KR101928842B1 - Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid - Google Patents

Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid Download PDF

Info

Publication number
KR101928842B1
KR101928842B1 KR1020180073592A KR20180073592A KR101928842B1 KR 101928842 B1 KR101928842 B1 KR 101928842B1 KR 1020180073592 A KR1020180073592 A KR 1020180073592A KR 20180073592 A KR20180073592 A KR 20180073592A KR 101928842 B1 KR101928842 B1 KR 101928842B1
Authority
KR
South Korea
Prior art keywords
gold
manufacturing
wire
liquid
gold nanoparticle
Prior art date
Application number
KR1020180073592A
Other languages
Korean (ko)
Inventor
박수진
허영정
이효인
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180073592A priority Critical patent/KR101928842B1/en
Application granted granted Critical
Publication of KR101928842B1 publication Critical patent/KR101928842B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Abstract

The present invention relates to a manufacturing method of a gold nanoparticle through wire explosion in a liquid and, more specifically, relates to a manufacturing method of a gold nanoparticle, which comprises the following steps of: (1) preparing a gold wire of which a diameter and a supplied length are different; (2) preparing a liquid to perform wire explosion; (3) preparing the wire explosion by supplying voltage to the wire; and (4) performing the wire explosion from ten times to one hundred times. As stated above, according to the present invention, provided is a gold nanoparticle that is not harmful for a human body and has a well-defined size with high yield. Moreover, the manufacturing method of a gold nanoparticle can be utilized for a bio-field such as disease and microorganism analysis, wherein the gold nanoparticle has not been applied to the bio-field.

Description

액중전기폭발법을 통한 균일한 입자크기를 갖는 금나노의 제조방법 {MANUFACTURING METHOD OF GOLD NANOPARTICLE WITH WELL-DEFINED SIZE THROUGH WIRE EXPLOSION IN LIQUID}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gold nanowire having a uniform particle size through a liquid electrodeposition explosion method,

본 발명은 다양한 분야에 사용될 수 있는 균일한 금나노 제조방법에 관한 것으로, 더욱 상세하게는 액중전기폭발법을 활용함으로써 인체에 무해하고 수득률이 높으며, 평균 입자크기가 조절 가능한 새로운 금나노의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing uniform gold nano that can be used in various fields, and more particularly, to a method for manufacturing a new gold nano which is harmless to the human body, .

현재 산업분야에서 금와이어는 반도체분야에서 실리콘 칩과 리드프레임을 전기적으로 연결시켜 주는 역할로, 바이오분야에서는 금의 표면 플라즈몬특성을 활용하여 질병 및 미생물의 분석에 활용되고 있다.In the industry, gold wires are used to electrically connect silicon chips and leadframes in the semiconductor field. In the bio-field, the gold surface plasmon is utilized for the analysis of diseases and microorganisms.

금이 다양한 형태의 나노입자로 제조/가공되면서 금의 활용범위는 더욱 다양해지고 기존에 적용되었던 분야의 활용도는 더욱 많아졌다. 금나노는 조영제 및 치료용으로 사용하고자 하는 다른 금속 또는 금속 산화물에 비해 우수한 생체적합성을 나타내는 것으로 알려져 있다. 또한 표적효율, 표면가공성 측면에서도 우수한 특성을 가져 바이오 분야에서 활발히 이용되고 있다. As the gold is manufactured / processed into various types of nanoparticles, the utilization range of gold has been further diversified and the application of the previously applied fields has been further increased. Gold nanoparticles are known to exhibit superior biocompatibility to contrast agents and other metals or metal oxides intended for therapeutic use. In addition, it has excellent characteristics in terms of target efficiency and surface processability, and is being actively used in the field of biotechnology.

한편 금 나노의 다양한 산업분야에서의 적용을 위해 입자크기의 균일성을 확보함과 더불어 저가 합성이 필요한 실정이다. 현재 개발된 방법으로는 금 전구체로써 HAuCl4H2O 등을 사용하여 액상에서 환원반응을 거쳐 제조하는 방법이 있는데, 이는 입자크기가 균일하지 않고 유기용매 사용이 필수이므로 바이오 분야에서의 활용이 불가능하다고 알려져 있다. 다른 방법으로는 Polydimethylsiloxane(PDMS)을 사용한 증착법이 있는데, 이 때 제조된 금나노의 경우 순도가 높아 화장품 분야에 사용되고 있으나, 이와 같이 제조된 금나노의 경우 미량의 PDMS가 남아있어, 체내에 흡수될 경우 유독물질로 작용할 수 있기 때문에 질병 및 미생물분석에 활용되기 어려운 실정이다. 전기폭발법은 금 와이어에 전류를 흘려 가열하면 와이어가 플라즈마 상태로 변하고 최종적으로 금 미립자를 형성하는 현상이다. 이는 다른 방법에 비해 유기 용매 및 유기화합물을 사용하지 않아 이를 통해 제조된 금나노는 바이오 분야에서 활용가능성이 높다. 전기폭발법 중에서도 액체상에서 실행되는 액중전기폭발법은 기체상에서의 기중전기폭발법에 비해 제조된 나노입자들을 회수하는 과정에서 서로 들러붙는 응집현상을 막을 수 잇으며 입자의 크기별로 분리하여 회수하는 것이 가능하다. 이는 용액 중에서 이를 제조하기 때문에 입자가 산소와 만날 기회를 줄여 표면 산화가능성을 최소화하며, 그로 인해 고순도 금속 입자 합성이 가능하기 때문이다.On the other hand, for the application of gold nano in various industrial fields, uniformity of particle size is secured and low cost synthesis is required. Currently, there is a method of preparing a gold precursor by reduction reaction in a liquid phase using HAuCl 4 · 4H 2 O. Since the particle size is not uniform and the use of an organic solvent is necessary, It is known to be impossible. Another method is the deposition method using Polydimethylsiloxane (PDMS). In this case, the produced gold nano has a high purity and is used in the field of cosmetics. However, in the case of the gold nano thus produced, a small amount of PDMS remains and is absorbed into the body It can not be used for the analysis of diseases and microorganisms because it can act as a toxic substance. The electric explosion method is a phenomenon in which when a current is supplied to a gold wire to be heated, the wire is transformed into a plasma state and finally gold fine particles are formed. This is because the organic solvent and the organic compound are not used as compared with other methods, and the gold nano produced through the method is highly applicable in the bio field. Among electric explosion methods, the liquid electrodeposition explosion method which is carried out in the liquid phase can prevent the aggregation phenomenon which is stuck to each other in the process of recovering the nanoparticles produced compared to the gas explosion electrodeposition method on the gas phase, It is possible. This is because it makes it possible to synthesize high-purity metal particles by minimizing the possibility of surface oxidation by reducing the chance of particles meeting with oxygen because it is produced in solution.

따라서 이에 본 발명자는 균일한 금나노를 제조하기 위해서 액중전기폭발법을 적용하여 기존 제조기술을 통한 금나노보다 인체에 무해하고, 수득률이 높으며 균일한 입자크기를 보이는 금나노의 제조방법을 제공하고자 한다.Accordingly, the present inventors have proposed a method for manufacturing gold nano that is harmless to human body and has a high yield and uniform particle size than gold nanoparticles through conventional manufacturing techniques by applying liquid electrostatic explosion method to produce uniform gold nanoparticles do.

대한민국 공개특허 제10-2016-0011791호 “액중 전기폭발법에 의한 금속 나노 분말을 포함하는 에폭시 복합재 제조방법.”Korean Patent Laid-Open No. 10-2016-0011791 entitled " Method for producing epoxy composite material containing metal nano powder by submerged electric explosion method. &Quot;

