KR101936975B1 - A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same - Google Patents

A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same Download PDF

Info

Publication number
KR101936975B1
KR101936975B1 KR1020140113949A KR20140113949A KR101936975B1 KR 101936975 B1 KR101936975 B1 KR 101936975B1 KR 1020140113949 A KR1020140113949 A KR 1020140113949A KR 20140113949 A KR20140113949 A KR 20140113949A KR 101936975 B1 KR101936975 B1 KR 101936975B1
Authority
KR
South Korea
Prior art keywords
ala
leu
glu
gly
lys
Prior art date
Application number
KR1020140113949A
Other languages
Korean (ko)
Other versions
KR20160026086A (en
Inventor
이정걸
강윤찬
찬드라 수잔 싱델
김태수
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140113949A priority Critical patent/KR101936975B1/en
Publication of KR20160026086A publication Critical patent/KR20160026086A/en
Application granted granted Critical
Publication of KR101936975B1 publication Critical patent/KR101936975B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13025Methane monooxygenase (1.14.13.25)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 양자역학 및 분자역학 기술과 부분 돌연변이기술을 이용하여 메틸로시누스 트리코스포리움 OB-3b 유래 sMMO 수산화효소의 안정성 및 효소 활성을 증가시키는 것이다. 보다 상세하게는 양자역학 및 분자역학에 기반한 스크리닝을 통해 효소 안정성에 영향을 끼치는 잔기를 찾고, 탐색된 잔기의 돌연변이에 의해 효소활성이 개량된 sMMO 수산화효소, 이를 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터, 상기 벡터를 포함하는 형질전환체, 상기 sMMO 수산화효소의 돌연변이체 및 개량된 sMMO 수산화효소를 제조하는 방법에 관한 것이다. The present invention utilizes quantum mechanics and molecular mechanics techniques and partial mutation techniques to increase the stability and enzymatic activity of sMMO hydroxylase from methylosynthritol trisporosporium OB-3b. More particularly, the present invention relates to a method for screening for a residue affecting enzyme stability through screening based on quantum mechanics and molecular mechanics, a sMMO hydroxylase whose enzyme activity is improved by a mutation of the detected residue, a nucleic acid molecule encoding the enzyme, A vector containing the vector, a transformant containing the vector, a mutant of the sMMO hydroxylase, and a method for producing the improved sMMO hydroxylase.

Description

활성이 개선된 메틸로시누스 트리코스포리움 유래의 돌연변이 가용성 메탄 일원자산소화효소 수산화효소 및 그 용도{A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same}[0001] The present invention relates to a mutant soluble methane single-element digestive enzyme hydroxylase derived from methylosinus tricosporium having improved activity and a use thereof.

본 발명은 활성이 개선된 메틸로시누스 트리코스포리움 OB-3b 유래의 돌연변이 sMMO 수산화효소 및 그 용도에 관한 것이다.The present invention relates to a mutant sMMO hydroxylase derived from methylosinus tricosporium OB-3b having improved activity and its use.

메탄산화세균(Methanotrophic bacteria)은 메탄을 탄소원 및 에너지원으로 사용하여 성장하는 세균집단을 통칭하는 것으로, 메틸로모나스(Methylomonas), 메타노모나스(Methanomonas), 메틸로코쿠스(Methylococcus), 메틸로시누스(Methylosinus), 메틸로박터(Methylobacter), 메틸로미크로비움(Methylomicrobium) 및 메틸로시스티스(Methyl ocystis) 등이 있다. Methanotrophic bacteria refers to a group of bacteria that grows by using methane as a carbon source and an energy source. Methylomonas, Methanomonas, Methylococcus, Methylosinus, Methylobacter, Methylomicrobium and Methyl ocystis, and the like.

상기 메탄산화세균은 메탄을 메탄올로 산화시키는 메탄 일원자산소화효소(methane monooxygenase, 이하 'MMO'라 칭함) 및 메탄올을 포름알데히드로 산화시키는 메탄올 탈수소효소(methanol dehydrogenase, 이하 'MDH'라 칭함) 등을 포함하고 있어 메탄가스를 산화시켜 이산화탄소로 전환시키는 역할을 한다. 구체적으로, 메탄산화세균은 메탄을 메탄올로, 메탄올을 다시 포름알데히드로 산화시킨다. 그리고 포름알데히드를 포름산으로 산화시켜 최종적으로 유해성이 적은 이산화탄소로 전환시킨다. 또한 상기 메탄산화세균은 다탄소 결합을 갖는 유기화합물을 성장물질로는 이용하지 못하지만 MMO 효소작용으로 많은 알칸족과 방향족 화합물도 산화시킬 수 있다. 한편, 현재 쓰레기 처리장 등에서 발생되는 메탄을 재활용하기 위한 많은 연구가 진행되고 있으며, 그 중 메탄산화세균을 이용하여 메탄을 메탄올로 전환시키는 연구가 진행되고 있다. 하지만 해당 효소는 불안정성과 낮은 효소활성이라는 단점을 가지고 있다. The methanotrophic bacteria include methane monooxygenase (hereinafter, referred to as 'MMO') which oxidizes methane to methanol and methanol dehydrogenase (hereinafter referred to as 'MDH') which oxidizes methanol to formaldehyde To oxidize methane gas to convert it to carbon dioxide. Specifically, methane oxidizing bacteria oxidize methane to methanol and methanol to formaldehyde again. The formaldehyde is then oxidized to formic acid, which ultimately converts it to less toxic carbon dioxide. Although the methanotrophic bacteria does not utilize an organic compound having a carbon-carbon bond as a growth material, it can also oxidize many alkanes and aromatics by the action of MMO enzymes. On the other hand, a lot of researches for recycling the methane generated in the waste disposal site are being carried out, and studies for converting methane to methanol using methane oxidizing bacteria are underway. However, the enzyme has disadvantages of instability and low enzyme activity.

