a C1 to C10 alkylene group, or a C6 to C10 arylene group,

R1 및 R2가 서로가 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이다.R 1 and R 2 are the same or different from each other and are each independently a hydrogen atom, a substituted or unsubstituted C1 to C15 linear alkyl group with a hydroxy group, or a substituted or unsubstituted C3 to C15 branched alkyl group having a hydroxy group.

바람직하게는 상기 음이온 교환수지는 하기 구조식 2로 표시되는 것 또는 그의 염일 수 있으며,Preferably, the anion exchange resin may be one represented by the following structural formula 2 or a salt thereof,

[구조식 2][Structural formula 2]

Figure 112017032541467-pat00010
Figure 112017032541467-pat00010

구조식 2에서,In formula 2,

R1 및 R2가 서로가 같거나 다르고, 각각 독립적으로 수소원자, 히드록시기가 치환 또는 비치환된 C1 내지 C15 직쇄상 알킬기, 또는 히드록시기가 치환 또는 비치환된 C3 내지 C15 분지상 알킬기이고,R 1 and R 2 are the same or different from each other and each is a hydrogen atom, a substituted or unsubstituted C1 to C15 linear alkyl group with a hydroxy group, or a substituted or unsubstituted C3 to C15 branched alkyl group having a hydroxy group,

m은 1 내지 3의 정수 중 어느 하나이다.m is an integer of 1 to 3;

더욱 바람직하게는, 상기 음이온 교환수지는 하기 구조식 3으로 표시되는 것 또는 그의 염일 수 있다.More preferably, the anion exchange resin may be one represented by the following structural formula 3 or a salt thereof.

[구조식 3][Structural Formula 3]

Figure 112017032541467-pat00011
Figure 112017032541467-pat00011

구조식 3에서,In Structure 3,

R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.R 3 is a hydrogen atom, a C1 to C10 straight chain alkyl group, or a C3 to C10 branched alkyl group.

m 및 n은 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,m and n are the same or different and each independently is an integer of 1 to 3,

q는 1 내지 10의 정수 중 어느 하나이다.and q is an integer of 1 to 10.

상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합될 수 있다.The anion exchange resin may be covalently bonded with a glucamine group or a salt thereof on the support.

상기 지지체는 다공성이거나 젤형이고, 용매 하에서 스웰링(swelling)될 수 있다.The support may be porous or gel-like and may be swelled under a solvent.

상기 지지체는 폴리스티렌, 가교된 폴리스티렌, 공중합된 폴리스티렌, 그래프트된 폴리스티렌 등의 고분자를 포함할 수 있다.The support may comprise a polymer such as polystyrene, cross-linked polystyrene, copolymerized polystyrene, grafted polystyrene, or the like.

상기 음이온 교환수지는 염기성일 수 있다.The anion exchange resin may be basic.

상기 산화반응 시 용매에 탄산 나트륨(Na2CO3), 탄산수소 나트륨(NaHCO3), 탄산 칼륨 (K2CO3), 중탄산 칼륨(KHCO3), 수산화 나트륨(NaOH), 수산화 칼륨(KOH) 등의 염기를 추가로 투입하여 산화반응을 수행할 수 있다.(Na 2 CO 3 ), sodium hydrogencarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium bicarbonate (KHCO 3 ), sodium hydroxide (NaOH), potassium hydroxide (KOH) May be further added to carry out the oxidation reaction.

상기 용매는 극성용매이며, 물을 사용할 수 있으며, 물과 섞일 수 있는 극성 유기용매를 함께 사용할 수 있고, 상기 극성 유기용매의 구체적인 예로서는 메탄올, 에탄올, n-프로판올, iso-프로판올, 1,4-다이옥산, 디메틸설폭시드(DMSO), 디메틸포름아미드(DMF)등을 들 수 있으며, 이에 제한되는 것은 아니다. The solvent may be a polar solvent, water may be used, and a polar organic solvent which can be mixed with water may be used together. Specific examples of the polar organic solvent include methanol, ethanol, n-propanol, iso- But are not limited to, dioxane, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and the like.

상기 촉매는 재사용될 수 있으며, 본 발명의 촉매는 5 내지 10 번 재사용하여HMF를 산화시켜 FDCA를 제조하는데 사용할 수 있다. The catalyst can be reused and the catalyst of the present invention can be reused 5 to 10 times to oxidize HMF to produce FDCA.

상기 FDCA(2,5-Furan dicarboxylic acid)의 수율은 80 내지 99%일 수 있다. The yield of 2,5-furan dicarboxylic acid (FDCA) may be 80 to 99%.

상기 FDCA(2,5-Furandicarboxylic acid)를 제조하는 퓨란계 화합물의 제조가 상온에서 수행될 수 있다.The preparation of the furan-based compound for preparing 2,5-furandicarboxylic acid (FDCA) can be carried out at room temperature.

상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조할 수 있다.The catalyst may be prepared by reacting a reducing agent, an anion exchange resin, a gold (Au) precursor and a palladium (Pd) precursor in a solvent.

상기 골드(Au) 전구체는 골드 클로라이드(AuCl3), 골드 브로마이드(AuBr3)등을 사용할 수 있다.The gold (Au) precursor may be gold chloride (AuCl 3 ), gold bromide (AuBr 3 ), or the like.

상기 팔라듐(Pd) 전구체는 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2), 팔라듐 아세테이트(Pd(OAc)2)등을 사용할 수 있다. The palladium (Pd) precursor may be palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium acetate (Pd (OAc) 2 ) or the like.

그러나, 본 발명의 골드(Au) 전구체 및 팔라듐(Pd) 전구체의 범위가 여기에만 한정되는 것은 아니다.However, the range of the gold (Au) precursor and the palladium (Pd) precursor of the present invention is not limited thereto.

상기 환원제는 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4), 하이드라진(N2H4) 등을 사용할 수 있다.The reducing agent may be selected from the group consisting of sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium aluminum hydride (LiAlH 4 ), hydrazine (N 2 H 4 ) Can be used.

이하 본 발명의 구성을 하기의 실시예를 통해 보다 구체적으로 설명하지만, 본 발명에 이에 제한되는 것은 아니다.Hereinafter, the structure of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

[실시예] [Example]

제조예Manufacturing example 1:  One: HMFHMF 제조 Produce

튜블러 타입 반응기 안에 고과당 옥수수시럽(HFCS)을 430mg(함유된 탄수화물 300mg, 탄수화물 내 프록토오스 270mg, 1.5mmol) 넣는다. 다음으로, 폴리스티렌 지지체에 설폰산기가 연결된 앰버리스트 (Amberlyst) 15 레진 (Aldrich, 4.7 meq of H+/g resin)을 반응기 안에 300mg (고체산 촉매 내 브뢴스테드 산성기 1.4mmol)넣는다. 그 다음으로, 반응기에 3mL의 1,4-다이옥산(1,4-Dioxane)을 넣고, 온도를 서서히 100까지 가열하면서, 4시간 동안 교반하여 반응을 시켜 5-히드록시메틸-2-푸르푸랄(HMF)(수율 81% 이상)을 제조하였다.430 mg of high fructose corn syrup (HFCS) (300 mg of carbohydrates, 270 mg of fructose in carbohydrates, 1.5 mmol) is placed in a tubular type reactor. Next, 300 mg of Amberlyst 15 resin (Aldrich, 4.7 meq of H & lt ; + & gt ; / g resin) to which a sulfonic acid group is attached to a polystyrene support is charged into the reactor (1.4 mmol of Bronsted acid in a solid acid catalyst). Subsequently, 3 mL of 1,4-dioxane was added to the reactor, and the mixture was stirred for 4 hours while gradually heating to 100 to obtain 5-hydroxymethyl-2-furfural ( HMF) (yield: 81% or more).

제조예Manufacturing example 2: 음이온 교환수지에  2: Anion exchange resin 담지된Supported 골드(Au)팔라듐(Pd)( Gold (Au) palladium (Pd) ( 0.5:10.5: 1 ) ) 바이메탈릭By Metallic 나노입자 촉매(2%  The nanoparticle catalyst (2% AuPdAuPd (( 0.5:10.5: 1 )-) - IRA743IRA743 )제조)Produce

먼저, 골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 골드(Au) 전구체 Gold (III) chloride trihydrate (AuCl3.3H2O 99.9%), 팔라듐(Pd) 전구체 Palladium (II) chloride (PdCl2, 99.9+%)을 칭량하여 에탄올 200ml에 첨가하여 혼합용액을 제조하였다. 상기 혼합용액에서 골드(Au)와 팔라듐(Pd)은 2wt%를 차지한다. 상기 혼합용액에 하기 구조식 4로 표시되는 음이온 교환수지 (IRA743 수지, 상업용 수지를 진공에서 313K로 밤새 건조) 5g을 첨가하고 수지 비즈를 24 시간 동안 교반하여 혼합물을 제조하였다. 음이온 교환수지는 여과하고, 골드(Au) 및 팔라듐(Pd)은 수소화붕소나트륨을 사용하여 환원시키고, 여과하고, 에탄올 400ml로 세척하고 진공 건조시켜 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 촉매를 제조하였다.First, the gold (Au) precursor Gold (III) chloride trihydrate (AuCl 3 .3H 2 O 99.9%) and the palladium (Pd) precursor Palladium (II) were mixed to provide a molar ratio of gold (Au) and palladium (Pd) chloride (PdCl 2 , 99.9 +%) was weighed and added to 200 ml of ethanol to prepare a mixed solution. In the mixed solution, gold (Au) and palladium (Pd) account for 2 wt%. To the mixed solution, 5 g of an anion exchange resin represented by the following structural formula 4 (IRA743 resin, commercial resin dried under vacuum at 313 K overnight) was added and the resin beads were stirred for 24 hours to prepare a mixture. The anion exchange resin is filtered, and gold (Au) and palladium (Pd) are reduced using sodium borohydride, filtered, washed with 400 ml of ethanol and vacuum dried to obtain gold palladium bimetallic nano particle catalyst .

[구조식 4][Structural Formula 4]

Figure 112017032541467-pat00012
Figure 112017032541467-pat00012

제조예 3: 2% AuPd(1:1)-IRA743 촉매 제조Production Example 3: Preparation of 2% AuPd (1: 1) -IRA743 catalyst

골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 1:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.Except that the molar ratio of gold (Au) to palladium (Pd) was 0.5: 1, weighed to 1: 1 instead of adding to ethanol, and added to ethanol to prepare a catalyst Respectively.

제조예 4: 2% AuPd(2:1)-IRA743 촉매 제조Preparation Example 4: Preparation of 2% AuPd (2: 1) -IRA743 catalyst

골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1 되도록 칭량하여 에탄올에 첨가하는 대신에 2:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Production Example 2 except that the molar ratio of gold (Au) and palladium (Pd) was 0.5: 1 and was weighed to be 2: 1 instead of adding to ethanol and then added to ethanol .

제조예 5: 2% AuPd(3:1)-IRA743 촉매 제조Preparation Example 5: Preparation of 2% AuPd (3: 1) -IRA743 catalyst

골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 3:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.Except that the molar ratio of gold (Au) to palladium (Pd) was 0.5: 1 and was weighed to be 3: 1 instead of adding to ethanol and added to ethanol. Respectively.

제조예 6: 2% AuPd(6:1)-IRA743 촉매 제조Production Example 6: Preparation of 2% AuPd (6: 1) -IRA743 catalyst

골드(Au)와 팔라듐(Pd)의 몰비가 0.5:1이 되도록 칭량하여 에탄올에 첨가하는 대신에 6:1이 되도록 칭량하여 에탄올에 첨가하는 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.Except that the molar ratio of gold (Au) to palladium (Pd) was 0.5: 1, and the weight was added to ethanol instead of adding to ethanol, and the mixture was added to ethanol. Respectively.

제조예 7: 2% AuPd(1:1)-IRA900 촉매 제조Preparation Example 7: Preparation of 2% AuPd (1: 1) -IRA900 catalyst

음이온 교환수지를 IRA743 대신에 IRA900를 사용한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Preparation Example 2, except that IRA900 was used instead of IRA743 as the anion exchange resin.

제조예 8: 2% AuPd(1:1)-IRA400 촉매 제조Production Example 8: Preparation of 2% AuPd (1: 1) -IRA400 catalyst

음이온 교환수지를 IRA743 대신에 IRA400를 사용한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Preparation Example 2, except that IRA400 was used instead of IRA743 as the anion exchange resin.

실시예Example 1: 2%1: 2% AuPdAuPd (( 0.5:10.5: 1 )-) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

2mM Na2CO3 염기로서 사용하고, 알드리치사(Sigma-Aldrich) HMF 2mM, 제조예 2에 따라 제조된 골드팔라듐 바이메탈릭 나노입자(2% AuPd-IRA743)를 촉매로서 200mg를 물 20ml 에 넣어 혼합용액을 제조하여, 산화제로서 10bar 압력의 산소기체를 주입하고, 373K(99.85℃)의 온도하에서 4시간 동안 반응시켜 HMF를 산화하여 2,5-Furan dicarboxylic acid(FDCA)를 제조하였다. 200 mg of gold palladium bimetallic nanoparticles (2% AuPd-IRA 743) prepared in accordance with Production Example 2 (2 mM) and 20 mg of water were added to 20 ml of water using 2 mM Na 2 CO 3 as a base and 2 mM of Sigma-Aldrich HMF 2,5-Furan dicarboxylic acid (FDCA) was prepared by oxidizing HMF by reacting for 4 hours at 373K (99.85 ℃) with oxygen gas at 10 bar pressure as an oxidizer.

실시예Example 2: 2%2: 2% AuPdAuPd (1:1)-(1: 1) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

제조예 2의 촉매 대신에 제조예 3의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDCA를 제조하였다.FDCA was prepared in the same manner as in Example 1, except that the catalyst of Preparation Example 3 was used in place of the catalyst of Production Example 2.

실시예Example 3: 2%3: 2% AuPdAuPd (2:1)-(2: 1) - IRA743IRA743 촉매를 이용한 Catalyzed 2,5-2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

제조예 2의 촉매 대신에 제조예 4의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDCA를 제조하였다.FDCA was prepared in the same manner as in Example 1, except that the catalyst of Production Example 4 was used in place of the catalyst of Production Example 2.