본 발명의 목적은, 액중 전기폭발법을 통한 금나노 제조방법을 제공함으로써, 기존 제조방법인 액상법 또는 증착법 보다 금의 소실이 거의 없으며, 이에 따른 높은 수득률을 통해 제조원가를 낮출 수 있고, 인체유해성이 없는 금나노 제조방법을 제공하기 위함이다. 더불어 여러 조건의 액중 전기폭발법을 통해 제조하여 그 중에서도 작은 사이즈의 입자크기가 가장 균일한 금나노의 제조방법을 제공함에 있다.It is an object of the present invention to provide a method for manufacturing gold nano through submerged electric explosion method, and it is possible to lower the cost of manufacturing by virtue of the fact that there is almost no loss of gold compared to the liquid or vacuum deposition method which is a conventional manufacturing method, To provide a gold nano-free manufacturing method. The present invention also provides a method for producing gold nanoparticles having a uniform particle size in a small size.

상기 목적을 달성하기 위하여, 본 발명은 새로운 금나노입자 제조방법을 제공한다. In order to accomplish the above object, the present invention provides a method for manufacturing new gold nanoparticles.

본발명의 금나노입자 제조방법에 있어서, 1) 직경과 공급길이가 다른 금와이어를 준비하는 단계 2) 전기폭발법을 수행할 액체를 준비하는 단계 3) 상기 와이어에 전압을 공급하여 전기폭발법을 준비하는 단계 및 4) 상기 전기폭발법의 전기폭발 횟수를 10 내지 100회 수행하는 단계를 포함하는 금나노입자 제조 방법을 포함한다. In the gold nanoparticle manufacturing method of the present invention, 1) preparing a gold wire having a different diameter and a supply length, 2) preparing a liquid to be subjected to the electric explosion method, 3) supplying a voltage to the wire, And 4) performing the electric explosion number of the electric explosion method 10 to 100 times.

또한, 본 발명은 기존의 제조방법보다 더 작고 균일하면서도 금 소실이 거의 업고, 또한 인체유해성이 아주 낮은 금나노의 제조방법을 제공한다.Further, the present invention provides a method for producing gold nanoparticles which is smaller and more uniform than the conventional manufacturing method, has almost no gold loss, and has very low human harmfulness.

상기와 같은 본 발명에 따르면, 전기폭발법을 통해서 균일한 입자크기를 갖는 새로운 금나노를 제조할 수 있는 효과가 있다.According to the present invention as described above, it is possible to manufacture a new gold nano having a uniform particle size through an electric explosion method.

또한 본 발명에 따른 금나노를 제조함에 있어 조건을 달리하였을 때 금나노의 입자크기를 조절할 수 있는 효과를 기대할 수 있으며 금나노 크기 및 균일성이 중요한 응용분야에 유용함을 나타내는 효과가 있다.In addition, when manufacturing the gold nano according to the present invention, it is possible to control the particle size of the gold nano when the conditions are different, and it is effective for applications where gold nano size and uniformity are important.

도 1은 액중 전기폭발법 장치의 모식도이다.
도 2는 실시예 7 내지 실시예 14 제조방법으로 제조된 금나노입자의 크기에 따른 금나노콜로이드 용액의 색변화 이미지이다.
도 2는 실시예 8 및 11 제조방법으로 제조된 금나노 입자의 TEM 이미지이다.
Fig. 1 is a schematic diagram of an apparatus for submerged electric explosion.
FIG. 2 is a color change image of a gold nanocolloid solution according to the sizes of the gold nanoparticles produced by the manufacturing methods of Examples 7 to 14. FIG.
FIG. 2 is a TEM image of gold nanoparticles prepared in Examples 8 and 11.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따른 1) 직경과 공급길이가 다른 금와이어를 준비하는 단계, 2) 전기폭발법을 수행할 액체를 준비하는 단계, 3) 상기 금와이어에 전압을 공급하여 전기폭발법을 수행하는 단계, 4) 상기 전기폭발법의 전기폭발 횟수를 10 내지 100회 더 수행하는 단계를 포함하는 금나노의 제조 방법을 포함한다. 1) preparing a gold wire having different diameter and supply length, 2) preparing a liquid to be subjected to an electric explosion method, 3) supplying a voltage to the gold wire, , And 4) further performing 10 to 100 times of the electric explosion of the electric explosion method.

상기 1) 직경과 공급길이가 다른 금와이어를 준비하는 단계에서 금와이어의 직경은 0.1 내지 1.0 mm일 수 있다. 1) The diameter of the gold wire may be 0.1 to 1.0 mm in the step of preparing the gold wire having a different diameter and a supply length.

상기 1) 직경과 공급길이 다른 금와이어를 준비하는 단계에서 금와이어의 공급 길이는 10 내지 50 mm일 수 있다. 1) The supply length of the gold wire in the step of preparing the gold wire different in diameter and supply length may be 10 to 50 mm.

상기 2) 전기폭발법을 수행할 액체를 준비하는 단계에서 액체는 물, 에탄올, 에틸렌글리콜로 이루어진 군에서 1 이상 포함할 수 있다. In preparing the liquid to be subjected to the 2) electric explosion method, the liquid may include one or more of water, ethanol, and ethylene glycol.

상기 3) 금와이어에 전압을 공급하여 전기폭발법을 준비하는 단계의 상기 전압은 0.5 내지 1.5 kV일 수 있다. 3) The voltage of the step of supplying voltage to the gold wire to prepare the electric explosion method may be 0.5 to 1.5 kV.

특히 폭발횟수는 액체상의 금나노입자 분산이 잘 이루어져 농도에 영향을 준다. 10회 미만으로 수행시에는 액체상의 금나노입자 농도가 너무 낮아 산업상의 이용가치가 없고, 100회를 기준으로 더 이상 농도의 큰 변화가 없어 100회까지 하는 것이 바람직하다. In particular, the number of explosions affects the concentration of gold nano-particles in the liquid phase. The gold nanoparticle concentration in the liquid phase is too low to be used for industrial purposes, and it is preferable that the gold nanoparticles are used up to 100 times because there is no large change in concentration on the basis of 100 times.

본 발명의 상기와 같은 제조방법은 용액을 담은 챔버안에서 제조가 진행되기 때문에 제조 후 원재료의 소실 없이 와이어로부터 생성된 거의 모든 나노입자의 수거가 가능하다. 따라서 부산물 발생으로 금소실이 일어나는 기존의 금나노입자 제조방법에 비해 수득률이 높다. Since the manufacturing process of the present invention is performed in a chamber containing a solution, it is possible to collect almost all the nanoparticles produced from the wire without loss of raw materials after the production. Therefore, the yield of gold nanoparticles is higher than that of conventional gold nanoparticles, which are produced by-products.

또한 금 전구체 용액에서 금나노입자가 형성되어 입자가 커지는 크기를 조절하는 액상법과는 달리, 본원 발명의 제조방법은 금와이어에 전기폭발을 통해 금을 작게 쪼개는 방식의 제조 방식이다. 이러한 방식은 금나노입자의 크기를 작게 그리고 더 작게 제조 가능한 것이다. 이를 통해 본원 발명의 제조방법으로 최저 10 nm이하의 금나노입자 크기도 제조가 가능하다. Unlike the liquid phase method in which gold nanoparticles are formed in the gold precursor solution to control the size of the particles, the manufacturing method of the present invention is a method in which gold is broken into small pieces of gold wire by electric explosion. This method can be used to fabricate small and small gold nanoparticles. As a result, it is possible to produce gold nanoparticles having a size of 10 nm or less by the process of the present invention.

그리고 본원 발명의 제조방법으로 제조된 금나노입자의 경우 입자 크기에 따라 색, 흡수율, 밴드갭 변화에 따라 반응성이 변화하게 된다. 따라서 균일한 입자크기는 일정한 반응성을 갖게 하는 매우 중요한 요소로 인식되고 있다. In the case of the gold nanoparticles produced by the manufacturing method of the present invention, the reactivity changes according to the change of color, absorption rate and band gap according to the particle size. Therefore, it is recognized that uniform particle size is a very important factor to have constant reactivity.

따라서 본 발명은 상기와 같은 조건의 제조방법을 통하여 기존의 제조방법보다 더 작고 균일하면서도 금 소실이 거의 업고, 또한 인체유해성이 아주 낮은 금나노의 제조방법을 제공할 수 있다. Accordingly, the present invention can provide a method for producing gold nanoparticles which is smaller and more uniform than conventional methods, and which is almost free from gold loss and has a very low toxicity to human body through the above-described manufacturing method.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1.Example 1.

금나노입자 제조를 위해 액중 전기폭발법을 진행하였다. 직경은 0.1mm이며, 공급 길이는 50mm인 금와이어를 사용하였다. 용매를 에탄올로하며 공급전압은 0.5kV로하고 20회 폭발하여 수행하였다. For the production of gold nanoparticles, submerged electric explosion was carried out. A gold wire having a diameter of 0.1 mm and a supply length of 50 mm was used. The solvent was ethanol and the supply voltage was set to 0.5 kV and explosion was carried out 20 times.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 용매를 증류수로 하여 수행하였다.The procedure of Example 1 was repeated except that the solvent was distilled water.

실시예 3.Example 3.

상기 실시예 2와 동일하게 과정을 실시하되, 용매를 에틸렌글리콜로 하여 수행하였다.The procedure of Example 2 was repeated except that the solvent was ethylene glycol.

실시예 4.Example 4.

상기 실시예 3와 동일하게 과정을 실시하되, 직경은 0.3mm인 금와이어, 용매는 에탄올로 하여 수행하였다. The procedure was carried out in the same manner as in Example 3, except that a gold wire having a diameter of 0.3 mm was used, and the solvent was ethanol.

실시예 5.Example 5.

상기 실시예 4와 동일하게 과정을 실시하되, 직경 0.5mm인 금와이어를 사용하여 수행하였다. The procedure was performed in the same manner as in Example 4, except that a gold wire having a diameter of 0.5 mm was used.

실시예 6.Example 6.

상기 실시예 5와 동일하게 과정을 실시하되, 직경은 0.1 mm, 공급 길이는 35 mm인 금와이어를 사용하여 수행하였다. The procedure was carried out in the same manner as in Example 5, except that a gold wire having a diameter of 0.1 mm and a supply length of 35 mm was used.

실시예 7.Example 7.

상기 실시예 6과 동일하게 과정을 실시하되, 공급 길이는 50 mm인 금와이어, 공급전압을 1.0kV로 하여 수행하였다. The same procedure as in Example 6 was carried out except that a gold wire having a supply length of 50 mm and a supply voltage of 1.0 kV were used.

실시예 8.Example 8.

상기 실시예 7과 동일하게 과정을 실시하되, 용매를 증류수로 하여 수행하였다.The procedure of Example 7 was repeated except that the solvent was distilled water.

실시예 9.Example 9.

상기 실시예 8과 동일하게 과정을 실시하되, 용매를 에틸렌글리콜로 하여 수행하였다.The procedure of Example 8 was followed except that the solvent was ethylene glycol.

실시예 10.Example 10.

상기 실시예 9과 동일하게 과정을 실시하되, 용매를 에틸렌글리콜과 증류수 혼합액을 사용하고, 상기 에틸렌글리콜과 증류수 혼합액의 혼합비는 부피비 1:1로 혼합하여 수행하였다.The procedure of Example 9 was repeated except that the mixture of ethylene glycol and distilled water was mixed with the mixture of ethylene glycol and distilled water at a volume ratio of 1: 1.

실시예 11.Example 11.

상기 실시예 10과 동일하게 과정을 실시하되, 용매는 에탄올을, 공급전압은 1.5kV로 하여 수행하였다. The procedure of Example 10 was repeated except that ethanol was used as the solvent and the supply voltage was 1.5 kV.

실시예 12.Example 12.

상기 실시예 11과 동일하게 과정을 실시하되, 용매를 증류수로 수행하였다.The procedure of Example 11 was repeated except that the solvent was distilled water.

실시예 13.Example 13.

상기 실시예 12과 동일하게 과정을 실시하되, 공급 길이는 30 mm인 금와이어, 용매는 에틸렌글리콜로 하여 수행하였다.The procedure was carried out in the same manner as in Example 12, except that a gold wire having a feed length of 30 mm was used and the solvent was ethylene glycol.

실시예 14.Example 14.

상기 실시예 13과 동일하게 과정을 실시하되, 공급 길이는 20 mm인 금와이어, 용매는 에틸렌글리콜과 증류수의 혼합액을 사용하고, 상기 에틸렌글리콜과 증류수의 혼합액의 혼합비는 부피비 1:1로 혼합하여 수행하였다.The same procedure as in Example 13 was carried out except that a gold wire having a feed length of 20 mm and a solvent were a mixed solution of ethylene glycol and distilled water and the mixture ratio of the mixture of ethylene glycol and distilled water was mixed at a volume ratio of 1: Respectively.

하기 표 1에는 실시예 1 내지 실시예 14의 금나노 입자 제조조건을 정리하여 도시하였으며, 표 2에는 실시예 1 내지 실시예 14을 수행하여 제조된 금나노 입자의 평균 측정 크기를 도시하였다. Table 1 summarizes the preparation conditions of gold nanoparticles of Examples 1 to 14, and Table 2 shows average measured sizes of gold nanoparticles prepared by performing Examples 1 to 14.

샘플명Sample name 금와이어의 직경 (mm)Diameter of gold wire (mm) 금와이어의 공급길이 (mm)Supply length of gold wire (mm) 용매의 종류Types of solvents 공급전압
(kV)
Supply voltage
(kV)
폭발횟수
(회)
Number of explosions
(time)
실시예 1Example 1 0.10.1 5050 에탄올ethanol 0.50.5 2020 실시예 2Example 2 0.10.1 5050 증류수Distilled water 0.50.5 2020 실시예 3Example 3 0.10.1 5050 에틸렌글리콜Ethylene glycol 0.50.5 2020 실시예 4Example 4 0.30.3 5050 에탄올ethanol 0.50.5 2020 실시예 5Example 5 0.50.5 5050 에탄올ethanol 0.50.5 2020 실시예 6Example 6 0.10.1 3535 에탄올ethanol 0.50.5 2020 실시예 7Example 7 0.10.1 5050 에탄올ethanol 1.01.0 2020 실시예 8Example 8 0.10.1 5050 증류수Distilled water 1.01.0 2020 실시예 9Example 9 0.10.1 5050 에틸렌글리콜Ethylene glycol 1.01.0 2020 실시예 10Example 10 0.10.1 5050 에틸렌글리콜/
증류수 혼합액
Ethylene glycol /
Distilled water mixture
1.01.0 2020
실시예 11Example 11 0.10.1 5050 에탄올ethanol 1.51.5 2020 실시예 12Example 12 0.10.1 5050 증류수Distilled water 1.51.5 2020 실시예 13Example 13 0.10.1 3030 에틸렌글리콜Ethylene glycol 1.51.5 2020 실시예 14Example 14 0.10.1 2020 에틸렌글리콜/
증류수 혼합액
Ethylene glycol /
Distilled water mixture
1.51.5 2020

샘플명Sample name 평균입자크기(nm)Average particle size (nm) 실시예 1Example 1 180.6180.6 실시예 2Example 2 135.4135.4 실시예 3Example 3 85.385.3 실시예 4Example 4 202.2202.2 실시예 5Example 5 250.6250.6 실시예 6Example 6 90.390.3 실시예 7Example 7 45.645.6 실시예 8Example 8 43.243.2 실시예 9Example 9 29.829.8 실시예 10Example 10 22.122.1 실시예 11Example 11 32.932.9 실시예 12Example 12 25.725.7 실시예 13Example 13 18.918.9 실시예 14Example 14 9.69.6

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

금나노 제조방법에 있어서,
1) 직경과 공급길이가 다른 금와이어를 준비하는 단계;
2) 전기폭발법을 수행할 액체를 준비하는 단계;
3) 상기 금와이어에 전압을 공급하여 전기폭발법을 수행하는 단계; 및
4) 상기 전기폭발법의 전기폭발 횟수를 20회 수행하는 단계를 포함하고,
상기 직경은 0.1 mm이고,
상기 공급길이는 20 mm이고,
상기 액체는 증류수와 에틸렌글리콜 혼합액이고,
상기 증류수와 에틸렌글리콜 혼합액의 혼합비는 1:1 부피비이고,
상기 전압은 1.5kV이고,
상기 금나노는 평균입자 크기가 10nm 이하인 것을 특징으로 하는 금나노의 제조 방법.
In a gold nano-manufacturing method,
1) preparing a gold wire having a diameter and a supply length different from each other;
2) preparing a liquid to be subjected to the electric explosion method;
3) supplying a voltage to the gold wire to perform electric explosion; And
4) performing the electric explosion number of the electric explosion method 20 times,
The diameter is 0.1 mm,
The feed length is 20 mm,
Wherein the liquid is a mixture of distilled water and ethylene glycol,
The mixing ratio of the distilled water to the ethylene glycol mixture was 1: 1 by volume,
The voltage is 1.5 kV,
Wherein the gold nanoparticles have an average particle size of 10 nm or less.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020180073592A 2018-06-26 2018-06-26 Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid KR101928842B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180073592A KR101928842B1 (en) 2018-06-26 2018-06-26 Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180073592A KR101928842B1 (en) 2018-06-26 2018-06-26 Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid

Publications (1)

Publication Number Publication Date
KR101928842B1 true KR101928842B1 (en) 2018-12-13

Family

ID=64671340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180073592A KR101928842B1 (en) 2018-06-26 2018-06-26 Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid

Country Status (1)

Country Link
KR (1) KR101928842B1 (en)

Similar Documents

Publication Publication Date Title
EP2671655B1 (en) Method for manufacturing coated metal fine particles
Okuno et al. Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods
Jin Quantum sized, thiolate-protected gold nanoclusters
EP2830795B1 (en) Nano aggregates of molecular ultra small clusters of noble metals and a process for the preparation thereof
JP2018532686A (en) Method for producing graphene quantum dots having different oxygen contents, graphene quantum dots, and fluorescent material
CN108393501B (en) Preparation method of Cu nanowire with controllable diameter
Wang et al. Semiconductor–noble metal hybrid nanomaterials with controlled structures
KR101630533B1 (en) Manufacturing method of hyghly dispersible reduced graphene oxide based metal nanoparticle dispersion and metal nanoparticle film using thereof
CN111215636B (en) Preparation method of Ag nano particles
TW201719678A (en) Nickel powder and nickel paste
KR101928842B1 (en) Manufacturing method of gold nanoparticle with well-defined size through wire explosion in liquid
Li et al. Seed-free, aqueous synthesis of gold nanowires
Zhu et al. Synthesis of cerium dioxide nanoparticles by gas/liquid pulsed discharge plasma in a slug flow reactor
Kozáková et al. Generation of silver nanoparticles by the pin-hole DC plasma source with and without gas bubbling
JP2010209407A (en) Manufacturing method of metallic fine particle
KR102008758B1 (en) Manufacturing method of gold nanoparticle through wire explosion in gas condition
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
WO2021100320A1 (en) Microparticles
CN110576177B (en) Method for changing shape of nano-particles
KR101036484B1 (en) Preparation method of ZnO nano-rods using a plasma jet and photo-catalytic property of ZnO nano-rods
Ashkarran et al. Simple One-Pot Fabrication of Gold Decorated Carbon Nanotubes for Enhanced Field Emission Application
CN111155137A (en) Method for preparing nano ferroferric oxide by liquid cathode glow discharge plasma
KR101648857B1 (en) Composition and method for nano complex photocatalys in handphone case having bactericidal function
Ankireddy et al. Synthesis of cadmium-free InP/ZnS quantum dots by microwave irradiation
JP7126195B2 (en) Method for producing gold nanoparticle-supported powder

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant