KR101919485B1 - Use of Cholinergic genes for treating depressive disorder - Google Patents

Use of Cholinergic genes for treating depressive disorder Download PDF

Info

Publication number
KR101919485B1
KR101919485B1 KR1020170029917A KR20170029917A KR101919485B1 KR 101919485 B1 KR101919485 B1 KR 101919485B1 KR 1020170029917 A KR1020170029917 A KR 1020170029917A KR 20170029917 A KR20170029917 A KR 20170029917A KR 101919485 B1 KR101919485 B1 KR 101919485B1
Authority
KR
South Korea
Prior art keywords
chat
gene
depression
expression
seq
Prior art date
Application number
KR1020170029917A
Other languages
Korean (ko)
Other versions
KR20180103258A (en
KR101919485B9 (en
Inventor
김현
이현우
김진용
양수현
양에스더
최병일
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020170029917A priority Critical patent/KR101919485B1/en
Publication of KR20180103258A publication Critical patent/KR20180103258A/en
Application granted granted Critical
Publication of KR101919485B1 publication Critical patent/KR101919485B1/en
Publication of KR101919485B9 publication Critical patent/KR101919485B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
    • C12N2015/8536Animal models for genetic diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/30Psychoses; Psychiatry
    • G01N2800/304Mood disorders, e.g. bipolar, depression

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 우울증 예방 또는 치료를 위한 콜린성 유전자의 용도에 관한 것으로, 콜린성 유전자의 발현을 분석함으로써 우울증 예방 또는 치료제를 스크리닝하는 방법, 콜린성 유전자의 발현을 조절하는 우울증의 예방 또는 치료용 약학적 조성물, 콜린성 유전자의 발현을 분석하는 항우울제 치료불응성 진단 방법, 콜린성 유전자의 발현을 조절하는 항우울제 치료불응성 또는 무쾌감증 동물모델 제조방법및 이에 따른 항우울제 치료불응성 또는 무쾌감증 동물모델에 관한 것이다.
본 발명에 따라 콜린성 유전자(Cholinergic genes)의 발현율 변화를 분석함으로써 우울증을 예방 또는 치료하기 위한 약물을 스크리닝할 수 있고, 나아가 우울증을 조기에 진단하거나 예후를 분석할 수 있다.
본 발명에 따른 우울증의 예방 또는 치료용 약학적 조성물은 콜린성 유전자의 발현을 조절함으로써 우울증을 예방 또는 치료할 수 있다.
또한, 우울증의 핵심 증상인 무쾌감증을 보이는 동물모델의 개발과 더불어 항우울증에 대한 치료불응성 동물모델을 개발하여 우울증 치료에 있어 난제를 극복하기 위한 다양한 연구에 적용할 수 있다.
The present invention relates to the use of a cholinergic gene for the prevention or treatment of depression, and it relates to a method for screening for a preventive or therapeutic agent for depression by analyzing the expression of a cholinergic gene, a pharmaceutical composition for preventing or treating depression, An antidepressant therapy-refractory diagnostic method for analyzing the expression of a cholinergic gene, an antidepressant treatment regulating the expression of a cholinergic gene, a method for producing a refractory or aneurismatic animal model, and an antidepressant therapy-refractory or anhidrotic animal model therefor.
According to the present invention, by analyzing the change of expression rate of cholinergic genes, drugs for preventing or treating depression can be screened, and further, depression can be diagnosed early or the prognosis can be analyzed.
The pharmaceutical composition for the prevention or treatment of depression according to the present invention can prevent or treat depression by controlling the expression of the cholinergic gene.
In addition, the development of an animal model with a pleuritic symptom, a key symptom of depression, and the development of a refractory animal model for antidepression can be applied to various studies to overcome the difficulties in the treatment of depression.

Description

우울증 예방 또는 치료를 위한 콜린성 유전자의 용도{Use of Cholinergic genes for treating depressive disorder}Use of cholinergic genes for the prevention or treatment of depression < RTI ID = 0.0 >

본 발명은 우울증 예방 또는 치료를 위한 콜린성 유전자의 용도에 관한 것으로, 콜린성 유전자의 발현을 분석함으로써 우울증 예방 또는 치료제를 스크리닝하는 방법, 콜린성 유전자의 발현을 조절하는 우울증의 예방 또는 치료용 약학적 조성물, 콜린성 유전자의 발현을 분석하는 항우울제 치료불응성 진단 방법, 콜린성 유전자의 발현을 조절하는 항우울제 치료불응성 또는 무쾌감증 동물모델 제조방법 및 이에 따른 항우울제 치료불응성 또는 무쾌감증 동물모델에 관한 것이다.The present invention relates to the use of a cholinergic gene for the prevention or treatment of depression, and it relates to a method for screening for a preventive or therapeutic agent for depression by analyzing the expression of a cholinergic gene, a pharmaceutical composition for preventing or treating depression, An antidepressant therapy-refractory diagnostic method for analyzing the expression of a cholinergic gene, an antidepressant treatment regulating the expression of a cholinergic gene, a method for producing a refractory or aneurismatic animal model, and an antidepressant therapy-refractory or anhidrotic animal model therefor.

주요 우울 장애(Major depressive disorder, MDD) 또는 우울증(depression)은 자살 시도와 밀접한 관련이 있는 심각한 정신의학적 질환이다(비특허문헌 1). 뇌에서 일어나는 콜린성 전도(Cholinergic transmission)가 우울증에 대한 내적표현형(Endophenotype)의 기반이 되는 것으로 생각되어 왔다(비특허문헌 2-4). 아세틸콜린에스테라제(acetylcholinesterase) 억제제의 조절을 통한 아세틸콜린(Acetylcholine, ACh)의 증가는 인간과 설치류 모두에서 우울증 증상을 야기할 수 있다(비특허문헌 5-6). 더욱이, 니코틴성 아세틸콜린 수용체(nicotinic acetylcholine receptors, nAChRs) 또는 무스카린성 아세틸콜린 수용체(muscarinic acetylcholine receptors, mAChRs)의 억제는 우울증 증상을 개선한다(비특허문헌 7-8). 이러한 증거들은 아세틸콜린 신호전달이 우울증에 기여하는 것을 시사하나, 어떠한 특정 콜린성 신경 세포의 집단이 특정 우울증 증상과 관련이 있는지는 아직 명확하게 알려진 바가 없다. Major depressive disorder (MDD) or depression is a serious psychiatric disorder closely related to suicide attempts (Non-Patent Document 1). Cholinergic transmission in the brain has been thought to be the basis of the endophenotype for depression (Non-Patent Document 2-4). The increase in acetylcholine (ACh) through the regulation of acetylcholinesterase inhibitors can cause depressive symptoms in both humans and rodents (Non-Patent Documents 5-6). Furthermore, inhibition of nicotinic acetylcholine receptors (nAChRs) or muscarinic acetylcholine receptors (mAChRs) improves the symptoms of depression (Non-Patent Documents 7-8). These findings suggest that acetylcholine signaling contributes to depression, but it is not yet clear whether any particular group of cholinergic neurons is associated with specific depressive symptoms.

시상상부(Epithalamus)의 고삐핵(Habenula)은 해부학적 또는 기능적으로 전뇌(forebrain)와 도파민(즉, 흑색질 치밀부(substantia nigra pars compacta) 및 복측피개영역(ventral tegmental area, VTA) 및 세로토닌(즉, 솔기핵)의 방출과 관련이 있는 중뇌(midbrain)를 연결하고 있다(비특허문헌 9-10). 고삐핵은 내측 고삐핵(medial habenula, MHb)과 외측 고삐핵(lateral habenula, LHb)으로 세분할 수 있다. 동물모델과 인간을 대상으로 한 연구로부터의 다양한 증거들은 내측 고삐핵이 니코틴 중독에서 중요한 역할을 하는 것을 시사하는 한편(비특허문헌 11-13), 외측 고삐핵의 조절 장애는 우울증을 포함한 다양한 정신 질환에 관여할 가능성이 있음을 제시한다. 외측 고삐핵의 뇌 심부 자극술은 환자에서 치료-난치성(therapy-refractory) 우울증과 랫트에서 선천적으로 습득된 무기력을 현저히 경감시킨다(비특허문헌 14-15). 그러나, 우울증의 병리 생리학적 측면에 있어, 내측 고삐핵의 역할은 아직까지 불분명하다.Habenula of the thalamus (Epithalamus) is anatomically or functionally divided into the forebrain and dopamine (ie, the substantia nigra pars compacta and ventral tegmental area (VTA) and serotonin The median habenula (MHb) and the lateral habenula (LHb) are the nuclei of the reins, which are connected to the midbrain, Various evidence from studies in animal models and humans suggests that the medial rein nucleus plays an important role in nicotine addiction (Non-Patent Documents 11-13), while the regulatory disorder of the lateral relex nucleus The results of this study suggest that the deep brain nucleus of the medial reinforcement nucleus may be involved in a variety of mental disorders including depression. Therapeutic-refractory depression and deeply acquired innate abilities in rats (Non-Patent Document 14-15). However, in the pathophysiological aspects of depression, the role of the inner bridle nuclei is not clear yet.

이에, 본 발명자들은 우울증 환자에서 내측 고삐핵 내 콜린성 유전자군이 감소하는 것을 확인하고, 인간 및 랫트의 우울증 모델로부터 내측 고삐핵의 콜린성 신호전달이 우울증적 상태, 특히 무쾌감적 행동을 조절하는 데에 있어 중요함을 밝혀 이를 이용한 우울증 예방 또는 치료용 조성물의 스크리닝에 이용할 수 있음을 확인함으로써 본 발명을 완성하였다. The present inventors confirmed that the cholinergic gene cluster in the inner nuclear nucleus was reduced in depressed patients and that the choline signaling of the inner nuclear nucleus from the depression model of humans and rats controlled the depressive state, And thus can be used for the screening of a composition for the prevention or treatment of depression. The present invention has been completed based on this finding.

Ferrari AJ., et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10(11):e1001547. Ferrari AJ., Et al. Burden of depressive disorders by country, sex, age, and year: 2010. PLoS Med. 2013; 10 (11): e1001547. Dilsaver SC. Cholinergic mechanisms in depression. Brain Res. 1986;396(3):285-316. Dilsaver SC. Cholinergic mechanisms in depression. Brain Res. 1986; 396 (3): 285-316. Janowsky DS., et al. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972;2(7778):632-5. Janowsky DS., Et al. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972; 2 (7778): 632-5. Janowsky DS., et al. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7(2-3):297-307. Janowsky DS., Et al. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry. 1983; 7 (2-3): 297-307. Risch SC., et al. Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science. 1980;209(4464):1545-6. Risch SC., Et al. Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science. 1980; 209 (4464): 1545-6. Mineur YS., et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A. 2013;110(9):3573-8. Mineur YS., Et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A. 2013: 110 (9): 3573-8. Shytle RD., et al. Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry. 2002;7(6):525-35. Shytle RD., Et al. Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry. 2002; 7 (6): 525-35. Drevets WC., et al. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry. 2013;73(12):1156-63. Drevets WC., Et al. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry. 2013; 73 (12): 1156-63. Klemm WR. Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit. 2004;10(11):RA261-73. Klemm WR. Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit. 2004; 10 (11): RA 261-73. Lecourtier L., et al. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev. 2007;31:658-72. Lecourtier L., et al. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev. 2007; 31: 658-72. Hsu YW., et al. Medial habenula output circuit mediated by alpha5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus. J Neurosci. 2013;33(46):18022-35. Hsu YW., Et al. Medial habenula output circuit mediated by alpha5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus. J Neurosci. 2013; 33 (46): 18022-35. Zhao-Shea R., et al, Tapper AR. Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr Biol. 2013;23(23):2327-35. Zhao-Shea R., et al., Tapper AR. Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr Biol. 2013; 23 (23): 2327-35. Dao DQ., et al. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling. J Neurosci. 2014;34(12):4273-84. Dao DQ., Et al. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling. J Neurosci. 2014; 34 (12): 4273-84. Sartorius A., et al. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses. 2007;69:1305-8. Sartorius A., et al. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses. 2007; 69: 1305-8. Li B., et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011;470(7335):535-9. Li B., et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011; 470 (7335): 535-9.

본 발명의 목적은 우울증의 예방 또는 치료제 스크리닝 방법을 제공하는 것이다.It is an object of the present invention to provide a method for screening a preventive or therapeutic agent for depression.

본 발명의 목적은 생체 외에서 이루어지는 우울증 진단 방법을 제공하는 것이다.It is an object of the present invention to provide a method for diagnosing depression in vitro.

본 발명의 목적은 우울증의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.It is an object of the present invention to provide a pharmaceutical composition for the prevention or treatment of depression.

본 발명의 목적은 생체 외에서 이루어지는 항우울제 치료불응성 진단 방법을 제공하는 것이다.It is an object of the present invention to provide an in vitro antidepressant therapy refractory diagnostic method.

본 발명의 목적은 항우울제 치료불응성 또는 무쾌감증 동물모델 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing an animal model of antidepressant treatment-refractory or anesthesia.

본 발명의 다른 목적은 본 발명의 방법에 따른 항우울제 치료불응성 또는 무쾌감증 동물모델을 제공하는 것이다. Another object of the present invention is to provide an antidepressant treatment-refractory or anesthetics animal model according to the method of the present invention.

본 발명은 (a) 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자, 서열번호 3 또는 서열번호 4로 표시되는 VACHT(vesicular acetylcholine transporter) 유전자, 서열번호 5 또는 서열번호 6으로 표시되는 CHT(choline transporter) 유전자, 서열번호 7 또는 서열번호 8로 표시되는 CHRNA3(nicotinic acetylcholine receptor α3) 유전자, 서열번호 9 또는 서열번호 10으로 표시되는 CHRNB3(nicotinic acetylcholine receptor β3) 유전자 또는 서열번호 11 또는 서열번호 12로 표시되는 CHRNB4(nicotinic acetylcholine receptor β4) 유전자로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는 세포에 분석할 약물 후보물질을 접촉시키는 단계;(A) a CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2, a VACHT (vesicular acetylcholine transporter) gene represented by SEQ ID NO: 3 or SEQ ID NO: 4, CHT (choline transporter) the gene, SEQ ID NO: 7 or SEQ ID NO: 8 is represented by A nicotinic acetylcholine receptor? 3 ( CHRNA3 ) gene, SEQ ID NO: 9 or SEQ ID NO: 10 A nicotinic acetylcholine receptor < RTI ID = 0.0 > beta3) < / RTI & CHRNB4 (nicotinic acetylcholine receptor < RTI ID = 0.0 > beta4) < / RTI >gene;

(b) 약물 후보물질 접촉 전과 접촉 후에 있어서, 상기 각 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자의 발현율의 변화를 측정하는 단계; 및(b) before and after contacting the drug candidate material, each CHAT , VACHT , CHT , CHRNA3 , CHRNB3 or CHRNB4 gene; And

(c) 상기 각 유전자의 발현율의 변화가 확인되는 경우, 상기 약물 후보물질이 우울증의 예방 또는 치료제임을 판별하는 단계;를 포함하는 우울증의 예방 또는 치료제 스크리닝 방법으로,(c) determining that the drug candidate substance is a preventive or therapeutic agent for depression when a change in the expression level of each gene is confirmed,

상기 단계 (a)의 세포는 고삐핵(Habenula)으로부터 유래하는 세포인 것을 특징으로 하는 우울증의 예방 또는 치료제 스크리닝 방법을 제공한다.Wherein the cell of step (a) is a cell derived from Habenula. The present invention also provides a method for screening a preventive or therapeutic agent for depression.

용어 "약물 후보물질"이란, 유전자의 발현량에 영향을 미치거나, 단백질의 양 또는 활성에 영향을 미칠 가능성이 있다고 판단되는 미지의 물질로서, 본 발명에서는 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자 또는 단백질의 발현량 또는 활성에 영향을 미칠 가능성이 있는 미지의 물질을 의미한다. 상기 약물 후보물질은 siRNA(small interference RNA), 안티센스 RNA(antisense RNA), 뉴클레오타이드(nucleotide), 화학적으로 합성된 물질, 천연물 추출물을 포함할 수 있으며, 이에 한정되지 않는다.The term " drug candidate substance " is an unknown substance that is considered to have an influence on the expression amount of a gene or affect the amount or activity of a protein. In the present invention, CHAT , VACHT , CHT , CHRNA3 , CHRNB3 CHRNB4 " refers to an unknown substance that is likely to affect the expression level or activity of a gene or protein. The drug candidates may include, but are not limited to, small interference RNA (siRNA), antisense RNA, nucleotides, chemically synthesized substances, and natural extracts.

용어 "고삐핵(Habenula)"이란, 대뇌 변연계의 신경 회로에서 신경 신호 전달을 중계하는 기능을 하는 부분으로, 내측 고삐핵(medial habenula , MHb)과 외측 고삐핵(lateral habenula, LHb)으로 세분할 수 있다.The term "Habenula" refers to a part that functions to relay nerve signaling in the neural circuit of the cerebral limbic system and is subdivided into medial habenula (MHb) and lateral habenula (LHb). .

상기 단계 (a)의 세포는 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자를 포함하는 세포일 수 있다.The cell of step (a) may be a cell comprising the CHAT (choline acetyltransferase) gene of SEQ ID NO: 1 or SEQ ID NO: 2.

상기 (b) 단계에서 유전자 발현율의 변화는 DNA 마이크로어레이 또는 cDNA 마이크로어레이를 이용한 혼성화 반응뿐만 아니라 해당 유전자의 전사로 인해 생성된 mRNA 발현율, 양 또는 패턴을 확인하는 통상적인 생화학적 분석방법으로 검출될 수 있다. 이러한 mRNA의 발현율, 양 또는 패턴을 확인하기 위한 분석 방법으로는 RT-PCR, qRT-PCR(quantitative real-time polymerase chain reaction), 경쟁적 RT-PCR (Competitive RT-PCR), 실시간 RT-PCR (Real-time RT-PCR), RNase 보호 분석법 (RNase protection assay), 인 시투(in situ) 혼성화 반응, 또는 노던 블로팅(Northern Blotting) 등이 있으며, 그 외에도 당업계에서 통상적으로 수행되는 어떠한 방법이라도 사용될 수 있다. 일례로, RT-PCR 프로토콜에 따라 실시하는 경우에는 시료를 처리한 세포에서 총 RNA를 분리한 다음, 프라이머 및 역전사효소를 이용하여 단일가닥 cDNA를 제조한다. 이어, 단일가닥 cDNA를 주형으로 이용하고, 유전자-특이적 프라이머 세트를 이용하여 실시간 정량 PCR 반응(real time quantitative PCR)을 실시함으로써 유전자 발현량의 변화를 측정한다. 실시간 PCR에 대한 결과는 절대정량 표준 곡선법(Absolute Quantification standard curve method)에 따라 분석한다.The change of the gene expression rate in the step (b) may be detected by a conventional biochemical analysis method for confirming not only a hybridization reaction using a DNA microarray or a cDNA microarray but also an expression rate, amount or pattern of mRNA produced by transcription of the gene . RT-PCR, qRT-PCR, competitive RT-PCR, real-time RT-PCR, real-time RT-PCR, -time RT-PCR), RNase protection assay (RNase protection assay), in-situ (in situ hybridization reaction, or Northern blotting, and any other methods conventionally performed in the art can be used. For example, in the case of carrying out according to the RT-PCR protocol, total RNA is isolated from the sample-treated cells, and single-stranded cDNA is prepared using primers and reverse transcriptase. Then, a change in gene expression amount is measured by real-time quantitative PCR using a single-strand cDNA as a template and a gene-specific primer set. The results for real-time PCR are analyzed according to the Absolute Quantification standard curve method.

본 발명의 일실시예에서는 mRNA 발현율의 변화를 qRT-PCR 또는 인 시투(in situ) 혼성화 반응을 이용하여 측정하였으나, 이에 한정되지 않는다.In one embodiment of the present invention, the change in mRNA expression rate was measured using qRT-PCR or in situ hybridization, but the present invention is not limited thereto.

상기 유전자의 mRNA 발현 수준을 측정하는 제제는 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자의 발현수준 확인에 사용될 수 있는 분자로 구성되며, 바람직하게는 상기 유전자에 특이적으로 결합하는 프라이머 또는 프로브를 포함하는 것일 수 있으나, 이에 한정되지 않는다.The agent for measuring the mRNA expression level of the gene is composed of a molecule which can be used for the confirmation of the expression level of the CHAT , VACHT , CHT , CHRNA3 , CHRNB3 or CHRNB4 gene, preferably a primer or a probe specifically binding to the gene But it is not limited thereto.

용어 "프라이머" 란, 짧은 자유 3말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머레이즈 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 것을 기초로 변형할 수 있다.The term " primer " refers to a nucleic acid sequence having a short free 3 'hydroxyl group, capable of forming base pairs with a complementary template and serving as a starting point for template strand copying Quot; means a short nucleic acid sequence. The primer can initiate DNA synthesis in the presence of reagents and four different nucleoside triphosphates for polymerization reactions (i.e., DNA polymerase or reverse transcriptase) at appropriate buffer solutions and temperatures. The PCR conditions, the lengths of the sense and antisense primers can be modified based on what is known in the art.

용어 "프로브”란, mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며, 라벨링되어 있어 특정 mRNA의 존재 유무를 확인할 수 있다. 적절한 프로브의 선택 및 혼성화 조건은 당업계에 공지된 것을 기초로 변형할 수 있다.The term " probe " means a nucleic acid fragment such as RNA or DNA corresponding to a short period of a few nucleotides or several hundreds of nucleotides capable of specifically binding to mRNA, and the presence or absence of a specific mRNA can be confirmed by labeling Selection of suitable probes and hybridization conditions can be modified based on what is known in the art.

본 발명의 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 또한, 이러한 핵산 서열은 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 예로는 메틸화, 캡화, 천연 뉴클레오타이드 하나 이상의 동족체로의 치환, 및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있으나, 이에 한정되지 않는다.The primers or probes of the present invention can be chemically synthesized using the phosphoramidite solid support method, or other well-known methods. Such nucleic acid sequences may also be modified using many means known in the art. Examples of such modifications include, but are not limited to, methylation, capping, substitution of one or more natural nucleotides with one or more homologues, and modification between nucleotides such as uncharged linkers (e.g., methylphosphonate, phosphotriester, phosphoramidate, Mate, etc.) or charged linkages (e.g., phosphorothioate, phosphorodithioate, etc.).

상기 서열번호 1 내지 서열번호 12의 염기서열로 이루어지는 유전자 외에도 상기 염기서열들의 변이체를 비롯하여, 상기 서열번호 1 내지 서열번호 12의 염기서열로부터 번역되는 아미노산 서열 및 이로부터 구성되는 단백질이 본 발명의 범위 내에 포함되는 것으로 본다. 변이체는 염기서열은 변화되지만, 서열번호 1 내지 서열번호 12의 염기서열과 유사한 기능적 특성을 갖는 염기서열로 이루어진 유전자이다. 구체적으로, 본 발명에 따른 유전자는 서열번호 1 내지 서열번호 12의 염기서열과 80% 이상, 바람직하게는 84% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 또한, 본 발명에 따른 아미노산 서열은 상기 서열번호 1 내지 서열번호 12의 염기서열로부터 번역되는 아미노산 서열을 포함할 수 있으며, 본 발명에 따른 단백질은 상기 서열번호 1 내지 서열번호 12의 염기서열로부터 번역된 아미노산 서열로 구성되는 단백질을 포함할 수 있다.The amino acid sequence translated from the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 12 as well as the mutant of the nucleotide sequence as well as the gene consisting of the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: . ≪ / RTI > The mutant is a gene consisting of a base sequence having a functional characteristic similar to the base sequence of SEQ ID NO: 1 to SEQ ID NO: 12 though the base sequence is changed. Specifically, the gene according to the present invention may include a nucleotide sequence having 80% or more, and preferably 84% or more, of the nucleotide sequence of the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 12. Also, the amino acid sequence according to the present invention may include an amino acid sequence translated from the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 12, and the protein according to the present invention may include the amino acid sequence translated from the nucleotide sequence of SEQ ID NO: RTI ID = 0.0 > amino acid < / RTI >

본 발명은 (a) CHAT(choline acetyltransferase) 유전자, VACHT(vesicular acetylcholine transporter) 유전자, CHT(choline transporter) 유전자, CHRNA3(nicotinic acetylcholine receptor α3) 유전자, CHRNB3(nicotinic acetylcholine receptor β3) 유전자 또는 CHRNB4(nicotinic acetylcholine receptor β4) 유전자로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는 세포에 분석할 약물 후보물질을 접촉시키는 단계;The invention (a) CHAT (choline acetyltransferase) gene, VACHT (vesicular acetylcholine transporter) genes, CHT (choline transporter) genes, CHRNA3 (nicotinic acetylcholine receptor α3) gene, (nicotinic acetylcholine receptor β3) CHRNB3 gene or CHRNB4 (nicotinic acetylcholine receptor < RTI ID = 0.0 > beta4) < / RTI >gene;

(b) 약물 후보물질 접촉 전과 접촉 후에 있어서, 상기 각 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자의 발현율의 변화를 측정하는 단계; 및(b) measuring changes in the expression rates of the CHAT , VACHT , CHT , CHRNA3 , CHRNB3 or CHRNB4 genes before and after the drug candidate substance contact; And

(c) 상기 각 유전자의 발현율의 변화가 확인되는 경우, 상기 약물 후보물질이 우울증의 예방 또는 치료제임을 판별하는 단계;를 포함하는 우울증의 예방 또는 치료제 스크리닝 방법으로,(c) determining that the drug candidate substance is a preventive or therapeutic agent for depression when a change in the expression level of each gene is confirmed,

상기 단계 (a)의 세포는 고삐핵(Habenula)으로부터 유래하는 세포인 것을 특징으로 하는 우울증의 예방 또는 치료제 스크리닝 방법을 제공한다.Wherein the cell of step (a) is a cell derived from Habenula. The present invention also provides a method for screening a preventive or therapeutic agent for depression.

상기 (a) 단계의 세포는 CHAT(choline acetyltransferase) 유전자를 포함하는 세포일 수 있다.The cell of step (a) may be a cell containing CHAT (choline acetyltransferase) gene.

본 발명은 (a) CHAT(choline acetyltransferase) 단백질, VACHT(vesicular acetylcholine transporter) 단백질, CHT(choline transporter) 단백질, CHRNA3(nicotinic acetylcholine receptor α3) 단백질, CHRNB3(nicotinic acetylcholine receptor β3) 단백질 또는 CHRNB4(nicotinic acetylcholine receptor β4) 단백질로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는 세포에 분석할 약물 후보물질을 접촉시키는 단계;(A) a choline acetyltransferase (CHAT) protein, a vesicular acetylcholine transporter protein, a choline transporter (CHT) protein, a nicotinic acetylcholine receptor 3 protein, a nicotinic acetylcholine receptor 3 protein or a nicotinic acetylcholine receptor receptor < RTI ID = 0.0 > (4) < / RTI > protein) to a cell comprising at least one selected from the group consisting of:

(b) 약물 후보물질 접촉 전과 접촉 후에 있어서, 상기 각 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 단백질의 발현율 또는 활성의 변화를 측정하는 단계; 및(b) measuring a change in the expression level or activity of each of the CHAT, VACHT, CHT, CHRNA3, CHRNB3 or CHRNB4 protein before and after the drug candidate substance contact; And

(c) 상기 각 단백질의 발현율 또는 활성의 변화가 확인되는 경우, 상기 약물 후보물질이 우울증의 예방 또는 치료제임을 판별하는 단계;(c) determining that the drug candidate substance is a preventive or therapeutic agent for depression when a change in the expression level or activity of each protein is confirmed;

를 포함하는 우울증의 예방 또는 치료제 스크리닝 방법으로, A method for screening a preventive or therapeutic agent for depression,

상기 단계 (a)의 세포는 고삐핵(Habenula)으로부터 유래하는 세포인 것을 특징으로 하는 우울증의 예방 또는 치료제 스크리닝 방법을 제공한다.Wherein the cell of step (a) is a cell derived from Habenula. The present invention also provides a method for screening a preventive or therapeutic agent for depression.

상기 단계 (a)의 세포는 CHAT(choline acetyltransferase) 단백질을 포함하는 세포일 수 있다.The cell of step (a) may be a cell containing CHAT (choline acetyltransferase) protein.

상기 (b) 단계에서 단백질 발현율 또는 활성의 변화는 항체를 이용하여 단백질의 존재량이나 활성형 또는 비활성형을 나타내는 단백질의 존재량을 측정하는 것일 수 있으며, 구체적으로는, 웨스턴 블로팅, ELISA (enzyme linked immunosorbent assay), 방사선 면역분석 (Radioimmunoassay), 방사 면역 확산법 (radioimmunodiffusion), 오우크테를로니 (Ouchterlony) 면역 확산법, 로케트 (rocket) 면역 전기영동, 조직 면역 염색, 면역 침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법 (Complement Fixation Assay), FACS, 단백질 칩 (protein chip) 등이 있고, 그 외에도 당업계에서 통상적으로 수행되는 어떠한 방법이라도 사용될 수 있다. 방사선 면역분석, 방사 면역 확산법 등을 실시하는 경우에는 방사능동위원소(예: C14, I125, P32 및 S35)로 표지된 항체를 사용할 수 있다.In step (b), the protein expression rate or activity may be determined by measuring the amount of the protein present or the amount of the protein showing the active or inactive form using an antibody. Specifically, Western blotting, ELISA enzyme immunoassay, enzyme linked immunosorbent assay, radioimmunoassay, radioimmunodiffusion, Ouchterlony immunodiffusion, rocket immunoelectrophoresis, tissue immuno staining, immunoprecipitation assay, A complement fixation assay (FACS), a protein chip, and the like, and any method conventionally performed in the art may be used. In the practice of the radiation immunoassay, radioimmunoassay diffusion method, etc., a radioactive isotope: can be used as a labeled (e.g., 14 C, 125 I, 32 P and 35 S) antibody.

본 발명의 일실시예에서는 단백질 발현율의 변화를 웨스턴 블로팅을 이용하여 측정하였으나, 이에 한정되지 않는다.In one embodiment of the present invention, the change in the protein expression rate was measured using Western blotting, but the present invention is not limited thereto.

용어 "항체"란, 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미하며, 상기 단백질에 대한 모노클로날 항체는 당업계에 통상적인 모노클로날 항체 제작 방법을 통해 제작되어 사용될 수도 있고, 시판되는 것을 사용할 수 있다. 또한, 모노클로날 항체 대신에 상기 단백질을 인식하는 폴리클로날 항체를 사용할 수도 있고, 이는 당업계에 통상적인 항혈청 제작 방법을 통해 제작되어 사용될 수도 있다.The term " antibody " means a specific protein molecule indicated for an antigenic site, and the monoclonal antibody to the protein may be produced and used through a monoclonal antibody production method as is conventional in the art, Can be used. In addition, a polyclonal antibody recognizing the protein may be used instead of the monoclonal antibody, or it may be produced and used through an antiserum preparation method customary in the art.

본 발명은 (a) 고삐핵(Habenula)으로부터 유래한 세포에 대해, 각 CHAT(choline acetyltransferase) 유전자, VACHT(vesicular acetylcholine transporter) 유전자, CHT(choline transporter) 유전자, CHRNA3(nicotinic acetylcholine receptor α3) 유전자, CHRNB3(nicotinic acetylcholine receptor β3) 유전자 또는 CHRNB4(nicotinic acetylcholine receptor β4) 유전자의 발현율을 측정하는 단계; 및 The invention (a) for a cell derived from the reins nucleus (Habenula), each CHAT (choline acetyltransferase) gene, VACHT (vesicular acetylcholine transporter) genes, CHT (choline transporter) genes, CHRNA3 (nicotinic acetylcholine receptor α3) gene, CHRNB3 (nicotinic acetylcholine receptor β3) gene or CHRNB4 (nicotinic acetylcholine receptor β4) measuring the expression of the gene; And

(b) 상기 단계 (a)에서 측정한 유전자의 발현율을, 정신질환적 증상이 없는 고삐핵(Habenula)으로부터 유래한 세포에 대해 측정한 각 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자의 발현율과 비교하는 단계;를 포함하여, 상기 단계 (a)에서 측정한 각 유전자의 발현율이 감소하는 결과를 보이는 경우, 우울증으로 판단하는 우울증 진단 방법을 제공한다.(b) the expression level of each of the CHAT , VACHT , CHT , CHRNA3, CHRNB3 or CHRNB4 gene measured in the cell derived from Habenula without mental disease symptoms, And comparing the measured gene expression level with the measured gene expression level, the method comprising the steps of: (a)

본 발명은 (a) 고삐핵(Habenula)으로부터 유래한 세포에 대해, 각 CHAT(choline acetyltransferase) 단백질, VACHT(vesicular acetylcholine transporter) 단백질, CHT(choline transporter) 단백질, CHRNA3(nicotinic acetylcholine receptor α3) 단백질, CHRNB3(nicotinic acetylcholine receptor β3) 단백질 또는 CHRNB4(nicotinic acetylcholine receptor β4) 단백질의 발현율 또는 활성을 측정하는 단계; 및 (A) a choline acetyltransferase (CHAT) protein, a vesicular acetylcholine transporter (VACHT) protein, a choline transporter (CHT) protein, a nicotinic acetylcholine receptor α3 Measuring the expression level or activity of CHRNB3 (nicotinic acetylcholine receptor beta 3) protein or CHRNB4 (nicotinic acetylcholine receptor beta 4) protein; And

(b) 상기 (a)단계에서 측정한 단백질의 발현율 또는 활성을, 정신질환적 증상이 없는 고삐핵(Habenula)으로부터 유래한 세포에 대해 측정한 각 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 단백질의 발현율 또는 활성과 비교하는 단계;를 포함하여, 상기 단계 (a)에서 측정한 각 단백질의 발현율 또는 활성이 감소하는 결과를 보이는 경우, 우울증으로 판단하는 우울증 진단 방법을 제공한다.(b) determining the expression level or activity of the protein measured in the step (a) as a function of each CHAT, VACHT, CHT, CHRNA3, CHRNB3 or CHRNB4 protein measured on cells derived from Habenula without mental disease symptoms And comparing the expression level or the activity of the protein with the expression level or activity of the protein when the expression level or the activity of each protein measured in the step (a) is decreased.

상기 우울증 진단 방법은 생체 외에서 수행하는 것일 수 있다.The method for diagnosing depression may be performed in vitro.

용어 "정신질환적 증상이 없는"은 사고·감정·행동 등에 영향을 미치는 병적인 정신상태의 증상, 보다 구체적으로, 정신병, 신경병 및 그 밖의 인격장애를 포함하는 정신질환과 관련된 증상이 나타나지 않는 것을 의미한다.The term " without mental illness symptoms " refers to the absence of symptoms associated with mental illnesses including mental illnesses, neuropathies and other personality disorders, more specifically symptoms of pathological mental conditions affecting accidents, feelings, it means.

용어 "진단"은 우울증으로 진단받은 대상에 약물(또는 약물 후보물질)과 같은 우울증 예방 또는 치료제를 투여한 후 이에 대한 감수성(susceptibility)을 판정하는 것, 상기 대상이 우울증을 현재 가지고 있는지 여부를 판정하는 것(예: 우울증 증상의 완화를 확인하는 것), 상기 대상의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예: 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)를 포함한다.The term " diagnosis " is intended to include determining the susceptibility of a subject diagnosed with depression after administering a prophylactic or therapeutic agent for depression such as a drug (or candidate drug) to the subject, determining whether the subject has depression presently (Eg, to confirm the relief of depressive symptoms), to determine the prognosis of the subject, or to monitor the status of the object to provide information about therametrics .

본 발명은 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자, 서열번호 3 또는 서열번호 4로 표시되는 VACHT(vesicular acetylcholine transporter) 유전자, 서열번호 5 또는 서열번호 6으로 표시되는 CHT(choline transporter) 유전자, 서열번호 7 또는 서열번호 8로 표시되는 CHRNA3(nicotinic acetylcholine receptor α3) 유전자, 서열번호 9 또는 서열번호 10으로 표시되는 CHRNB3(nicotinic acetylcholine receptor β3) 유전자 또는 서열번호 11 또는 서열번호 12로 표시되는 CHRNB4(nicotinic acetylcholine receptor β4) 유전자로 이루어지는 군으로부터 선택되는 어느 하나 이상의 유전자에 대한 RNAi 서열을 유효성분으로 포함하는, 우울증의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a choline acetyltransferase ( CHAT ) gene represented by SEQ ID NO: 1 or 2, a VACHT (vesicular acetylcholine transporter) gene represented by SEQ ID NO: 3 or SEQ ID NO: 4, CHT choline transporter) gene, SEQ ID NO: 7 or SEQ ID NO: nicotinic (CHRNA3 acetylcholine represented by the 8 receptor α3) gene, SEQ ID NO: 9 or SEQ ID NO: 10 as CHRNB3 (nicotinic acetylcholine receptor β3) gene or SEQ ID NO: 11 or SEQ ID NO: 12 represented And a gene for CHRNB4 (nicotinic acetylcholine receptor? 4) gene represented by SEQ ID NO: 1, which is represented by SEQ ID NO: 2, as an active ingredient.

상기 우울증의 예방 또는 치료용 약학적 조성물은 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자에 대한 RNAi 서열을 유효성분으로 포함하는 것일 수 있다.The pharmaceutical composition for preventing or treating depression may comprise an RNAi sequence for CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2 as an active ingredient.

용어 "RNAi"는 RNA 간섭(RNA inteference)의 약어이고, 이중나선 RNA(dsRNA로도 불림)과 같은 RNAi를 유발하는 작용제가 세포 내로 도입시 이에 대해 상동적인 mRNA가 특이적으로 분해되어 유전자 생성물의 합성이 억제되는 현상을 나타낸다. 여기에 사용된 RNAi는 RNAi를 유발하는 작용제와 동일한 의미를 지닌다.   The term " RNAi " is an abbreviation for RNA interference. When an agent that induces RNAi, such as double helical RNA (also referred to as dsRNA), is introduced into a cell, mRNA homologous thereto is specifically degraded, Is suppressed. The RNAi used here has the same meaning as the agonist inducing RNAi.  

상기 RNAi는 짧은 이중가닥 RNA가 자신의 염기서열에 해당하는 표적 mRNA를 선택적으로 분해하여 표적 유전자의 전사와 단백질 합성을 중단시키는 과정이며, 이러한 RNAi 현상을 특이적으로 유도하는데 사용되는 siRNA(small interfering RNA)을 제조하기 위한 방법은, in vitro에서 siRNA를 직접 합성한 후 트랜스펙션(transfection)을 통해 세포 안으로 도입시키는 방법 및 세포 내에서 siRNA를 발현할 수 있도록 제작된 shRNA(short hairpin RNA) 발현벡터를 활용하는 방법이 있다. 발현벡터를 활용하는 방법을 이용하여 shRNA 발현벡터를 형질전환을 통해 세포 내에서 발현시키면 프로모터로부터 표적 염기서열의 센스(sense) 및 안티센스(anti-sense) 서열이 링커(linker)를 사이에 두고 위치하며 발현되게 되고, 이를 통해 루프(loop)가 있는 작은 헤어핀(small hairpin) 구조의 shRNA가 합성된다. 이렇게 합성된 shRNA는 세포 안에 존재하는 다이서(Dicer)라는 RNase Ⅲ 효소에 의해 분해되어 정확한 구조를 갖는 약 21 내지 23개의 뉴클레오티드의 siRNA로 전환되고, RISC(RNA-induced Silencing Complex)라는 단백질 복합체와 결합하여 표적 mRNA를 분해시키는 것은 통상의 기술자에게 자명하다. 이와 같이, siRNA는 표적 유전자의 발현을 억제할 수 있으므로, 효율적인 유전자 녹다운 방법, 유전자 사일렌싱(silencing) 방법, 또는 유전자치료 방법으로 제공된다.The RNAi is a process in which a short double-stranded RNA selectively degrades a target mRNA corresponding to its own base sequence to stop transcription and protein synthesis of a target gene, and siRNA (small interfering RNA) can be prepared by directly synthesizing siRNA in vitro and then introducing it into cells through transfection, and a method of expressing short hairpin RNA (siRNA) There is a way to utilize vectors. When an expression vector is used to express an shRNA expression vector in a cell through transformation, the sense and antisense sequence of the target sequence from the promoter is located at a position between the linker And thus, a small hairpin shRNA with a loop is synthesized. The shRNA thus synthesized is degraded by the RNase Ⅲ enzyme called Dicer, which is present in the cell, and converted into an siRNA of about 21 to 23 nucleotides having a correct structure, and a protein complex called RISC (RNA-induced silencing complex) It will be apparent to those of ordinary skill in the art to combine and disassemble the target mRNA. As such, siRNA can suppress the expression of a target gene, and thus it is provided by an efficient gene knockdown method, a gene silencing method, or a gene therapy method.

보다 구체적으로, shRNA(small hairpin RNA)는 표적 유전자 siRNA 염기서열의 센스(sense)와 상보적인 넌센스(nonsense) 사이에 3 ~ 10개의 염기 링커를 연결하는 올리고 DNA를 합성한 후 플라스미드 벡터에 클로닝하거나, 레트로바이러스인 렌티바이러스(lentivirus) 또는 아데노바이러스(adenovirus)에 삽입하여 발현시킬 수 있으며, siRNA에 비해 RNA 간섭 효과가 비교적 길다. More specifically, shRNA (small hairpin RNA) is obtained by synthesizing an oligo DNA connecting 3 to 10 base linkers between the sense of a target gene siRNA sequence and complementary nonsense, and then cloning into a plasmid vector , Retroviruses such as lentivirus or adenovirus, and the RNA interference effect is relatively longer than that of siRNA.

용어 "벡터"란 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 보유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 본 발명의 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다.The term " vector " means a DNA construct that retains a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in the appropriate host. The vector may be a plasmid, phage particle, or simply a potential genome insert. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. The vector of the present invention can typically be constructed as a vector for cloning or expression.

본 발명의 약학적 조성물은 유효성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. The pharmaceutical composition of the present invention may be prepared using pharmaceutically acceptable and physiologically acceptable adjuvants in addition to the active ingredients, and examples of the adjuvants include excipients, disintegrants, sweeteners, binders, coating agents, swelling agents, lubricants, Or a solubilizing agent such as a flavoring agent can be used.

본 발명의 약학적 조성물은 투여를 위해서 유효성분 이외에 추가로 약학적으로 허용 가능한 담체를 1 종 이상 포함하여 약학적 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용가능한 약학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 하나 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화 할 수 있다. 더 나아가 해당분야의 적절한 방법으로 Remington's Pharmaceutical Science, MackPublishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다. The pharmaceutical composition of the present invention may be formulated into a pharmaceutical composition containing at least one pharmaceutically acceptable carrier in addition to the active ingredient for administration. Acceptable pharmaceutical carriers for compositions that are formulated into a liquid solution include sterile water and sterile water suitable for the living body such as saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, One or more of these components may be mixed and used. If necessary, other conventional additives such as an antioxidant, a buffer, and a bacteriostatic agent may be added. In addition, diluents, dispersants, surfactants, binders, and lubricants can be additionally added and formulated into injectable solutions, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like. Further, it can be suitably formulated according to each disease or ingredient, using the method disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA, as appropriate in the field.

본 발명의 약학적 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 약학적 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다.The pharmaceutical preparation form of the pharmaceutical composition of the present invention may be in the form of granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drips or injectable solutions, . The pharmaceutical composition of the present invention may be administered orally or parenterally through intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, percutaneous, intranasal, inhalation, topical, rectal, ≪ / RTI >

본 발명의 약학적 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 예를 들면, 성인의 경우, 1일 1회 내지 수회 투여 시, 본 발명에 따른 RNAi의 경우 0.01 ng/kg ~ 10 g/kg의 용량으로 투여할 수 있다.An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required for prevention or treatment of the disease. Accordingly, the present invention is not limited to the particular type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of formulation and the patient's age, body weight, general health status, sex and diet, Rate of administration, duration of treatment, concurrent medication, and the like. For example, in the case of an adult, it may be administered at a dose of 0.01 ng / kg to 10 g / kg for RNAi according to the present invention once to several times a day.

본 발명의 일실시예에서, 본 발명에 따른 CHAT 유전자를 녹다운시킬 수 있는 RANi는 AAV-CHAT shRNA로 명명되며, 도 3A 위와 같이 아데노바이러스 벡터인 AAV2/9(adeno-associated virus 2/9)를 기반으로 EGFP를 발현하는 PGK 프로모터 및 shRNA를 발현하는 U6 프로모터를 포함하여 제작하였다. In one embodiment of the present invention, the RANi capable of knocking down the CHAT gene according to the present invention is designated as AAV- CHAT shRNA, and adenovirus vector AAV2 / 9 (adeno-associated virus 2/9) Based on A PGK promoter expressing EGFP and a U6 promoter expressing shRNA.

또한, 본 발명의 일실시예에서는 동물모델을 확립하였다. 본 발명의 일실시예에서 제작한 RANi인 AAV-CHAT shRNA가 주입되어 CHAT 유전자가 녹다운된 랫트를 대상으로 우울증 관련 동물 행동 실험을 수행하였다. 특히, 이와 같이 CHAT 유전자가 녹다운된 랫트에서 CHAT 외의 VACHT 단백질 발현은 정상적으로 이루어져 CHAT, VACHT, CHT, CHRNA3, CHRNB3 또는 CHRNB4 유전자 또는 단백질의 발현 억제/녹다운에 따른 변화를 개별적으로 모니터링하는 것이 가능하다. An animal model has also been established in one embodiment of the present invention. In an embodiment of the present invention, depression-related animal behavior tests were performed on rats in which the CHAT gene was knocked down by injecting AAV- CHAT shRNA, which is the RANi produced in the present invention. In particular, in the rat knocked down with the CHAT gene, VACHT protein expression other than CHAT is normally performed , and it is possible to individually monitor changes in inhibition / knockdown of expression of CHAT , VACHT , CHT , CHRNA3 , CHRNB3 or CHRNB4 gene or protein.

본 발명은 (a) 고삐핵(Habenula)으로부터 유래한 세포에 대해, CHAT(choline acetyltransferase) 유전자의 발현율을 측정하는 단계; 및 (A) measuring the expression level of CHAT (choline acetyltransferase) gene for cells derived from Habenula; And

(b) 상기 단계 (a)에서 측정한 유전자의 발현율을, 정신질환적 증상이 없는 고삐핵(Habenula)으로부터 유래한 세포에 대해 측정한 CHAT 유전자의 발현율과 비교하는 단계;를 포함하여, (b) comparing the expression level of the gene measured in step (a) with the expression level of the CHAT gene measured on cells derived from Habenula without mental disease symptoms,

상기 단계 (a)에서 측정한 유전자의 발현율이 감소하는 결과를 보이는 경우, 항우울제에 대한 치료불응성으로 판단하는 항우울제 치료불응성 진단 방법을 제공한다.The present invention provides a method for diagnosing antiretroviral therapy refractory disorder, wherein the antidepressant agent is judged to be refractory to the antidepressant drug when the expression rate of the gene measured in step (a) is decreased.

본 발명은 (a) 고삐핵(Habenula)으로부터 유래한 세포에 대해, CHAT(choline acetyltransferase) 단백질의 발현율 또는 활성을 측정하는 단계; 및 (A) measuring the expression rate or activity of CHAT (choline acetyltransferase) protein for cells derived from Habenula; And

(b) 상기 (a)단계에서 측정한 단백질의 발현율 또는 활성을, 정신질환적 증상이 없는 고삐핵(Habenula)으로부터 유래한 세포에 대해 측정한 CHAT 단백질의 발현율 또는 활성과 비교하는 단계;를 포함하여, (b) comparing the expression level or activity of the protein measured in step (a) with the expression level or activity of the CHAT protein measured on cells derived from Habenula without mental disease symptoms So,

상기 단계 (a)에서 측정한 단백질의 발현율 또는 활성이 감소하는 결과를 보이는 경우, 항우울제에 대한 치료불응성으로 판단하는 항우울제 치료불응성 진단 방법을 제공한다.The present invention provides a method for diagnosing antiretroviral therapy refractory disorder, which is judged to be refractory to antidepressant drugs when the expression level or activity of the protein measured in step (a) is decreased.

용어 "치료불응성"은 치료제로 기능하는 약물 투여 시 질환의 증상이 호전되지 않는 성질을 의미하며, 본 발명에서는 항우울제(우울증 치료제)에 대하여 무쾌감증 등을 포함하는 우울증의 증상이 호전되지 않는 성질을 의미한다. The term " refractory to treatment " means a property that the symptom of the disease does not improve upon administration of a drug functioning as a therapeutic agent. In the present invention, the symptom of depression including an unpleasant sensation is not improved with respect to the antidepressant It means nature.

상기 항우울제는 세로토닌 흡수 억제제인 것일 수 있으며, 바람직하게는 플루옥세틴(Fluoxetine), 시탈로프람(citalopram), 다폭세틴(Dapoxetin), 에스시탈로프람(escitalopram), 플루복사민(fluvoxamine), 파록세틴(Paroxetine), 설트랄린 (sertraline) 또는 지멜리딘(Zimelidine)으로 이루어지는 군으로부터 선택되는 어느 하나인 것일 수 있고, 보다 바람직하게는 플루옥세틴인 것일 수 있으나, 이로 한정되지 않는다.The antidepressant may be a serotonin uptake inhibitor and is preferably selected from the group consisting of fluoxetine, citalopram, Dapoxetin, escitalopram, fluvoxamine, paroxetine, But may be any one selected from the group consisting of paroxetine, sertraline, and zimelidine, and more preferably, it may be fluoxetine, but is not limited thereto.

본 발명은 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자에 대한 RNAi 서열을 발현하는 재조합 바이러스 벡터를 제작하는 단계; 및The present invention relates to a method for producing a recombinant viral vector which expresses an RNAi sequence for CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2; And

인간을 제외한 정상 포유동물의 뇌 내 고삐핵(Habenula)에 상기 재조합 바이러스 벡터를 주입하여 CHAT 유전자를 녹다운(knock-down)시키는 단계;를 포함하는 항우울제 치료불응성 동물모델 제조방법을 제공한다.The method comprising knocking down the CHAT gene by injecting the recombinant viral vector into the brain Habenula of normal mammals other than humans, thereby providing an anti-depressant therapeutic animal model preparation method.

본 발명은 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자에 대한 RNAi 서열을 발현하는 재조합 바이러스 벡터를 제작하는 단계; 및The present invention relates to a method for producing a recombinant viral vector which expresses an RNAi sequence for CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2; And

인간을 제외한 정상 포유동물의 뇌 내 고삐핵(Habenula)에 상기 재조합 바이러스 벡터를 주입하여 CHAT 유전자를 녹다운(knock-down)시키는 단계;를 포함하는 무쾌감증 동물모델 제조방법을 제공한다.And a step of knocking down the CHAT gene by injecting the recombinant viral vector into the brain Habenula of normal mammals other than humans.

상기 재조합 바이러는 벡터는 도 3A에 기재된 개열지도를 갖는 벡터인 AAV-CHAT shRNA인 것일 수 있다.The recombinant vector may be AAV-CHAT shRNA, which is a vector having cleavage map as shown in Fig. 3A.

상기 인간을 제외한 정상 포유동물은 마우스 또는 랫트인 것일 수 있다.The normal mammal other than human may be a mouse or a rat.

본 발명은 본 발명의 방법에 따라 제조된 항우울제 치료불응성 동물모델을 제공한다.The present invention provides antidepressant treatment-refractory animal models prepared according to the methods of the present invention.

또한, 본 발명은 본 발명의 방법에 따라 제조된 무쾌감증 동물모델을 제공한다.In addition, the present invention provides an anesthesia animal model prepared according to the method of the present invention.

본 발명에 따라 콜린성 유전자(Cholinergic genes)의 발현율 변화를 분석함으로써 우울증을 예방 또는 치료하기 위한 약물을 스크리닝할 수 있고, 나아가 우울증을 조기에 진단하거나 예후를 분석할 수 있다.According to the present invention, by analyzing the change of expression rate of cholinergic genes, drugs for preventing or treating depression can be screened, and further, depression can be diagnosed early or the prognosis can be analyzed.

본 발명에 따른 우울증의 예방 또는 치료용 약학적 조성물은 콜린성 유전자의 발현을 조절함으로써 우울증을 예방 또는 치료할 수 있다.The pharmaceutical composition for the prevention or treatment of depression according to the present invention can prevent or treat depression by controlling the expression of the cholinergic gene.

또한, 우울증의 핵심 증상인 무쾌감증을 보이는 동물모델의 개발과 더불어 항우울증에 대한 치료불응성 동물모델을 개발하여 우울증 치료에 있어 난제를 극복하기 위한 다양한 연구에 적용할 수 있다.In addition, the development of an animal model with a pleuritic symptom, a key symptom of depression, and the development of a refractory animal model for antidepression can be applied to various studies to overcome the difficulties in the treatment of depression.

도 1은 자살한 우울증 환자로부터 수득한 고삐핵 조직에서 6종의 콜린성 유전자의 발현을 나타낸 도이다. A는 인간 고삐핵 시료의 분리를 나타낸 도이다. 고삐핵은 뇌의 송과샘(pineal gland)에 인접해 있으며 11번째 평판(slab)에 존재한다(slab 1, 전두엽(frontal lobe); slab 18, 후두엽(occipital lobe)).; B는 일반적인 콜린성 시냅스의 개략도로, Ca2 +-자극성 도킹(docking), 융합 및 콜린성 전시냅스 신경 말단 막(cholinergic presynaptic nerve terminal membrane)에서의 분열을 통해 일어나는 ACh(acetylcholine) 신경전달(neurotransmission)을 나타낸다.; C는 6종의 콜린성 유전자인 CHAT, VACHT, CHT, CHRNA3, CHRNB3CHRNB4의 mRNA 발현을 나타낸 도이다. CAMK2B는 대조구이다. 그래프 내 데이터는 평균 ± SEM(CON, 대조구, n = 11; MDD, n = 12 subjects; *P < 0.05, Mann-Whitney U-test).
도 2는 랫트의 고삐핵에서 콜린성 유전자의 발현에 대한 만성 구속 스트레스(CRS)의 영향을 나타낸 도이다. A는 스트레스 실험 및 조직 시료 추출의 단계를 나타내는 개략도이다.; B는 스트레스 실험 기간 동안의 체중 변화를 나타낸 도이다. CRS는 Day 8부터 가해졌다. NS, non-stressed, n = 4; CRS, n = 4.; C 및 D는 CRS로 인해 혈장 코르티코스테론의 수준이 증가하고 부신이 비대해진 것을 나타낸 도이다. 그래프 내 데이터는 평균 ± SEM. *P < 0.05, **P < 0.01, Student's t-test.; E 및 F는 CRS에 노출된 랫트가 우울증적 행동을 하는 것을 나타낸 도이다(자당 선호 실험(SPT)에서의 무쾌감증, 강제 수영 실험(FST)에서의 정적인 태도). 그래프 내 데이터는 평균 ± SEM. NS, n = 20; CRS, n = 20 rats, **P < 0.01, Mann-Whitney U-test.; G는 CRS에 노출된 랫트의 고삐핵에서 6종의 콜린성 유전자인 CHAT, VACHT, CHT, CHRNA3, CHRNB3CHRNB4의 mRNA 발현을 나타낸 도이다. CAMK2B는 대조구이다. 그래프 내 데이터는 평균 ± SEM. NS, n = 4; CRS, n = 4; *P < 0.05, **P < 0.01, ***P < 0.001, Mann-Whitney U-test.; H는 CRS에 노출된 랫트의 뇌 조직을 6종의 콜린성 유전자 및 CAMK2B에 대한 프로브와 혼성화하여 나타낸 도이다. 프로브는 붉은색, 뇌 조직은 푸른색(Hoechst)으로 대비 염색하였다. 삽입된 상자는 원본 이미지를 확대하여 나타낸 이미지이다. 스케일 바는 50 μm; inset, 5 μm.
도 3은 우울증적 행동에 대한 내측 고삐핵(MHb) 내 CHAT 녹다운(Knock-down)의 영향을 나타낸 도이다. A 위는 CHAT 녹다운을 유도할 수 있도록 설계한 AAV 벡터(AAV-CHAT shRNA 또는 AAV-sh-CHAT)의 모식도이며, A 아래는 바이러스에 감염된 랫트의 행동 실험을 위한 실험 패러다임을 나타낸 개략도이다. B는 AAV-sh-SCR(대조구) 또는 AAV-sh-CHAT(CHAT 녹다운)가 주입된 랫트 유래 고삐핵 조직의 현미경 사진이다. CHAT 단백질 발현은 붉은색 면역형광, 세포 핵은 푸른색(Hoechst), 바이러스 감염은 초록색(GFP)로 나타났다. 삽입된 상자는 감염된 내측 고삐핵 부분을 확대하여 나타낸 이미지이다. 스케일 바는 50 μm; C는 VACHT 발현이 AAV-sh-CHAT에 의해 영향받지 않음을 나타낸 도이다. AAV-sh-CHAT가 주입된 고삐핵 신경들은 VACHT(붉은색) 및 EGFP(초록색)으로 면역염색되었다. 스케일 바는 50 μm; D 및 E는 AAV-sh-SCR(대조구) 또는 AAV-sh-CHAT가 주입된 랫트의 고삐핵 유래 CHATVACHT의 웨스턴 블로팅 결과를 나타낸 도이다. 그래프 내 데이터는 평균 ± SEM(sh-SCR, n = 4 rats; sh-CHAT, n = 4; *P < 0.05, Student's t-test).
도 4는 내측 고삐핵(MHb) 내 CHAT 녹다운 동물모델에서 항우울제 치료불응성을 나타낸 도이다. A는 CHAT 녹다운 동물모델에서 항우울제 치료불응성을 실험하기 위한 패러다임을 나타낸 개략도이다. B는 CHAT 녹다운 동물모델의 자당 선호 실험에서의 자당 선호도, C는 자당 선호 실험에서의 총 용액 섭취량, D는 강제 수영 실험(FST)에서의 부동 시간이다. 그래프 내 데이터는 평균 ± SEM(sh-SCR + Sal, AAFV-sh-SCR + 식염수, n = 9 쥐, sh-CHAT + Flx, AAV-sh-CHAT + fluoxetine, n = 15, ** P <0.01, Student 's t- 테스트).
도 5는 고삐핵 신경세포 활성화가 복측피개영역 도파민 신경세포에 미치는 영향을 나타낸 도이다. A는 Cre-dependent hM3Dq 바이러스(AAV-hM3Dq-mCherry)를 CHAT-cre 마우스에 주입하는 것을 나타낸 모식도이다. B는 mCherry 융합 hM3Dq 단백질은 CHAT 양성 고삐핵 콜린성 뉴런에서 발현된 것을 나타낸 도이다. C-D는 hM3Dq-mCherry(적색)를 발현하는 고삐핵 콜린성 뉴런에서 c-Fos 발현(녹색)이 유도된 것을 나타낸 도이다. E-H는 CNO 투여에 따라 TH-양성 세포(즉, 도파민 뉴런; 백색) 또는 TH-음성 세포에서 c-Fos 면역 반응성(녹색)을 나타낸 도이다. 노란색 화살표 머리는 TH- 양성 및 c-Fos 양성 세포를 나타낸다. I는 CNO 주사 DREADD 마우스에서, 도파민 뉴런(2 마리의 마우스로부터 세포 n = 49)의 64.5 % 및 비도파민 세포의 35.5 %가 c-Fos 양성임을 나타낸 도이다. 대조적으로, 식염수 주입 DREADD 마우스, 도파민 뉴런 (n = 10 세포 2 마리) 및 비 도파민 세포의 88.9 %는 c-Fos 양성이었다. 스케일 바는 B-F, 100 μm; G 및 H, 10㎛.
도 6은 고삐핵 신경세포 활성화가 솔기핵 세로토닌 신경세포에 미치는 영향을 나타낸 도이다. A-B는 Cre 의존 hM3Dq를 발현하는 DREADD 마우스에서의 세포핵(청색) 및 5-HT(적색)를 각각 시각화한 도이다. C-D는 CHAT 녹다운 동물모델에서 세포핵(청색) 및 5-HT(적색)를 각각 시각화한 도이다. 평균 ± SEM(sh-SCR, n = 5 쥐, sh-CHAT, n = 5, ** P <0.01, Student 's t-test). 스케일 바는 100 μm.
FIG. 1 shows the expression of six cholinergic genes in the bone tissue obtained from suicide depression patients. FIG. A is a diagram showing the separation of a human nuclear specimen. The nucleus is located on the 11th slab adjacent to the pineal gland of the brain (slab 1, frontal lobe; slab 18, occipital lobe); B is a schematic diagram of a common cholinergic synapse, showing that ACh (acetylcholine) neurotransmission via Ca 2 + -dicturative docking, fusion, and cleavage at the cholinergic presynaptic nerve terminal membrane ; C shows mRNA expression of CHAT , VACHT , CHT , CHRNA3 , CHRNB3 and CHRNB4 , which are six cholinergic genes. CAMK2B is a control. The data in the graph were mean ± SEM (CON, control, n = 11; MDD, n = 12 subjects; * P <0.05, Mann-Whitney U- test).
Figure 2 shows the effect of chronic constriction stress (CRS) on the expression of cholinergic genes in the nucleus of the rats of rats. A is a schematic diagram illustrating the steps of a stress experiment and tissue sample extraction; B is a graph showing weight change during the stress test period. CRS was added from Day 8. NS, non-stressed, n = 4; CRS, n = 4 .; C and D show increased levels of plasma corticosterone due to CRS and adrenal hypertrophy. The data in the graph are mean ± SEM. * P < 0.05, ** P < 0.01, Student's t- test .; E and F show depressive behavior in rats exposed to CRS (anesthesia in the sucrose preference test (SPT), static attitude in the forced swimming experiment (FST)). The data in the graph are mean ± SEM. NS, n = 20; CRS, n = 20 rats, ** P < 0.01, Mann-Whitney U- test; G shows mRNA expression of the six cholinergic genes CHAT , VACHT , CHT , CHRNA3 , CHRNB3 and CHRNB4 in the nucleus of the rat exposed to CRS. CAMK2B is a control. The data in the graph are mean ± SEM. NS, n = 4; CRS, n = 4; * P <0.05, ** P <0.01, *** P <0.001, Mann-Whitney U- test; H is a diagram showing hybridization of brain tissue of rats exposed to CRS with a probe for six cholinergic genes and CAMK2B . Probe was reddish, and brain tissue was contrasted with blue (Hoechst). The inserted box is an enlarged image of the original image. The scale bar is 50 μm; inset, 5 μm.
FIG. 3 is a graph showing the effect of CHAT FIG. 5 is a graph showing an effect of knock-down. FIG. A above is CHAT AAV vector designed to induce knockdown (AAV- CHAT shRNA or AAV-sh-CHAT), and A below is a schematic diagram illustrating an experimental paradigm for behavioral testing of virus-infected rats. B is a photomicrograph of the nuclear structure of the rat-derived brass injected with AAV-sh-SCR (control) or AAV-sh-CHAT ( CHAT knockdown). CHAT Protein expression was red immunofluorescence, cell nucleus was blue (Hoechst), and virus infection was green (GFP). The inserted box is an enlarged image of the nucleus of the infected inner reinforcement. The scale bar is 50 μm; C is VACHT Lt; RTI ID = 0.0 &gt; AAV-sh-CHAT. &Lt; / RTI &gt; The nuclear nerves with AAV-sh-CHAT injected were immunostained with VACHT (red) and EGFP (green). The scale bar is 50 μm; D and E were obtained from Western blots of CHAT and VACHT from the nucleus of the rat injected with AAV-sh-SCR (control) or AAV-sh-CHAT Fig. The data in the graph were mean ± SEM (sh-SCR, n = 4 rats; sh-CHAT, n = 4; * P <0.05, Student's t- test).
FIG. 4 is a graph showing antidepressant treatment refractoryness in an animal model of CHAT knockdown in medial rein nucleus (MHb). A is a schematic diagram showing a paradigm for testing antidepressant therapy refractoryness in a CHAT knockdown animal model. B is the sucrose preference in the sucrose preference test of the CHAT knockdown animal model, C is the total solution intake in the sucrose preference experiment, and D is the dwell time in the forced swimming experiment (FST). The data in the graphs were mean ± SEM (sh-SCR + Sal, AAFV-sh-SCR + saline, n = 9 mice, sh-CHAT + Flx, AAV-sh-CHAT + fluoxetine, n = 15, , Student's t-test).
FIG. 5 is a graph showing the effect of the inhibitory nuclear nerve cell activation on the dopaminergic neurons in the blind meridians. A is a schematic diagram showing the injection of Cre-dependent hM3Dq virus (AAV-hM3Dq-mCherry) into CHAT-cre mice. B is a figure showing that the mCherry fusion hM3Dq protein is expressed in the CHAT positive reinforcement nucleolus neurons. CD shows the induction of c-Fos expression (green) in hippocampal nuclear cholinergic neurons expressing hM3Dq-mCherry (red). EH shows c-Fos immunoreactivity (green) in TH-positive cells (ie, dopamine neurons; white) or TH-negative cells upon administration of CNO. Yellow arrowheads represent TH-positive and c-Fos positive cells. I shows that in CNO injected DREADD mice 64.5% of dopamine neurons (cells n = 49 from 2 mice) and 35.5% of non-dopamine cells are c-Fos positive. In contrast, saline-infused DREADD mice, dopamine neurons (n = 10 cells 2) and 88.9% of non-dopamine cells were c-Fos positive. The scale bar is BF, 100 μm; G and H, 10 탆.
6 is a graph showing the effect of the nuclear nuclear nerve cell activation on the seam nuclear serotonin neuron. AB is a visualization of the nucleus (blue) and 5-HT (red) in DREADD mice expressing Cre-dependent hM3Dq, respectively. CD visualizes the nucleus (blue) and 5-HT (red) in the CHAT knockdown animal model, respectively. Mean ± SEM (sh-SCR, n = 5 mice, sh-CHAT, n = 5, ** P <0.01, Student's t-test). The scale bar is 100 μm.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1> 인간 뇌 시료 준비 및 고삐핵( 1> Preparation of Human Brain Sample and Reinuclear ( HabenulaHabenula ) 절개) Incision

인간 뇌 조직은 DBCBB(Douglas Bell Canada Brain Bank; Douglas Mental Health University Institute, Canada)로부터 공급받았으며, 시험구로 우울증을 진단받은 12명의 자살자(나이, 41.5 ± 4.02 세; 성별, 남성; 사후 간격(PMI, postmortem intervals), 37.36 ± 4.23 시간; pH, 6.48 ± 0.09)와 대조구로 정신의학적으로 건강한 11명의 정상인(나이, 44 ± 3.04 세; 성별, 남성; 사후 간격(PMI, postmortem intervals), 25.78 ± 4.52 시간; pH, 6.67 ± 0.04)의 뇌로부터 고삐핵(Habenula) 조직을 수득하였다. 시험구와 대조구에는 나이, 성별, 사후 간격, pH에서 유의미한 차이가 없었다. 구체적으로, 뇌간(brain stem)의 중심을 절개하여 좌반구(left hemisphere)와 우반구(right hemisphere)로 나누고, 소뇌(cerebellum) 및 각 반구의 뇌막(meninges)을 제거하였다. 유두체(mammillary body)와 상구(superior colliculus) 사이의, 반구로부터 유래하는 신경관(nerve trunk)은 메스(scalpel)를 이용하여 분리하였다. 시료의 pH는 소뇌를 이용하여 측정하였다. 평판(slabs)을 만들기 위해, 뇌 반구를 중심면(median face)이 아래로 향하도록 절단용 플레이트(cutting plate)에 놓은 후 화관상(coronally)을 형성하도록 18-20 조각으로 절단하여 평판을 제작하고, 각각 동결하였다(도 1A). 고삐핵은 11 또는 12번째의 평판(slab, 뇌를 두껍게 썬 조각)에 존재하였으며, 둥근 모양의 팁(tip)이 있는 끌(burin)을 이용하여 동결된 평판으로부터 부드럽게 제거하였다.Human brain tissue was obtained from DBCBB (Douglas Bell Canada Brain Bank, Douglas Mental Health University Institute, Canada) and 12 suicides (age, 41.5 ± 4.02 years; Postmortem intervals, 37.36 ± 4.23 hours, pH, 6.48 ± 0.09) and 11 healthy controls (mean age, 44 ± 3.04 years, sex, male, postmortem intervals, 25.78 ± 4.52 hours, ; pH, 6.67 + 0.04). There were no significant differences in age, gender, post spacing, and pH in the test and control groups. Specifically, the center of the brain stem was dissected and divided into the left hemisphere and the right hemisphere, and the cerebellum and meninges of each hemisphere were removed. The nerve trunks from the hemispheres between the mammillary body and superior colliculus were separated using a scalpel. The pH of the sample was measured using cerebellum. To make the slabs, the hemispheres were placed on a cutting plate with the median face facing downward, and then cut into 18-20 pieces to form coronally, And frozen, respectively (Fig. 1A). The halftone nucleus was present in the 11th or 12th slab (thick slices of the brain) and was gently removed from the frozen plate using a round burin with a tip.

<< 실시예Example 2>  2> qRTqRT -- PCR을PCR 통한 고삐핵( Reinforcement through nuclear ( HabenulaHabenula ) 유래 ) Origin 콜린성Choline (( CholinergicCholinergic ) 유전자의 mRNA 발현율 분석) Gene mRNA expression rate analysis

실시예 1로부터 수득한 인간 뇌 시료를 대상으로 고삐핵 유래 콜린성 유전자의 mRNA 발현율을 분석하기 위하여, TaqMan 프로브를 기반으로 한 qRT-PCR(quantitative real-time polymerase chain reaction) 분석을 수행하였다. 총 RNA 시료(500 ng)를 역전사효소(Invitrogen, USA) 및 랜덤 프라이머(random primer)를 이용하여 역전사하였다. RNA 무결성(integrity)은 분석기(Agilent 2100 Bioanalyzer, Agilent Technologies, USA)를 이용하여 분석하였다. 28s 리보솜 DNA의 안정성은 PCR을 통해 규정하였으며, 시험구(자살자) 및 대조구(정상인)에서 변화는 없었다(28S rDNA의 발현 안정성: 대조구, 6.123 ± 0.1487; 시험구, 6.154 ± 0.0728; 만-위트니 유 검증(Mann-Whitney U-test), P = 0.4235).QRT-PCR (quantitative real-time polymerase chain reaction) analysis based on TaqMan probe was performed to analyze the mRNA expression rate of choline nucleus-derived choline genes in the human brain samples obtained from Example 1. Total RNA samples (500 ng) were reverse transcribed using reverse transcriptase (Invitrogen, USA) and random primers. RNA integrity was analyzed using an analyzer (Agilent 2100 Bioanalyzer, Agilent Technologies, USA). The stability of 28s ribosomal DNA was determined by PCR, and there was no change in the test (suicide) and control (normal) (28S rDNA expression stability: control, 6.123 ± 0.1487; test group, 6.154 ± 0.0728; Mann-Whitney U- test, P = 0.4235).

GAPDH(Glyceraldehyde 3-phosphate dehydrogenase), TBP(TATA-binding protein) 및 CYC1(cytochrome c-1)와 같은 하우스키핑 레퍼런스 유전자(housekeeping reference genes)를 확인한 결과, 표 1과 같이 시험구 및 대조구 사이에 차이는 없었다. The housekeeping reference genes such as GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), TBP (TATA-binding protein) and CYC1 (cytochrome c-1) .

GeneGene symbolsymbol SlopeSlope RR 22 EfficiencyEfficiency ( ( %% )) GAPDHGAPDH -3.309475-3.309475 0.99780.9978 100100 TBPTBP -3.3670-3.3670 0.996170.99617 99.399.3 CYC1CYC1 -3.33036-3.33036 0.996170.99617 98.698.6

반응율(reaction efficiency) 값은 방정식 E = 10(-I/slope)로부터 계산하였다. 상기 E는 효율이며, 기울기(slope)는 최적선의 경사이다.The reaction efficiency value was calculated from the equation E = 10 (-I / slope) . E is the efficiency, and the slope is the slope of the optimal line.

qRT-PCR 반응은 cDNA 2 μl, 각 정량 유전자에 특이적인 TaqMan 발현 어세이(TaqMan Expression Assay) 1 μl 및 분석기(LightCycler 1.5 Instrument, Roche, 스위스)을 사용하여 제조업자의 방법에 따른 TaqMan 마스터믹스(TaqMan Mastermix, Applied Biosystems, USA) 를 이용하여 수행하였다. 표준 곡선은 모든 개체로부터 유래한 cDNAs의 풀(pool)로 나타내었다. 발현 수준은 GAPDH를 사용한 절대정량 표준 곡선법(Absolute Quantification standard curve method)을 이용하여 측정하였다. PCR 수행 시 95℃에서 5분, 95℃에서 10초간 50회, 60℃에서 30분 조건으로 수행하였다. 하기 표 2에서 Context sequence(프로브가 결합하는 부위 주변의 뉴클레오티드 서열)로 표기되어 있는 것은 TaqMan 어세이를 위해 프로브로 제작되어 판매되는 염기서열로, Thermo Fisher SCIENTIFIC에서 주문하여 사용하였다. CHT는 프라이머를 제작하고 이에 대한 프로브 제작을 Thermo Fisher SCIENTIFIC에 의뢰하여 제작, 사용하였다. 프라이머 및 프로브는 http://www.appliedbiosystems.com에서 열람할 수 있다. F는 정방향 프라이머(forward primer), R은 역방향 프라이머(reverse primer)이다.qRT-PCR was performed using TaqMan master mix (TaqMan Expression Assay, TaqMan Expression Assay, LightCycler 1.5 Instrument, Roche, Switzerland) according to the manufacturer's method, 2 μl of cDNA, 1 μl of TaqMan Expression Assay specific for each quantitative gene, Mastermix, Applied Biosystems, USA). The standard curve is expressed as a pool of cDNAs from all individuals. Expression levels were measured using the Absolute Quantification standard curve method using GAPDH . PCR was performed for 5 minutes at 95 ° C, 50 times at 95 ° C for 10 seconds, and 30 minutes at 60 ° C. In Table 2, the context sequence (the nucleotide sequence around the site to which the probe binds) is a probe sequence prepared and sold for the TaqMan assay, which was ordered from Thermo Fisher SCIENTIFIC. CHT prepared the primer and made a probe for it by commissioning it to Thermo Fisher SCIENTIFIC. Primers and probes are available at http://www.appliedbiosystems.com. F is a forward primer, and R is a reverse primer.

GeneGene
symbolsymbol
TaqManTaqMan
assayassay IDID
PrimerPrimer sequencesequence 5' →3' 5 '- &gt; 3' ContextContext sequencesequence
SLC18A3SLC18A3
(( VACHTVACHT ))
Hs00268179_s1Hs00268179_s1 -- GTCATCGTGCCCATAGTGCCCGACT
(서열번호 13)
GTCATCGTGCCCATAGTGCCCGACT
(SEQ ID NO: 13)
SLC5A7SLC5A7
(( CHTCHT ))
CustomCustom F: GAACATCTACCAGCTTTCCTTCAGA
(서열번호 14)
R: TGATTCGCATAACCCAAACGATTTC
(서열번호 15)
F: GAACATCTACCAGCTTTCCTTCAGA
(SEQ ID NO: 14)
R: TGATTCGCATAACCCAAACGATTTC
(SEQ ID NO: 15)
--
CHATCHAT Hs00252848_m1Hs00252848_m1 -- AGTGAGGAGTCTGGGCTGCCCAAAC
(서열번호 16)
AGTGAGGAGTCTGGGCTGCCCAAAC
(SEQ ID NO: 16)
CHRNA3CHRNA3 Hs01088199_m1Hs01088199_m1 -- ACCTGTGGCTCAAGCAAATCTGGAA
(서열번호 17)
ACCTGTGGCTCAAGCAAATCTGGAA
(SEQ ID NO: 17)
CHRNB3CHRNB3 Hs00181269_m1Hs00181269_m1 -- TTGAAAATGCTGACGGCCGCTTCGA
(서열번호 18)
TTGAAAATGCTGACGGCCGCTTCGA
(SEQ ID NO: 18)
CHRNB4CHRNB4 Hs00609520_m1Hs00609520_m1 -- CCTTTGCGGGCGCGGGAACTGCCGC
(서열번호 19)
CCTTTGCGGGCGCGGGAACTGCCGC
(SEQ ID NO: 19)
CAMK2BCAMK2B Hs00365799_m1Hs00365799_m1 -- AGCATTCCAACATCGTGCGTCTCCA
(서열번호 20)
AGCATTCCAACATCGTGCGTCTCCA
(SEQ ID NO: 20)
GAPDHGAPDH Hs99999905_m1Hs99999905_m1 -- GGGCGCCTGGTCACCAGGGCTGCTT
(서열번호 21)
GGGCGCCTGGTCACCAGGGCTGCTT
(SEQ ID NO: 21)
TBPTBP Hs99999910_m1Hs99999910_m1 -- GCAGCTGCAAAATATTGTATCCACA
(서열번호 22)
GCAGCTGCAAAATATTGTATCCACA
(SEQ ID NO: 22)
CYC1CYC1 Hs00357717_m1Hs00357717_m1 -- TCTTAGAGTTTGACGATGGCACCCC
(서열번호 23)
TCTTAGAGTTTGACGATGGCACCCC
(SEQ ID NO: 23)

그 결과, 콜린성 유전자인 CHT(choline transporter)(fold change, 대조구 vs. 시험구: 1.000 ± 0.237 vs. 0.460 ± 0.117, P = 0.025) 및 CHRNB3(fold change, 대조구 vs. 시험구: 1.000 ± 0.308 vs. 0.394 ± 0.126, P = 0.046)의 mRNA 발현율은 대조구에 비해 시험구에서 현저히 감소하였으며, CHAT(choline acetyltransferase)(fold change, 대조구 vs. 시험구: 1.000 ± 0.509 vs. 0.436 ± 0.188, P = 0.559), VACHT(vesicular acetylcholine transporter)(fold change, 대조구 vs. 시험구: 1.000 ± 0.227 vs. 0.833 ± 0.216, P = 0.186), CHRNA3(fold change, 대조구 vs. 시험구: 1.000 ± 0.475 vs. 0.488 ±0.154, P = 0.442) 및 CHRNB4(fold change, 대조구 vs. 시험구: 1.000 ± 0.450 vs. 0.489 ± 0.257, P = 0.207)에서는 시험구에서 발현율이 감소하는 경향이 나타났으나, 유의미한 변화는 없었다(도 1C). 또한, 음성대조구로 사용된 흥분성 신경 마커인 CAMK2B(βCaMKII)는 변화가 나타나지 않았다(fold change, 대조구 vs. 시험구: 1.000 ± 0.099 vs. 1.268 ±0.160, P = 0.282).As a result, choline transporter CHT (fold change, control vs. test group: 1.000 ± 0.237 vs. 0.460 ± 0.117, P = 0.025) and CHRNB3 (fold change, control vs. test group: 1.000 ± 0.308 vs (0.394 ± 0.126, P = 0.046) was significantly decreased in the test group compared to the control group, and CHAT (choline acetyltransferase) (fold change, control vs. test group: 1.000 ± 0.509 vs. 0.436 ± 0.188, P = 0.559 ), VACHT (fold change, control vs. experimental group: 1.000 ± 0.227 vs. 0.833 ± 0.216, P = 0.186), CHRNA3 (fold change, control vs. test group: 1.000 ± 0.475 vs. 0.488 ± 0.154, P = 0.442) and CHRNB4 (fold change, control vs. test group: 1.000 ± 0.450 vs. 0.489 ± 0.257, P = 0.207) showed a tendency to decrease in the test group but no significant change 1C). In addition, CAMK2B (βCaMKII), the excitatory neural marker used as a negative control, did not change (fold change, control: test group: 1.000 ± 0.099 vs. 1.268 ± 0.160, P = 0.282).

<< 실시예Example 3> 스트레스 노출에 따른 실험동물의 생체 및 행동 변화 분석 3> Biological and behavioral changes of experimental animals according to stress exposure

<3-1> 만성 구속 스트레스(<3-1> Chronic Constraint Stress chronicchronic restraintrestraint stressstress , CRS) 유도, CRS induction

동물을 이용한 모든 실험 절차는 고려대학교 동물 관리 및 사용 위원회의 승인과 고려대학교의 지침에 따라 수행되었다. 실험동물은 스틸만-폴리(Sprague-Dawley, SD) 수컷 랫트(rats)(Japan SLC, Inc., 일본)을 사용하였으며, 만성 구속 스트레스(chronic restraint stress, CRS)를 유도하기 위한 프로토콜(protocol) 과정은 이전 연구(Andrus BM., et al., Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models., Mol Psychiatry., 2012;17(1):49-61.)의 방법에 따라 수행하였다. 실험동물을 실험 전 일주일간 길들인 후, 임의로 시험구(만성 구속 스트레스(chronic restraint stress, CRS))와 대조구(비스트레스(non-stressed, NS))로 나누었다. 시험구는 도 2A와 같이 2 주 동안 매일 하루에 2 시간씩 구속 스트레스에 노출시키고, 대조구는 홈 케이지(home cage)에 방치하고 하루에 5 분 손을 대었다. 구속하는 동안, 랫트는 통기성의 플라스틱 원뿔(DC 200, DecapiCones, Braintree Scientific, USA)에 방치하였으며, 스트레스 기간의 마지막 날에 마지막으로 스트레스에 노출시킨 후 즉시 희생하였다. All animal procedures were carried out according to the approval of Korea University Animal Care and Use Committee and the guidelines of Korea University. The experimental animals used were Sprague-Dawley (SD) male rats (Japan SLC, Inc., Japan) and protocols for inducing chronic restraint stress (CRS) The procedure is based on the method of Andrus BM., Et al., Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models, Mol Psychiatry., 2012; 17 (1): 49-61. Respectively. The animals were randomly divided into two groups: chronic restraint stress (CRS) and control (non-stressed, NS). As shown in FIG. 2A, the test piece was exposed to restraint stress for 2 hours each day for 2 weeks, and the control was left in the home cage and left for 5 minutes a day. During restraint, the rats were left in a breathable plastic cone (DC 200, DecapiCones, Braintree Scientific, USA) and sacrificed immediately after the last stress exposure on the last day of the stress period.

<3-2> 체중 측정<3-2> Weight measurement

실험동물의 체중을 실험기간 동안 측정한 결과, 2 주간 만성 구속 스트레스에 노출된 시험구(CRS)의 체중 증가는 50.400 ± 10.289 g으로, 대조구(NS)의 체중인 97.667 ± 3.989 g에 비해 급격한 감소가 나타남을 확인하였다(P = 0.001)(도 2B).The body weight gain of the experimental animals (CRS) exposed to chronic restraint stress for 2 weeks was 50.400 ± 10.289 g, which was significantly lower than that of the control (NS) body weight of 97.667 ± 3.989 g ( P = 0.001) (Fig. 2B).

<3-3> 혈장 <3-3> Plasma 코르티코스테론Corticosterone (( corticosteronecorticosterone ) 수준 측정) Level measurement

실시예 3-1에서 희생한 실험동물의 목을 절단한 직후 대혈관의 혈액을 수집하고 10,000 × g, 4℃에서 10 분간 원심분리하였다. 혈장을 분리한 후 순환성 코르티코스테론(circulating corticosterone)의 수준을 키트(Coat-a-Count Rat Corticosterone kit, TKRC1, Siemens Healthcare Diagnostics, USA)를 이용한 방사선면역검정(radioimmunoassay)을 통해 측정하였다.Immediately after cutting the neck of the experimental animal sacrificed in Example 3-1, the blood of the large blood vessel was collected and centrifuged at 10,000 xg and 4 ° C for 10 minutes. After separation of plasma, circulating corticosterone (circulating corticosterone) Levels were measured by radioimmunoassay using a kit (Coat-a-Count Rat Corticosterone kit, TKRC1, Siemens Healthcare Diagnostics, USA).

그 결과, 대조구(NS)는 125.771 ± 46.434 mg/mL, 시험구(CRS)는 591.466 ± 99.732 mg/mL으로 시험구에서 현저히 높음을 확인하였다(P = 0.002)(도 2C).As a result, it was confirmed that the control (NS) was 125.771 ± 46.434 mg / mL and the CRS was 591.466 ± 99.732 mg / mL, which was significantly higher in the test group ( P = 0.002) (FIG.

<3-4> 부신(<3-4> Adrenal adrenaladrenal glandgland ) 무게 측정) Weighing

실시예 3-1에서 희생한 실험동물의 부신을 분리한 후 무게를 측정한 결과, 대조구(NS)는 127.661 ± 8.783 μg/g(체중), 시험구(CRS)는 180.106 ± 12.075 μg/g(체중)으로 현저한 차이가 있음을 확인하였다(P = 0.006)(도 2D).The weight of the adrenal gland of the experimental animal sacrificed in Example 3-1 was measured and found to be 127.661 ± 8.783 μg / g (body weight) in the control (NS) and 180.106 ± 12.075 μg / g (CRS) Body weight) ( P = 0.006) (Fig. 2D).

<3-5> 자당 선호 실험(<3-5> Sucrose Preference Test sucrosesucrose preferencepreference testtest , , SPTSPT ))

동물 행동 실험은 자당 선호 실험(sucrose preference test, SPT) 및 강제 수영 실험(forced swim test, FST)을 포함하여 수행하였다. Animal behavior experiments were performed including sucrose preference test (SPT) and forced swim test (FST).

자당 선호 실험의 경우, 모든 쥐를 개별 케이지에 단독으로 수용한 후 실험 시작 전 2일 동안 1% 자당 수용액과 수돗물의 두 음료용기로 길들였다. 특정 음료에 대한 선호를 줄이기 위해 두 음료용기의 위치는 매일 전환하였다. 실험 당일, 12 시간 동안 물을 주지 않은 다음 두 개의 동일한 음료용기에 1 시간 동안 노출시킨 후, 실험 전 측정한 용기의 무게와 실험 후 측정한 용기의 무게를 비교하여 자당 수용액 및 물 섭취량을 기록하였다. 자당 선호는 상대 비율(자당 수용액 섭취량/총 용액 섭취량, %)로 계산하였다.In the sucrose preference test, all rats were individually housed in individual cages and tilled into two beverage containers of 1% sucrose solution and tap water for 2 days prior to the start of the experiment. To reduce the preference for certain beverages, the positions of the two beverage containers were switched daily. On the day of the experiment, the animals were exposed to the same two beverage containers without water for 12 hours, and after 1 hour exposure, the weight of the container before the experiment and the weight of the container after the experiment were compared to record the sucrose aqueous solution and water intake . Sucrose preference was calculated by relative ratio (sucrose aqueous solution intake / total solution intake,%).

그 결과, 대조구(NS)는 85.083 ± 2.379 , 시험구(CRS)는 61.875 ± 5.991 %로 시험구에서 자당 수용액 섭취량이 현저히 낮아, 우울증의 CRS 모델에서 무쾌감증적(anhedonia-like) 표현형을 나타냄을 확인하였다(P = 0.002)(도 2E).As a result, the intake of sucrose aqueous solution was significantly lower in the control group (NS) and the test group (CRS) was 85.083 ± 2.999 and 61.875 ± 5.991%, respectively, indicating anhedonia-like phenotype in the CRS model of depression ( P = 0.002) (Fig. 2E).

<3-6> 강제 수영 실험(<3-6> Forced swimming experiment forcedforced swimswim testtest , FST), FST)

강제 수영 실험의 경우, 랫트를 실험 24 시간 전 24 - 25℃ 물로 채워진 실린더(cylinder)에 15 분 동안 노출시켰다. 실험은 24 시간 후 수행하고 동물의 행동은 적외선 카메라를 이용하여 5분간 녹화하였다. 실린더의 지름은 45 cm, 높이는 60 cm였으며, 물의 깊이는 실험동물의 사지가 바닥에 닿지 않은 상태에서 활동적(수영 및 기어오르기) 또는 정적(부동) 행동을 측정할 수 있도록 설정하였다.For forced swimming experiments, rats were exposed to cylinders filled with water at 24 - 25 ° C for 15 minutes 24 hours prior to the experiment. Experiments were carried out 24 hours later, and animal behavior was recorded using an infrared camera for 5 minutes. The diameter of the cylinder was 45 cm and the height was 60 cm. The depth of the water was set so as to measure active (swimming and climbing) or static (floating) behavior without the animal's limbs touching the floor.

그 결과, 부동 상태의 시간이 대조구(NS)는 120.00 ± 12.429 초, 시험구(CRS)는 170.00 ± 14.500 초로 시험구에서 길어, 시험구가 절망(despair)과 같은 행동을 나타냄을 확인하였다(P = 0.002)(도 2F).As a result, it was confirmed that the immersion time was longer in the test group than in the control group (NS) of 120.00 ± 12.429 sec and the CRS was 170.00 ± 14.500 sec, indicating that the test group behaved like despair ( P = 0.002) (Fig. 2F).

<< 실시예Example 4> 실험동물의 고삐핵( 4> Receptor nuclei of experimental animals ( HabenulaHabenula ) 유래 ) Origin 콜린성Choline (( CholinergicCholinergic ) 유전자의 ) Of the gene mRNAmRNA 발현율 및 분석 Expression rate and analysis

실시예 3-1에 따른 랫트를 RNA 안정화 용액(RNAlater RNA Stabilization Solution, AM7020, Ambion, USA) 내에서 목을 절단한 직후 뇌로부터 고삐핵을 분리하였다. 트리졸 시약(TRIzol reagent, Invitrogen, USA)을 사용하여 총 RNA를 추출하였다. 총 RNA 시료(1 μl)를 역전사효소(Promega, USA) 및 올리고 (dT) 프라이머(oligo (dT) primer)를 이용하여 역전사하였다. 이후 특이적 프라이머 세트 및 분석기(LightCycler 1.5 Instrument, Roche, 스위스)을 사용한 qPCR 마스터믹스(Thermo Scienctific Maxima SYBR Green qPCR Master Mix (2×), #K0251, Fermentas, USA) 하에서 역전사된 산물 0.25 μg을 이용하여 qRT-PCR을 수행하였다. 사용된 특이적 프라이머 세트는 표 3과 같았다.Rats according to Example 3-1 were isolated from the brain immediately after amputation in the RNA stabilization solution (RNA later Stabilization Solution, AM7020, Ambion, USA). Total RNA was extracted using TRIZOL reagent (Invitrogen, USA). Total RNA samples (1 μl) were reverse transcribed using reverse transcriptase (Promega, USA) and oligo (dT) primer (oligo (dT) primer). Then 0.25 ug of the reverse transcribed product was used in a qPCR master mix (Thermo Sciencific Maxima SYBR Green qPCR Master Mix (2x), # K0251, Fermentas, USA) using a specific primer set and analyzer (LightCycler 1.5 Instrument, Roche, Switzerland) To perform qRT-PCR. The specific primer sets used were as shown in Table 3.

Gene symbolGene symbol
Primer sequence 5' →3'Primer sequence 5 '→ 3' Size (bps) Size (bps)
Forward primerForward primer Reverse primerReverse primer SLC18A3 (VACHT)SLC18A3 (VACHT) AAACATCGTCCACTGGTCC
(서열번호 24)
AAACATCGTCCACTGGTCC
(SEQ ID NO: 24)
CTTTCCCTAAGATGCCTCCAC
(서열번호 25)
CTTTCCCTAAGATGCCTCCAC
(SEQ ID NO: 25)
213213
SLC5A7 (CHT)SLC5A7 (CHT) TTTCCAGATCCCAAGACCAAG
(서열번호 26)
TTTCCAGATCCCAAGACCAAG
(SEQ ID NO: 26)
ATGCTCCAAACACAAACACAG
(서열번호 27)
ATGCTCCAAACACAAACACAG
(SEQ ID NO: 27)
253253
CHATCHAT TCCAAGACACCAATGACCAG
(서열번호 28)
TCCAAGACACCAATGACCAG
(SEQ ID NO: 28)
GGACGCCATTTTGACTATCTTTC
(서열번호 29)
GGACGCCATTTTGACTATCTTTC
(SEQ ID NO: 29)
350350
CHRNA3CHRNA3 TTCTACCTGCCCTCCGACTGT
(서열번호 30)
TTCTACCTGCCCTCCGACTGT
(SEQ ID NO: 30)
AATCCCGCCGTTCCTAAAATG
(서열번호 31)
AATCCCGCCGTTCCTAAAATG
(SEQ ID NO: 31)
594594
CHRNB3CHRNB3 GAAAGGAGAGTGATACAGCCG
(서열번호 32)
GAAAGGAGAGTGATACAGCCG
(SEQ ID NO: 32)
AGAAAGAGCCACAGGAAGATG
(서열번호 33)
AGAAAGAGCCACAGGAAGATG
(SEQ ID NO: 33)
223223
CHRNB4CHRNB4 CTATCACTGTCCCAGCTCATC
(서열번호 34)
CTATCACTGTCCCAGCTCATC
(SEQ ID NO: 34)
AGAACCATGTCAATCTCCGTG
(서열번호 35)
AGAACCATGTCAATCTCCGTG
(SEQ ID NO: 35)
377377
CAMK2BCAMK2B CAGAAGCTGAGGGCCTCCCA
(서열번호 36)
CAGAAGCTGAGGGCCTCCCA
(SEQ ID NO: 36)
GGTCACAGATTTTCGCATAGG
(서열번호 37)
GGTCACAGATTTTCGCATAGG
(SEQ ID NO: 37)
167167
GAPDHGAPDH CCTTCATTGACCTCAACTACAT
(서열번호 38)
CCTTCATTGACCTCAACTACAT
(SEQ ID NO: 38)
CAAAGTTGTCATGGATGACC
(서열번호 39)
CAAAGTTGTCATGGATGACC
(SEQ ID NO: 39)
497497

qPCR의 최종 산물은 2%의 아가로스 겔(agarose gel)에서 전기영동하고 핵산염색(View Nucleic Acid Stain, G108, Applied Biological Materials, 캐나다)하여 가시화하였다. 각 유전자에서 백그라운드(background)를 초과하는 형광 신호에 대한 임계점의 사이클 횟수(cycle numbers, Ct)는 qRT-PCR을 통해 측정하였으며, 이어서 각 유전자의 발현값은 각 시료 내의 내인성 대조군인 GAPDH의 발현값으로 표준화하였다. 시험구 및 대조구 간의 배수 차이를 계산하기 위한 상대적 정량은 비교 Ct 방법(comparative Ct method, DDCt)을 이용하여 수행하였다.The final product of qPCR was visualized by electrophoresis on 2% agarose gel and nucleic acid staining (View Nucleic Acid Stain, G108, Applied Biological Materials, Canada). The cycle number (C t ) of the critical point for the fluorescent signal exceeding the background in each gene was measured by qRT-PCR, and then the expression value of each gene was expressed in the expression of GAPDH, an endogenous control in each sample . Relative amount to calculate the difference between the drain and the control plots was done using the comparative C t method (comparative C t method, DDC t ).

그 결과, 시험구(CRS)의 고삐핵에서 CHAT, VACHT, CHT, CHRNA3, CHRNB3 CHRNB4 유전자의 mRNA 발현율이 대조구(NS)에 비해 모두 감소한 것을 확인하였다(fold change, 대조구 vs. 시험구: CHAT, 1.000 ± 0.087 vs. 0.579 ± 0.024, P = 0.0004; VACHT, 1.000 ± 0.085 vs. 0.686 ± 0.027, P = 0.0033; CHT, 1.000 ± 0.069 vs. 0.624 ± 0.025, P = 0.0002; CHRNA3, 1.000 ± 0.070 vs. 0.649 ± 0.031, P = 0.0004; CHRNB3, 1.000 ± 0.025 vs. 0.638 ± 0.049, P = 0.0001; CHRNB4, 1.000 ± 0.085 vs. 0.611 ± 0.033, P = 0.0008)(도 2G). 음성대조구인 CAMK2B에서는 변화가 없었다(fold change, 대조구 vs. 시험구: 1.000 ± 0.048 vs. 1.136 ± 0.075, P = 0.1484).As a result, it was confirmed that CHAT , VACHT , CHT , CHRNA3 , CHRNB3 And confirming that the mRNA expression of the gene CHRNB4 reduced both compared with the control group (NS) (fold change, the control vs. test group: CHAT, 1.000 ± 0.087 vs. 0.579 ± 0.024, P = 0.0004; VACHT, 1.000 ± 0.085 vs. 0.686 ± 0.027, P = 0.0033; CHT, 1.000 ± 0.069 vs. 0.624 ± 0.025, P = 0.0002; CHRNA3, 1.000 ± 0.070 vs. 0.649 ± 0.031, P = 0.0004; CHRNB3, 1.000 ± 0.025 vs. 0.638 ± 0.049, P = 0.0001; CHRNB4 , 1.000 占.085 vs. 0.611 占.33 , P = 0.0008) (Fig. 2G). Fold change in the negative control CAMK2B (control vs. test group: 1.000 ± 0.048 vs. 1.136 ± 0.075, P = 0.1484).

이는 우울증 자살자에서 나타난 유전자 발현율과 일치하였다.This was consistent with the gene expression rate in depressed suicide.

<< 실시예Example 5> 실험동물의 내측 고삐핵 5> Inner reinforcement nucleus (( MedialMedial HabenulaHabenula , , MHbMHb ) 유래 ) Origin 콜린성Choline (Cholinergic) 유전자의 (Cholinergic) gene mRNAmRNA 발현율 및 분석 Expression rate and analysis

실시예 3-1에 따른 랫트의 MHb 유래 콜린성 유전자의 mRNA 발현율을 분석하기 위하여, 이전 연구(Stempel AJ.. et al., Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina, Mol Vis., 2014;20:1366-73.)의 방법에 따라 인 시투 혼성화 조직화학법(In situ hybridization histochemistry)을 수행하였다. 구체적으로, 실시예 4에 따라 분리된 랫트의 뇌를 실시예 1과 동일한 방법으로 고삐핵 조직이 보이도록 14 μm 두께로 관상단면을 절단하였다. 뇌 섹션을 해동한 후 현미경 슬라이드(superfrost Plus Microscope Slides, Fisher Scientific, USA) 위에 위치시키고 4% 포름알데히드(formaldehyde)에 10 분간 고정시켰다. 이후 에탄올(ethanol)의 농도를 점차 증가시키면서 5 분간 탈수시키고 자연건조하였다. 건조된 조직은 상온에서 10 분간 단백질분해효소(protease)로 전처리하였다. RNA 검출을 위해, 40 ℃의 혼성화 오븐(HybEZ hybridization oven, Advanced Cell Diagnostocs, USA)에서 증폭 용액(amplifier solutions)인 Amplifier 1-FL, Amplifier 2-FL, Amplifier 3-FL, Amplifier 4 Alt B-FL의 혼합물을 처리하여 인큐베이션하였다. 표지된 프로브는 형광성 표지(Altto 550)와 결합되었다. 뇌 섹션은 표지된 프로브 혼합물을 이용하여 40 ℃에서 슬라이드당 2 시간 동안 혼성화되었다. 비특이적인 혼성화 프로브는 세척을 통해 제거되었으며, 상온에서 1×세척 버퍼(wash buffer)로 각 2 분씩 3 번, 40 ℃에서 증폭 용액 1-FL으로 30 분, 증폭 용액 2-FL으로 15 분, 증폭 용액 3-FL으로 30분, 증폭 용액 4 Alt B-FL 로 15분 수행하였다. 각 증폭 용액은 상온에서 1×세척 버퍼로 2 분간 세척하여 제거하였다. 슬라이드를 관찰하고 분석하였으며 현미경(LSM 700 microscope, Zeiss, 독일)으로 촬영하였다. 이미지 분석은 이미지 J 프로그램(image J program)을 이용하였다. 프로브를 생산하기 위해 사용한 염기서열은 다음과 같았다: CHAT(choline acetyltransferase), 259-1141 of NM_001170593.1(NCBI Gene accession number); VACHT(vesicular acetylcholine transporter), 1693-2837 of NM_031663.2; CHT(choline transporter), 123-998 of NM_053521.1; CHRNA3, 984-2228 of NM_052805.2; CHRNB3, 255-1336 of NM_133597.1; CHRNB4, 1139-2433 of NM_052806.2; CAMK2B, 1439-3560 of NM_001042354.1(Advanced Cell Diagnostics, USA).In order to analyze the mRNA expression rate of the MHb-derived cholinergic gene of the rat according to Example 3-1, a previous study (Stempel AJ, et al., Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina, Mol Vis , 2014; 20: 1366-73). In situ hybridization histochemical method ( In situ hybridization histochemistry). Specifically, the brain of the rats isolated according to Example 4 was cut into a tubular section with a thickness of 14 [mu] m so that the nucleus of the rein was visible in the same manner as in Example 1. [ The brain sections were thawed and placed on a microscope slide (Superfrost Plus Microscope Slides, Fisher Scientific, USA) and fixed in 4% formaldehyde for 10 minutes. Afterwards, the concentration of ethanol was gradually increased and dehydrated for 5 minutes and dried naturally. The dried tissue was pretreated with protease at room temperature for 10 minutes. Amplifier 1-FL, Amplifier 2-FL, Amplifier 3-FL, and Amplifier 4 Sub B-FL in a hybridization oven (Advanced Cell Diagnostocs, USA) Was treated and incubated. The labeled probe was conjugated with a fluorescent label (Altto 550). The brain sections were hybridized for 2 hours per slide at 40 ° C using labeled probe mixtures. Nonspecific hybridization probes were removed by washing and washed three times with 1 × wash buffer at room temperature for 30 minutes at 40 ° C., 30 minutes with amplification solution 1-FL, 15 minutes with amplification solution 2-FL, Solution 3-FL for 30 min and Amplification Solution 4 for Alt B-FL for 15 min. Each amplification solution was washed with 1 × wash buffer for 2 minutes at room temperature. Slides were observed and analyzed and photographed with a microscope (LSM 700 microscope, Zeiss, Germany). Image analysis was performed using image J program. The nucleotide sequence used to produce the probe was: CHAT (choline acetyltransferase), 259-1141 of NM_001170593.1 (NCBI Gene accession number); VACHT (vesicular acetylcholine transporter), 1693-2837 of NM_031663.2; CHT (choline transporter), 123-998 of NM_053521.1; CHRNA3 , 984-2228 of NM_052805.2; CHRNB3 , 255-1336 of NM_133597.1; CHRNB4 , 1139-2433 of NM_052806.2; CAMK2B , 1439-3560 of NM_001042354.1 (Advanced Cell Diagnostics, USA).

그 결과, 시험구(CRS)의 복측 MHb에서 콜린성 유전자의 mRNA의 발현이 감소하는 것을 확인하였으며, 음성대조구인 CAMK2B에서는 변화가 없었다(도 2H).As a result, mRNA expression of the cholinergic gene was decreased in the dorsal MHb of the test group (CRS), and there was no change in negative control CAMK2B (Fig. 2H).

<< 실시예Example 6> 내측 고삐핵 6> medial rein nucleus (( Medial Medial HabenulaHabenula , , MHbMHb ) 내 ) My CHAT CHAT 유전자 녹다운(knock-down)을 위한For gene knock-down RNAiRNAi (RNA interference) 제작 및 (RNA interference) production and CHAT CHAT 유전자 gene 녹다melt 운(knock-down) 유도Induce knock-down

MHb에서 콜린성 뉴런(cholinergic neuron)의 활성을 억제시키기 위하여, CHAT의 발현을 녹다운하는 RNAi(RNA interference)를 제작하였다. 구체적으로, 바이러스 벡터인 AAV2/9(adeno-associated virus 2/9)를 제작하고 EGFP를 발현하는 PGK 프로모터 및 shRNA를 발현하는 U6 프로모터를 포함하는 pAAV-U6-GFP 벡터(Cell Biolabs, Inc., USA)를 이용하여 AAV-CHAT-RNAi를 제작하였다(도 3A 위). 제작된 AAV-CHAT-RNAi는 CHAT 유전자에 대한 RNAi를 전달하므로, AAV-CHAT shRNA 또는 AAV-sh-CHAT로 명명하고 그래프 내에서는 sh-CHAT로 표기하였다(도 3). CHAT shRNA의 염기서열은 5'-GAGCGAGCCTTGTTGACAT-3'(서열번호 40)이었으며, CHAT의 발현 억제 기능이 없는 대조구인 스크램블된 RNAi(shRNA)의 염기서열은 5'-TCGTCATAGCGTGCATAGG-3'(서열번호 41)이었다. AAV(Adeno-Associated Virus) 바이러스 패키징(packaging)은 펜실베이니아 대학교(University of Pennsylvania)의 펜 벡터 코어(Penn Vector Core)로부터 지원받았다. In order to inhibit the activity of cholinergic neurons in MHb, the expression of CHAT RNA interference (RNA interference) was generated. Specifically, virus vector AAV2 / 9 (adeno-associated virus 2/9) was prepared AAV-CHAT-RNAi was constructed using pAAV-U6-GFP vector (Cell Biolabs, Inc., USA) containing a PGK promoter expressing EGFP and a U6 promoter expressing shRNA (FIG. The fabricated AAV- CHAT -RNAi will pass the RNAi for gene CHAT, named AAV- CHAT shRNA or AAV-sh-CHAT, and in the graph was expressed as sh-CHAT (Fig. 3). The nucleotide sequence of the CHAT shRNA was 5'-GAGCGAGCCTTGTTGACAT-3 '(SEQ ID NO: 40) and the nucleotide sequence of the scrambled RNAi (shRNA) as a control without the suppression function of CHAT was 5'-TCGTCATAGCGTGCATAGG-3' ). Adeno-Associated Virus (AAV) virus packaging was supported by the Penn Vector Core of the University of Pennsylvania.

바이러스 주입(viral injection)을 위해 8주령의 SD 랫트에 복강내주사(Intraperitoneal injection, i.p. injection)로 펜토바르비탈(pentobarbital)을 체중당 50 mg/kg 투여하여 마취시킨 후 뇌고정장치(stereotaxic apparatus)에 위치시켰다. 이후 저속(50 nl/min)의 마이크로인젝션 캐뉼라(microinjection cannula, 30 gauge, Plastics One, USA)를 이용하여 MHb 양측(브레그마(bregma)에 위치: -3.0 mm 전부/후부(anterior/posterior), ±2.75 mm 내부/측부(medial/lateral), -5.28 mm 배부/복부(dorsal/ventral), 관상면(coronal plane) 내 중간선 방향으로 26°각도)에 농축된 AAV 1 μl를 주사하였다. 마이크로인젝션 캐뉼라는 바이러스 주입 후 20분 뒤 천천히 회수하였다. For viral injection, an 8-week-old SD rats were anesthetized with an intraperitoneal injection (ip injection) of pentobarbital at a dose of 50 mg / kg body weight, followed by a stereotaxic apparatus . Afterwards, a microinjection cannula (30 gauge, Plastics One, USA) at a low speed (50 nl / min) was placed on both sides of the MHb (located in the bregma: -3.0 mm anterior / posterior, And 1 μl of concentrated AAV was injected in the medial / lateral (medial / lateral), -5.28 mm (dorsal / ventral), and 26 ° angle in the midline direction in the coronal plane. The microinjection cannula was slowly withdrawn 20 minutes after virus injection.

<< 실시예Example 7> 내측 고삐핵 7> medial rein nucleus (( MedialMedial HabenulaHabenula , , MHbMHb ) 내 ) My CHATCHAT 사일렌싱Silencing (silencing)(silencing) 여부 검정 Whether black

실시예 6에 따른 AAV-매개 CHAT 사일렌싱을 확인하기 위하여, PBS(phosphate buffer saline)에 0.3% 트리톤(Triton) X-100을 첨가한 용액으로 투과성을 부여한 화관상의 랫트 뇌 섹션(30 μm)을 ChAT(1:100, abcam, 영국), EGFP(1:500, abcam, 영국) 및 VAChT(1:500, synaptic system, 독일)에 대한 1차 항체(primary antibody)로 인큐베이션한 후, Cy3 및 Alexa 488이 결합된 이차 항체(secondary antibody)(Jackson Immunoresearch, USA)로 인큐베이션하였다. 핵은 호크스트(Hoechst)(1:1000, Invitrogen, USA) 염색을 이용하여 가시화하였다. 형광 이미지는 공초점 현미경(confocal microscope, LSM710, Zeiss, 독일)을 사용하여 수득하였다.AAV-mediated CHAT according to Example 6 To confirm silencing, a rat brain section (30 μm) in a coronary tube with permeability imparted with a solution containing 0.3% Triton X-100 in PBS (phosphate buffer saline) was diluted with ChAT (1: 100, abcam, UK ), Primary antibody for EGFP (1: 500, abcam, UK) and VAChT (1: 500, synaptic system, Germany) and incubated with Cy3 and Alexa 488 conjugated secondary antibody ) (Jackson Immunoresearch, USA). Nuclei were visualized using Hoechst (1: 1000, Invitrogen, USA) staining. Fluorescence images were obtained using a confocal microscope (LSM710, Zeiss, Germany).

웨스턴 블로팅(western blotting)을 수행하기 위하여, 실시예 6에 따른 외과 처리(주사) 뒤 3 주(21 일) 후 고삐핵 유래 조직 용해물을 수득하여, 15 μg의 고삐핵 유래 단백질을 수득하였다. 고삐핵 유래 단백질은 SDS-폴리아크릴아미드겔전기영동(SDS-polyacrylamide gel electrophoresis)을 이용하여 분리한 후 니트로셀룰로오스 멤브레인(GE Healthcare, 영국)에 트랜스퍼(transfer)하였다. 멤브레인은 5% (w/v) 스킴 밀크, 0.25% (v/v) tween-20을 포함하는 PBS에서 1 시간 동안 블로킹(blocking)한 후 염소 항-ChAT(goat anti-ChAT, 1:1000, abcam, 영국), 마우스 항-β-액틴(mouse anti-β-actin, 1:5000, Sigma-Aldrich, USA) 및 토끼 항-VAChT(rabbit anti-VAChT, 1:1000, synaptic system, 독일) 항체를 투입하고 4℃에서 하룻밤 배양한 뒤, 겨자무과산화효소(horseradish peroxidase)가 결합된 2차 항체(Life Technologies, USA)로 반응시켰다. 단백질은 키트(ECL chemiluminescence detection kit)(GE Healthcare, 영국)를 이용하여 탐지하였다. β-액틴에 대한 면역블롯을 통해 동량의 단백질이 분석되었음을 확인하였다.To perform western blotting, after 3 weeks (21 days) following the surgical treatment (injection) according to Example 6, a nuclear nuclear tissue lysate was obtained to obtain 15 μg of the nuclear protein derived from the nucleus . The nucleus-derived protein was isolated using SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose membrane (GE Healthcare, UK). The membranes were blocked with PBS containing 5% (w / v) skim milk, 0.25% (v / v) tween-20 for 1 hour, followed by goat anti-ChAT (goat anti-ChAT, (mouse anti-β-actin, 1: 5000, Sigma-Aldrich, USA) and rabbit anti-VAChT (1: 1000, synaptic system, Germany) And incubated at 4 ° C overnight. Then, the cells were reacted with a secondary antibody (Life Technologies, USA) conjugated with horseradish peroxidase. Proteins were detected using a kit (ECL chemiluminescence detection kit) (GE Healthcare, UK). The same amount of protein was analyzed by immunoblotting against [beta] -actin.

그 결과, 실시예 6에서 제조한 CHAT 전사물을 특이적으로 타겟하는 siRNA(sh-CHAT)는 대조구인 스크램블된(scrambled) siRNA 타겟 염기서열을 포함하는 siRNA(sh-SCR)에 비하여 CHAT 단백질 발현을 효과적으로 저해하였다(sh-SCR vs. sh-CHAT: 1.000 ± 0.208 vs. 0.414 ± 0.142, P = 0.043)(도 3B, D 및 E). VACHT 유전자는 CHAT 유전자의 첫번째 인트론(intron)에 위치하고 있으나, VACHT 발현은 sh-CHAT으로부터 영향을 받지 않았다(sh-SCR vs. sh-CHAT: 1.000 ± 0.106 vs. 1.175 ± 0.027, P = 0.386)(도 3C-E). 이로부터 sh-CHAT은 CHAT 단백질 발현만을 특이적으로 저해함을 확인하였다.As a result, the CHAT prepared in Example 6 SiRNAs (sh-CHAT) that specifically target transcripts Control group Compared to a scrambled (scrambled) siRNA (sh-SCR ) comprising a siRNA target sequences were effectively inhibit protein expression CHAT (sh-SCR vs. sh-CHAT : 1.000 ± 0.208 vs. 0.414 ± 0.142, P = 0.043) (Figures 3B, D and E). The VACHT gene is located in the first intron of the CHAT gene, but VACHT expression was not affected by sh-CHAT (sh-SCR vs. sh-CHAT: 1.000 ± 0.106 vs. 1.175 ± 0.027, P = 0.386) 3C-E). From these results, it was confirmed that sh-CHAT specifically inhibited CHAT protein expression.

<< 실시예Example 8> 내측 고삐핵 8> medial rein nucleus (( MedialMedial HabenulaHabenula , , MHbMHb ) 내 ) My CHATCHAT 유전자 녹다운(knock-down)으로 인한 동물 행동 변화 검정Animal behavior change test due to gene knock-down

동물 행동 실험은 실시예 6에 따른 외과 처리(주사) 후 적어도 21일 후에 실시하였으며, 자당 선호 실험(sucrose preference test, SPT) 및 강제 수영 실험(forced swim test, FST)을 포함하여 실시예 3과 동일한 방법으로 수행하였다(도 3A 아래). 모든 행동 실험의 말미에 주사 부위를 조사하였으며, 주사가 정확하게 이루어진 실험동물의 데이터만을 포함하였다.Animal behavior tests were performed at least 21 days after the surgical treatment (injection) according to Example 6 and were performed in Examples 3 and 4, including the sucrose preference test (SPT) and the forced swim test (FST) Was performed in the same manner (Fig. 3A, below). At the end of all behavioral studies, the injection site was examined and only the data of the experimental animals with the correct injection were included.

그 결과, CHAT의 발현이 감소된 랫트(sh-CHAT)와 CHAT의 발현이 감소되지 않은 대조구 랫트(sh-SCR)의 총 용액 섭취량은 차이가 없으나, CHAT의 발현이 감소된 랫트에서 자당 수용액 섭취량이 감소하였다(sh-SCR vs. sh-CHAT: 82.400 ± 3.916 % vs. 64.148 ± 4.726 %, P = 0.007).As a result, the total solution uptake of the expression of CHAT reduced rats (sh-CHAT) and CHAT control rats (sh-SCR) expression was not decreased in the can, but the difference, the sucrose solution intake in the expression is reduced rats CHAT (Sh-SCR vs. sh-CHAT: 82.400 + 3.916% vs 64.148 + 4.726%, P = 0.007).

또한, 강제 수영 실험에서 부동 상태인 시간에는 영향이 나타나지 않았다(sh-SCR vs. sh-CHAT: 174.25 ± 19.636 s vs. 147.963 ± 13.197 s, P = 0.255).In addition, there was no effect on immobility time in forced swimming experiments (sh-SCR vs. sh-CHAT: 174.25 ± 19.636 s vs. 147.963 ± 13.197 s, P = 0.255).

이는 고삐핵 내 콜린성 신호의 불활성화는 무쾌감증적 행동은 유도하나 절망은 유도하지 않음을 시사하였다.This suggests that inactivation of the cholinergic signal in the nucleus of the brass does not induce desensitization but induce despair.

<< 실시예Example 9> 내측 고삐핵 9> medial rein nucleus (( Medial Medial HabenulaHabenula , , MHbMHb ) 내 ) My CHAT CHAT 유전자 녹다운(knock-down) 생쥐 모델의 항우울 치료제 장기간 투입에 의한 약물 Antidepressant treatment of gene knock-down mouse model Drugs by long-term injection 치료불응성Refractory (drug treatment-refractory) 검정(drug treatment-refractory) test

실시예 6에 따라 외과 처리(주사)하여 CHAT 유전자 녹다운(knock-down)된 생쥐 모델에 현행 대표적인 항우울제인 플루옥세틴(Fluoxetine, 상품명 Prozac, 선택적 세로토닌 재흡수 억제제, selective serotonin reuptake inhibitor, SSRI, Sigma-Aldrich)을 PBS에 희석하여 주사가능한 플루옥세틴 용액을 제조하고 이를 2주 이상 하루에 한번 복강내 주사(i.p., intraperitoneal injection; 10 mg/kg)를 통해 주입한 후 대조군(scrambled siRNA, saline 투여)에 대해서 자당 선호 실험(sucrose preference test, SPT) 및 강제 수영 실험(forced swim test, FST)을 실시예 3과 동일한 방법으로 수행하였다(도 4A).Surgical treatment (injection) according to Example 6 resulted in a CHAT gene knock-down mouse model The current representative antidepressant fluoxetine (Prozac, selective serotonin reuptake inhibitor, SSRI, Sigma-Aldrich) was diluted in PBS to prepare an injectable fluoxetine solution, which was administered intraperitoneally once a day for more than 2 weeks sucrose preference test (SPT) and forced swim test (FST) were performed for control (scrambled siRNA, saline administration) after intraperitoneal injection (ip, 10 mg / 3 (Fig. 4A).

그 결과, 플루옥세틴을 투여한 동물 그룹에서 자당 선호가 감소하여 무쾌감증의 완화효과가 전혀 나타나지 않았으며, 앞선 결과와 동일하게 절망감에 대한 표현형도 변하지 않았다(도 4B-D). As a result, in the group of animals administered with fluoxetine, the sucrose preference decreased and the mitigating effect of the no-pleuritic effect was not exhibited at all, and the phenotype for despair did not change as in the previous results (Fig. 4B-D).

따라서, 고삐핵 콜린성 신경세포 특이적으로 CHAT의 발현 억제 동물모델이 보이는 무쾌감증은 플루옥세틴에 의한 치료반응성을 보이지 않으며, 이러한 결과는 뇌의 특정 영역에 위치한 특정 신경세포의 특정 분자물질을 제어함으로써 치료불응성을 나타낼 수 있음을 시사하였다. Thus, inhibition of the expression of CHAT specifically in the nuclear-cholinergic neurons of the reinforcement . Anorexia , which is seen in animal models, does not show therapeutic response by fluoxetine, and this results in controlling specific molecular substances of specific neurons located in specific regions of the brain Suggesting the possibility of treatment failure.

현재 우울증 치료를 위한 난제를 극복하기 위하여 여러 연구진들이 치료불응성 동물모델을 개발하고 있는 추세에 비춰 볼 때 본 발명은 우울증의 핵심 증상인 무쾌감증을 보이는 동물모델의 개발과 더불어 치료불응성 모델을 개발하였으며. 이와 같은 결과는 기존의 임상연구에서 무쾌감증이 플루옥세틴에 의해서 치료가 힘들다는 결과와 일치한다.In view of the current trend of developing a refractory animal model in order to overcome the difficulties of treating depression, the present invention is based on the development of an animal model of anesthetics, a key symptom of depression, . These results are consistent with the results of previous clinical studies that anorexia is difficult to treat with fluoxetine.

<< 실시예Example 10>  10> DREADDDREADD 시스템을 활용한 고삐핵 Reinforced core utilizing system (( HabenulaHabenula ) 내 ) My 콜린성Choline 신경세포의 활성화에 의한 모노아민 신경세포의 활성 변화 검정 Activation of monoamine neurons by activation of neurons

최근 광유전학을 대체할 수 있는 방법으로 고안된, 실험자가 인위적으로 특정한 세포의 활성 정도를 마음대로 조절할 수 있는 기술인 DREADD(Designer receptors exclusively activated by designer drug)를 활용하여, 고삐핵 내 콜린성 신경세포와 모노아민 신경세포와의 관련성을 확인하였다.Recently, it has been suggested that DREADD (Designer receptors exclusively activated by designer drug), a technique that can be used as an alternative to photogenetics, allows an experimenter to artificially control the degree of specific cell activity, And its relationship with neurons was confirmed.

인위적으로 만들어낸 G단백질 결합 수용체의 일종인 hM3Dq를 Cre 단백질 의존적으로 발현할 수 있는 바이러스(AAV-DIO-hSyn-hM3Dq-mCherry, 도 5A) 1 μl를 브레그마(bregma)에서 조정하여 MHb에 양측으로 주입하여 감염시켰다: -3.14 mm 전부/후부, ± 0.83 mm 내부/측부, -3.05 mm 등부/복부, 관상면(coronal plane)에서 중간선(midline)쪽으로 10° 각도. 4 주 후, ChAT-cre 형질 전환 생쥐에서 고삐핵 내 콜린성 신경세포 특이적으로 hM3Dq-mCherry가 발현하고 있음을 ChAT 단백질에 대한 특이적인 항체를 이용하여 면역조직화학법(immunohistochemistry)으로 검증하였다(도 5B). 이 수용체에 특이적으로 반응하는 약물인 CNO(clozapine N-oxide, 5 mg/kg, Enzo Life Sciences, NY, USA)를 복강내주사법으로 주입하고 대조군에는 PBS를 주입하였다.1 μl of a virus (AAV-DIO-hSyn-hM3Dq-mCherry, FIG. 5A) capable of expressing Cre protein-dependent expression of hM3Dq, an artificially generated G protein-coupled receptor, was regulated in bregma, -3.14 mm front / back, ± 0.83 mm inside / side, -3.05 mm 10 ° angle from the back / abdomen and coronal plane towards the midline. After 4 weeks, the expression of hM3Dq-mCherry specific to choline nucleus in the nuclear nucleus of ChAT-cre transgenic mice was verified by immunohistochemistry using a specific antibody against ChAT protein 5B). In this study, we compared the effects of CNO (clozapine N-oxide, 5 mg / kg, Enzo Life Sciences, NY, USA)

면역조직화학법은 구체적으로, 생쥐 뇌 두정(coronal) 절편(30 μm)을 CHAT (1:100, abcam), EGFP (1:500, abcam), VACHT (1:500, synaptic system) 및 5-HT (5-hydroxytryptamine, serotonin, 1:2000, ImmunoStar)에 대한 1차 항체를 포함하는 0.3% Triton X-100 PBS에 침지한 후 Cy3- 및 Alexa 488-가 결합된 2차 항체(Jackson Immunoresearch)와 반응시켰다. Hoechst(1:1000, Invitrogen)를 사용하여 핵을 시각화하였다. 형광 이미지는 공초점현미경(LSM710)을 사용하여 수득하였다.Immunohistochemistry was performed in a mouse cerebral coronal slice (30 μm) with CHAT (1: 100, abcam), EGFP (1: 500, abcam), VACHT Immersed in 0.3% Triton X-100 PBS containing a primary antibody against 5-hydroxytryptamine, serotonin (1: 2000, ImmunoStar) and then incubated with secondary antibodies (Jackson Immunoresearch) coupled with Cy3- and Alexa 488- Lt; / RTI &gt; Nuclei were visualized using Hoechst (1: 1000, Invitrogen). Fluorescence images were obtained using a confocal microscope (LSM710).

CNO에 대한 hM3Dq 수용체는 세포의 활성을 증진하므로 세포활성 분자마커인 c-Fos의 발현양상을 확인한 바, CNO를 주입한 고삐핵에서 급격한 c-Fos의 발현 증가가 나타났다(도 5C-D). Since the hM3Dq receptor for CNO promotes the activity of the cell, the expression of c-Fos, which is a cell activating molecule marker, was observed. As a result, the expression of c-Fos rapidly increased in the nucleus of the injected CNO-injected c-Fos (FIG. 5C-D).

도파민 분비 신경세포가 밀집되어 있는 복측피개영역(ventral tegmental area)에서 세포활성 분자마커인 c-Fos의 발현 변화를 관찰한 결과, 도파민 신경세포(TH-positive cells)의 c-Fos는 증가한 반면, 비도파민 신경세포(TH-negative cells)의 c-Fos는 감소되었다(도 5E-I). 이를 통해 고삐핵 콜린성 신경세포 특이적으로 인위적인 활성화가 복측피개영역 도파민 신경세포의 활성을 증가시킬 수 있음을 확인하였다. In the ventral tegmental area, where dopamine secretory neurons are concentrated, the c-Fos of dopaminergic neurons (TH-positive cells) is increased while the cell-activating molecule marker, c-Fos, C-Fos of TH-negative cells was decreased (Fig. 5E-I). These results suggest that anthropogenic activation of the nuclear - cholinergic neurons in the rat can increase the activity of dopaminergic neurons in the dorsal skeletal muscle.

또한, 세로토닌 분비 신경세포가 존재하고 있는 솔기핵(raphe nucleus)에서의 세로토닌 신경세포를 대상으로 세포 내 세로토닌을 직접 확인할 수 있는 항체(anti-5-HT antibodies)를 이용하여 면역조직화합법으로 분석한 결과, CNO를 처리하여 고삐핵 콜린성 신경세포를 활성화시킨 경우, 세포 내 세로토닌의 함량이 감소되어 있음을 확인하였다(도 6A-B). 반대로 고삐핵 콜린성 신경세포 특이적으로 CHAT 발현을 억제시킨 동물모델에는 대조군에 비해 세로토닌 신경세포 내 세로토닌 함량이 증가되어 있음을 확인하였다(도 6C-D). 따라서 세로토닌 신경세포내 세로토닌 함량의 감소와 증가는 세포 밖으로의 세로토닌 분비의 증가와 감소에 각각 관련성이 있을 것으로 보였다. In addition, serotonergic neurons in the raphe nucleus, where serotonin-secreting neurons are present, were analyzed by immunohistochemistry using anti-5-HT antibodies As a result, it was confirmed that the content of serotonin in the cells was decreased when CNO was treated to activate the nucleus cholinergic neurons (FIG. 6A-B). On the contrary, it was confirmed that the serotonin content in serotonin neurons was increased in the animal model in which the expression of CHAT was specifically inhibited by the nuclear nuclear cholinergic neuron of the reinforcement , compared with the control (Fig. 6C-D). Thus, the decrease and increase of serotonin content in serotonin neurons seemed to be related to the increase and decrease of serotonin secretion outside the cell, respectively.

위 결과와 같이 고삐핵 콜린성 신경세포의 활성 변화는 도파민 및 세로토닌 신경세포의 활성과 밀접하게 관련되어 있음을 통해, 고삐핵 콜린성 신경세포는 주요 모노아민 신경조절물질인 도파민과 세로토닌의 뇌 분비 조절에 핵심적인 역할을 하는 뇌 부위임을 확인하였다.As shown in the above results, the change in the activity of the nuclear nuclear cholinergic neurons is closely related to the activity of dopamine and serotonergic neurons. Thus, the nucleus cholinergic neurons in the nucleus are involved in the regulation of the secretion of dopamine and serotonin, It was confirmed that the brain region plays a key role.

본 실시예에 따른 통계 분석은 윈도우(Windows, IBM corp., USA)를 이용한 SPSS v. 22을 사용하여 수행하였다. 데이터 세트(data set)가 정규 분포로 모델링된 경우 스튜던트 티이 검정(Student's t-test)을 적용하였으며, 정규 분포되지 않은 데이터 세트는 비모수적 만-위트니 유 검증(non-parametric Mann-Whitney U-test)을 적용하였다. P < 0.05는 유효한 것으로 고려하였으며, 수치는 평균 ± SEM(Standard error of the mean)으로 표현하였다.Statistical analysis according to the present embodiment was performed using SPSS v. Windows (Windows, IBM corp., USA). 22 &lt; / RTI &gt; The Student's t- test was applied when the data set was modeled as a normal distribution and the non-parametric data set was non-parametric Mann-Whitney U- test) was applied. P <0.05 was considered valid, and the values were expressed as mean ± SEM (standard error of the mean).

<110> Korea University Research and Business Foundation <120> Use of Cholinergic genes for treating depressive disorder <130> DHP16-588 <160> 41 <170> KoPatentIn 3.0 <210> 1 <211> 1893 <212> DNA <213> Homo sapiens <400> 1 atggcagcaa aaactcccag cagtgaggag tctgggctgc ccaaactgcc cgtgcccccg 60 ctgcagcaga ccctggccac gtacctgcag tgcatgcgac acttggtgtc tgaggagcag 120 ttcaggaaga gccaggccat tgtgcagcag tttggggccc ctggtggcct cggcgagacc 180 ctgcagcaga aactcctgga gcggcaggag aagacagcca actgggtgtc tgagtactgg 240 ctgaatgaca tgtatctcaa caaccgcctg gccctgcctg tcaactccag ccctgccgtg 300 atctttgctc ggcagcactt ccctggcacc gatgaccagc tgaggtttgc agccagcctc 360 atctctggtg tactcagcta caaggccctg ctggacagcc actccattcc cactgactgt 420 gccaaaggcc agctgtcagg gcagcccctt tgcatgaagc aatactatgg gctcttctcc 480 tcctaccggc tccccggcca tacccaggac acgctggtgg ctcagaacag cagcatcatg 540 ccggagcctg agcacgtcat cgtagcctgc tgcaatcagt tctttgtctt ggatgttgtc 600 attaatttcc gccgtctcag tgagggggat ctgttcactc agttgagaaa gatagtcaaa 660 atggcttcca acgaggacga gcgtttgcct ccaattggcc tgctgacgtc tgacgggagg 720 agcgagtggg ccgaggccag gacggtcctc gtgaaagact ccaccaaccg ggactcgctg 780 gacatgattg agcgctgcat ctgccttgta tgcctggacg cgccaggagg cgtggagctc 840 agcgacaccc acagggcact ccagctcctt cacggcggag gctacagcaa gaacggggcc 900 aatcgctggt acgacaagtc cctgcagttt gtggtgggcc gagacggcac ctgcggtgtg 960 gtgtgcgaac actccccatt cgatggcatc gtcctggtgc agtgcactga gcatctgctc 1020 aagcacatga cgcagagcag caggaagctg atccgagcag actccgtcag cgagctcccc 1080 gccccccgga ggctgcggtg gaaatgctcc ccggaaattc aaggccactt agcctcctcg 1140 gcagaaaaac ttcaacgaat agtaaagaac cttgacttca ttgtctataa gtttgacaac 1200 tatgggaaaa cattcattaa gaagcagaaa tgcagccctg atgccttcat ccaggtggcc 1260 ctccagctgg ccttctacag gctccatcga agactggtgc ccacctacga gagcgcgtcc 1320 atccgccgat tccaggaggg acgcgtggac aacatcagat cggccactcc agaggcactg 1380 gcttttgtga gagccgtgac tgaccacaag gctgctgtgc cagcttctga gaagcttctg 1440 ctcctgaagg atgccatccg tgcccagact gcatacacag tcatggccat aacagggatg 1500 gccattgaca accacctgct ggcactgcgg gagctggccc gggccatgtg caaggagctg 1560 cccgagatgt tcatggatga aacctacctg atgagcaacc ggtttgtcct ctccactagc 1620 caggtgccca caaccacgga gatgttctgc tgctatggtc ctgtggtccc aaatgggtat 1680 ggtgcctgct acaaccccca gccagagacc atccttttct gcatctctag ctttcacagc 1740 tgcaaagaga cttcttctag caagtttgca aaagctgtgg aagaaagcct cattgacatg 1800 agagacctct gcagtctgct gccgcctact gagagcaagc cattggcaac aaaggaaaaa 1860 gccacgaggc ccagccaggg acaccaacct tga 1893 <210> 2 <211> 1935 <212> DNA <213> Rattus norvegicus <400> 2 atgcccatcc tggaaaaggc tccccaaaag atgcctgtaa aggcttctag ctgggaggag 60 ctggacttac ctaaattacc agtgcccccg ctgcagcaaa ccctggccac ctacctacag 120 tgcatgcagc atctggtacc tgaagagcag ttcaggaaga gccaggccat tgtgaagcgg 180 tttggggccc ctggtggcct gggtgagacc ctgcaggaaa agctcttgga gagacaggag 240 aagacagcca attgggtctc tgaatactgg ctgaatgaca tgtacctgaa caaccgcctg 300 gccctgccag tcaactccag ccctgctgtg atctttgctc ggcagcactt ccaagacacc 360 aatgaccagc taagatttgc agcctgcctc atctctggtg tgcttagcta caaaactctg 420 ctggacagcc actcccttcc cactgactgg gccaaggggc agctctcagg gcagcccctc 480 tgtatgaagc aatattacag actcttctcc tcttaccggc ttcctggcca tacccaggac 540 acactggtgg cccagaagag cagtatcatg cccgagcctg agcatgtcat cgtggcctgc 600 tgcaaccagt tctttgtctt ggatgttgtc attaatttcc gccgtctcag tgagggtgat 660 ctgttcactc agttgagaaa gatagtcaaa atggcgtcca acgaggatga acgcctgcct 720 ccaatcggcc tgctgacgtc agacgggagg agcgagtggg ccaaggccag gacggtcctc 780 ttaaaagact ccaccaaccg ggactccctg gacatgatcg agcgctgcat ctgcctggta 840 tgcctggatg gtccaggcac aggagagctc agtgacaccc acagggccct ccaactcctt 900 cacggtggag gctgcagcct gaacggagcc aatcgctggt atgacaagtc cctgcagttc 960 gtggtgggcc gagatggcac ctgcggtgtg gtgtgtgagc attctccatt tgatggcatc 1020 gtcctggtgc agtgcacaga gcacctgctg aaacatatga tgacaagcaa caagaagctc 1080 gtcagggctg actcagtgag tgagctccct gcccccagaa ggctgaggtg gaaatgttcc 1140 ccagaaaccc aaggccatct cgcctcctca gcagagaaac ttcaaagaat agtaaagaat 1200 ctggatttca ttgtttacaa gtttgacaac tatggaaaaa catttatcaa gaagcagaaa 1260 tacagccccg acggcttcat ccaggtggcc ctccagctgg cttactacag gctttaccag 1320 agactggtgc ccacctatga gagcgcatcc atccgccgct tccaggaagg tcgggtggac 1380 aacatcagat cagccactcc agaggctctg gcttttgtgc aagccatgac tgaccacaag 1440 gctgccatgc cggcttctga gaaactgcag ctgctgcaga cagccatgca ggcccagact 1500 gagtacacag tcatggccat aaccggcatg gccattgaca accatcttct ggcactgagg 1560 gagctggccc gagacctgtg caaagagcca cctgagatgt tcatggatga aacatacctg 1620 atgagcaacc ggtttgtcct ctccaccagc caggtgccca caaccatgga gatgttctgc 1680 tgttatggac ccgtggtccc caatggctat ggagcctgct acaaccccca gcccgaggcc 1740 atcaccttct gcatctccag ttttcacagc tgcaaagaga cctcgtctgt ggagtttgcg 1800 gaagctgtgg gagcgagcct tgttgacatg agagacctct gcagttcaag gcagcctgct 1860 gacagcaagc caccagcacc caaggaaaaa gctaggggcc caaccaagcc aagcaatctt 1920 gactccagcc actag 1935 <210> 3 <211> 1599 <212> DNA <213> Homo sapiens <400> 3 atggaatccg cggaacctgc gggccaggcc cgggcggcgg ccaccaagct gtcggaggct 60 gtgggcgcgg cgctgcagga gccccggcgg cagaggcgcc tggtgcttgt tatcgtgtgc 120 gtggcgctgt tactggacaa catgctgtac atggtcatcg tgcccatagt gcccgactac 180 atcgcccaca tgcgcggggg cggcgagggc cccacccgga ctcccgaggt gtgggagccc 240 accctgccgc tgcccactcc ggccaatgcc agcgcctaca cggccaacac ctcggcgtcc 300 ccgacagctg cgtggccagc gggctcagcc cttcggcccc gctaccctac ggagagcgaa 360 gacgtgaaga tcggggtgct gtttgcttcc aaggctatcc tgcagctgct agtgaacccc 420 ttgagcgggc ccttcatcga ccgcatgagc tacgacgtgc cgctgctgat cggcctgggc 480 gtcatgttcg cctctacagt cctgttcgcc ttcgccgagg actacgccac gctgttcgcg 540 gcgcgcagcc tgcagggcct gggctcagcc ttcgccgaca cgtctggcat agccatgatc 600 gccgataagt acccggagga gccggagcgc agtcgtgcac tgggcgtggc gctggccttc 660 attagcttcg gaagcctagt ggccccgccc ttcgggggca tcctctatga gttcgccggc 720 aagcgcgtgc ccttcttggt gctagctgcc gtgtcgctct ttgacgcgct gttgctgctg 780 gcagtggcca aacccttctc ggcggctgca cgggctcggg ccaacctgcc agtgggcact 840 cccatccacc gcctcatgct agacccctac attgccgtgg tggccggcgc gctcaccacc 900 tgtaacattc ccctcgcctt cctcgaaccc accattgcca cgtggatgaa gcatacgatg 960 gcggcttccg agtgggagat gggcatggcc tggctgccgg ccttcgtgcc tcatgtgctg 1020 ggcgtctacc tcaccgtgcg cctggcggcg cgctacccac acctgcagtg gctgtacggc 1080 gcgcttgggc tggctgtgat cggcgccagc tcgtgcatcg tgcccgcctg ccgctccttc 1140 gcgccgctag tggtctcact atgcggcctc tgttttggca tagccctagt cgacacagca 1200 ctgctgccca cgctcgcctt cctggtggac gtgcgccatg tctcagtcta tggcagcgtc 1260 tacgccatcg ccgacatctc ctattcggtg gcctacgcgc tcgggcccat agtggcaggc 1320 cacattgtgc actcgctggg ctttgagcag ctcagccttg gcatgggact ggccaacctg 1380 ctctatgctc ccgtcttgct gctgctccgc aacgtgggcc tcctgacgcg ctcccgttcc 1440 gagcgcgatg tgctgcttga tgagccaccg caaggtctgt acgatgcggt gcgcctgcgt 1500 gagcgtcctg tgtctggcca ggacggcgag cctcgcagcc cgcctggccc ttttgatgcg 1560 tgcgaggacg actacaacta ctactacacc cgcagctag 1599 <210> 4 <211> 1593 <212> DNA <213> Rattus norvegicus <400> 4 atggaaccca ccgcgccaac cggtcaggcc cgggcggcgg ccaccaaact gtcggaagcg 60 gtgggagccg cgctacaaga gccccagagg cagcggcgcc tggtgctggt catcgtgtgc 120 gttgcactgt tactggacaa catgttgtac atggtcatcg tgcccattgt tcccgactat 180 atcgcccaca tgcgcggggg cagcgagggc ccgaccctgg tctctgaggt gtgggaaccc 240 actctgccgc cgcccactct ggctaatgcc agtgcctact tggccaacac gtcggcgtcc 300 ccgacggctg ccgggtcggc tcggtcaatc ctgcgacctc gctaccccac agaaagcgaa 360 gatgtgaaga taggtgtgct gtttgcctcc aaggctatcc tgcagcttct ggtgaacccc 420 ttaagcgggc ctttcattga tcgcatgagc tacgacgtgc cgctgcttat aggcctgggc 480 gtcatgttcg cctccacagt catgtttgcc tttgcagaag actatgccac gctcttcgct 540 gcgcgcagtc tacaaggcct gggctcggcc ttcgcggaca cgtctggcat tgccatgatc 600 gccgacaagt atcccgagga gcctgagcgc agtcgtgccc tgggcgtggc gctagccttt 660 attagctttg gaagcctagt ggcgccaccg tttgggggca tcctctacga gttcgcgggc 720 aagcgtgtac cctttctagt gctcgccgct gtgtcccttt tcgacgcgct cctgctcctg 780 gcggtggcta agcccttctc ggctgcggct cgggcgcgag ccaacctgcc ggtgggcaca 840 cctatccatc gcctcatgct agacccttac atcgctgtgg tagccggcgc gctcaccact 900 tgtaacattc cccttgcgtt cctcgagccc accatagcca cgtggatgaa gcacacaatg 960 gccgcatccg agtgggagat gggcatggtt tggctgccgg ctttcgtgcc acacgtgtta 1020 ggcgtctacc tcaccgtgcg cctggcggcg cgttatccac acctgcagtg gctgtacggc 1080 gctctcgggc tagcggtaat tggagtgagc tcttgcgtcg tacctgcctg tcgctcattc 1140 gcgccgttag tggtctcgct ctgcggactc tgcttcggca tcgcgttagt ggacacagcg 1200 ctcctaccca cgctcgcctt tctggtggac gtgcgccacg tatccgtcta tggcagtgtc 1260 tatgccatag ctgacatctc ctattctgtg gcctacgcgc tcgggcccat agtggcaggc 1320 cacatcgttc actctcttgg ctttgagcag ctcagcctgg gcatgggcct ggccaacctg 1380 ctctacgcac cagtccttct tcttttgcgc aatgtaggcc tccttacacg ctcgcgttcg 1440 gagcgcgatg tgttgcttga tgaaccgccg cagggtctgt acgacgcggt gcgcctgcgt 1500 gaggtgcagg gcaaggatgg cggcgaacct tgtagcccac ctggcccttt tgacgggtgc 1560 gaggacgact acaactatta ctcccgcagc tag 1593 <210> 5 <211> 1743 <212> DNA <213> Homo sapiens <400> 5 atggctttcc atgtggaagg actgatagct atcatcgtgt tctaccttct aattttgctg 60 gttggaatat gggctgcctg gagaaccaaa aacagtggca gcgcagaaga gcgcagcgaa 120 gccatcatag ttggtggccg agatattggt ttattggttg gtggatttac catgacagct 180 acctgggtcg gaggagggta tatcaatggc acagctgaag cagtttatgt accaggttat 240 ggcctagctt gggctcaggc accaattgga tattctctta gtctgatttt aggtggcctg 300 ttctttgcaa aacctatgcg ttcaaagggg tatgtgacca tgttagaccc gtttcagcaa 360 atctatggaa aacgcatggg cggactcctg tttattcctg cactgatggg agaaatgttc 420 tgggctgcag caattttctc tgctttggga gccaccatca gcgtgatcat cgatgtggat 480 atgcacattt ctgtcatcat ctctgcactc attgccactc tgtacacact ggtgggaggg 540 ctctattctg tggcctacac tgatgtcgtt cagctctttt gcatttttgt agggctgtgg 600 atcagcgtcc cctttgcatt gtcacatcct gcagtcgcag acatcgggtt cactgctgtg 660 catgccaaat accaaaagcc gtggctggga actgttgact catctgaagt ctactcttgg 720 cttgatagtt ttctgttgtt gatgctgggt ggaatcccat ggcaagcata ctttcagagg 780 gttctctctt cttcctcagc cacctatgct caagtgctgt ccttcctggc agctttcggg 840 tgcctggtga tggccatccc agccatactc attggggcca ttggagcatc aacagactgg 900 aaccagactg catatgggct tccagatccc aagactacag aagaggcaga catgatttta 960 ccaattgttc tgcagtatct ctgccctgtg tatatttctt tctttggtct tggtgcagtt 1020 tctgctgctg ttatgtcatc agcagattct tccatcttgt cagcaagttc catgtttgca 1080 cggaacatct accagctttc cttcagacaa aatgcttcgg acaaagaaat cgtttgggtt 1140 atgcgaatca cagtgtttgt gtttggagca tctgcaacag ccatggcctt gctgacgaaa 1200 actgtgtatg ggctctggta cctcagttct gaccttgttt acatcgttat cttcccccag 1260 ctgctttgtg tactctttgt taagggaacc aacacctatg gggccgtggc aggttatgtt 1320 tctggcctct tcctgagaat aactggaggg gagccatatc tgtatcttca gcccttgatc 1380 ttctaccctg gctattaccc tgatgataat ggtatatata atcagaaatt tccatttaaa 1440 acacttgcca tggttacatc attcttaacc aacatttgca tctcctatct agccaagtat 1500 ctatttgaaa gtggaacctt gccacctaaa ttagatgtat ttgatgctgt tgttgcaaga 1560 cacagtgaag aaaacatgga taagacaatt cttgtcaaaa atgaaaatat taaattagat 1620 gaacttgcac ttgtgaagcc acgacagagc atgaccctca gctcaacttt caccaataaa 1680 gaggccttcc ttgatgttga ttccagtcca gaagggtctg ggactgaaga taatttacag 1740 tga 1743 <210> 6 <211> 1428 <212> DNA <213> Rattus norvegicus <400> 6 atgcgttcta agggatatgt gactatgtta gacccgtttc aacagatcta tggaaagcgc 60 atgggtgggc tgctgttcat ccctgcactg atgggagaga tgttctgggc tgcagcgatt 120 ttctctgcat taggggctac catcagcgta atcattgatg tggatgtgaa catatcggtc 180 attgtctccg cactcattgc cattctttat accctcgtgg gagggctcta ctctgtggca 240 tatactgatg ttgtacagct attctgcatt tttataggat tgtggatcag tgtcccattt 300 gccctgtcac atcctgcagt caccgacatt ggattcactg ctgtgcatgc taaataccag 360 agtccctggc tgggaaccat tgaatcaatt gaagtctaca cctggcttga taattttctg 420 ttgttgatgc tgggtggaat accatggcaa gcctacttcc agagggtcct ctcttcatcg 480 tcagcgacct atgctcaggt gctgtccttc ctggcagctt ttgggtgcct ggtgatggct 540 ctaccagcca tatgcattgg ggccattgga gcctccacag actggaacca aactgcatat 600 gggtttccag atcccaagac caaggaggaa gcagacatga ttctcccgat tgttctacag 660 tacctctgcc ctgtgtacat ttccttcttt gggcttggtg ctgtttctgc tgctgtcatg 720 tcctcggctg actcatccat cctatcagca agttccatgt ttgctcggaa tatctaccag 780 ctttccttca gacaaaatgc atcagacaag gaaattgtgt gggtcatgag gatcactgtg 840 tttgtgtttg gagcatctgc aacagccatg gccttgctca cgaagactgt gtatgggctc 900 tggtacctga gctctgacct tgtctacatc atcatcttcc cacagctgct ctgtgtactc 960 ttcatcaaag gaaccaacac ttatggggca gttgctggtt atatttttgg acttttcctg 1020 agaattaccg gaggagagcc atatctatac ttgcagccct taatcttcta ccctggttat 1080 taccctgaca agaatggtat atacaatcag aggttcccat ttaaaactct ctccatggtt 1140 acctcattct ttaccaacat ttgtgtttcc tatctagcca agtatctatt tgaaagtgga 1200 accttgcctc caaaattaga tatatttgat gctgttgtct caaggcacag tgaagagaac 1260 atggacaaga ccattctagt cagaaatgaa aacatcaaat taaatgaact tgcacctgta 1320 aagcctcgac agagcctaac cctcagttca actttcacca ataaagaggc tctccttgat 1380 gttgattcca gtccagaggg atctgggact gaagataact tacaatga 1428 <210> 7 <211> 1518 <212> DNA <213> Homo sapiens <400> 7 atgggctctg gcccgctctc gctgcccctg gcgctgtcgc cgccgcggct gctgctgctg 60 ctgctgctgt ctctgctgcc agtggccagg gcctcagagg ctgagcaccg tctatttgag 120 cggctgtttg aagattacaa tgagatcatc cggcctgtag ccaacgtgtc tgacccagtc 180 atcatccatt tcgaggtgtc catgtctcag ctggtgaagg tggatgaagt aaaccagatc 240 atggagacca acctgtggct caagcaaatc tggaatgact acaagctgaa atggaacccc 300 tctgactatg gtggggcaga gttcatgcgt gtccctgcac agaagatctg gaagccagac 360 attgtgctgt ataacaatgc tgttggggat ttccaggtgg acgacaagac caaagcctta 420 ctcaagtaca ctggggaggt gacttggata cctccggcca tctttaagag ctcctgtaaa 480 atcgacgtga cctacttccc gtttgattac caaaactgta ccatgaagtt cggttcctgg 540 tcctacgata aggcgaaaat cgatctggtc ctgatcggct cttccatgaa cctcaaggac 600 tattgggaga gcggcgagtg ggccatcatc aaagccccag gctacaaaca cgacatcaag 660 tacaactgct gcgaggagat ctaccccgac atcacatact cgctgtacat ccggcgcctg 720 cccttgttct acaccatcaa cctcatcatc ccctgcctgc tcatctcctt cctcactgtg 780 ctcgtcttct acctgccctc cgactgcggt gagaaggtga ccctgtgcat ttctgtcctc 840 ctctccctga cggtgtttct cctggtgatc actgagacca tcccttccac ctcgctggtc 900 atccccctga ttggagagta cctcctgttc accatgattt ttgtaacctt gtccatcgtc 960 atcaccgtct tcgtgctcaa cgtgcactac agaaccccga cgacacacac aatgccctca 1020 tgggtgaaga ctgtattctt gaacctgctc cccagggtca tgttcatgac caggccaaca 1080 agcaacgagg gcaacgctca gaagccgagg cccctctacg gtgccgagct ctcaaatctg 1140 aattgcttca gccgcgcaga gtccaaaggc tgcaaggagg gctacccctg ccaggacggg 1200 atgtgtggtt actgccacca ccgcaggata aaaatctcca atttcagtgc taacctcacg 1260 agaagctcta gttctgaatc tgttgatgct gtgctgtccc tctctgcttt gtcaccagaa 1320 atcaaagaag ccatccaaag tgtcaagtat attgctgaaa atatgaaagc acaaaatgaa 1380 gccaaagaga ttcaagatga ttggaagtat gttgccatgg tgattgatcg tatttttctg 1440 tgggttttca ccctggtgtg cattctaggg acagcaggat tgtttctgca acccctgatg 1500 gccagggaag atgcataa 1518 <210> 8 <211> 1500 <212> DNA <213> Rattus norvegicus <400> 8 atgggtgttg tgctgctccc gccgccgctg tccatgctga tgctggtgct gatgctgctg 60 ccagcggcca gtgcctcaga agctgagcac cgcctgttcc agtacctgtt cgaagattac 120 aacgagatca tccggccagt ggctaatgtg tcccatccag tcatcatcca gtttgaggtg 180 tccatgtctc agctggtgaa ggtggatgaa gtaaaccaga tcatggaaac caacctgtgg 240 ctgaagcaaa tctggaatga ctacaagctg aaatggaaac cctctgacta ccaaggggtg 300 gagttcatgc gtgttcctgc agagaagatc tggaaaccag acatcgtact gtacaacaac 360 gctgatgggg atttccaggt ggatgacaag accaaagctc tactcaagta cacaggagaa 420 gtgacttgga tcccgccggc catctttaag agctcatgca aaatcgacgt gacctacttc 480 ccattcgact accaaaactg caccatgaag ttcggctcct ggtcctacga caaggcaaag 540 atcgacctgg tcctcatcgg ctcctccatg aacctcaagg actactggga gagtggcgag 600 tgggctatca ttaaagcccc gggctacaaa catgaaatca agtacaactg ctgtgaggag 660 atctaccaag acatcacgta ctcgctgtac atccgtcgcc tgccgctgtt ctacaccatc 720 aacctcatca tcccctgcct gctcatctcc ttcctcactg tgcttgtctt ctacctgccc 780 tccgactgtg gggagaaggt gacactctgc atctctgtgc tcctctccct gactgtcttt 840 ctcctggtga tcaccgagac cattccttcc acctcgctgg tcatccccct gattggggag 900 tacctcctct tcactatgat ttttgtcacc ttgtccattg tcatcacagt ctttgtgctc 960 aatgtgcact atagaactcc aaccacacac accatgccca cttgggtcaa ggccgtgttc 1020 ttgaacctgc tccccagggt catgtttatg actaggccga ccagtggtga gggggacact 1080 cctaagacga ggaccttcta cggcgctgag ctctcaaacc tgaactgctt cagccgtgca 1140 gactccaaaa gctgcaagga aggctacccc tgccaagatg ggacctgtgg ctactgccac 1200 caccgtaggg taaaaatctc aaatttcagt gccaacctca caagaagctc cagttctgag 1260 tctgtcgacg ctgtgttgtc cctctctgcc ctgtcaccag aaatcaaaga agccatccaa 1320 agtgtgaagt acattgccga aaacatgaaa gcacagaatg tagccaaaga gattcaagat 1380 gattggaagt acgttgccat ggtgattgat cgcatctttc tctgggtttt catcctggtg 1440 tgcattttag gaacggcggg attatttctg caacccttga tggccagaga tgacacatag 1500 1500 <210> 9 <211> 1377 <212> DNA <213> Homo sapiens <400> 9 atgctcccag attttatgct ggttctcatc gtccttggca tcccttcctc agccaccaca 60 ggtttcaact caatcgccga aaatgaagat gccctcctca gacatttgtt ccaaggttat 120 cagaaatggg tccgccctgt attacattct aatgacacca taaaagtata ttttggattg 180 aaaatatccc agcttgtaga tgtggatgaa aagaatcagc tgatgacaac caatgtgtgg 240 ctcaaacagg aatggacaga ccacaagtta cgctggaatc ctgatgatta tggtgggatc 300 cattccatta aagttccatc agaatctctg tggcttcctg acatagttct ctttgaaaat 360 gctgacggcc gcttcgaagg ctccctgatg accaaggtca tcgtgaaatc aaacggaact 420 gttgtctgga cccctcccgc cagctacaaa agctcctgca ccatggacgt cacgtttttc 480 ccgttcgacc gacagaactg ctccatgaag tttggatcct ggacttatga tggcaccatg 540 gttgacctca ttttgatcaa tgaaaatgtc gacagaaaag acttcttcga taacggagaa 600 tgggaaatac tgaacgcaaa ggggatgaag gggaacagaa gggacggcgt gtactcctat 660 ccctttatca cgtattcctt cgtcctgaga cgcctgcctt tattctatac cctctttctc 720 atcatcccct gcctggggct gtctttccta acagttcttg tgttctattt accttcggat 780 gaaggagaaa aactttcatt atccacatcg gtcttggttt ctctgacagt tttcctttta 840 gtgattgaag aaatcatccc atcgtcttcc aaagtcattc ctctcattgg agagtacctg 900 ctgttcatca tgatttttgt gaccctgtcc atcattgtta ccgtgtttgt cattaacgtt 960 caccacagat cttcttccac gtaccacccc atggccccct gggttaagag gctctttctg 1020 cagaaacttc caaaattact ttgcatgaaa gatcatgtgg atcgctactc atccccagag 1080 aaagaggaga gtcaaccagt agtgaaaggc aaagtcctcg aaaaaaagaa acagaaacag 1140 cttagtgatg gagaaaaagt tctagttgct tttttggaaa aagctgctga ttccattaga 1200 tacatttcga gacatgtgaa gaaagaacat tttatcagcc aggtagtaca agactggaaa 1260 tttgtagctc aagttcttga ccgaatcttc ctgtggctct ttctgatagt gtcagtaaca 1320 ggctcggttc tgatttttac ccctgctttg aagatgtggc tacatagtta ccattag 1377 <210> 10 <211> 1395 <212> DNA <213> Rattus norvegicus <400> 10 atgacaggct tcctaagggt cttcttggtt ctcagtgcca ctctctcagg ttcctgggtg 60 actcttacgg ccactgcagg actcagctca gtggctgaac acgaagacgc actcctcaga 120 catttgttcc aaggttacca gaaatgggtc cgccctgtgt tgaattccag tgacatcata 180 aaagtgtatt ttggattaaa aatatcccag cttgtggatg tggatgaaaa gaatcagctg 240 atgacgacaa atgtgtggct gaagcaggaa tggacagacc aaaaattacg ctggaatccg 300 gaagaatatg gtggaattaa ttcgataaag gttccatcag aatcgctctg gctgccggac 360 atagttctct ttgaaaatgc tgacggacgt tttgagggct ccctcatgac caaggccatt 420 gtgaagtcca gtggaaccgt cagctggact cctcccgcca gctacaagag ttcctgcacc 480 atggatgtca catttttccc gttcgacagg cagaactgct cgatgaagtt tggatcctgg 540 acttacgacg gtaccatggt tgacctcatt ctaatcaatg aaaacgttga ccggaaagac 600 ttttttgata acggagagtg ggagatactc aacgcaaagg ggatgaaggg caacagaaga 660 gaaggctttt actcctatcc gtttgttacc tactcttttg tcctgagacg cctgcccttg 720 ttttacacgc tctttttgat aatcccctgc ctggggttgt cttttctcac ggtcctggtg 780 ttctacctac cctcggacga aggggaaaaa ctctcattat ccacctccgt tttggtctct 840 ttgacggtgt ttcttttagt gattgaagaa ataatcccgt cctcttcgaa ggtcatcccc 900 ctcattggcg agtacctcct cttcattatg atttttgtca cgctgtctat tatcgtcacg 960 gtttttgtaa ttaatgtcca ccacagatct tcctcaacgt accatcccat ggccccctgg 1020 gtgaagaggc tgtttctaca aagactcccg agatggcttt gcatgaagga ccccatggac 1080 cgcttctctt tcccggatgg aaaggagagt gatacagccg tgagggggaa agtctcaggc 1140 aaaaggaaac agactcccgc cagcgatgga gaaagagttc tggtcgcttt cctcgagaag 1200 gcctccgagt ccatcagata catttcgagg catgtgaaaa aggaacactt catcagccag 1260 gtagtgcaag actggaaatt tgtggctcaa gttctggacc gcatcttcct gtggctcttt 1320 ctgatagctt ctgtgttggg ttccattctg atttttattc cagccttgaa gatgtggata 1380 catcgtttcc actag 1395 <210> 11 <211> 1497 <212> DNA <213> Homo sapiens <400> 11 atgaggcgcg cgccttccct ggtccttttc ttcctggtcg ccctttgcgg gcgcgggaac 60 tgccgcgtgg ccaatgcgga ggaaaagctg atggacgacc ttctgaacaa aacccgttac 120 aataacctga tccgcccagc caccagctcc tcacagctca tctccatcaa gctgcagctc 180 tccctggccc agcttatcag cgtgaatgag cgagagcaga tcatgaccac caatgtctgg 240 ctgaaacagg aatggactga ttaccgcctg acctggaaca gctcccgcta cgagggtgtg 300 aacatcctga ggatccctgc aaagcgcatc tggttgcctg acatcgtgct ttacaacaac 360 gccgacggga cctatgaggt gtctgtctac accaacttga tagtccggtc caacggcagc 420 gtcctgtggc tgccccctgc catctacaag agcgcctgca agattgaggt gaagtacttt 480 cccttcgacc agcagaactg caccctcaag ttccgctcct ggacctatga ccacacggag 540 atagacatgg tcctcatgac gcccacagcc agcatggatg actttactcc cagtggtgag 600 tgggacatag tggccctccc agggagaagg acagtgaacc cacaagaccc cagctacgtg 660 gacgtgactt acgacttcat catcaagcgc aagcctctgt tctacaccat caacctcatc 720 atcccctgcg tgctcaccac cttgctggcc atcctcgtct tctacctgcc atccgactgc 780 ggcgagaaga tgacactgtg catctcagtg ctgctggcac tgacattctt cctgctgctc 840 atctccaaga tcgtgccacc cacctccctc gatgtgcctc tcatcggcaa gtacctcatg 900 ttcaccatgg tgctggtcac cttctccatc gtcaccagcg tctgtgtgct caatgtgcac 960 caccgctcgc ccagcaccca caccatggca ccctgggtca agcgctgctt cctgcacaag 1020 ctgcctacct tcctcttcat gaagcgccct ggccccgaca gcagcccggc cagagccttc 1080 ccgcccagca agtcatgcgt gaccaagccc gaggccaccg ccacctccac cagcccctcc 1140 aacttctatg ggaactccat gtactttgtg aaccccgcct ctgcagcttc caagtctcca 1200 gccggctcta ccccggtggc tatccccagg gatttctggc tgcggtcctc tgggaggttc 1260 cgacaggatg tgcaggaggc attagaaggt gtcagcttca tcgcccagca catgaagaat 1320 gacgatgaag accagagtgt cgttgaggac tggaagtacg tggctatggt ggtggaccgg 1380 ctgttcctgt gggtgttcat gtttgtgtgc gtcctgggca ctgtggggct cttcctaccg 1440 cccctcttcc agacccatgc agcttctgag gggccctacg ctgcccagcg tgactga 1497 <210> 12 <211> 1488 <212> DNA <213> Rattus norvegicus <400> 12 atgaggggta cgcccctgct cctcgtctct ctgttctctc tgcttcagga cggggactgc 60 cgcctggcca acgcagagga gaagctgatg gatgacctcc tgaacaaaac ccggtacaac 120 aacctgatcc gcccagccac cagctcctct cagctcatct ccatccgcct ggagctatca 180 ctgtcccagc tcatcagtgt gaatgagcga gaacagatca tgaccaccag catctggctg 240 aaacaggaat ggactgacta ccgcctggcc tggaacagct cctgctatga aggggtgaac 300 attctgagga tccccgcaaa gcgtgtctgg ttgcctgaca tcgtgttgta caacaatgcc 360 gatggcacct atgaggtgtc tgtctacacc aacgtgattg tgcgttccaa tggcagcatc 420 cagtggctgc cccctgctat ctacaagagt gcctgcaaga ttgaggtgaa gcactttccc 480 ttcgaccagc agaactgcac cctcaaattc cgctcctgga cctatgacca cacggagatt 540 gacatggttc ttaagtcgcc cacggccatc atggatgact tcacccccag tggtgaatgg 600 gacattgtgg ccctcccagg acggaggacg gtgaaccctc aggaccccag ctacgtggac 660 gtgacctatg acttcatcat caagcgcaag ccgctcttct acaccatcaa tcttatcatt 720 ccttgtgtgc tcatcacctc gctggctatc ctggtcttct acctgccctc cgactgtggg 780 gagaagatga cgctctgcat ctctgtgctg ctggcactca cgttcttcct gctgctcatc 840 tccaagatcg tgcctcccac ctcccttgac ataccgctca ttggcaagta cctcttgttc 900 accatggtgc tggtcacctt ttccatcgtc accactgtgt gtgtcctcaa tgtgcaccac 960 cgctcaccca gcactcacac catggcatcc tgggtcaagg agtgcttcct gcacaaactg 1020 cccaccttcc tcttcatgaa gcgtcccggt cttgaagtca gcctggtcag ggtccctcat 1080 cccagccagc tgcacttggc cacagctgat actgcagcca cctctgcctt aggccccacc 1140 agcccatcca acctctatgg gagttccatg tactttgtga accctgtccc tgccgctcct 1200 aagtctgcag tcagctccca cacagcaggc ctccccaggg atgcccgtct gaggtcctcc 1260 gggaggttcc gggaagatct acaggaagca ttagagggtg tcagcttcat cgcccagcat 1320 ctggagagcg atgaccgaga tcaaagtgtc atcgaggact ggaagttcgt cgcgatggtt 1380 gttgaccgcc tgttcctgtg ggtgttcgtg tttgtgtgta ttctgggcac catggggctc 1440 ttcctgccac cccttttcca gatccacgca ccctccaagg actcctag 1488 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human VACHT Probe <400> 13 gtcatcgtgc ccatagtgcc cgact 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHT Primer_Forward <400> 14 gaacatctac cagctttcct tcaga 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHT Primer_Reverse <400> 15 tgattcgcat aacccaaacg atttc 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHAT Probe <400> 16 agtgaggagt ctgggctgcc caaac 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNA3 Probe <400> 17 acctgtggct caagcaaatc tggaa 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNB3 Probe <400> 18 ttgaaaatgc tgacggccgc ttcga 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNB4 Probe <400> 19 cctttgcggg cgcgggaact gccgc 25 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CAMK2B Probe <400> 20 agcattccaa catcgtgcgt ctcca 25 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH Probe <400> 21 gggcgcctgg tcaccagggc tgctt 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human TBP Probe <400> 22 gcagctgcaa aatattgtat ccaca 25 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CYC1 Probe <400> 23 tcttagagtt tgacgatggc acccc 25 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> mouse VACHT Primer_Forward <400> 24 aaacatcgtc cactggtcc 19 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse VACHT Primer_Reverse <400> 25 ctttccctaa gatgcctcca c 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHT Primer_Forward <400> 26 tttccagatc ccaagaccaa g 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHT Primer_Reverse <400> 27 atgctccaaa cacaaacaca g 21 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse CHAT Primer_Forward <400> 28 tccaagacac caatgaccag 20 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse CHAT Primer_Reverse <400> 29 ggacgccatt ttgactatct ttc 23 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNA3 Primer_Forward <400> 30 ttctacctgc cctccgactg t 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNA3 Primer_Reverse <400> 31 aatcccgccg ttcctaaaat g 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB3 Primer_Forward <400> 32 gaaaggagag tgatacagcc g 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB3 Primer_Reverse <400> 33 agaaagagcc acaggaagat g 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB4 Primer_Forward <400> 34 ctatcactgt cccagctcat c 21 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB4 Primer_Reverse <400> 35 agaaccatgt caatctccgt g 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse CAMK2B Primer_Forward <400> 36 cagaagctga gggcctccca 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CAMK2B Primer_Reverse <400> 37 ggtcacagat tttcgcatag g 21 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH Primer_Forward <400> 38 ccttcattga cctcaactac at 22 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH Primer_Reverse <400> 39 caaagttgtc atggatgacc 20 <210> 40 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> CHAT shRNA <400> 40 gagcgagcct tgttgacat 19 <210> 41 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> scrambled RNAi <400> 41 tcgtcatagc gtgcatagg 19 <110> Korea University Research and Business Foundation <120> Use of Cholinergic genes for treating depressive disorder <130> DHP16-588 <160> 41 <170> KoPatentin 3.0 <210> 1 <211> 1893 <212> DNA <213> Homo sapiens <400> 1 cgtgcccccg ctgcagcaga ccctggccac gtacctgcag tgcatgcgac acttggtgtc tgaggagcag 120 ttcaggaaga gccaggccat tgtgcagcag tttggggccc ctggtggcct cggcgagacc 180 ctgcagcaga aactcctgga gcggcaggag aagacagcca actgggtgtc tgagtactgg 240 ctgaatgaca tgtatctcaa caaccgcctg gccctgcctg tcaactccag ccctgccgtg 300 atctttgctc ggcagcactt ccctggcacc gatgaccagc tgaggtttgc agccagcctc 360 atctctggtg tactcagcta caaggccctg ctggacagcc actccattcc cactgactgt 420 gccaaaggcc agctgtcagg gcagcccctt tgcatgaagc aatactatgg gctcttctcc 480 tcctaccggc tccccggcca tacccaggac acgctggtgg ctcagaacag cagcatcatg 540 ccggagcctg agcacgtcat cgtagcctgc tgcaatcagt tctttgtctt ggatgttgtc 600 attaatttcc gccgtctcag tgagggggat ctgttcactc agttgagaaa gatagtcaaa 660 atggcttcca acgaggacga gcgtttgcct ccaattggcc tgctgacgtc tgacgggagg 720 agcgagtggg ccgaggccag gacggtcctc gtgaaagact ccaccaaccg ggactcgctg 780 gacatgattg agcgctgcat ctgccttgta tgcctggacg cgccaggagg cgtggagctc 840 agcgacaccc acagggcact ccagctcctt cacggcggag gctacagcaa gaacggggcc 900 aatcgctggt acgacaagtc cctgcagttt gtggtgggcc gagacggcac ctgcggtgtg 960 gtgtgcgaac actccccatt cgatggcatc gtcctggtgc agtgcactga gcatctgctc 1020 aagcacatga cgcagagcag caggaagctg atccgagcag actccgtcag cgagctcccc 1080 gccccccgga ggctgcggtg gaaatgctcc ccggaaattc aaggccactt agcctcctcg 1140 gcagaaaaac ttcaacgaat agtaaagaac cttgacttca ttgtctataa gtttgacaac 1200 tatgggaaaa cattcattaa gaagcagaaa tgcagccctg atgccttcat ccaggtggcc 1260 ctccagctgg ccttctacag gctccatcga agactggtgc ccacctacga gagcgcgtcc 1320 atccgccgat tccaggaggg acgcgtggac aacatcagat cggccactcc agaggcactg 1380 gcttttgtga gagccgtgac tgaccacaag gctgctgtgc cagcttctga gaagcttctg 1440 ctcctgaagg atgccatccg tgcccagact gcatacacag tcatggccat aacagggatg 1500 gccattgaca accacctgct ggcactgcgg gagctggccc gggccatgtg caaggagctg 1560 cccgagatgt tcatggatga aacctacctg atgagcaacc ggtttgtcct ctccactagc 1620 caggtgccca caaccacgga gatgttctgc tgctatggtc ctgtggtccc aaatgggtat 1680 ggtgcctgct acaaccccca gccagagacc atccttttct gcatctctag ctttcacagc 1740 tgcaaagaga cttcttctag caagtttgca aaagctgtgg aagaaagcct cattgacatg 1800 agagacctct gcagtctgct gccgcctact gagagcaagc cattggcaac aaaggaaaaa 1860 gccacgaggc ccagccaggg acaccaacct tga 1893 <210> 2 <211> 1935 <212> DNA <213> Rattus norvegicus <400> 2 atgcccatcc tggaaaaggc tccccaaaag atgcctgtaa aggcttctag ctgggaggag 60 ctggacttac ctaaattacc agtgcccccg ctgcagcaaa ccctggccac ctacctacag 120 tgcatgcagc atctggtacc tgaagagcag ttcaggaaga gccaggccat tgtgaagcgg 180 tttggggccc ctggtggcct gggtgagacc ctgcaggaaa agctcttgga gagacaggag 240 aagacagcca attgggtctc tgaatactgg ctgaatgaca tgtacctgaa caaccgcctg 300 gccctgccag tcaactccag ccctgctgtg atctttgctc ggcagcactt ccaagacacc 360 aatgaccagc taagatttgc agcctgcctc atctctggtg tgcttagcta caaaactctg 420 ctggacagcc actcccttcc cactgactgg gccaaggggc agctctcagg gcagcccctc 480 tgtatgaagc aatattacag actcttctcc tcttaccggc ttcctggcca tacccaggac 540 acactggtgg cccagaagag cagtatcatg cccgagcctg agcatgtcat cgtggcctgc 600 tgcaaccagt tctttgtctt ggatgttgtc attaatttcc gccgtctcag tgagggtgat 660 ctgttcactc agttgagaaa gatagtcaaa atggcgtcca acgaggatga acgcctgcct 720 ccaatcggcc tgctgacgtc agacgggagg agcgagtggg ccaaggccag gacggtcctc 780 ttaaaagact ccaccaaccg ggactccctg gacatgatcg agcgctgcat ctgcctggta 840 tgcctggatg gtccaggcac aggagagctc agtgacaccc acagggccct ccaactcctt 900 cacggtggag gctgcagcct gaacggagcc aatcgctggt atgacaagtc cctgcagttc 960 gtggtgggcc gagatggcac ctgcggtgtg gtgtgtgagc attctccatt tgatggcatc 1020 gtcctggtgc agtgcacaga gcacctgctg aaacatatga tgacaagcaa caagaagctc 1080 gtcagggctg actcagtgag tgagctccct gcccccagaa ggctgaggtg gaaatgttcc 1140 ccagaaaccc aaggccatct cgcctcctca gcagagaaac ttcaaagaat agtaaagaat 1200 ctggatttca ttgtttacaa gtttgacaac tatggaaaaa catttatcaa gaagcagaaa 1260 tacagccccg acggcttcat ccaggtggcc ctccagctgg cttactacag gctttaccag 1320 agactggtgc ccacctatga gagcgcatcc atccgccgct tccaggaagg tcgggtggac 1380 aacatcagat cagccactcc agaggctctg gcttttgtgc aagccatgac tgaccacaag 1440 gctgccatgc cggcttctga gaaactgcag ctgctgcaga cagccatgca ggcccagact 1500 gcctgaca tccggccat aaccggcatg gccattgaca accatcttct ggcactgagg 1560 gagctggccc gagacctgtg caaagagcca cctgagatgt tcatggatga aacatacctg 1620 atgagcaacc ggtttgtcct ctccaccagc caggtgccca caaccatgga gatgttctgc 1680 tgttatggac ccgtggtccc caatggctat ggagcctgct acaaccccca gcccgaggcc 1740 atcaccttct gcatctccag ttttcacagc tgcaaagaga cctcgtctgt ggagtttgcg 1800 gaagctgtgg gagcgagcct tgttgacatg agagacctct gcagttcaag gcagcctgct 1860 gaccascaagc caccagcacc caaggaaaaa gctaggggcc caaccaagcc aagcaatctt 1920 gactccagcc actag 1935 <210> 3 <211> 1599 <212> DNA <213> Homo sapiens <400> 3 atggaatccg cggaacctgc gggccaggcc cgggcggcgg ccaccaagct gtcggaggct 60 gtgggcgcgg cgctgcagga gccccggcgg cagaggcgcc tggtgcttgt tatcgtgtgc 120 gtggcgctgt tactggacaa catgctgtac atggtcatcg tgcccatagt gcccgactac 180 atcgcccaca tgcgcggggg cggcgagggc cccacccgga ctcccgaggt gtgggagccc 240 accctgccgc tgcccactcc ggccaatgcc agcgcctaca cggccaacac ctcggcgtcc 300 ccgacagctg cgtggccagc gggctcagcc cttcggcccc gctaccctac ggagagcgaa 360 gacgtgaaga tcggggtgct gtttgcttcc aaggctatcc tgcagctgct agtgaacccc 420 ttgagcgggc ccttcatcga ccgcatgagc tacgacgtgc cgctgctgat cggcctgggc 480 gtcatgttcg cctctacagt cctgttcgcc ttcgccgagg actacgccac gctgttcgcg 540 gcgcgcagcc tgcagggcct gggctcagcc ttcgccgaca cgtctggcat agccatgatc 600 gccgataagt acccggagga gccggagcgc agtcgtgcac tgggcgtggc gctggccttc 660 attagcttcg gaagcctagt ggccccgccc ttcgggggca tcctctatga gttcgccggc 720 aagcgcgtgc ccttcttggt gctagctgcc gtgtcgctct ttgacgcgct gttgctgctg 780 gcagtggcca aacccttctc ggcggctgca cgggctcggg ccaacctgcc agtgggcact 840 cccatccacc gcctcatgct agacccctac attgccgtgg tggccggcgc gctcaccacc 900 tgtaacattc ccctcgcctt cctcgaaccc accattgcca cgtggatgaa gcatacgatg 960 gcggcttccg agtgggagat gggcatggcc tggctgccgg ccttcgtgcc tcatgtgctg 1020 ggcgtctacc tcaccgtgcg cctggcggcg cgctacccac acctgcagtg gctgtacggc 1080 gcgcttgggc tggctgtgat cggcgccagc tcgtgcatcg tgcccgcctg ccgctccttc 1140 gcgccgctag tggtctcact atgcggcctc tgttttggca tagccctagt cgacacagca 1200 ctgctgccca cgctcgcctt cctggtggac gtgcgccatg tctcagtcta tggcagcgtc 1260 tacgccatcg ccgacatctc ctattcggtg gcctacgcgc tcgggcccat agtggcaggc 1320 cacattgtgc actcgctggg ctttgagcag ctcagccttg gcatgggact ggccaacctg 1380 ctctatgctc ccgtcttgct gctgctccgc aacgtgggcc tcctgacgcg ctcccgttcc 1440 gagcgcgatg tgctgcttga tgagccaccg caaggtctgt acgatgcggt gcgcctgcgt 1500 gagcgtcctg tgtctggcca ggacggcgag cctcgcagcc cgcctggccc ttttgatgcg 1560 tgcgaggacg actacaacta ctactacacc cgcagctag 1599 <210> 4 <211> 1593 <212> DNA <213> Rattus norvegicus <400> 4 atggaaccca ccgcgccaac cggtcaggcc cgggcggcgg ccaccaaact gtcggaagcg 60 gtgggagccg cgctacaaga gccccagagg cagcggcgcc tggtgctggt catcgtgtgc 120 gttgcactgt tactggacaa catgttgtac atggtcatcg tgcccattgt tcccgactat 180 atcgcccaca tgcgcggggg cagcgagggc ccgaccctgg tctctgaggt gtgggaaccc 240 actctgccgc cgcccactct ggctaatgcc agtgcctact tggccaacac gtcggcgtcc 300 ccgacggctg ccgggtcggc tcggtcaatc ctgcgacctc gctaccccac agaaagcgaa 360 gatgtgaaga taggtgtgct gtttgcctcc aaggctatcc tgcagcttct ggtgaacccc 420 ttaagcgggc ctttcattga tcgcatgagc tacgacgtgc cgctgcttat aggcctgggc 480 gtcatgttcg cctccacagt catgtttgcc tttgcagaag actatgccac gctcttcgct 540 gcgcgcagtc tacaaggcct gggctcggcc ttcgcggaca cgtctggcat tgccatgatc 600 gccgacaagt atcccgagga gcctgagcgc agtcgtgccc tgggcgtggc gctagccttt 660 attagctttg gaagcctagt ggcgccaccg tttgggggca tcctctacga gttcgcgggc 720 aagcgtgtac cctttctagt gctcgccgct gtgtcccttt tcgacgcgct cctgctcctg 780 gcggtggcta agcccttctc ggctgcggct cgggcgcgag ccaacctgcc ggtgggcaca 840 cctatccatc gcctcatgct agacccttac atcgctgtgg tagccggcgc gctcaccact 900 tgtaacattc cccttgcgtt cctcgagccc accatagcca cgtggatgaa gcacacaatg 960 gccgcatgg agtgggagat gggcatggtt tggctgccgg ctttcgtgcc acacgtgtta 1020 ggcgtctacc tcaccgtgcg cctggcggcg cgttatccac acctgcagtg gctgtacggc 1080 gctctcgggc tagcggtaat tggagtgagc tcttgcgtcg tacctgcctg tcgctcattc 1140 gcgccgttag tggtctcgct ctgcggactc tgcttcggca tcgcgttagt ggacacagcg 1200 ctcctaccca cgctcgcctt tctggtggac gtgcgccacg tatccgtcta tggcagtgtc 1260 tatgccatag ctgacatctc ctattctgtg gcctacgcgc tcgggcccat agtggcaggc 1320 cacatcgttc actctcttgg ctttgagcag ctcagcctgg gcatgggcct ggccaacctg 1380 ctctacgcac cagtccttct tcttttgcgc aatgtaggcc tccttacacg ctcgcgttcg 1440 gagcgcgatg tgttgcttga tgaaccgccg cagggtctgt acgacgcggt gcgcctgcgt 1500 gaggtgcagg gcaaggatgg cggcgaacct tgtagcccac ctggcccttt tgacgggtgc 1560 gaggacgact acaactatta ctcccgcagc tag 1593 <210> 5 <211> 1743 <212> DNA <213> Homo sapiens <400> 5 atggctttcc atgtggaagg actgatagct atcatcgtgt tctaccttct aattttgctg 60 gttggaatat gggctgcctg gagaaccaaa aacagtggca gcgcagaaga gcgcagcgaa 120 gccatcatag ttggtggccg agatattggt ttattggttg gtggatttac catgacagct 180 acctgggtcg gaggagggta tatcaatggc acagctgaag cagtttatgt accaggttat 240 ggcctagctt gggctcaggc accaattgga tattctctta gtctgatttt aggtggcctg 300 ttctttgcaa aacctatgcg ttcaaagggg tatgtgacca tgttagaccc gtttcagcaa 360 atctatggaa aacgcatggg cggactcctg tttattcctg cactgatggg agaaatgttc 420 tgggctgcag caattttctc tgctttggga gccaccatca gcgtgatcat cgatgtggat 480 atgcacattt ctgtcatcat ctctgcactc attgccactc tgtacacact ggtgggaggg 540 ctctattctg tggcctacac tgatgtcgtt cagctctttt gcatttttgt agggctgtgg 600 atcagcgtcc cctttgcatt gtcacatcct gcagtcgcag acatcgggtt cactgctgtg 660 catgccaaat accaaaagcc gtggctggga actgttgact catctgaagt ctactcttgg 720 cttgatagtt ttctgttgtt gatgctgggt ggaatcccat ggcaagcata ctttcagagg 780 gttctctctt cttcctcagc cacctatgct caagtgctgt ccttcctggc agctttcggg 840 tgcctggtga tggccatccc agccatactc attggggcca ttggagcatc aacagactgg 900 aaccagactg catatgggct tccagatccc aagactacag aagaggcaga catgatttta 960 ccaattgttc tgcagtatct ctgccctgtg tatatttctt tctttggtct tggtgcagtt 1020 tctgctgctg ttatgtcatc agcagattct tccatcttgt cagcaagttc catgtttgca 1080 cggaacatct accagctttc cttcagacaa aatgcttcgg acaaagaaat cgtttgggtt 1140 gt actgtgtatg ggctctggta cctcagttct gaccttgttt acatcgttat cttcccccag 1260 ctgctttgtg tactctttgt taagggaacc aacacctatg gggccgtggc aggttatgtt 1320 tctggcctct tcctgagaat aactggaggg gagccatatc tgtatcttca gcccttgatc 1380 ttctaccctg gctattaccc tgatgataat ggtatatata atcagaaatt tccatttaaa 1440 accttgcca tggttacatc attcttaacc aacatttgca tctcctatct agccaagtat 1500 ctatttgaaa gtggaacctt gccacctaaa ttagatgtat ttgatgctgt tgttgcaaga 1560 cacagtgaag aaaacatgga taagacaatt cttgtcaaaa atgaaaatat taaattagat 1620 gaacttgcac ttgtgaagcc acgacagagc atgaccctca gctcaacttt caccaataaa 1680 gaggccttcc ttgatgttga ttccagtcca gaagggtctg ggactgaaga taatttacag 1740 tga 1743 <210> 6 <211> 1428 <212> DNA <213> Rattus norvegicus <400> 6 atgcgttcta agggatatgt gactatgtta gacccgtttc aacagatcta tggaaagcgc 60 atgggtgggc tgctgttcat ccctgcactg atgggagaga tgttctgggc tgcagcgatt 120 ttctctgcat taggggctac catcagcgta atcattgatg tggatgtgaa catatcggtc 180 attgtctccg cactcattgc cattctttat accctcgtgg gagggctcta ctctgtggca 240 tatactgatg ttgtacagct attctgcatt tttataggat tgtggatcag tgtcccattt 300 gccctgtcac atcctgcagt caccgacatt ggattcactg ctgtgcatgc taaataccag 360 agtccctggc tgggaaccat tgaatcaatt gaagtctaca cctggcttga taattttctg 420 ttgttgatgc tgggtggaat accatggcaa gcctacttcc agagggtcct ctcttcatcg 480 tcagcgacct atgctcaggt gctgtccttc ctggcagctt ttgggtgcct ggtgatggct 540 ctaccagcca tatgcattgg ggccattgga gcctccacag actggaacca aactgcatat 600 gggtttccag atcccaagac caaggaggaa gcagacatga ttctcccgat tgttctacag 660 tacctctgcc ctgtgtacat ttccttcttt gggcttggtg ctgtttctgc tgctgtcatg 720 tcctcggctg actcatccat cctatcagca agttccatgt ttgctcggaa tatctaccag 780 ctttccttca gacaaaatgc atcagacaag gaaattgtgt gggtcatgag gatcactgtg 840 tttgtgtttg gagcatctgc aacagccatg gccttgctca cgaagactgt gtatgggctc 900 tggtacctga gctctgacct tgtctacatc atcatcttcc cacagctgct ctgtgtactc 960 ttcatcaaag gaaccaacac ttatggggca gttgctggtt atatttttgg acttttcctg 1020 agaattaccg gaggagagcc atatctatac ttgcagccct taatcttcta ccctggttat 1080 taccctgaca agaatggtat atacaatcag aggttcccat ttaaaactct ctccatggtt 1140 acctcattct ttaccaacat ttgtgtttcc tatctagcca agtatctatt tgaaagtgga 1200 accttgcctc caaaattaga tatatttgat gctgttgtct caaggcacaga tgaagagaac 1260 atggacaaga ccattctagt cagaaatgaa aacatcaaat taaatgaact tgcacctgta 1320 aagcctcgac agagcctaac cctcagttca actttcacca ataaagaggc tctccttgat 1380 gttgattcca gtccagaggg atctgggact gaagataact tacaatga 1428 <210> 7 <211> 1518 <212> DNA <213> Homo sapiens <400> 7 atgggctctg gcccgctctc gctgcccctg gcgctgtcgc cgccgcggct gctgctgctg 60 ctgctgctgt ctctgctgcc agtggccagg gcctcagagg ctgagcaccg tctatttgag 120 cggctgtttg aagattacaa tgagatcatc cggcctgtag ccaacgtgtc tgacccagtc 180 atcatccatt tcgaggtgtc catgtctcag ctggtgaagg tggatgaagt aaaccagatc 240 atggagacca acctgtggct caagcaaatc tggaatgact acaagctgaa atggaacccc 300 tctgactatg gtggggcaga gttcatgcgt gtccctgcac agaagatctg gaagccagac 360 attgtgctgt ataacaatgc tgttggggat ttccaggtgg acgacaagac caaagcctta 420 ctcaagtaca ctggggaggt gacttggata cctccggcca tctttaagag ctcctgtaaa 480 atcgacgtga cctacttccc gtttgattac caaaactgta ccatgaagtt cggttcctgg 540 tcctacgata aggcgaaaat cgatctggtc ctgatcggct cttccatgaa cctcaaggac 600 tattgggaga gcggcgagtg ggccatcatc aaagccccag gctacaaaca cgacatcaag 660 tacaactgct gcgaggagat ctaccccgac atcacatact cgctgtacat ccggcgcctg 720 cccttgttct acaccatcaa cctcatcatc ccctgcctgc tcatctcctt cctcactgtg 780 ctcgtcttct acctgccctc cgactgcggt gagaaggtga ccctgtgcat ttctgtcctc 840 ctctccctga cggtgtttct cctggtgatc actgagacca tcccttccac ctcgctggtc 900 atccccctga ttggagagta cctcctgttc accatgattt ttgtaacctt gtccatcgtc 960 atcaccgtct tcgtgctcaa cgtgcactac agaaccccga cgacacacac aatgccctca 1020 tgggtgaaga ctgtattctt gaacctgctc cccagggtca tgttcatgac caggccaaca 1080 agcaacgagg gcaacgctca gaagccgagg cccctctacg gtgccgagct ctcaaatctg 1140 aattgcttca gccgcgcaga gtccaaaggc tgcaaggagg gctacccctg ccaggacggg 1200 atgtgtggtt actgccacca ccgcaggata aaaatctcca atttcagtgc taacctcacg 1260 agaagctcta gttctgaatc tgttgatgct gtgctgtccc tctctgcttt gtcaccagaa 1320 atcaaagaag ccatccaaag tgtcaagtat attgctgaaa atatgaaagc acaaaatgaa 1380 gccaaagaga ttcaagatga ttggaagtat gttgccatgg tgattgatcg tatttttctg 1440 tgggttttca ccctggtgtg cattctaggg acagcaggat tgtttctgca acccctgatg 1500 gccagggaag atgcataa 1518 <210> 8 <211> 1500 <212> DNA <213> Rattus norvegicus <400> 8 atgggtgttg tgctgctccc gccgccgctg tccatgctga tgctggtgct gatgctgctg 60 ccagcggcca gtgcctcaga agctgagcac cgcctgttcc agtacctgtt cgaagattac 120 aacgagatca tccggccagt ggctaatgtg tcccatccag tcatcatcca gtttgaggtg 180 tccatgtctc agctggtgaa ggtggatgaa gtaaaccaga tcatggaaac caacctgtgg 240 ctgaagcaaa tctggaatga ctacaagctg aaatggaaac cctctgacta ccaaggggtg 300 gagttcatgc gtgttcctgc agagaagatc tggaaaccag acatcgtact gtacaacaac 360 gctgatgggg atttccaggt ggatgacaag accaaagctc tactcaagta cacaggagaa 420 gtgacttgga tcccgccggc catctttaag agctcatgca aaatcgacgt gacctacttc 480 ccattcgact accaaaactg caccatgaag ttcggctcct ggtcctacga caaggcaaag 540 atcgacctgg tcctcatcgg ctcctccatg aacctcaagg actactggga gagtggcgag 600 tgggctatca ttaaagcccc gggctacaaa catgaaatca agtacaactg ctgtgaggag 660 atctaccaag acatcacgta ctcgctgtac atccgtcgcc tgccgctgtt ctacaccatc 720 aacctcatca tcccctgcct gctcatctcc ttcctcactg tgcttgtctt ctacctgccc 780 tccgactgtg gggagaaggt gacactctgc atctctgtgc tcctctccct gactgtcttt 840 ctcctggtga tcaccgagac cattccttcc acctcgctgg tcatccccct gattggggag 900 tacctcctct tcactatgat ttttgtcacc ttgtccattg tcatcacagt ctttgtgctc 960 aatgtgcact atagaactcc aaccacacac accatgccca cttgggtcaa ggccgtgttc 1020 ttgaacctgc tccccagggt catgtttatg actaggccga ccagtggtga gggggacact 1080 cctaagacga ggaccttcta cggcgctgag ctctcaaacc tgaactgctt cagccgtgca 1140 gactccaaaa gctgcaagga aggctacccc tgccaagatg ggacctgtgg ctactgccac 1200 caccgtaggg taaaaatctc aaatttcagt gccaacctca caagaagctc cagttctgag 1260 tctgtcgacg ctgtgttgtc cctctctgcc ctgtcaccag aaatcaaaga agccatccaa 1320 agtgtgaagt acattgccga aaacatgaaa gcacagaatg tagccaaaga gattcaagat 1380 gattggaagt acgttgccat ggtgattgat cgcatctttc tctgggtttt catcctggtg 1440 tgcattttag gaacggcggg attatttctg caacccttga tggccagaga tgacacatag 1500                                                                         1500 <210> 9 <211> 1377 <212> DNA <213> Homo sapiens <400> 9 atgctcccag attttatgct ggttctcatc gtccttggca tcccttcctc agccaccaca 60 ggtttcaact caatcgccga aaatgaagat gccctcctca gacatttgtt ccaaggttat 120 cagaaatggg tccgccctgt attacattct aatgacacca taaaagtata ttttggattg 180 aaaatatccc agcttgtaga tgtggatgaa aagaatcagc tgatgacaac caatgtgtgg 240 ctcaaacagg aatggacaga ccacaagtta cgctggaatc ctgatgatta tggtgggatc 300 cattccatta aagttccatc agaatctctg tggcttcctg acatagttct ctttgaaaat 360 gctgacggcc gcttcgaagg ctccctgatg accaaggtca tcgtgaaatc aaacggaact 420 gttgtctgga cccctcccgc cagctacaaa agctcctgca ccatggacgt cacgtttttc 480 ccgttcgacc gacagaactg ctccatgaag tttggatcct ggacttatga tggcaccatg 540 gttgacctca ttttgatcaa tgaaaatgtc gacagaaaag acttcttcga taacggagaa 600 tgggaaatac tgaacgcaaa ggggatgaag gggaacagaa gggacggcgt gtactcctat 660 ccctttatca cgtattcctt cgtcctgaga cgcctgcctt tattctatac cctctttctc 720 atcatcccct gcctggggct gtctttccta acagttcttg tgttctattt accttcggat 780 gaaggagaaa aactttcatt atccacatcg gtcttggttt ctctgacagt tttcctttta 840 gtgattgaag aaatcatccc atcgtcttcc aaagtcattc ctctcattgg agagtacctg 900 ctgttcatca tgatttttgt gaccctgtcc atcattgtta ccgtgtttgt cattaacgtt 960 caccacagat cttcttccac gtaccacccc atggccccct gggttaagag gctctttctg 1020 cagaaacttc caaaattact ttgcatgaaa gatcatgtgg atcgctactc atccccagag 1080 aaagaggaga gtcaaccagt agtgaaaggc aaagtcctcg aaaaaaagaa acagaaacag 1140 cttagtgatg gagaaaaagt tctagttgct tttttggaaa aagctgctga ttccattaga 1200 tacatttcga gacatgtgaa gaaagaacat tttatcagcc aggtagtaca agactggaaa 1260 tttgtagctc aagttcttga ccgaatcttc ctgtggctct ttctgatagt gtcagtaaca 1320 ggctcggttc tgatttttac ccctgctttg aagatgtggc tacatagtta ccattag 1377 <210> 10 <211> 1395 <212> DNA <213> Rattus norvegicus <400> 10 atgacaggct tcctaagggt cttcttggtt ctcagtgcca ctctctcagg ttcctgggtg 60 actcttacgg ccactgcagg actcagctca gtggctgaac acgaagacgc actcctcaga 120 catttgttcc aaggttacca gaaatgggtc cgccctgtgt tgaattccag tgacatcata 180 aaagtgtatt ttggattaaa aatatcccag cttgtggatg tggatgaaaa gaatcagctg 240 atgacgacaa atgtgtggct gaagcaggaa tggacagacc aaaaattacg ctggaatccg 300 gaagaatatg gtggaattaa ttcgataaag gttccatcag aatcgctctg gctgccggac 360 atagttctct ttgaaaatgc tgacggacgt tttgagggct ccctcatgac caaggccatt 420 gtgaagtcca gtggaaccgt cagctggact cctcccgcca gctacaagag ttcctgcacc 480 atggatgtca catttttccc gttcgacagg cagaactgct cgatgaagtt tggatcctgg 540 acttacgacg gtaccatggt tgacctcatt ctaatcaatg aaaacgttga ccggaaagac 600 ttttttgata acggagagtg ggagatactc aacgcaaagg ggatgaaggg caacagaaga 660 gaaggctttt actcctatcc gtttgttacc tactcttttg tcctgagacg cctgcccttg 720 ttttacacgc tctttttgat aatcccctgc ctggggttgt cttttctcac ggtcctggtg 780 ttctacctac cctcggacga aggggaaaaa ctctcattat ccacctccgt tttggtctct 840 ttgacggtgt ttcttttagt gattgaagaa ataatcccgt cctcttcgaa ggtcatcccc 900 ctcattggcg agtacctcct cttcattatg atttttgtca cgctgtctat tatcgtcacg 960 gtttttgtaa ttaatgtcca ccacagatct tcctcaacgt accatcccat ggccccctgg 1020 gtgaagaggc tgtttctaca aagactcccg agatggcttt gcatgaagga ccccatggac 1080 cgcttctctt tcccggatgg aaaggagagt gatacagccg tgagggggaa agtctcaggc 1140 aaaaggaaac agactcccgc cagcgatgga gaaagagttc tggtcgcttt cctcgagaag 1200 gcctccgagt ccatcagata catttcgagg catgtgaaaa aggaacactt catcagccag 1260 gtagtgcaag actggaaatt tgtggctcaa gttctggacc gcatcttcct gtggctcttt 1320 ctgatagctt ctgtgttggg ttccattctg atttttattc cagccttgaa gatgtggata 1380 catcgtttcc actag 1395 <210> 11 <211> 1497 <212> DNA <213> Homo sapiens <400> 11 atgaggcgcg cgccttccct ggtccttttc ttcctggtcg ccctttgcgg gcgcgggaac 60 tgccgcgtgg ccaatgcgga ggaaaagctg atggacgacc ttctgaacaa aacccgttac 120 aataacctga tccgcccagc caccagctcc tcacagctca tctccatcaa gctgcagctc 180 tccctggccc agcttatcag cgtgaatgag cgagagcaga tcatgaccac caatgtctgg 240 ctgaaacagg aatggactga ttaccgcctg acctggaaca gctcccgcta cgagggtgtg 300 aacatcctga ggatccctgc aaagcgcatc tggttgcctg acatcgtgct ttacaacaac 360 gccgacggga cctatgaggt gtctgtctac accaacttga tagtccggtc caacggcagc 420 gtcctgtggc tgccccctgc catctacaag agcgcctgca agattgaggt gaagtacttt 480 cccttcgacc agcagaactg caccctcaag ttccgctcct ggacctatga ccacacggag 540 atagacatgg tcctcatgac gcccacagcc agcatggatg actttactcc cagtggtgag 600 tgggacatag tggccctccc agggagaagg acagtgaacc cacaagaccc cagctacgtg 660 gacgtgactt acgacttcat catcaagcgc aagcctctgt tctacaccat caacctcatc 720 atcccctgcg tgctcaccac cttgctggcc atcctcgtct tctacctgcc atccgactgc 780 ggcgagaaga tgacactgtg catctcagtg ctgctggcac tgacattctt cctgctgctc 840 atctccaaga tcgtgccacc cacctccctc gatgtgcctc tcatcggcaa gtacctcatg 900 ttcaccatgg tgctggtcac cttctccatc gtcaccagcg tctgtgtgct caatgtgcac 960 caccgctcgc ccagcaccca caccatggca ccctgggtca agcgctgctt cctgcacaag 1020 ctgcctacct tcctcttcat gaagcgccct ggccccgaca gcagcccggc cagagccttc 1080 ccgcccagca agtcatgcgt gaccaagccc gaggccaccg ccacctccac cagcccctcc 1140 aacttctatg ggaactccat gtactttgtg aaccccgcct ctgcagcttc caagtctcca 1200 gccggctcta ccccggtggc tatccccagg gatttctggc tgcggtcctc tgggaggttc 1260 cgacaggatg tgcaggaggc attagaaggt gtcagcttca tcgcccagca catgaagaat 1320 gacgatgaag accagagtgt cgttgaggac tggaagtacg tggctatggt ggtggaccgg 1380 ctgttcctgt gggtgttcat gtttgtgtgc gtcctgggca ctgtggggct cttcctaccg 1440 cccctcttcc agacccatgc agcttctgag gggccctacg ctgcccagcg tgactga 1497 <210> 12 <211> 1488 <212> DNA <213> Rattus norvegicus <400> 12 atgaggggta cgcccctgct cctcgtctct ctgttctctc tgcttcagga cggggactgc 60 cgcctggcca acgcagagga gaagctgatg gatgacctcc tgaacaaaac ccggtacaac 120 aacctgatcc gcccagccac cagctcctct cagctcatct ccatccgcct ggagctatca 180 ctgtcccagc tcatcagtgt gaatgagcga gaacagatca tgaccaccag catctggctg 240 aaacaggaat ggactgacta ccgcctggcc tggaacagct cctgctatga aggggtgaac 300 attctgagga tccccgcaaa gcgtgtctgg ttgcctgaca tcgtgttgta caacaatgcc 360 gatggcacct atgaggtgtc tgtctacacc aacgtgattg tgcgttccaa tggcagcatc 420 cagtggctgc cccctgctat ctacaagagt gcctgcaaga ttgaggtgaa gcactttccc 480 ttcgaccagc agaactgcac cctcaaattc cgctcctgga cctatgacca cacggagatt 540 gacatggttc ttaagtcgcc cacggccatc atggatgact tcacccccag tggtgaatgg 600 gacattgtgg ccctcccagg acggaggacg gtgaaccctc aggaccccag ctacgtggac 660 gtgacctatg acttcatcat caagcgcaag ccgctcttct acaccatcaa tcttatcatt 720 ccttgtgtgc tcatcacctc gctggctatc ctggtcttct acctgccctc cgactgtggg 780 gagaagatga cgctctgcat ctctgtgctg ctggcactca cgttcttcct gctgctcatc 840 tccaagatcg tgcctcccac ctcccttgac ataccgctca ttggcaagta cctcttgttc 900 accatggtgc tggtcacctt ttccatcgtc accactgtgt gtgtcctcaa tgtgcaccac 960 cgctcaccca gcactcacac catggcatcc tgggtcaagg agtgcttcct gcacaaactg 1020 cccaccttcc tcttcatgaa gcgtcccggt cttgaagtca gcctggtcag ggtccctcat 1080 cccagccagc tgcacttggc cacagctgat actgcagcca cctctgcctt aggccccacc 1140 agcccatcca acctctatgg gagttccatg tactttgtga accctgtccc tgccgctcct 1200 aagtctgcag tcagctccca cacagcaggc ctccccaggg atgcccgtct gaggtcctcc 1260 gggaggttcc gggaagatct acaggaagca ttagagggtg tcagcttcat cgcccagcat 1320 ctggagagcg atgaccgaga tcaaagtgtc atcgaggact ggaagttcgt cgcgatggtt 1380 gtgggggcc catggggctc 1440 ttcctgccac cccttttcca gatccacgca ccctccaagg actcctag 1488 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human VACHT Probe <400> 13 gtcatcgtgc ccatagtgcc cgact 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHT Primer_Forward <400> 14 gaacatctac cagctttcct tcaga 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHT Primer_Reverse <400> 15 tgattcgcat aacccaaacg atttc 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHAT Probe <400> 16 agtgaggagt ctgggctgcc caaac 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNA3 Probe <400> 17 acctgtggct caagcaaatc tggaa 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNB3 Probe <400> 18 ttgaaaatgc tgacggccgc ttcga 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CHRNB4 Probe <400> 19 cctttgcggg cgcgggaact gccgc 25 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CAMK2B Probe <400> 20 agcattccaa catcgtgcgt ctcca 25 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH Probe <400> 21 gggcgcctgg tcaccagggc tgctt 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human TBP Probe <400> 22 gcagctgcaa aatattgtat ccaca 25 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> human CYC1 Probe <400> 23 tcttagagtt tgacgatggc acccc 25 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> mouse VACHT Primer_Forward <400> 24 aaacatcgtc cactggtcc 19 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse VACHT Primer_Reverse <400> 25 ctttccctaa gatgcctcca c 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHT Primer_Forward <400> 26 tttccagatc ccaagaccaa g 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHT Primer_Reverse <400> 27 atgctccaaa cacaaacaca g 21 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse CHAT Primer_Forward <400> 28 tccaagacac caatgaccag 20 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse CHAT Primer_Reverse <400> 29 ggacgccatt ttgactatct ttc 23 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNA3 Primer_Forward <400> 30 ttctacctgc cctccgactg t 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNA3 Primer_Reverse <400> 31 aatcccgccg ttcctaaaat g 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB3 Primer_Forward <400> 32 gaaaggagag tgatacagcc g 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB3 Primer_Reverse <400> 33 agaaagagcc acaggaagat g 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB4 Primer_Forward <400> 34 ctatcactgt cccagctcat c 21 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CHRNB4 Primer_Reverse <400> 35 agaaccatgt caatctccgt g 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse CAMK2B Primer_Forward <400> 36 cagaagctga gggcctccca 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse CAMK2B Primer_Reverse <400> 37 ggtcacagat tttcgcatag g 21 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH Primer_Forward <400> 38 ccttcattga cctcaactac at 22 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH Primer_Reverse <400> 39 caaagttgtc atggatgacc 20 <210> 40 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> CHAT shRNA <400> 40 gagcgagcct tgttgacat 19 <210> 41 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> scrambled RNAi <400> 41 tcgtcatagc gtgcatagg 19

Claims (21)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자에 대한 RNAi 서열을 발현하는 재조합 바이러스 벡터를 제작하는 단계; 및
인간을 제외한 정상 포유동물의 뇌 내 고삐핵(Habenula)에 상기 재조합 바이러스 벡터를 주입하여 CHAT 유전자를 녹다운(knock-down)시키는 단계;를 포함하는 항우울제 치료불응성 동물모델 제조방법.
Preparing a recombinant viral vector expressing an RNAi sequence for CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2; And
And injecting the recombinant viral vector into the brain Habenula of normal mammals other than humans to knock-down the CHAT gene.
서열번호 1 또는 서열번호 2로 표시되는 CHAT(choline acetyltransferase) 유전자에 대한 RNAi 서열을 발현하는 재조합 바이러스 벡터를 제작하는 단계; 및
인간을 제외한 정상 포유동물의 뇌 내 고삐핵(Habenula)에 상기 재조합 바이러스 벡터를 주입하여 CHAT 유전자를 녹다운(knock-down)시키는 단계;를 포함하는 무쾌감증 동물모델 제조방법.
Preparing a recombinant viral vector expressing an RNAi sequence for CHAT (choline acetyltransferase) gene represented by SEQ ID NO: 1 or SEQ ID NO: 2; And
And knocking down the CHAT gene by injecting the recombinant viral vector into the brain Habenula of normal mammals other than humans.
제 16항 또는 제 17항 중 어느 한 항에 있어서, 상기 재조합 바이러는 벡터는 도 3A에 기재된 개열지도를 갖는 벡터인 AAV-CHAT shRNA인 것을 특징으로 하는 동물모델 제조방법.18. The method according to any one of claims 16 to 17, wherein the recombinant vector is an AAV- CHAT shRNA which is a vector having a cleavage map as shown in Fig. 3A. 제 16항 또는 제 17항 중 어느 한 항에 있어서, 상기 인간을 제외한 정상 포유동물은 마우스 또는 랫트인 것을 특징으로 하는 동물모델 제조방법.18. The method according to any one of claims 16 to 17, wherein the normal mammal except for the human is a mouse or a rat. 제 16항의 방법에 따라 제조된 항우울제 치료불응성 동물모델.An antidepressant treatment-refractory animal model prepared according to the method of claim 16. 제 17항의 방법에 따라 제조된 무쾌감증 동물모델.


17. An anesthesia animal model prepared according to the method of claim 17.


KR1020170029917A 2017-03-09 2017-03-09 Use of Cholinergic genes for treating depressive disorder KR101919485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170029917A KR101919485B1 (en) 2017-03-09 2017-03-09 Use of Cholinergic genes for treating depressive disorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170029917A KR101919485B1 (en) 2017-03-09 2017-03-09 Use of Cholinergic genes for treating depressive disorder

Publications (3)

Publication Number Publication Date
KR20180103258A KR20180103258A (en) 2018-09-19
KR101919485B1 true KR101919485B1 (en) 2018-11-16
KR101919485B9 KR101919485B9 (en) 2022-06-10

Family

ID=63719123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170029917A KR101919485B1 (en) 2017-03-09 2017-03-09 Use of Cholinergic genes for treating depressive disorder

Country Status (1)

Country Link
KR (1) KR101919485B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200137064A (en) 2019-05-28 2020-12-09 고려대학교 산학협력단 Animal model of depression and drug screening method for preventing or treating depression using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634017B1 (en) * 2018-10-26 2024-02-05 고려대학교 산학협력단 Recombinant vector for producing animal model with cardiac hypertrophy, transformed model with cardiac hypertrophy by the recombinant vector and a method of production thereof
KR102131883B1 (en) * 2018-11-13 2020-07-09 한국과학기술연구원 Animal model of cre-dependent anti-depressant phenotype and manufacturing method thereof

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
eNuero (2016) 3(3):e0109-16.2016
NCBI Reference Sequence: NM_000749.4 (2016.12.10.)*
NCBI Reference Sequence: NM_000750.3 (2015.11.15.)*
NCBI Reference Sequence: NM_001142933.1 (2014.04.20.)*
NCBI Reference Sequence: NM_001305005.2 (2015.08.02.)*
NCBI Reference Sequence: NM_003055.2 (2014.01.26.)*
NCBI Reference Sequence: NM_031663.2 (2014.02.01.)*
NCBI Reference Sequence: NM_052805.2 (2013.02.02.)*
NCBI Reference Sequence: NM_052806.2 (2015.08.10.)*
NCBI Reference Sequence: NM_133597.1 (2014.10.10.)*
NCBI Reference Sequence: NR_046313.1 (2014.07.04.)*
NCBI Reference Sequence: XM_006244253.3 (2016.07.26.)*
NCBI Reference Sequence: XM_017600025.1 (2016.07.26.)*
김현(고려대학교), "연합기억 전사 조절 네트워크 규명" 최종보고서, 뇌과학원천기술개발사업 제5차연도 최종보고서, 미래창조과학부 (2016)*
한승리, "만성적인 구속 스트레스에 의한 백서 고삐핵의 유전자 발현 변화 연구", 박사학위논문, 고려대학교 의학전문대학원 (2015)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200137064A (en) 2019-05-28 2020-12-09 고려대학교 산학협력단 Animal model of depression and drug screening method for preventing or treating depression using the same

Also Published As

Publication number Publication date
KR20180103258A (en) 2018-09-19
KR101919485B9 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
Jiang et al. Micro-RNA-137 inhibits tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y cells
El Gaamouch et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice
US9730945B2 (en) Diagnosis of autism spectrum disorders and its treatment with an antagonist or inhibitor of the 5-HT2c receptor signaling pathway
CN104039960B (en) Micro-rnas and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone- associated medical conditions
Niimi et al. Abnormal RNA structures (RNA foci) containing a penta‐nucleotide repeat (UGGAA) n in the P urkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis
EP3336548B1 (en) Method for providing information on chronic myeloid leukemia
Wu et al. MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1: implication for ameliorated cognitive deficits in APP/PS1 mice
CN106715695A (en) Micro-rnas and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone- associated medical conditions
KR101919485B1 (en) Use of Cholinergic genes for treating depressive disorder
US20070074295A1 (en) Schizophrenia related gene
Zhang et al. GANT61 plays antitumor effects by inducing oxidative stress through the miRNA‐1286/RAB31 axis in osteosarcoma
WO2014018375A1 (en) Cyp8b1 and uses thereof in therapeutic and diagnostic methods
US20140107104A1 (en) Combination medicine for treatment of depression
US11510911B2 (en) Method for prediction of susceptibility to sorafenib treatment by using SULF2 gene, and composition for treatment of cancer comprising SULF2 inhibitor
KR102331240B1 (en) Diagnosis and therapy of brain neurological disease using SGK3 gene
JP2021176852A (en) Biomarker composition for diagnosing radiation-resistant cancer or for predicting prognosis of radiation therapy containing pmvk as active ingredient
JP2018523656A (en) Nonalcoholic fatty liver regulator 14-3-3 protein
JP2018522947A (en) Nonalcoholic fatty liver regulator 14-3-3 protein
EP4184166A1 (en) Method for screening colorectal cancer metastasis inhibitor
KR102202120B1 (en) Use of Ube2h for Diagnosis or Treatment of Alzheimer&#39;s Disease
US20230288399A1 (en) Method for screening colorectal cancer metastasis inhibitor
WO2022033529A1 (en) Use of sema3d antagonist in preventing or treating neurodegenerative diseases and prolonging lifespan
Oliveira et al. Differential expression of alpha-synuclein in the hippocampus of SHR and SLA16 isogenic rat strains
Li et al. M3 subtype of muscarinic acetylcholine receptor inhibits cardiac fibrosis via targeting microRNA-29b/beta-site app cleaving enzyme 1 axis
EP3845246A1 (en) Medicine for preventing and/or treating stress load-related disease

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]