실시예Example 4: 2%4: 2% AuPdAuPd (3:1)-(3: 1) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

제조예 2의 촉매 대신에 제조예 5의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDCA를 제조하였다.FDCA was prepared in the same manner as in Example 1, except that the catalyst of Preparation Example 5 was used in place of the catalyst of Production Example 2.

실시예Example 5: 2%5: 2% AuPdAuPd (6:1)-(6: 1) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA)제조 acid (FDCA) manufacture

제조예 2의 촉매 대신에 제조예 6의 촉매를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 FDCA를 제조하였다.FDCA was prepared in the same manner as in Example 1, except that the catalyst of Preparation Example 6 was used in place of the catalyst of Production Example 2.

실시예Example 6: 2%6: 2% AuPdAuPd (1:1)-(1: 1) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

실시예 2에서 알드리치사의 HMF를 사용한 것 대신에 제조예 1에 따라 제조된 HMF을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 산화반응을 수행하였다.The oxidation reaction was carried out in the same manner as in Example 1, except that HMF prepared in Preparation Example 1 was used instead of Aldrich's HMF in Example 2.

실시예Example 7: 2%7: 2% AuPdAuPd (1:1)-(1: 1) - IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

실시예 2에서 산소기체 10 bar 대신에 산소기체 15 bar인 것을 제외하고는 실시예 2와 동일한 방법으로 산화반응을 수행하였다.The oxidation reaction was carried out in the same manner as in Example 2, except that the oxygen gas of 15 bar was used instead of the oxygen gas of 10 bar.

실시예Example 8: 2%8: 2% AuPdAuPd (1:1)-(1: 1) - IRA900IRA900 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

제조예 3의 2% AuPd(1:1)-IRA743 대신에 제조예 7의 2% AuPd(1:1)-IRA900을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 산화반응을 수행하였다.The oxidation reaction was carried out in the same manner as in Example 2, except that 2% AuPd (1: 1) -IRA900 in Production Example 7 was used instead of 2% AuPd (1: 1) -IRA743 in Production Example 3.

실시예Example 9: 2%9: 2% AuPdAuPd (1:1)-(1: 1) - IRA400IRA400 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA) 제조 acid (FDCA) manufacture

제조예 3의 2% AuPd(1:1)-IRA743 대신에 하기 구조식 5로 표시되는 IRA400을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 산화반응을 수행하였다. An oxidation reaction was carried out in the same manner as in Example 2, except that IRA400 represented by the following structural formula 5 was used instead of 2% AuPd (1: 1) -IRA743 in Production Example 3.

[구조식 5][Structural Formula 5]

Figure 112017032541467-pat00013
Figure 112017032541467-pat00013

비교예 1: IRA743를 이용한 2,5-Furan dicarboxylic acid(FDCA)제조Comparative Example 1: Preparation of 2,5-Furan dicarboxylic acid (FDCA) using IRA743

실시예 1에서 2% AuPd-IRA743 대신에 IRA743를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylic acid(FDCA) 제조하였다.2,5-Furan dicarboxylic acid (FDCA) was prepared in the same manner as in Example 1, except that IRA743 was used instead of 2% AuPd-IRA743 in Example 1.

비교예Comparative Example 2: 1%2: 1% Au- Au- IRA743IRA743 촉매를 이용한 2,5- Catalyst-based 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA)제조acid (FDCA) manufacture

(단계 1: 1% Au-IRA743 촉매 제조)(Step 1: 1% Au-IRA743 catalyst preparation)

제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 골드(Au) 1wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Production Example 2, except that the mixed solution was prepared so as to be 1 wt% of gold (Au) instead of 2 wt% of gold (Au) and palladium (Pd) in the mixed solution in Production Example 2.

(단계 2: 1% Au-IRA743 촉매를 이용한 HMF 산화)(Step 2: HMF oxidation with 1% Au-IRA743 catalyst)

2% AuPd-IRA743 대신에 1% Au-IRA743를 촉매로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylic acid(FDCA)를 제조하였다.2,5-Furan dicarboxylic acid (FDCA) was prepared in the same manner as in Example 1, except that 1% Au-IRA743 was used as a catalyst instead of 2% AuPd-IRA743.

비교예Comparative Example 3: 2%3: 2% Au- Au- IRA743IRA743 촉매 이용한 2,5- Catalysts using 2,5- FuranFuran dicarboxylicdicarboxylic acid(FDCA)제조acid (FDCA) manufacture

(2% Au-IRA743 촉매 제조)(2% Au-IRA743 catalyst preparation)

제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 골드(Au)가 2wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Production Example 2 except that a mixed solution was prepared so that gold (Au) was 2 wt% instead of gold (Au) and palladium (Pd) 2 wt% in the mixed solution in Production Example 2.

(2% Au-IRA743를 이용한 HMF 산화) (HMF oxidation with 2% Au-IRA743)

2% AuPd-IRA743 대신에 2% Au-IRA743 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylic acid(FDCA)를 제조하였다.2,5-Furan dicarboxylic acid (FDCA) was prepared in the same manner as in Example 1, except that 2% Au-IRA743 was used instead of 2% AuPd-IRA743.

비교예 4: 1% Pd-IRA743 이용한 2,5-Furan dicarboxylic acid(FDCA)제조Comparative Example 4: Preparation of 2,5-Furan dicarboxylic acid (FDCA) using 1% Pd-IRA743

(1% Pd-IRA743 촉매 제조)(1% Pd-IRA743 catalyst preparation)

제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 팔라듐(Pd)이 1wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Production Example 2, except that the mixed solution was prepared so that palladium (Pd) was 1 wt% instead of gold (Au) and palladium (Pd) 2 wt% in the mixed solution in Production Example 2.

(1% Pd-IRA743를 이용한 HMF 산화)(HMF oxidation with 1% Pd-IRA743)

2% AuPd-IRA743 대신에 1% Pd-IRA743 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylic acid(FDCA)를 제조하였다.2,5-Furan dicarboxylic acid (FDCA) was prepared in the same manner as in Example 1, except that 1% Pd-IRA743 was used instead of 2% AuPd-IRA743.

비교예 5: 2% Pd-IRA743 이용한 2,5-Furan dicarboxylic acid(FDCA)제조Comparative Example 5: Preparation of 2,5-Furan dicarboxylic acid (FDCA) using 2% Pd-IRA743

(2% Pd-IRA743 촉매 제조)(2% Pd-IRA743 catalyst preparation)

제조예 2에서 혼합용액에서 골드(Au)와 팔라듐(Pd) 2wt% 대신에 팔라듐(Pd)이 2wt%가 되도록 혼합용액을 제조한 것을 제외하고는 제조예 2와 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Preparation Example 2 except that a mixed solution was prepared so that palladium (Pd) was 2 wt% instead of gold (Au) and palladium (Pd) 2 wt% in the mixed solution in Production Example 2.

(2% Pd-IRA743를 이용한 HMF 산화)(HMF oxidation with 2% Pd-IRA743)

2% AuPd-IRA743 대신에 2% Pd-IRA743 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furan dicarboxylic acid(FDCA)를 제조하였다.2,5-Furan dicarboxylic acid (FDCA) was prepared in the same manner as in Example 1, except that 2% Pd-IRA743 was used instead of 2% AuPd-IRA743.

비교예Comparative Example 6: 염기가 없는 6: Basic 조건 하에서Under the conditions 2% 2% AuPdAuPd (1:1)-(1: 1) - IRA743IRA743 촉매를 이용한 2,5-Furan dicarboxylic acid(FDCA) 제조 Preparation of 2,5-Furan dicarboxylic acid (FDCA) by Catalysis

2mM Na2CO3 염기를 사용하지 않은 것을 제외하고는 제조예 3의 촉매를 사용하여 실시예 1과 동일한 방법으로 FDCA를 제조하였다. FDCA was prepared in the same manner as in Example 1 except that 2 mM Na 2 CO 3 base was not used .

비교예Comparative Example 7: 1%7: 1% Au- Au- IRA743IRA743 및 1% Pd- And 1% Pd- IRA743의Of IRA743 혼합물을 이용한 2,5- The 2,5- FuranFuran dicarboxylic  dicarboxylic acid(FDCA)제조acid (FDCA) manufacture

2% AuPd-IRA743 대신에 비교예 2와 비교예 4의 촉매 혼합물(1% Au-IRA743 + 1% Pd-IRA743, 각각 200mg) 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2,5-Furandicarboxylicacid(FDCA)를 제조하였다.2% AuPd-IRA743 instead of Comparative Example 2 and Comparative Example 4 2,5-Furandicarboxylicacid (FDCA) was prepared in the same manner as in Example 1 except that the catalyst mixture (1% Au-IRA743 + 1% Pd-IRA743 , 200 mg each) was used.

[시험예][Test Example]

시험예Test Example 1: 음이온 교환수지에  1: Anion exchange resin 담지된Supported 골드(Au)-팔라듐(Pd)  Gold (Au) -Palladium (Pd) 바이메탈릭By Metallic 나노입자의 XPS 분석 XPS analysis of nanoparticles

도 1은 제조예 3의 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자 촉매 및 비교예 2에 포함된 음이온 교환수지에 담지된 골드(Au) 나노입자의 XPS 분석 결과를 나타낸 것이다.FIG. 1 shows XPS analysis results of the gold palladium bimetallic nano-particle catalyst supported on the anion exchange resin of Production Example 3 and the gold (Au) nanoparticles supported on the anion exchange resin included in Comparative Example 2. FIG.

도 1을 참조하면, 2% Au-IRA743의 XPS는 Au 4f7 /2 binding 에너지가 84.0eV이고 2% Au:Pd(1:1)-IRA743은 Au 4f7 /2 binding 에너지가 83.8eV인 것을 확인할 수 있었고, 2% Pd-IRA743의 XPS는 Pd 3d5 /2 binding 에너지가 335.1eV이고 2% Au:Pd(1:1)-IRA743은 Pd 3d5/2 binding 에너지가 336.6eV인 것을 확인할 수 있었다. In that: (1 1) -IRA743 the Au 4f 7/2 binding energy of 83.8eV: Referring to Figure 1, XPS of 2% Au-IRA743 the Au 4f 7/2 binding energy of 84.0eV is 2% Au Pd I can confirm, 2% of the XPS Pd-IRA743 is Pd 3d 5/2 binding energy and is 335.1eV 2% Au: Pd (1 : 1) -IRA743 was confirmed that the Pd 3d 5/2 binding energy of 336.6eV.

이러한 결과는 합금(alloy) 형성에 의하여 Pd로부터 Au로의 에너지 이동 및 촉매로서의 Au-Pd 합금 절단(alloy severs) 때문인 것으로 판단된다.These results are believed to be due to the energy transfer from Pd to Au by alloy formation and Au-Pd alloy severs as a catalyst.

따라서, 제조예 3에 따라 제조된 음이온 교환수지에 담지된 골드팔라듐 바이메탈릭 나노입자는 합금을 형성하여 Pd와 Au가 서로 영향을 미치는 것을 확인할 수 있었다.Therefore, it was confirmed that the gold palladium bimetallic nanoparticles supported on the anion exchange resin prepared according to Preparation Example 3 formed an alloy, and thus Pd and Au interacted with each other.

시험예Test Example 2: 음이온 교환수지에  2: Anion exchange resin 담지된Supported 골드(Au)-팔라듐(Pd)  Gold (Au) -Palladium (Pd) 바이메탈릭By Metallic 나노입자의 TEM 이미지 분석 TEM image analysis of nanoparticles

도 2는 비교예 1의 교환수지, 제조예 3 및 제조예 6에 따라 제조된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자의 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자의 TEM 이미지를 나타낸 것이다.Fig. 2 is a graph showing the results of a comparison between gold (Au) -palladium (Pd) supported on an exchange resin of Comparative Example 1, anion exchange resin of gold (Au) -palladium (Pd) bimetallic nanoparticles prepared according to Production Example 3 and Production Example 6, TEM image of bimetallic nanoparticles.

도 2를 참조하면, 5-20nm 크기의 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자가 음이온 교환수지 전체에 분산되어 있는 것을 확인할 수 있었다.Referring to FIG. 2, it was confirmed that gold (Au) -palladium (Pd) bimetallic nanoparticles having a size of 5-20 nm were dispersed throughout the anion exchange resin.

시험예 3: 음이온 교환수지에 담지된 금속 나노입자의 촉매 반응성 분석Test Example 3: Analysis of catalytic reactivity of metal nanoparticles carried on an anion exchange resin

하기 표 1은 실시예 1 내지 9와 비교예 1 내지 6에 따라 제조된 HMF의 산화반응의 HMF의 전환(conversion)과 FDCA(selectivity)의 선택성을 나타낸 결과이다.Table 1 below shows the results of conversion of HMF and selectivity of FDCA in the oxidation reaction of HMF prepared according to Examples 1 to 9 and Comparative Examples 1 to 6.

구분division 촉매(금속-이온교환수지)Catalyst (metal-ion exchange resin) 산화, %Oxidation, % HMF conversion(전환율)HMF conversion FDCA selectivity(선택성)FDCA selectivity 실시예 1Example 1 2% AuPd(0.5:1)-IRA7432% AuPd (0.5: 1) -IRA743 100100 85.385.3 실시예 2Example 2 2% AuPd(1:1)-IRA7432% AuPd (1: 1) -IRA743 100100 93.293.2 실시예 3Example 3 2% AuPd(2:1)-IRA7432% AuPd (2: 1) -IRA743 100100 79.979.9 실시예 4Example 4 2% AuPd(3:1)-IRA7432% AuPd (3: 1) -IRA743 100100 75.275.2 실시예 5Example 5 2% AuPd(6:1)-IRA7432% AuPd (6: 1) -IRA743 100100 55.155.1 실시예 6Example 6 2% AuPd(1:1)-IRA7432% AuPd (1: 1) -IRA743 100100 91.191.1 실시예 7Example 7 2% AuPd(1:1)-IRA7432% AuPd (1: 1) -IRA743 100100 66.466.4 실시예 8Example 8 2% AuPd(1:1)-IRA9002% AuPd (1: 1) -IRA900 91.091.0 5.05.0 실시예 9Example 9 2% AuPd(1:1)-IRA4002% AuPd (1: 1) -IRA400 98.098.0 2626 비교예 1Comparative Example 1 IRA743IRA743 68.768.7 2.32.3 비교예 2Comparative Example 2 1% Au-IRA7431% Au-IRA743 100100 27.627.6 비교예 3Comparative Example 3 2% Au-IRA7432% Au-IRA743 100100 39.139.1 비교예 4Comparative Example 4 1% Pd-IRA7431% Pd-IRA743 80.480.4 7.07.0 비교예 5Comparative Example 5 2% Pd-IRA7432% Pd-IRA743 83.583.5 17.417.4 비교예 6Comparative Example 6 2% AuPd(1:1)-IRA743 No base2% AuPd (1: 1) -IRA743 No base 17.217.2 00 비교예 7Comparative Example 7 1% Au-IRA743 + 1% Pd-IRA7431% Au-IRA743 + 1% Pd-IRA743 100100 52.052.0

표 1을 참조하면, 비교예 2의 촉매는 HMF의 100% 전환율을 나타내지만 FDCA 선택도는 28%에 불과했다. 비교예 3의 촉매는 FDCA 선택성을 39%로 증가시켰지만 선택성은 상대적으로 낮은 것을 확인할 수 있었다.Referring to Table 1, the catalyst of Comparative Example 2 exhibited 100% conversion of HMF, but FDCA selectivity was only 28%. The catalyst of Comparative Example 3 increased the FDCA selectivity to 39%, but the selectivity was relatively low.

활성 금속이 없는 촉매를 이용한 비교예 1은 68%의 전환율로 2.3%의 FDCA 선택성을 나타내었고, 염기가 없는 경우 활성 촉매를 이용한 비교예 5도 HMF의 전환율이 17%인 것을 확인할 수 있었으며, 비교예 4의 산화반응은 7% FDCA 선택성을 가지며, HMF의 전환율이 80%인 것을 확인할 수 있었다.Comparative Example 1 using an active metal-free catalyst showed an FDCA selectivity of 2.3% at a conversion of 68%, and Comparative Example 5 using an activated catalyst without a base showed a conversion rate of HMF of 17% The oxidation reaction of Example 4 had 7% FDCA selectivity and the conversion of HMF was 80%.

실시예 2의 산화반응은 HMF의 100% 전환율과, 93%의 FDCA 선택성을 보여, 골드(Au)에 팔라듐(Pd)이 첨가된 촉매는 FDCA 선택성에 큰 영향을 주는 것을 확인 할 수 있었다. The oxidation reaction of Example 2 showed 100% conversion of HMF and FDCA selectivity of 93%, and it was confirmed that the catalyst containing palladium (Pd) added to gold (Au) greatly influences FDCA selectivity.

시험예 4: HMF의 산화 과정 시간 분석Test Example 4: Time course of oxidation process of HMF

도 3은 비교예 2 내지 비교예 4와 실시예 2의 HMF가 FDCA로 산화되는 과정을 시간에 따라 분석한 결과를 나타낸 것이다.FIG. 3 shows the results of time-course analysis of the oxidation of HMF of Comparative Examples 2 to 4 and Example 2 to FDCA.

도 3을 참조하면, 비교예 2의 산화반응은 1 시간 동안 85% HMF를 전환시킨 것으로 나타나고, 77%의 5-하이드록시메틸퓨란-2-카복실산(HMFCA) 선택성이 나타났다. 시간이 진행됨에 따라 FDCA의 선택성은 HMFCA의 소비로 5 시간에서 0.5 시간에서 36 시간으로 5% 미만으로 증가했지만 5-포르밀푸란-2-카르복실산(FFCA)의 선택성은 반응을 통해 약 20%를 유지했다. 이에 따라, 추가 FDCA가 더 긴 반응 간격으로 형성 될 수 있지만, 반응 시간이 길어짐에 따라 생산에 있어서 경제적인 효과가 적은 것으로 판단된다.Referring to FIG. 3, the oxidation reaction of Comparative Example 2 showed 85% HMF conversion for 1 hour and 77% 5-hydroxymethylfuran-2-carboxylic acid (HMFCA) selectivity. As time progressed, the selectivity of FDCA increased from 5 hours to 5 hours from 0.5 hours to 36 hours due to consumption of HMFCA, but the selectivity of 5-formylfuran-2-carboxylic acid (FFCA) %. As a result, the additional FDCA can be formed with a longer reaction interval, but the longer the reaction time, the less economical effect on production.

또한, 비교예 4의 촉매는 금만 포함하는 촉매와는 다른 반응을 보였으며, 즉 HMFCA 선택성은 0.5시간에서 5시간까지 약 50%로 유지되었다. 유사하게 FFCA 및 FDCA 선택성은 반응 동안 안정하게 유지되었다. 이러한 결과에 따라 촉매가 평형을 FDCA쪽으로 이동시키는 경향이 없는 것으로 판단된다.In addition, the catalyst of Comparative Example 4 showed a different reaction from the catalyst containing gold only, i.e., the HMFCA selectivity was maintained at about 50% from 0.5 hour to 5 hours. Similarly, FFCA and FDCA selectivity remained stable during the reaction. These results suggest that the catalyst does not tend to shift the equilibrium towards FDCA.

실시예 2의 산화반응은 0.5 시간 반응에서 61% FFCA 선택성으로 95% HMF 전환율을 보였다. 시간이 진행됨에 따라 FDCA의 선택성은 증가하여 3시간 동안 91%의 선택성에 도달했으며, 5 시간 동안 95 %의 선택성에 도달한 것으로 나타났다. 이러한 결과에 따라 실시예 2의 산화반응에서 생성된 FDCA가 장시간 반응 조건에서 안정적이어서 산업 생산에 경제적 효율이 높을 것으로 판단된다.The oxidation reaction of Example 2 showed 95% HMF conversion with 61% FFCA selectivity in 0.5 hour reaction. As time progressed, the selectivity of FDCA increased, reaching 91% selectivity over 3 hours and reaching 95% selectivity over 5 hours. According to these results, FDCA produced in the oxidation reaction of Example 2 is stable in a long time reaction condition, and it is considered that the economical efficiency for industrial production is high.

시험예 5: 골드(Au) 및 팔라듐(Pd) 몰비에 따른 촉매 반응성 분석Test Example 5: Analysis of catalytic reactivity according to the molar ratio of gold (Au) and palladium (Pd)

골드(Au)에 대한 팔라듐(Pd)의 영향을 분석하기 위해 상기 실시예 1 내지 5의 산화반응성을 분석하였다. 하기 표 2는 Au-Pd의 몰비를 0.5:1에서 6:1로 변화시켜 금속의 몰비에 따른 HMF의 전환(conversion)과 FDCA의 선택성(selectivity)을 분석한 결과를 나타낸 것이다.To analyze the effect of palladium (Pd) on gold (Au), the oxidation reactivity of Examples 1 to 5 was analyzed. Table 2 shows the conversion of HMF and the selectivity of FDCA according to the molar ratio of metal by changing the molar ratio of Au-Pd from 0.5: 1 to 6: 1.

구분division 촉매(금속-이온교환수지)Catalyst (metal-ion exchange resin) 산화, %Oxidation, % HMF conversion(전환율)HMF conversion FDCA selectivity(선택성)FDCA selectivity 실시예 1Example 1 2% AuPd(0.5:1)-IRA7432% AuPd (0.5: 1) -IRA743 100100 85.385.3 실시예 2Example 2 2% AuPd(1:1)-IRA7432% AuPd (1: 1) -IRA743 100100 93.293.2 실시예 3Example 3 2% AuPd(2:1)-IRA7432% AuPd (2: 1) -IRA743 100100 79.979.9 실시예 4Example 4 2% AuPd(3:1)-IRA7432% AuPd (3: 1) -IRA743 100100 75.275.2 실시예 5Example 5 2% AuPd(6:1)-IRA7432% AuPd (6: 1) -IRA743 100100 55.155.1

표 2에 따르면, 상대적으로 팔라듐(Pd) 농도가 낮은 2% AuPd(6:1)-IRA743은 55.1% FDCA 선택성으로 100% 전환율을 나타나고, 상대적으로 팔라듐(Pd) 농도가 높은 2% AuPd (1:1)-IRA743은 93.2% FDCA 선택성으로, 100% 전환율이 나타났다.According to Table 2, 2% AuPd (6: 1) -IRA743 having a relatively low palladium (Pd) concentration showed 100% conversion with 55.1% FDCA selectivity and 2% AuPd with a relatively high palladium (Pd) concentration : 1) -IRA743 was 93.2% FDCA selectivity with 100% conversion.

따라서, 골드(Au)에 팔라듐(Pd)의 농도가 증가함에 따라, FDCA 선택성이 증가하는 것을 알 수 있었으나, 팔라듐(Pd)이 골드(Au)보다 더 높은 농도를 가지면 Au 농도의 감소로 인한 FDCA 선택성의 개선이 나타나지 않은 것으로 확인되었다.As a result, FDCA selectivity increased as the concentration of palladium (Pd) increased in gold (Au). However, when palladium (Pd) had a higher concentration than gold (Au) And no improvement in selectivity was observed.

따라서, 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자는 1:1의 몰비로 조성되는 것이 가장 적절한 것으로 판단된다.Therefore, it is considered that the gold (Au) -palladium (Pd) bimetallic nanoparticles carried on the anion exchange resin are most suitably mixed at a molar ratio of 1: 1.

시험예Test Example 6: 음이온 교환수지의 종류가  6: The type of anion exchange resin is HMFHMF 산화에 미치는 영향 분석 Analysis of effect on oxidation

도 4는 골드(Au) 및 팔라듐(Pd)이 지지되는 음이온 교환수지의 종류에 따른 HMF의 전환율 및 FDCA의 선택성을 분석한 결과를 나타낸 것이다.FIG. 4 shows the results of analyzing the conversion of HMF and the selectivity of FDCA according to the kind of anion exchange resin in which gold (Au) and palladium (Pd) are supported.

도 4를 참조하면, IRA743은 2% AuPd (1:1)-IRA900이 5% FDCA 선택성으로 91%의 전환율을 보였고, 2% AuPd (1:1) -IRA400은 26% FDCA 선택성으로 98% 전환율을 보였다.IRA743 showed 91% conversion with 2% AuPd (1: 1) -IRA900 with 5% FDCA selectivity and 98% conversion with 2% AuPd (1: 1) -IRA400 with 26% FDCA selectivity Respectively.

따라서, FDCA를 제조하기 위해 촉매로 사용될 수 있는 재료 중 음이온 교환수지는 IRA743이 적절한 것으로 판단된다.Therefore, it is considered that IRA743 is an anion exchange resin among materials that can be used as a catalyst for producing FDCA.

시험예Test Example 7: 음이온 교환수지에  7: Anion exchange resin 담지된Supported 골드(Au)-팔라듐(Pd)  Gold (Au) -Palladium (Pd) 바이메탈릭By Metallic 나노입자 촉매의 재사용 효과 Re-use effect of nanoparticle catalyst

도 5는 실시예 2의 산화반응에서 촉매의 재활용성(recycle)을 분석한 결과를 나타낸 것으로, FDCA 제조에 사용된 촉매를 필터하고, 물로 세척하고 건조하여 재사용하였을 때, 전환율 및 선택성을 분석한 결과를 나타낸 것이다.FIG. 5 shows the result of analyzing the recycle of the catalyst in the oxidation reaction of Example 2. When the catalyst used in the production of FDCA was filtered, washed and dried and reused, the conversion and selectivity were analyzed The results are shown.

도 5를 참조하면, 6번까지 재사용하였을 때, 전환율과 선택성이 거의 비슷하게 유지되는 것을 확인할 수 있었다. Referring to FIG. 5, it can be confirmed that the conversion rate and selectivity are maintained to be almost the same when reused up to six times.

따라서, HMF를 FDCA로 산화시키는 반응에 음이온 교환수지에 담지된 골드(Au)-팔라듐(Pd) 바이메탈릭 나노입자를 촉매를 6번까지 사용할 수 있는 것으로 판단된다.Therefore, it is considered that gold (Au) -palladium (Pd) bimetallic nanoparticles supported on anion exchange resin can be used up to six times for the oxidation of HMF to FDCA.

시험예Test Example 8:  8: HMF의Of HMF 제품에 따른 산화반응성 분석 Analysis of Oxidation Reactivity by Product

하기 표 3은 실시예 2, 실시예 6 및 실시예 7의 HMF 산화반응을 분석한 결과를 나타낸 것이다.Table 3 below shows the results of analysis of the HMF oxidation reactions of Examples 2, 6 and 7. [

구분division HMF 종류HMF type HMF 전환율, %HMF conversion rate,% FFCA 선택성. %FFCA selectivity. % FDCA 선택성. %FDCA selectivity. % HMFCA 선택성. %HMFCA selectivity. % 기타 선택성. %Other Selectivity. % 실시예 2Example 2 Aldrich HMFAldrich HMF 100100 3.33.3 93.293.2 00 3.53.5 실시예 6Example 6 제조예 1Production Example 1 100100 8.98.9 91.191.1 00 00 실시예 7Example 7 Aldrich HMF - 15 bar airAldrich HMF - 15 bar air 100100 28.828.8 66.466.4 00 4.84.8

상기 표 3을 참조하면, 실시예 2의 HMF 산화 반응 및 실시예 6의 산화 반응의 HMF의 전환율이 모두 100%이고, FDCA 선택성이 각각 93.8%와 91.1%로 나타났다.Referring to Table 3, the conversion of HMF in the HMF oxidation reaction of Example 2 and the oxidation reaction of Example 6 were all 100%, and the FDCA selectivities were 93.8% and 91.1%, respectively.

이러한 결과에 따라, 본 발명의 제조방법에 따라 제조된 음이온 교환수지에 담지된 골드-팔라듐 바이메탈릭 나노입자 촉매는 시중에 유통되는 상업용 HMF뿐만 아니라, 실험실에서 합성된 상업적인 제품이 아닌 crude HMF에 대해서도 활성이 높은 것을 확인할 수 있었다. 또한, 산화제로서 산소압력 15 bar 공기를 사용하여 반응을 수행하였을 때, HMF의 100% 전환율과 66% FDCA 선택성으로 나타냈다. According to these results, the gold-palladium bimetallic nanoparticle catalyst supported on the anion exchange resin produced according to the production method of the present invention is not limited to the commercial HMF distributed in the market, but also to the crude HMF which is not a commercial product synthesized in the laboratory The activity was confirmed to be high. Also, when the reaction was carried out using an oxygen pressure of 15 bar as an oxidizing agent, 100% conversion of HMF and 66% FDCA selectivity were exhibited.

따라서, 본 발명의 본 발명의 제조방법에 따라 제조된 음이온 교환수지에 담지된 골드-팔라듐 바이메탈릭 나노입자가 촉매로서 산업용으로 적합한 것으로 판단된다.Therefore, it is considered that the gold-palladium bimetallic nanoparticles supported on the anion exchange resin prepared according to the production method of the present invention is suitable for industrial use as a catalyst.

시험예Test Example 9: 음이온 교환수지에  9: on anion exchange resin 담지된Supported 금속 나노입자의 종류에 따른  Depending on the type of metal nanoparticles FDCAFDCA 수율 분석 Yield analysis

하기 표 4는 비교예 2, 비교예 4, 비교예 5 및 실시예 2의 FDCA 수율을 비교하여 나타낸 것이다.Table 4 below shows FDCA yields of Comparative Example 2, Comparative Example 4, Comparative Example 5 and Example 2 in comparison.

구분division 촉매(금속-이온교환수지)Catalyst (metal-ion exchange resin) 산화, %Oxidation, % HMF conversion(전환율)HMF conversion FDCA selectivity(선택성)FDCA selectivity 실시예 2Example 2 2% AuPd(1:1)-IRA7432% AuPd (1: 1) -IRA743 100100 93.293.2 비교예 3Comparative Example 3 2% Au-IRA7432% Au-IRA743 100100 39.139.1 비교예 5Comparative Example 5 2% Pd-IRA7432% Pd-IRA743 83.583.5 17.0417.04 비교예 6Comparative Example 6 1% Au-IRA743 + 1%-IRA7431% Au-IRA743 + 1% -IRA743 100100 52.052.0

표 4를 참조하면, 실시예 2의 2% AuPd(1:1)-IRA743 촉매를 이용하여 FDCA를 제조하였을 때, 수율이 90% 이상으로 가장 높은 것으로 나타났다. 그러나, 비교예 6과 같이 1% Au-IRA743와 1%-IRA743를 단순히 혼합하여 산화반응을 시키면 수율이 52%로, 효율성이 낮은 것을 확인할 수 있었다.Referring to Table 4, when the FDCA was produced using the 2% AuPd (1: 1) -IRA743 catalyst of Example 2, the yield was the highest at 90% or more. However, as in Comparative Example 6, when the oxidation reaction was carried out by simply mixing 1% Au-IRA743 and 1% -IRA743, the yield was 52%, indicating that the efficiency was low.

따라서, 음이온 교환수지에 담지된 골드-팔라듐 바이메탈릭 나노입자 촉매는 음이온 교환수지에 담지된 골드 나노입자와 음이온 교환수지에 담지된 팔라듐 나노입자를 단순 혼합한 혼합촉매로 사용할 때 보다 제조예 3에 따라 제조된 골드와 팔라듐이 합금(Alloy)형태인 바이메탈릭(bimetallic)을 형성하는 촉매의 효율성이 훨씬 우수한 것으로 판단된다.Therefore, when the gold-palladium bimetallic nano-particle catalyst supported on the anion exchange resin is used as a mixed catalyst in which the gold nanoparticles supported on the anion exchange resin and the palladium nanoparticles supported on the anion exchange resin are simply mixed, It is considered that the efficiency of the catalyst for forming bimetallic alloy of gold and palladium in accordance with the present invention is much better.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims rather than the detailed description and all changes or modifications derived from the meaning and scope of the claims and their equivalents are to be construed as being included within the scope of the present invention do.

Claims (19)

하기 화학식 1로 표시되는 HMF(5-Hydroxymethylfurfural)를 용매 하에서 촉매를 사용하여 산화반응시켜 하기 화학식 2로 표시되는 FDCA(2,5-Furan dicarboxylic acid)를 제조하는 단계를 포함하고,
상기 촉매는 음이온 교환수지와, 상기 음이온 교환수지 상에 담지된 골드팔라듐 바이메탈릭(AuPd Bimetallic) 나노입자를 포함하고,
상기 음이온 교환수지가 하기 구조식 3으로 표시되는 것 또는 그의 염인 것이고,
상기 음이온 교환수지가 염기성이고,
상기 산화반응 시 용매에 탄산 나트륨(Na2CO3), 탄산수소 나트륨(NaHCO3), 탄산 칼륨 (K2CO3), 중탄산 칼륨(KHCO3), 수산화 나트륨(NaOH) 및 수산화 칼륨(KOH) 중에서 선택된 1종 이상의 염기를 추가로 투입하여 산화반응을 수행하는 것인 FDCA의 제조방법.
[화학식 1]
Figure 112018099219609-pat00026

[화학식 2]
Figure 112018099219609-pat00027

[구조식 3]
Figure 112018099219609-pat00028

구조식 3에서,
R3은 수소원자, C1 내지 C10 직쇄상 알킬기, 또는 C3 내지 C10 분지상 알킬기이다.
m 및 n은 같거나 다르고, 각각 독립적으로 1 내지 3의 정수 중 어느 하나이고,
q는 1 내지 10의 정수 중 어느 하나이다.
A process for preparing 2,5-furan dicarboxylic acid (FDCA) represented by the following formula (2) by oxidation of HMF (5-Hydroxymethylfurfural) represented by the following formula (1)
Wherein the catalyst comprises an anion exchange resin and gold palladium bimetallic nanoparticles carried on the anion exchange resin,
Wherein the anion exchange resin is one represented by the following structural formula 3 or a salt thereof,
Wherein the anion exchange resin is basic,
Sodium carbonate (Na 2 CO 3 ), sodium hydrogencarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium bicarbonate (KHCO 3 ), sodium hydroxide (NaOH) and potassium hydroxide (KOH) And the oxidation reaction is carried out.
[Chemical Formula 1]
Figure 112018099219609-pat00026

(2)
Figure 112018099219609-pat00027

[Structural Formula 3]
Figure 112018099219609-pat00028

In Structure 3,
R 3 is a hydrogen atom, a C1 to C10 straight chain alkyl group, or a C3 to C10 branched alkyl group.
m and n are the same or different and each independently is an integer of 1 to 3,
and q is an integer of 1 to 10.
제1항에 있어서,
상기 골드팔라듐 바이메탈릭 나노입자의 골드(Au): 팔라듐(Pd)의 몰비가 0.5:1.0 내지 6.0:1.0인 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the molar ratio of gold (Au): palladium (Pd) of the gold palladium bimetallic nanoparticles is 0.5: 1.0 to 6.0: 1.0.
제1항에 있어서,
상기 음이온 교환수지가 지지체와, 상기 지지체 상에 공유결합된 아민기를 포함하는 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the anion exchange resin comprises a support and an amine group covalently bonded to the support.
삭제delete 삭제delete 삭제delete 제3항에 있어서,
상기 음이온 교환수지는 상기 지지체 상에 글루카아민기(glucamine group) 또는 그의 염이 공유결합된 것을 특징으로 하는 FDCA의 제조방법.
The method of claim 3,
Wherein the anion exchange resin is covalently bonded with a glucamine group or a salt thereof on the support.
제3항에 있어서,
상기 지지체가 다공성 또는 젤형이고, 용매 하에서 스웰링(swelling)되는 것을 특징으로 하는 FDCA의 제조방법.
The method of claim 3,
Wherein the support is porous or gel-like, and is swelled under a solvent.
제3항에 있어서,
상기 지지체가 폴리스티렌, 가교된 폴리스티렌, 공중합된 폴리스티렌 및 그래프트된 폴리스티렌 중에서 선택된 1종 이상의 고분자를 포함하는 것을 특징으로 하는 FDCA의 제조방법.
The method of claim 3,
Wherein the support comprises at least one polymer selected from the group consisting of polystyrene, cross-linked polystyrene, copolymerized polystyrene and grafted polystyrene.
삭제delete 삭제delete 제1항에 있어서,
상기 용매가 극성용매인 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the solvent is a polar solvent.
제1항에 있어서,
상기 촉매가 재사용될 수 있는 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Lt; RTI ID = 0.0 > FDCA. ≪ / RTI >
제1항에 있어서,
상기 FDCA(2,5-Furandicarboxylic acid)의 수율이 80 내지 99%인 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the yield of FDCA (2,5-furandicarboxylic acid) is 80 to 99%.
제1항에 있어서,
상기 FDCA(2,5-Furandicarboxylic acid)를 제조하는 퓨란계 화합물의 제조가 상온에서 수행되는 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the preparation of the furan compound for preparing the 2,5-furandicarboxylic acid (FDCA) is carried out at room temperature.
제1항에 있어서,
상기 촉매를 환원제, 음이온 교환수지, 골드(Au) 전구체 및 팔라듐(Pd) 전구체를 용매 하에서 제조한 것을 특징으로 하는 FDCA의 제조방법.
The method according to claim 1,
Wherein the catalyst is prepared by preparing a reducing agent, an anion exchange resin, a gold (Au) precursor and a palladium (Pd) precursor in a solvent.
제16항에 있어서,
상기 골드(Au) 전구체가 골드 클로라이드(AuCl3) 및 골드 브로마이드(AuBr3) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 FDCA의 제조방법.
17. The method of claim 16,
Wherein the gold (Au) precursor comprises at least one selected from gold chloride (AuCl 3 ) and gold bromide (AuBr 3 ).
제16항에 있어서,
상기 팔라듐(Pd) 전구체가 팔라듐 클로라이드(PdCl2), 팔라듐 브로마이드(PdBr2) 및 팔라듐 아세테이트(Pd(OAc)2) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 FDCA의 제조방법.
17. The method of claim 16,
The palladium (Pd) precursor is palladium chloride (PdCl 2), palladium bromide (PdBr 2), and palladium acetate (Pd (OAc) 2) Wherein the FDCA comprises at least one member selected from the group consisting of a fluorine-containing compound and a fluorine-containing compound.
제16항에 있어서,
상기 환원제가 수소화붕소 나트륨(Sodium borohydride, NaBH4), 소듐 시아노보로하이드라이드(Sodium cyanoborohydride, NaBH3CN), 리튬 알루미늄 하이드라이드(Lithium aluminium hydride, LiAlH4) 및 하이드라진(N2H4) 중에서 선택된 1종 이상인 것을 특징으로 하는 FDCA의 제조방법.
17. The method of claim 16,
Wherein the reducing agent is selected from the group consisting of sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium aluminum hydride (LiAlH 4 ) and hydrazine (N 2 H 4 ) Wherein the FDCA is at least one species selected from the group consisting of FDCA and FDCA.
KR1020170043086A 2017-04-03 2017-04-03 Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin KR101937362B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170043086A KR101937362B1 (en) 2017-04-03 2017-04-03 Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170043086A KR101937362B1 (en) 2017-04-03 2017-04-03 Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin

Publications (2)

Publication Number Publication Date
KR20180112891A KR20180112891A (en) 2018-10-15
KR101937362B1 true KR101937362B1 (en) 2019-01-14

Family

ID=63865791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170043086A KR101937362B1 (en) 2017-04-03 2017-04-03 Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin

Country Status (1)

Country Link
KR (1) KR101937362B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239801A (en) * 2007-03-27 2008-10-09 Tokyo Metropolitan Univ Solid polymer material carrying noble metal particulate, preparation method thereof and catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239801A (en) * 2007-03-27 2008-10-09 Tokyo Metropolitan Univ Solid polymer material carrying noble metal particulate, preparation method thereof and catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS Catalysis, Vol.4, pp.2175~2185(2014.05.26.)

Also Published As

Publication number Publication date
KR20180112891A (en) 2018-10-15

Similar Documents

Publication Publication Date Title
Fang et al. Metal organic frameworks for biomass conversion
KR101835609B1 (en) Catalyst for producing 2,5- furandicarboxlic acid and method for producing 2,5- furandicarboxlic acid using the same
Kuwahara et al. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66
Ferraz et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts
CN107365286B (en) Method for synthesizing 2, 5-furandicarboxylic acid
Liu et al. Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers
Guan et al. Pickering HIPEs derived hierarchical porous nitrogen-doped carbon supported bimetallic AuPd catalyst for base-free aerobic oxidation of HMF to FDCA in water
Vikanova et al. Advanced room-temperature synthesis of 2, 5-bis (hydroxymethyl) furan—a monomer for biopolymers—from 5-hydroxymethylfurfural
KR102456622B1 (en) Modified organometallic framework and catalyst for hydrogenation reactions comprising the same
CN108620127B (en) Catalyst for preparing 1, 5-pentanediol through hydrogenolysis of tetrahydrofurfuryl alcohol, preparation method and application thereof
Zhao et al. Recent advances in the oxidative esterification of 5-hydroxymethylfurfural to furan-2, 5-dimethylcarboxylate
Zhang et al. Efficient synthesis of 2, 5-furandicarboxylic acid from furfural based platform through aqueous-phase carbonylation
KR102133304B1 (en) Method of preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural
Liu et al. Functionalized Metal‐Organic Framework Catalysts for Sustainable Biomass Valorization
KR101937367B1 (en) Method for preparing fdmc from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin
Hu et al. Highly selective transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over a zirconium-melamine coordination catalyst without Brønsted acid sites
KR102326588B1 (en) Catalyst for making dicarboxyl acid aromatic heterocyclic compound, and method for preparing dicarboxyl acid aromatic heterocyclic compound
KR101937362B1 (en) Method for preparing fdca from hmf using gold-palladium bimetallic nanoparticles supported on an anion exchange resin
Jensen et al. Advances in the synthesis and application of 2, 5-furandicarboxylic acid
CN111187238B (en) Synthetic method of 2, 5-furandicarboxylic acid
Dutta et al. Oxidation and reduction of biomass-derived 5-(hydroxymethyl) furfural and levulinic acid by nanocatalysis
Song et al. Recent advance in selective hydrogenation reaction catalyzed by biomass-derived non-noble metal nanocomposites
KR102397424B1 (en) Dicarboxyl acid aromatic heterocyclic compound and method for preparing thereof
CN112812082B (en) Method for preparing 2, 5-furan dicarbaldehyde by catalyzing fructose through two-step method
CN109678654A (en) A kind of method that 5 hydroxymethyl furfural adds hydrogen directly to produce 1,2,6- hexanetriol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right