[선행 특허 문헌][Prior Patent Literature]

대한민국 특허 공개번호 제1020110006964호  Korean Patent Publication No. 1020110006964

본 발명은 상기의 문제점을 해결하고 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 메탄올의 물전환에 작용하는 sMMO 수산화효소를 실제 산업용 효소로 활용하기 위해서 부위특이적 돌연변이법을 통하여 효소의 활성을 개량하는 것이다. DISCLOSURE OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a process for the production of sMMO-hydroxysuccinimide .

본 발명의 두 번째 목적은 상기 개량된 sMMO 수산화효소 유전자를 포함한 재조합 발현벡터를 제공하는 것이다.A second object of the present invention is to provide a recombinant expression vector containing the improved sMMO hydroxylase gene.

본 발명의 세 번째 목적은 개량된 유전자가 형질전환된 재조합 메틸로시누스 트리코스포리움을 포함하는 모든 형질전환 균주를 제공하는 것이다.A third object of the present invention is to provide all the transformation strains comprising the recombinant methylorthosynthesis tricosporium transformed with the improved gene.

본 발명의 네 번째 목적은 개량된 효소가 형질전환된 재조합 메틸로시누스 트리코스포리움을 이용한 재조합 sMMO 수산화효소를 제공하는 것이다.A fourth object of the present invention is to provide a recombinant sMMO hydroxylase using recombinant methylorthosynthesis tricosporium transformed with an improved enzyme.

본 발명의 다섯 번째 목적은 상기 효소를 이용하여 sMMO 수산화효소의 활성에 영향을 미치는 잔기를 제시하는 것이다.
A fifth object of the present invention is to propose residues which affect the activity of sMMO hydrolytic enzymes using the enzyme.

상기의 목적을 달성하기 위하여 본 발명은 서열번호 1의 sMMO 수산화효소의 97번째 아미노산 프롤린이 류신으로 치환된 돌연변이체 및 191번째 아미노산 글라이신이 아이소류신으로 치환된 돌연변이체로 구성된 군으로부터 선택된 돌연변이 sMMO(soluble methane monooxygenase) 수산화효소를 제공한다.In order to achieve the above object, the present invention provides a mutant sMMO selected from the group consisting of a mutant in which the 97th amino acid proline of the sMMO hydroxylase of SEQ ID NO: 1 is substituted with leucine and a 191th amino acid glycine is replaced by isoleucine methane monooxygenase) hydroxylase.

본 발명의 일 구현예에 있어서, 상기 효소는 메틸로시누스 트리코스포리움 OB-3b(Methylosinus trichosporium OB -3b)에서 유래된 것이 바람직하나 화학합성법이나 유전공학적인 방법에 의하여 제조된 sMMO 수산화효소도 본 발명의 보호범위에 포함된다.In one embodiment, the enzyme when methyl Taunus tricot sports Solarium OB-3b (Methylosinus trichosporium OB- 3b ), but sMMO hydroxylase produced by chemical synthesis or genetic engineering methods is also covered by the scope of the present invention.

본 발명의 다른 구현예에 있어서, 상기 돌연변이 효소는 서열번호 3 또는 5의 아미노산 서열을 가지는 것이 바람직하나 이 서열에 하나 이상의 치환, 결손, 역위, 전좌 등을 통하여 본 발명이 달성하고자 하는 효과를 얻는 돌연변이체도 본 발명의 범위에 포함된다.In another embodiment of the present invention, it is preferable that the mutant enzyme has an amino acid sequence of SEQ ID NO: 3 or 5, but it is preferable that the mutant enzyme has an amino acid sequence of SEQ ID NO: 3 or 5, Mutants are also included within the scope of the present invention.

또 본 발명은 상기 본 발명의 효소를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the enzyme of the present invention.

또 본 발명은 상기 본 발명의 유전자를 포함하는 재조합벡터를 제공한다.The present invention also provides a recombinant vector comprising the gene of the present invention.

또한 본 발명은 상기 본 발명의 돌연변이 효소를 유효성분으로 포함하는 사슬형 탄화수소 및 방향족 화합물 분해용 조성물을 제공한다.The present invention also provides a composition for degrading aromatic hydrocarbons and aromatic compounds comprising the mutant enzyme of the present invention as an active ingredient.

또 본 발명은 상기 본 발명의 유전자를 유효성분으로 포함하는 사슬형 탄화수소 및 방향족 화합물 분해용 조성물을 제공한다.The present invention also provides a composition for decomposing aromatic hydrocarbons and aromatic compounds containing the gene of the present invention as an active ingredient.

본 발명은 상기 본 발명의 재조합벡터를 미생물에 형질전환시켜서 형질전환체를 제조하여 상기 본 발명의 효소를 발현하는 단계를 포함하는 상기 본 발명의 돌연변이체 효소의 제조방법을 제공한다.The present invention provides a method for producing the mutant enzyme of the present invention comprising the step of transforming the recombinant vector of the present invention into a microorganism to produce a transformant and expressing the enzyme of the present invention.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 본 발명의 상기 sMMO 수산화효소를 이용하여 효소 활성에 중요한 역할을 수행하는 몇몇 잔기를 제시함으로써, 수산화효소의 활성 결정인자 규명에 대한 기반기술을 제공한다.The present invention provides an underlying technology for identifying the determinants of activity of hydroxylase by suggesting several residues that play an important role in enzyme activity using the sMMO hydroxylase of the present invention.

또한 본 발명은 본 발명의 상기 돌연변이 sMMO 수산화효소를 이용하여 고활성을 갖는 sMMO 수산화효소를 제공한다. The present invention also provides sMMO hydroxylase having high activity using the mutant sMMO hydroxylase of the present invention.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

서열번호 4 및 6은 본 발명의 변이된 sMMO 수산화효소 유전자의 염기서열을, 서열번호 3 및 5는 상기 유전자가 코딩하는 아미노산 서열을 표시한다. 앞서 설명한 바와 같이, 상기 아미노산 서열을 가진 폴리펩티드가 sMMO 수산화효소 활성을 가지는 한, 수 개의 아미노산에 대해서 결실, 치환, 부가 등의 변이가 있어도 된다. 또한 본 발명의 유전자는 서열번호 4 및 6으로 표시되는 아미노산을 코딩하는 염기서열을 가진 것에 첨가하여, 축중 코돈에 있어서만 상이한 동일 폴리펩티드를 코딩하는 축중 이성체도 포함한다. 여기서 결실, 치환, 부가 등의 변이는 부위돌연변이 도입방법(Current Protocols in Molecular Biology 1권, 811페이지, 1994년) 등에 의해 도입가능하다.SEQ ID NOS: 4 and 6 denote the nucleotide sequences of the mutated sMMO hydroxylase gene of the present invention, and SEQ ID NOS: 3 and 5 denote the amino acid sequences encoded by the genes. As described above, as long as the polypeptide having the amino acid sequence has the sMMO hydroxylase activity, there may be mutations such as deletion, substitution, and addition to several amino acids. In addition, the gene of the present invention includes, in addition to those having a base sequence encoding the amino acid sequence represented by SEQ ID NOS: 4 and 6, a prodrug that encodes the same polypeptide that differs only in the axial codon. Here, mutations such as deletion, substitution, and addition can be introduced by site mutation introduction methods (Current Protocols in Molecular Biology, Vol. 1, p. 811, 1994).

본 발명의 형질전환된 미생물은 본 발명의 재조합벡터를 상기 재조합벡터를 제작할 때에 사용한 발현벡터에 적합한 숙주 속에 도입함으로써 얻게 된다. The transformed microorganism of the present invention is obtained by introducing the recombinant vector of the present invention into a host suitable for the expression vector used for preparing the recombinant vector.

본 발명에서는 고활성 효소를 확보하고 효소의 활성에 중요한 역할을 하는 몇몇 잔기를 제시하고자 메틸로시누스 트리코스포리움 OB-3b로부터 sMMO 수산화효소의 유전자를 클로닝하였다. 전기 유전자를 삽입한 재조합 균주가 높은 활성에 중요한 역할을 하는 몇몇 잔기를 제시함으로써, 고활성 결정인자 규명에 대한 기반기술을 제공할 수 있음을 확인하였다. In the present invention, the gene of sMMO-hydroxylase was cloned from methylosynthostricosporium OB-3b in order to secure a highly active enzyme and to suggest some residues which play an important role in the activity of the enzyme. The recombinant strains inserted with the electric gene showed several residues which play an important role in the high activity, and it was confirmed that it is possible to provide an underlying technology for the identification of highly active determinants.

본 발명에서 얻어진 메틸로시누스 트리코스포리움 OB-3b 유래 sMMO 수산화효소를 이용하여 활성에 중요한 역할을 하는 잔기를 치환한 변이체를 톨루엔을 기질로 사용하였을 경우 P97L 변이체의 대사 회전 속도는 4.60 ± 0.1 nmol min-1 mg- 1 이었고, 비페닐을 기질로 사용하였을 경우 P97L 변이체와 G191I 변이체의 대사 회전 속도는 각각 0.37 ± 0.4, 0.35 ± 0.3 nmol min-1 mg- 1 이었다. The metabolism rate of P97L mutant was 4.60 ± 0.1 when toluene was used as a substrate for mutants in which the residues that play an important role in the activity were substituted with the sMMO hydroxylase derived from methylcystinosetricosporium OB-3b obtained in the present invention nmol min -1 mg - 1 and the metabolic rotation rates of P97L and G191I variants were 0.37 ± 0.4 and 0.35 ± 0.3 nmol min -1 mg - 1 , respectively, when biphenyl was used as a substrate.

본 발명에서 고활성을 나타내는 sMMO 수산화효소 변이체를 이용하여 기질에 대한 대사 회전 속도를 증가시킬 수 있었다. 이는 기존의 sMMO 수산화효소의 낮은 효소활성 문제점을 극복함으로써, 메탄으로부터 메탄올의 생산에 유용하게 적용될 것이다.In the present invention, sMMO hydroxylase mutant exhibiting high activity could be used to increase the metabolic rotation rate to the substrate. This will be useful for the production of methanol from methane by overcoming the low enzymatic activity problems of the existing sMMO hydroxides.

sMMO 수산화효소에 의해 생성되는 온실가스인 메탄을 기질로부터 유용물인 메탄올을 생산하는 활성을 가지고 있지만, 해당 효소의 불안정성과 낮은 효소활성이라는 단점을 가지고 있다. Methanol, which is a greenhouse gas generated by sMMO hydroxycarboxylase, has activity to produce methanol, which is a useful substance, from the substrate, but it has disadvantages such as instability of the enzyme and low enzyme activity.

따라서 본 발명은 메틸로시누스 트리코스포리움 OB-3b(Methylosinus trichosporium OB -3b) 유래의 sMMO 수산화효소의 활성에 중요한 역할을 하는 잔기를 돌연변이 시킴으로써 대사 회전 속도가 개선된 효소를 개발함에 있다. 또한 상기 sMMO 수산화효소의 돌연변이체 및 개량된 sMMO 수산화효소를 제작할 수 있다.
Therefore the present invention to develop a metabolic enzyme speed improved by mutation of residues that play an important role in the activity of Janus tricot sports Solarium OB-3b (Methylosinus trichosporium OB -3b ) sMMO hydroxide enzyme derived during a methyl. Also, mutants of the sMMO hydroxylase and improved sMMO hydroxylase can be prepared.

도 1은 야생형 sMMO 수산화효소의 아미노산 서열을 나타낸 그림.
도 2은 야생형 sMMO 수산화효소의 염기서열을 나타낸 그림.
도 3은 sMMO 수산화효소 P97L 변이체의 아미노산 서열을 나타낸 그림.
도 4는 sMMO 수산화효소 P97L 변이체의 염기서열을 나타낸 그림.
도 5는 sMMO 수산화효소 G191I 변이체의 아미노산 서열을 나타낸 그림.
도 6은 sMMO 수산화효소 G191I 변이체의 염기서열을 나타낸 그림.
Figure 1 shows the amino acid sequence of wild-type sMMO hydroxylase.
Figure 2 shows the nucleotide sequence of wild-type sMMO hydroxylase.
Fig. 3 shows the amino acid sequence of the sMMO hydroxylase P97L mutant.
Figure 4 shows the nucleotide sequence of the sMMO hydroxylase P97L mutant.
Fig. 5 shows the amino acid sequence of the mutant of sMMO hydroxylase G191I.
FIG. 6 shows the nucleotide sequence of the mutant of sMMO hydroxylase G191I.

이하, 본 발명을 하기의 비한정적인 실시예에 의하여 더욱 상세히 설명하나, 본 발명은 하기 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following non-limiting examples, but the present invention is not limited by the following examples.

실시예Example 1:  One: sMMOsMMO 수산화효소의 유전자  Gene of hydroxylase 클로닝Cloning

돌연변이들은 표 1에 자세하게 기술된 프라이머들을 가지고 이전에 기술한 4개 프라이머 중복-연장 PCR 방법 (Smith TJ, et al. Appl. Environ. Microbiol, 68, 5265-5273, 2002; Ho SN, et al. Gene, 77, 51-59, 1989)을 통해 구성되었다. 돌연변이된 PCR 생성물들은 BamHI 및 NdeI을 이용하여 pT2ML 내의 sMMO 오페론의 잔여물 내로 복제되었다. 모든 복제본의 PCR-유도 부분은 dye termination sequencing 방법에 의해 원치 않는 돌연변이가 없음을 확인하였다. The mutations were amplified using primers described in detail in Table 1 using four primer overlap-extension PCR methods (Smith TJ, et al. Appl. Environ. Microbiol, 68, 5265-5273, 2002; Ho SN, et al. Gene, 77, 51-59, 1989). The mutated PCR products were cloned into the remainder of the sMMO operon in pT2ML using Bam HI and Nde I. The PCR-derived portion of all replicons was confirmed to be free of unwanted mutations by dye termination sequencing.

Primer Primer Oligonucleotide sequence 5’ → 3’ Oligonucleotide sequence 5 '→ 3' P3 P3 ATT CGA GCT CAA ACG TTC GAA C ATT CGA GCT CAA ACG TTC GAA C P4 P4 GGG CTC TCG ACG CCA TAT TTG GGG CTC TCG ACG CCA TAT TTG P97L P97L TCC ATC TCC GCT GGG GCG AGA TCC ATC TCC GCT GGG GCG AGA G191I G191I TTC GCC GAC ATC TTC ATC TCC GG TTC GCC GAC ATC TTC ATC TCC GG

표 1은 돌연변이에 이용한 올리고뉴클레오타이드 서열에 대한 표이다.
Table 1 is a table of oligonucleotide sequences used for mutation.

실시예Example 2:  2: sMMOsMMO 수산화효소의 활성 확인 Identification of the activity of hydroxylase

상기 박테리아 현탁액의 5 ml 분취액은 sMMO의 감소된 양만큼의 여분을 제공하기 위해 기질 (톨루엔 5 ㎕ 액체 또는 고체 기질인 비 페닐 15 mg)을 5 mM 포름산 나트륨과 함께 24시간 200 rpm에서 교반하여 배양되었다. 하이드록실화된 생성물은 1.25 ml 디 에틸 에테르와 함께 추출되었고 최종 부피가 50 ㎕가 되도록 증발시켰으며, 바닐린 (20 nmoles)을 내부 표준으로 사용하였다. 샘플들 (1 ㎕)이 Trio-1 질량 분석기와 결합된 5890 GC (Hewlett Packard) 를 이용하여 GC-MS 를 통하여 분석되었다. GC는 (5 % 페닐) 메틸 폴리실록산 코팅 (0.32 mm × 50m, 코팅 두께 0.25 μm)과 함께 Hewlett Packard HP-5 컬럼과 맞추어 졌고 1.5 ml min-1의 캐리어 가스 (질소) 유량률로서 작동되었다. 스플릿 없이 분리가 수행되었고 컬럼 온도는 분당 10 ℃ 만큼 80 ℃ 에서 126 ℃까지 증가되었고 그 후 분당 0.1 ℃ 만큼 126 ℃ 에서 129 ℃ 로 증가되며 마지막으로 분당 10 ℃만큼 129 ℃ 에서 250 ℃로 증가되었다.
A 5 ml aliquot of the bacterial suspension was prepared by stirring the substrate (15 μl toluene 5 μl liquid or solid substrate biphenyl 15 mg) with 5 mM sodium formate for 24 hours at 200 rpm to provide a reduced amount of sMMO Lt; / RTI > The hydroxylated product was extracted with 1.25 ml diethyl ether and evaporated to a final volume of 50 [mu] l, vanillin (20 nmoles) was used as the internal standard. Samples (1 μl) were analyzed by GC-MS using a 5890 GC (Hewlett Packard) coupled with a Trio-1 mass spectrometer. GC was fitted with a Hewlett Packard HP-5 column with a (5% phenyl) methylpolysiloxane coating (0.32 mm × 50 m, coating thickness 0.25 μm) and operated as a carrier gas (nitrogen) flow rate of 1.5 ml min -1. Separation without split was performed and the column temperature was increased from 80 ° C to 126 ° C by 10 ° C per minute and then increased from 126 ° C to 129 ° C by 0.1 ° C per minute and finally increased from 129 ° C to 250 ° C by 10 ° C per minute.

실시예Example 3: 고활성을 가진  3: with high activity sMMOsMMO 수산화효소의  Hydroxylase 변이체Mutant 제작 making

실시예Example 3-1: 활성에 중요 역할을 하는  3-1: play an important role in activity 잔기의Residue 확인 Confirm

sMMO 수산화효소를 이용하여 고활성에 중요한 역할을 하는 잔기를 탐색하기 위해 Discovery Studio 3.1과 Meterials Studio 6.0 (Accelrys Inc. San Diego, CA, 미국)의 양자역학(Quantum mechanics)/분자역학(molecular mechanics) 방법을 사용하였다. 효소의 기질 결합부위의 잔기들을 알라닌으로 치환한 돌연변이체의 결합에너지(Kcal/mol)를 야생 효소의 결합에너지와 비교하였다. 결합에너지는 그 값이 낮을수록 결합력이 강한 것으로 알려져 있다. 표 2와 같이, P97L, G191I 변이효소가 야생 효소보다 결합력이 낮았으며, P97L, G191I 잔기를 돌연변이를 위한 목적 잔기로 선정하였다. Quantum mechanics / molecular mechanics of Discovery Studio 3.1 and Meterials Studio 6.0 (Accelrys Inc. San Diego, Calif., USA) to explore residues that play an important role in high activity using sMMO hydroxylase. Method. The binding energy (Kcal / mol) of the mutants in which the residues of the substrate binding site of the enzyme were replaced with alanine was compared with the binding energy of the wild enzyme. The binding energy is known to be stronger at lower values. As shown in Table 2, the P97L and G191I mutants had lower binding affinities than wild-type enzymes, and P97L and G191I residues were selected as the target residues for mutagenesis.

효소enzyme A+B (효소 기질복합체)A + B (enzyme substrate complex) A
(기질)
A
(temperament)
B
(효소)
B
(enzyme)
BEQM
(Hartree)
BE QM
(Hartree)
결합에너지
(Kcal/mol)
Bonding energy
(Kcal / mol)
WTWT -12815.40-12815.40 -569.62-569.62 -12245.7189-12245.7189 -0.062-0.062 -39.0-39.0 P97LP97L -12628.70-12628.70 -569.62-569.62 -12059.0203-12059.0203 -0.066-0.066 -41.9-41.9 L191IL191I -12608.94-12608.94 -569.62-569.62 -12039.2535-12039.2535 -0.068-0.068 -42.8-42.8

실시예Example 3-2:  3-2: P97LP97L , , G191IG191I 변이체의Mutant 대사 회전 속도 Metabolic rotation speed

상기 실시예 3-1에서와 같이 기질 결합부위의 잔기 중 돌연변이 시에 낮은 결합에너지를 나타낸 잔기인 97번 위치의 Pro, 191번째 위치의 Gly 잔기를 Leu로 Ile으로 각각 치환하였다. 해당 변이체를 실시1을 이용하여 제작하였으며, 표 3 및 4에 나타난 바와 같이 톨루엔을 기질로 사용하였을 경우 P97L 변이체가 순수 효소보다 2.9배의 활성증가 하였다. 비페닐을 기질로 사용하였을 경우 P97L 변이체와 G191I 변이체는 순수 효소보다 6배, 4.8배의 활성 증가를 확인할 수 있었다.As in Example 3-1, residues at the 97th position and 191th position were substituted with Leu and Ile, respectively, in the mutants in the substrate binding site. As shown in Tables 3 and 4, when the toluene was used as a substrate, the mutant P97L was 2.9 times more active than the pure enzyme. When biphenyl was used as a substrate, the activity of P97L mutant and G191I mutant increased 6 times and 4.8 times as compared with pure enzyme, respectively.

EnzymeEnzyme Benzyl alcoholBenzyl alcohol o-crseolo-crseol m-crseolm-crseol p-crseolp-crseol turnover rate
(nmol min-1mg-1)
turnover rate
(nmol min -1 mg -1 )
WTWT 63.1 ± 2.663.1 ± 2.6 NDND NDND 33.9 ± 2.633.9 ± 2.6 1.60 ± 0.31.60 ± 0.3 P97LP97L 67.1 ± 1.767.1 ± 1.7 NDND NDND 32.9 ± 1.732.9 ± 1.7 4.60 ± 0.14.60 ± 0.1 G191IG191I 80.0 ± 0.380.0 ± 0.3 NDND NDND 20.0 ± 0.320.0 ± 0.3 1.2 ± 0.31.2 ± 0.3

EnzymeEnzyme 2-hydroxy biphenyl2-hydroxy biphenyl 3-hydroxy biphenyl3-hydroxy biphenyl 4-hydroxy biphenyl4-hydroxy biphenyl turnover rate
(nmol min-1mg-1)
turnover rate
(nmol min -1 mg -1 )
WTWT 6.1 ± 1.56.1 ± 1.5 NDND 93.9 ± 1.5 93.9 ± 1.5 0.062 ± 0.010.062 ± 0.01 P97LP97L 0.94 ± 0.220.94 0.22 1.17 ± 0.301.17 0.30 97.9 ± 0.5197.9 ± 0.51 0.37 ± 0.10.37 ± 0.1 G191IG191I 0.00 ± 1.290.00 ± 1.29 7.77 ± 1.297.77 ± 1.29 92.2 ± 1.2992.2 ± 1.29 0.30 ± 0.10.30 ± 0.1

표 3 및 4는 순수 sMMO 수산화효소와 돌연변이체의 각각 mono-aromatic (톨루엔) 기질, 및 di-armoatic (비 페닐)기질에 대한 활성을 나타낸 표이다.
Tables 3 and 4 show the activity of pure sMMO hydroxylase and mutants on mono-aromatic (toluene) and di-armoatic (biphenyl) substrates, respectively.

<110> Konkuk University Industrial Cooperation Corp <120> A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same <130> HY141015 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 526 <212> PRT <213> Methylosinus trichosporium <400> 1 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val 1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu 20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr 35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala 50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly 65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His 85 90 95 Pro Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val 100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala 115 120 125 Thr Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu 130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Gly Phe 180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly 195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala 210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn 260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr 275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr 290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala 340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp 355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly 370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly 420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu 435 440 445 Thr Asp Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr 450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile 500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe 515 520 525 <210> 2 <211> 1581 <212> DNA <213> Methylosinus trichosporium <400> 2 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatcc ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac ggcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581 <210> 3 <211> 526 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 3 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val 1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu 20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr 35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala 50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly 65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His 85 90 95 Leu Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val 100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala 115 120 125 Thr Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu 130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Gly Phe 180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly 195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala 210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn 260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr 275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr 290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala 340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp 355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly 370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly 420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu 435 440 445 Thr Asp Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr 450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile 500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe 515 520 525 <210> 4 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 4 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatct ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac ggcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581 <210> 5 <211> 526 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 5 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val 1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu 20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr 35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala 50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly 65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His 85 90 95 Pro Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val 100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala 115 120 125 Thr Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu 130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Ile Phe 180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly 195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala 210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn 260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr 275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr 290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala 340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp 355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly 370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly 420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu 435 440 445 Thr Asp Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr 450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile 500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe 515 520 525 <210> 6 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 6 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatcc ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac atcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581 <110> Konkuk University Industrial Cooperation Corp <120> A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase          improved in activity and use of the same <130> HY141015 <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 526 <212> PRT <213> Methylosinus trichosporium <400> 1 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val   1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu              20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr          35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala      50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly  65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His                  85 90 95 Pro Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val             100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala         115 120 125 Thr Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu     130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala                 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Gly Phe             180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly         195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala     210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser                 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn             260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr         275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr     290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys                 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala             340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp         355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly     370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr                 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly             420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu         435 440 445 Thr Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr     450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile                 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile             500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe         515 520 525 <210> 2 <211> 1581 <212> DNA <213> Methylosinus trichosporium <400> 2 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatcc ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac ggcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581 <210> 3 <211> 526 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 3 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val   1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu              20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr          35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala      50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly  65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His                  85 90 95 Leu Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val             100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala         115 120 125 Thr Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu     130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala                 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Gly Phe             180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly         195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala     210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser                 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn             260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr         275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr     290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys                 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala             340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp         355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly     370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr                 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly             420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu         435 440 445 Thr Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr     450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile                 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile             500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe         515 520 525 <210> 4 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 4 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatct ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac ggcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581 <210> 5 <211> 526 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 5 Met Ala Ile Ser Leu Ala Thr Lys Ala Ala Thr Asp Ala Leu Lys Val   1 5 10 15 Asn Arg Ala Pro Val Gly Val Glu Pro Gln Glu Val His Lys Trp Leu              20 25 30 Gln Ser Phe Asn Trp Asp Phe Lys Glu Asn Arg Thr Lys Tyr Pro Thr          35 40 45 Lys Tyr His Met Ala Asn Glu Thr Lys Glu Gln Phe Lys Val Ile Ala      50 55 60 Lys Glu Tyr Ala Arg Met Glu Ala Ala Lys Asp Glu Arg Gln Phe Gly  65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Gly Ala Gly Asn Lys Val His                  85 90 95 Pro Arg Trp Gly Glu Thr Met Lys Val Ile Ser Asn Phe Leu Glu Val             100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala         115 120 125 Thr Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu     130 135 140 Ile Arg His Thr His Gln Cys Ala Phe Ile Asn His Tyr Tyr Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala                 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Ile Phe             180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly         195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala     210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Val Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser                 245 250 255 Ile Ala Asn Asp Pro Ala Ser Ala Lys Phe Leu Asn Thr Asp Leu Asn             260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Tyr         275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr     290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Gly Lys Tyr Gly Val Glu Ser Pro Ala Ser Leu Arg Asp Ala Lys                 325 330 335 Arg Asp Ala Tyr Trp Ala His His Asp Leu Ala Leu Ala Ala Tyr Ala             340 345 350 Met Trp Pro Leu Gly Phe Ala Arg Leu Ala Leu Pro Asp Glu Glu Asp         355 360 365 Gln Ala Trp Phe Glu Ala Asn Tyr Pro Gly Trp Ala Asp His Tyr Gly     370 375 380 Lys Ile Phe Asn Glu Trp Lys Lys Leu Gly Tyr Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Ile Pro Tyr Gln Trp Leu Leu Ala Asn Gly His Asp Val Tyr                 405 410 415 Ile Asp Arg Val Ser Gln Val Pro Phe Ile Pro Ser Leu Ala Lys Gly             420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Lys Lys His Ser Leu         435 440 445 Thr Asp Trp Gly Glu Arg Gln Trp Leu Ile Glu Pro Glu Arg Tyr     450 455 460 Glu Cys His Asn Val Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu 465 470 475 480 Val Ile Ala Glu Gly His Gly Val Arg Ser Asp Gly Lys Thr Leu Ile                 485 490 495 Ala Gln Pro His Thr Arg Gly Asp Asn Leu Trp Thr Leu Glu Asp Ile             500 505 510 Lys Arg Ala Gly Cys Val Phe Pro Asp Pro Leu Ala Lys Phe         515 520 525 <210> 6 <211> 1581 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 6 atggcgatca gtctcgctac gaaagcggcg accgatgctc tgaaggtcaa ccgcgctccg 60 gtcggcgtgg agcctcagga ggtccacaaa tggctgcaga gcttcaactg ggacttcaaa 120 gagaccgga cgaagtatcc gaccaaatat cacatggcga atgagaccaa ggagcagttc 180 aaggtcatcg ccaaggaata cgcccgcatg gaggcggcca aggacgagcg ccagttcggc 240 actcttctcg acggcctcac ccgcctcggc gccggcaaca aggtccatcc ccgctggggc 300 gagacgatga aggtgatctc gaacttcctc gaggtcggcg aatataacgc gatcgccgct 360 tcggccatgc tttgggacag cgccaccgcc gccgagcaga agaacggcta tctcgcgcag 420 gtgctcgacg agattcgtca cacgcatcag tgcgccttca tcaatcacta ttactccaag 480 cattatcatg atccggccgg tcacaacgac gcccgtcgca cccgtgcgat cggccccttg 540 tggaagggca tgaagcgcgt cttcgccgac atcttcatct ccggcgacgc cgtggaatgc 600 tcggtcaatc tgcagctggt cggcgaagcc tgcttcacca atccgctgat cgtcgccgtc 660 accgaatggg cctcggccaa tggcgacgag atcacgccca ccgtcttcct ctcggtggag 720 accgacgagc tgcgtcatat ggcgaacggc taccagaccg tggtgtcgat cgccaatgat 780 ccggcctcgg cgaagttcct caacaccgat ctcaacaacg ccttctggac gcagcagaaa 840 tatttcacgc ccgtcctcgg ctatctgttc gagtacggct ccaagttcaa ggtcgagccg 900 tgggtgaaga cctggaaccg ctgggtctac gaggattggg gtggaatctg gatcggccgt 960 ctcggcaagt atggcgtcga gagcccggct tcgctgcgcg acgccaagcg cgacgcctat 1020 tgggcgcatc acgatctggc gctcgccgcc tatgcgatgt ggccgctcgg cttcgcgcgt 1080 ctcgctcttc cggacgagga ggaccaggcg tggttcgagg cgaattatcc gggctgggcc 1140 gatcactacg gcaagatctt caacgagtgg aagaagctcg gctatgagga tcccaagagc 1200 ggattcatcc cctacaagtg gctcctcgag aacggtcacg acgtctacat cgaccgcgtc 1260 tcgcaggttc cgttcattcc gtcgctggcc aagggctcgg gctcgctccg cgttcacgag 1320 ttcaacggca agaagcattc gctgacggat gattggggtg agcgccagtg gctgatcgag 1380 ccggagcgct acgagtgcca caatgtcttc gagcagtacg agggacgcga attgtccgag 1440 gtgatcgccg agggccatgg cgttcgctcc gatggcaaga cgctgatcgc tcagcctcac 1500 acgcgcggcg acaatctctg gacgctcgag gacatcaagc gcgcgggctg cgtgttcccc 1560 gatccgctcg ccaagttctg a 1581

Claims (8)

서열번호 1의 sMMO 수산화효소의 97번째 아미노산 프롤린이 류신으로 치환된 돌연변이체인 것을 특징으로 하는 돌연변이 sMMO 수산화효소.A mutant sMMO hydroxylase characterized in that the 97th amino acid proline of sMMO hydroxylase of SEQ ID NO: 1 is a mutant substituted with leucine. 제 1항에 있어서, 상기 효소는 메틸로시누스 트리코스포리움 OB-3b 유래 sMMO 수산화효소인 것을 특징으로 하는 돌연변이 sMMO 수산화효소.2. The mutant sMMO hydroxylase according to claim 1, wherein said enzyme is sMMO-hydroxylase derived from methyl- rhosinostricosporium OB-3b. 제 1항에 있어서, 상기 돌연변이 효소는 서열번호 3의 아미노산 서열로 이루어진 것을 특징으로 하는 돌연변이 sMMO 수산화효소.2. The mutant sMMO hydroxylase according to claim 1, wherein the mutant enzyme comprises the amino acid sequence of SEQ ID NO: 3. 제 1항의 효소를 코딩하는 유전자.A gene encoding the enzyme of claim 1. 제 4항에 있어서, 상기 유전자는 서열번호 4의 염기서열로 이루어진 것을 특징으로 하는 유전자.5. The gene according to claim 4, wherein the gene comprises the nucleotide sequence of SEQ ID NO: 4. 제 4항의 유전자를 포함하는 재조합 벡터.A recombinant vector comprising the gene of claim 4. 제 1항의 효소를 유효성분으로 포함하는 사슬형 탄화수소 또는 방향족 화합물 분해용 조성물.A composition for decomposing a chain-like hydrocarbon or an aromatic compound comprising the enzyme of claim 1 as an active ingredient. 제 4항의 유전자를 유효성분으로 포함하는 사슬형 탄화수소 또는 방향족 화합물 분해용 조성물.
A composition for degrading a chain-like hydrocarbon or an aromatic compound comprising the gene of claim 4 as an active ingredient.
KR1020140113949A 2014-08-29 2014-08-29 A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same KR101936975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140113949A KR101936975B1 (en) 2014-08-29 2014-08-29 A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140113949A KR101936975B1 (en) 2014-08-29 2014-08-29 A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same

Publications (2)

Publication Number Publication Date
KR20160026086A KR20160026086A (en) 2016-03-09
KR101936975B1 true KR101936975B1 (en) 2019-01-09

Family

ID=55536547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140113949A KR101936975B1 (en) 2014-08-29 2014-08-29 A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same

Country Status (1)

Country Link
KR (1) KR101936975B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101518A1 (en) * 2016-12-02 2018-06-07 건국대학교 산학협력단 Method for screening for mutant soluble methane monooxygenase hydroxylase with improved catalytic performance by using fusion rational design

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applied and Environmental Microbiology, Vol. 58, No. 11, pp. 3701-3708 (1992.11.)
Applied and Environmental Microbiology, Vol. 68, No. 11, pp. 5265-5273 (2002.11.)*
Current Opinion in Chemical Biology, Vol. 6, pp. 568-576 (2002.08.30.)

Also Published As

Publication number Publication date
KR20160026086A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
US9109237B2 (en) Method of preparing piceatannol using bacterial cytochrome P450 and composition therefor
CN114341351A (en) Strains and methods for producing hemoprotein
AU2013227067B2 (en) Hydrocarbon synthase gene, and use thereof
Dickert et al. Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes
Jernerén et al. Reaction mechanism of 5, 8-linoleate diol synthase, 10R-dioxygenase, and 8, 11-hydroperoxide isomerase of Aspergillus clavatus
KR101521045B1 (en) Recombinant microorganisms for producing organic acids
KR101936975B1 (en) A mutant of Methylosinus trichosporium OB-3b sMMO hydroxylase improved in activity and use of the same
CN111485008A (en) Biological preparation method of cis-5-hydroxy-L-hexahydropicolinic acid
CN113106082A (en) Alanine racemase from animal manure metagenome as well as preparation and application thereof
US9890409B2 (en) Composition for astringin product
KR101719678B1 (en) Composition for 5&#39;-hydroxyomeprazole sulfide
JP4759054B2 (en) S-adenosylmethionine-β-N-lysine-methyltransferase from Neurospora crassa, gene encoding it, vector and host cell containing the gene, and trimethyllysine using the host cell How to produce
CN110938606A (en) HpaBC gene, mutant and application thereof
KR101835940B1 (en) A mutant Soluble Methane Monooxygenase derived from Methylosinus trichosporium OB3b with improved activity
WO2019216248A1 (en) Peptide macrocyclase
KR102173101B1 (en) Microorganism for production of dicarboxylic acid and method of producing decarboxylic acid using the Same
WO2022210236A1 (en) Vanillic-acid-producing transformed microorganism and use of same
KR101832036B1 (en) A mutant Soluble Methane Monooxygenase derived from Methylosinus trichosporium with improved activity
EP3356514A1 (en) Novel bacterial strains for the production of vanillin
KR101922792B1 (en) Novel Squalene Synthase Derived from Planococcus and The Uses Thereof
US20150064756A1 (en) Enzymatic alkene cleavage
CN107286227B (en) Novel use of Streptomyces hirsutus ATCC 19091 protein
JP2007116975A (en) Modified aromatic ring dioxygenase and method for producing flavone hydroxide compound
Molloy et al. ted
KR20150101217A (en) Novel cyclosporin specific hydroxylase from Pseudonocardia autotrophica

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant