KR101918817B1 - Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte - Google Patents

Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte Download PDF

Info

Publication number
KR101918817B1
KR101918817B1 KR1020160129064A KR20160129064A KR101918817B1 KR 101918817 B1 KR101918817 B1 KR 101918817B1 KR 1020160129064 A KR1020160129064 A KR 1020160129064A KR 20160129064 A KR20160129064 A KR 20160129064A KR 101918817 B1 KR101918817 B1 KR 101918817B1
Authority
KR
South Korea
Prior art keywords
stem cells
cells
hepatocyte
differentiation
hepatocytes
Prior art date
Application number
KR1020160129064A
Other languages
Korean (ko)
Other versions
KR20180038227A (en
Inventor
한충성
김종현
우동훈
Original Assignee
(주) 넥셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 넥셀 filed Critical (주) 넥셀
Priority to KR1020160129064A priority Critical patent/KR101918817B1/en
Priority to CN201710066109.9A priority patent/CN107916248A/en
Publication of KR20180038227A publication Critical patent/KR20180038227A/en
Application granted granted Critical
Publication of KR101918817B1 publication Critical patent/KR101918817B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5067Liver cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/31Pituitary sex hormones, e.g. follicle-stimulating hormone [FSH], luteinising hormone [LH]; Chorionic gonadotropins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/04Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from germ cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Abstract

본 발명인 간세포 분화 유도 방법을 통해 종래기술보다 많은 수의 간세포를 효과적으로 획득할 수 있는 효과가 있다. 이를 위해 특히, 간세포 분화 유도 전단계로서, 인간 전분화능 줄기세포에 TrypLETM select를 3단계에 걸쳐 처리하여 고순도의 미분화 줄기세포만 정제하는 A단계; 정제된 미분화 줄기세포에 Activin A 및 CHIR99021을 동시에 처리하여 내배엽성세포를 수득하는 B단계; 수득한 내배엽성세포에 레티노산(retinoic acid, RA)를 처리하여 간모세포를 수득하는 C단계; 및 수득한 간모세포를 분화용 플레이트에서 부유시킨 후, 독성 평가가 가능한 96 웰 플레이트(well plate)에 부착시키고 HGF(hepatocyte growth factor) 및 DEX(Dexamethasone)를 처리하여 간세포를 유도하는 D단계;를 포함하는 것을 특징으로 하는 인간 줄기세포 유래 간세포 분화 방법이 개시된다.The hepatocyte differentiation induction method of the present invention can effectively acquire a larger number of hepatocytes than the prior art. Specifically, step A, in which human precociousment stem cells are treated with TrypLE TM select in three steps to purify only highly purified undifferentiated stem cells, Treating the purified undifferentiated stem cells with Activin A and CHIR99021 simultaneously to obtain endodermal cells; Treating the obtained endodermal cells with retinoic acid (RA) to obtain a hepatocyte; And D stage in which hepatic stem cells are induced by suspending the obtained hepatic stem cells on a differentiation plate, attaching them to a 96-well plate capable of evaluating toxicity, treating HGF (hepatocyte growth factor) and DEX (Dexamethasone) A stem cell-derived hepatocyte differentiation method comprising the steps of:

Description

인간 줄기세포 유래 간세포 분화 방법 및 간세포{Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte}TECHNICAL FIELD The present invention relates to a stem cell-derived hepatocyte differentiation method and a hepatocyte-

본 발명은 인간 줄기세포로부터 간세포로의 분화를 유도하는 방법 및 간세포에 관한 것이다. 보다 상세하게는 인간 전분화능 줄기세포(human pluripotent stem cells)로부터 생체 외(in vitro) 세포 독성 평가에 적합한 고수율의 분화된 간세포를 확보하기 위한 분화 방법 및 그 방법으로 분화된 간세포에 관한 것이다.The present invention relates to a method for inducing differentiation of human stem cells into hepatocytes and hepatocytes. More particularly, the present invention relates to a method of differentiation for securing a high yield of differentiated hepatocytes suitable for evaluation of in vitro cytotoxicity from human pluripotent stem cells, and hepatocytes differentiated by the method.

바이오 신약 개발을 크게 두 단계로 분류하면 전 임상 단계와 임상 단계로 나눌 수 있다. 이 중에서 전 임상 단계는 사람에 대한 후보 물질의 안정성과 효과를 확인하기 전에 동물 모델이나 살아있는 세포를 대상으로 하는 생화학적 실험들로서 신약이 임상 단계에서 퇴출될 가능성을 줄여주는 역할을 수행한다. 하지만, 동물 모델의 경우 개체 간, 종 (strain)간 및 성별 간의 변이로 인해 정확한 결과를 도출하기 어려운 문제가 있었다. 이러한 이유로 인간 장기에서 추출한 초대 배양 세포(primary cultured cells)가 일반적으로 사용되고 있으며, 신약 후보 물질들에 대한 간 독성(hepatotoxicity) 평가에서도 초대 배양 간세포(human primary hepatocytes, hPHs)가 널리 사용되고 있다. The development of biopharmaceuticals can be categorized into two phases: preclinical and clinical. Among these, the preclinical phase is biochemical experiments on animal models or living cells before confirming the stability and effects of candidate substances on humans, thus reducing the likelihood that new drugs will be withdrawn from clinical trials. However, in animal models, there is a problem that it is difficult to derive accurate results due to variations among individuals, strains, and genders. For this reason, primary cultured cells extracted from human organs are generally used, and human primary hepatocytes (hPHs) are widely used in the evaluation of hepatotoxicity for new drug candidates.

하지만, 인간 초대 배양 간세포 역시 전 임상 단계에서의 사용에 있어 여러 가지 제한 요소들이 있으며, 그 제한 요소들로는 ① 제한적 공급, ② 큰 비용 부담, ③ 인종별 간 기능성의 불균등, ④ 체외 배양시 단시간의 간 기능성 소실을 포함하고 있다. 따라서 초대 배양 간세포를 대체하기 위한 방법으로 상대적으로 획득하기 쉽고 생체 외 배양이 용이한 간종양세포주(HepG2)를 전 임상 단계에서의 시험에 사용하기도 하지만, 이러한 간종양세포주는 싸이토크롬 효소(CYP enzymes), GST 효소를 포함하는 간세포 특이적 기능성 약물대사효소 및 간 세포내에서 약물의 흡수와 배출을 맡고 있는 ABC 전달체(ABC transporters), SLC 전달체(SLC transporters)를 포함하는 주요 장막 전달체(plasma membrane transporters)의 발현 및 활성이 매우 낮으므로 초대 배양 간세포를 대체하기에는 상당히 미흡한 문제가 있었다. 따라서, 초대 배양 간세포를 대체할 다른 방안으로 인간 배아줄기세포 (human embryonic stem cells, hESCs) 및 유도 전분화능 줄기세포(induced pluripotent stem cells, iPSCs)를 포함하는 전분화능 줄기세포(pluripotent stem cell, PSCs)로부터 유도 분화된 간세포 유사 세포(hepatocyte-like cells, HLCs)가 전 임상 단계의 시험 재료로 각광을 받고 있다. However, human invasive cultured hepatocytes also have various limitations in their use in the preclinical phase, and their limitations include: ① limited supply, ② high cost burden, ③ unevenness of liver function, and ④ short- Includes functional loss. Therefore, hepatocellular carcinoma cell line (HepG2), which is relatively easy to obtain and easy to cultivate in vitro, is used as a method for replacing primary cultured hepatocytes. However, such a hepatocellular carcinoma cell line is a cytochrome enzyme (CYP enzymes, hepatocyte-specific functional drug metabolizing enzymes, including GST enzymes, and ABC transporters and SLC transporters, which are responsible for drug absorption and release in liver cells. transporters) are very low in expression and activity. Therefore, there has been a problem in replacing primary cultured hepatocytes with a considerably insufficient amount. Therefore, pluripotent stem cells (PSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), may be used as alternative means for replacing primary cultured hepatocytes (Hepatocyte-like cells, HLCs), which are derived from hepatocyte-like cells, have been attracting attention as test materials for the entire clinical stage.

전분화능 줄기세포는 무한 증식할 수 있는 자가 증식 능력(self-renewal capacity) 및 생체 내 모든 세포로 분화(differentiation)할 수 있는 전능성 (pluripotency)을 가지고 있으므로, 전분화능 줄기세포로부터 유도 분화된 간세포를 간 독성 평가에 이용하게 되면 초대 배양 간세포의 한계인 세포 공급의 어려움을 해결할 수 있다. 또한, 전분화능 줄기세포 유래 간세포는 간종양세포주와는 달리 간세포 특이적 약물대사효소 및 주요 장막 전달체들을 발현함으로써, 신약 후보 물질의 전 임상 단계에서 간 독성 시험에 좋은 재료로 활용될 수 있다. Since the pluripotent stem cells have self-renewal capacity capable of infinite proliferation and pluripotency capable of differentiation into all cells in vivo, stem cells differentiated from the pluripotent stem cells can be differentiated into stem cells, When used for liver toxicity evaluation, it is possible to solve the difficulty of cell supply which is the limit of primary cultured hepatocytes. In addition, unlike hepatocellular carcinoma cells, pre-differentiation stem cell-derived hepatocytes express hepatocyte-specific drug metabolizing enzymes and major membrane transporters, and thus can be used as a good material for hepatotoxicity testing in all clinical stages of new drug candidates.

따라서, 전 세계적으로 전분화능 줄기세포로부터 고수율의 간 세포 유도 분화 방법에 대한 연구 개발이 활발하게 이루어지고 있으며, 이를 통해 많은 간세포 유도 분화 방법이 보고되고 있다(Hey et al, Stem cells 26:894, 2008; Si-Tayeb et al, Hepatology 51:297, 2010; Hannan et al, Nat Protoc 8(2):430, 2013). 그러나, 종래의 간세포 유도 분화 방법에 의하여 생산된 전분화능 줄기세포 유래 간세포는 표현형(phenotype)적으로는 성체 간세포와 유사하지만 인간 배 발생의 매우 초기 단계인 미분화 상태(undifferentiated status)로부터 유도 분화되었기 때문에 기능적인 측면에서 성체 간세포보다는 태아의 간세포와 더욱 유사하며, 실제로 성체 간세포의 주요 기능인 약물 대사에 필요한 간 특이적 효소 활성이 간종양세포주보다는 높지만 인간 초대 간세포에 비해 낮은 것이 문제로 보고되고 있다. 따라서, 오늘날 전 임상 단계의 시험 중 성공적인 신약 스크리닝 및 간 독성 평가를 위해서는 고수율의 고기능성 간세포 분화 유도 방법에 대한 개발이 절실히 요구되고 있다.Therefore, a high yield of hepatocyte-induced differentiation from pre-differentiating stem cells has been actively developed worldwide, and many hepatocyte-induced differentiation methods have been reported (Hey et al, Stem cells 26: 894 , 2008; Si-Tayeb et al, Hepatology 51: 297, 2010; Hannan et al., Nat Protoc 8 (2): 430, 2013). However, since the hepatocytes derived from the pluripotent stem cells produced by the conventional hepatocyte-induced differentiation method are phenotypically similar to adult hepatocytes, they are induced and differentiated from undifferentiated status, which is a very early stage of human embryogenesis In terms of function, hepatocytes are more similar to embryonic hepatocytes than adult hepatocytes. In fact, hepatic specific enzyme activity required for drug metabolism, which is the main function of adult hepatocytes, is higher than hepatocellular carcinoma cells but lower than human hepatic hepatocellular carcinoma cells. Therefore, in order to evaluate successful new drug screening and hepatotoxicity during the preclinical clinical trials, it is urgently required to develop a high yielding method for inducing high-function hepatocyte differentiation.

1. Hey et al, Stem cells 26:894, 20081. Hey et al, Stem cells 26: 894, 2008 2. Si-Tayeb et al, Hepatology 51:297, 20102. Si-Tayeb et al, Hepatology 51: 297, 2010 3. Hannan et al, Nat Protoc 8(2):430, 20133. Hannan et al., Nat Protoc 8 (2): 430, 2013

본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 신약 후보 물질의 전 임상 단계에서 간 독성 평가에 적합한 간세포를 얻을 수 있는 분화 유도 방법을 제공하는 데 있다.DISCLOSURE Technical Problem The present invention has been conceived to solve the above problems, and an object of the present invention is to provide a method of inducing differentiation to obtain hepatocytes suitable for hepatotoxicity evaluation in all clinical stages of a drug candidate substance.

상기와 같은 본 발명의 목적은 간세포 분화 유도 전단계로서, 인간 전분화능 줄기세포에 TrypLETM select를 3단계에 걸쳐 처리하여 고순도의 미분화 줄기세포만 정제하는 A단계; 정제된 미분화 줄기세포에 Activin A 및 CHIR99021을 동시에 처리하여 내배엽성세포를 수득하는 B단계; 수득한 내배엽성세포에 레티노산(retinoic acid, RA)를 처리하여 간모세포를 수득하는 C단계; 및 수득한 간모세포를 분화용 플레이트에서 부유시킨 후, 독성 평가가 가능한 96 웰 플레이트(well plate)에 부착시키고 HGF(hepatocyte growth factor) 및 DEX(Dexamethasone)를 처리하여 간세포를 유도하는 D단계;를 포함하는 것을 특징으로 하는 인간 줄기세포 유래 간세포 분화 방법을 제공함으로써 달성될 수 있다.It is an object of the present invention to provide a method for producing stem cells, which comprises steps A) and A) for purifying only highly purified undifferentiated stem cells by treating the human pre-differentiating stem cells with TrypLE TM select in three steps; Treating the purified undifferentiated stem cells with Activin A and CHIR99021 simultaneously to obtain endodermal cells; Treating the obtained endodermal cells with retinoic acid (RA) to obtain a hepatocyte; And D stage in which hepatic stem cells are induced by suspending the obtained hepatic stem cells on a differentiation plate, attaching them to a 96-well plate capable of evaluating toxicity, treating HGF (hepatocyte growth factor) and DEX (Dexamethasone) The present invention provides a method for differentiating stem cells derived from human stem cells.

또한, B단계에서, 중내배엽성 세포로 유도한 세포를 완전내배엽성 세포로 분화를 유도하기 위하여 BMP2(bone morphogenetic protein 2) 및 bFGF(basic fibroblast growth factor)를 추가로 처리할 수 있다.In step B, BMP2 (bone morphogenetic protein 2) and bFGF (basic fibroblast growth factor) may be further treated to induce differentiation of mesenchymal stem cells into fully endodermically differentiated cells.

아울러, C단계를 수행하기 전에, B단계에서 수득한 완전내배엽성 세포에 BMP4(bone morphogenetic protein 4)를 처리하는 단계;를 더 포함할 수 있다.Further, before performing step C, the step of treating BMP4 (bone morphogenetic protein 4) with the complete endodermically obtained cell obtained in step B may be further included.

그리고, C단계에서, 수득한 간모세포를 약물 독성 실험을 위해 TrypLETM select를 이용하여 세포를 부유시킨 후 96 웰 플레이트(well plate)에 다시 부착시킬 수 있다.In step C, the obtained hepatic stem cells can be suspended in 96-well plates by floating the cells using TrypLE TM select for drug toxicity experiments.

마지막으로, 본 발명은 D단계를 통해 수득한 간세포에 HGF 및 DEX를 처리하여 간세포를 성숙시키는 E단계를 더 포함할 수 있다.Finally, the present invention may further comprise an E step of treating hepatocytes obtained through step D with HGF and DEX to mature hepatocytes.

한편, 본 발명의 목적은 다른 카테고리로써, 상기의 분화 방법으로 분화된 간세포를 제공함으로써 달성될 수 있다.On the other hand, the object of the present invention can be achieved by providing hepatocytes differentiated by the differentiation method as another category.

첫째, 인간 전분화능 줄기세포 유래 간세포는 신약 개발의 필수 평가 단계인 약물 독성 및 안전성 평가에서 종래 사용되던 초대 배양 간세포를 대신하여 활용될 수 있으므로, 본 발명인 간세포 분화 방법은 새로운 표적 약물 발굴, 약리 효능연구 및 안전성 연구 평가를 통한 신약개발의 전분야에 활용될 수 있는 효과가 있다. First, the hepatocytes derived from human pre-differentiation ability stem cells can be used instead of the primary cultured hepatocytes conventionally used in the evaluation of drug toxicity and safety, which is an essential evaluation step of the development of new drugs. Therefore, the hepatocyte differentiation method of the present invention is a novel target drug discovery, It has an effect that can be applied to all areas of drug development through research and safety research evaluation.

둘째, 본 발명은 신약 후보 물질의 전 임상 단계에서 간 독성 평가(시험)에 적합하도록 인간 전분화능 줄기세포로부터 고기능성의 간세포를 고수율(알부민 발현 간세포 95% 이상)로 얻을 수 있는 효과가 있다.Second, the present invention has the effect of obtaining high-yielding hepatocytes from human pre-differentiating stem cells at a high yield (more than 95% of albumin-expressing hepatocytes) so as to be suitable for hepatotoxicity evaluation (test) in all clinical stages of a drug candidate substance .

셋째, 본 발명인 간세포 분화 유도 방법을 통해 종래기술보다 많은 수의 간세포를 효과적으로 획득할 수 있는 효과가 있다. Thirdly, the hepatocyte differentiation induction method of the present invention can effectively acquire a greater number of hepatocytes than the prior art.

넷째, 본 발명을 통해 얻어진 고기능성 간세포를 이용하여 전 임상 단계의 약물 독성 평가(시험)을 수행하게 됨으로써, 정확한 독성 평가 결과를 얻을 수 있는 효과가 있다.Fourth, the drug toxicity evaluation (test) at the pre-clinical stage is performed using the high-function hepatocyte obtained through the present invention, so that accurate toxicity evaluation results can be obtained.

도 1a는 미분화 인간 전분화능 줄기세포 배양 및 간세포 유도 분화 방법을 나타낸 단계도,
도 1b는 고순도로 정제된 인간 미분화 전분화능 줄기세포를 이용하여 약물 독성 평가에 적합한 성숙 간세포로 분화 유도하는 과정을 단계별로 나타난 모식도,
도 2는 간세포 유도 분화 전 고순도의 인간 미분화 전분화능 줄기세포를 수득하기 위한 정제 과정 중 계대 배양을 거치면서 순수한 미분화 줄기세포만 얻어지는 과정을 나타낸 도면,
도 3은 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 수를 나타낸 비교 그래프,
도 4a는 최종 분화된 간세포의 형태와 분화된 간세포를 간세포 특이적 표지 인자(알부민; ALB, 알파페토프로테인; AFP)로 형광 염색한 도면,
도 4b는 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 정량적 분화 수율을 확인하기 위한 유세포 분석 결과를 나타낸 도면,
도 5a는 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 성숙 정도를 나타낸 도면,
도 5b는 본 발명에서 최종 분화 유도된 17일차 간세포의 글리코겐 합성 능력을 PAS(periodic acid-Schiff) 염색을 통해 나타낸 도면이다.
FIG. 1A is a diagram showing a method of culturing undifferentiated human pre-differentiating stem cells and a method of inducing differentiation of hepatocytes.
FIG. 1B is a schematic diagram showing a step of inducing differentiation into mature hepatocytes suitable for drug toxicity evaluation using human undifferentiated pluripotent stem cells purified with high purity.
FIG. 2 shows a process of obtaining pure undifferentiated stem cells through subculture during purification to obtain high purity human undifferentiated pluripotent stem cells before hepatocyte-induced differentiation,
3 is a comparative graph showing the number of hepatocytes obtained by the method for inducing hepatocyte differentiation according to the present invention,
FIG. 4A is a graph showing the morphology of the final differentiated hepatocytes and the fluorescent staining of the differentiated hepatocytes with hepatocyte-specific markers (albumin; ALB, alpha-fetoprotein; AFP)
FIG. 4B is a graph showing the results of flow cytometry for confirming the quantitative yield of hepatocytes obtained by the hepatocyte differentiation induction method of the present invention,
FIG. 5A is a graph showing the degree of maturation of hepatocytes obtained by the hepatocyte differentiation induction method of the present invention,
FIG. 5B is a graph showing the glycogen synthesis ability of 17-day-old hepatocytes final differentiation-induced in the present invention through PAS (periodic acid-Schiff) staining.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 도면들 중 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호들 및 부호들로 나타내고 있음에 유의해야 한다. 또한, 하기에서 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the same components of the drawings are denoted by the same reference numerals and signs as possible even if they are shown on different drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

한편, 도 1a는 미분화 인간 전분화능 줄기세포 배양 및 간세포 유도 분화 방법을 나타낸 단계도로써, 간세포 유도 분화 전 고순도의 미분화 세포 수득을 위하여 지지영양세포에서 배양중인 인간 전분화능 줄기세포를 지지영양세포 없는 배양 조건에서 배양하면서 3번의 계대 배양을 거쳐 지지영양세포 및 일부 분화된 세포를 제거하는 과정을 포함하며, 미분화 인간 전분화능 줄기세포로부터 내배엽성 세포로의 분화 유도, 간모세포 및 간 전구세포로의 분화 유도 및 최종 간세포로의 분화 유도 방법을 포함하고 있다.In order to obtain highly purified undifferentiated cells before hepatocyte-induced differentiation, human pre-differentiating stem cells, which are cultured in supporting nutrient cells, are cultured in the absence of supporting nutrition cells The present invention relates to a method for inducing the differentiation of endogenous pluripotent stem cells into pluripotent human pluripotent stem cells, inducing differentiation into hepatocytes and hepatic progenitor cells, and culturing under culturing conditions, And induction of differentiation and induction of differentiation into the final hepatocyte.

그리고, 도 1b는 고순도로 정제된 인간 미분화 전분화능 줄기세포를 이용하여 약물 독성 평가에 적합한 성숙 간세포로 분화 유도하는 과정을 단계별로 나타난 모식도로써, 간세포 유도 분화에 사용되는 분화 유도 인자(내배엽 유도 인자; Activin A, CHIR99021, BMP2, bFGF / 간모세포 유도 인자; BMP4, FGF4 Rerinoic acid, Ascorbic cid, Nicotinamide, bFGF / 성숙 간세포 유도인자; HGF, Dexamethasone) 및 각 처리 시간을 나타내고 있다.FIG. 1B is a schematic diagram showing a stepwise process of inducing differentiation into mature hepatocytes suitable for evaluation of drug toxicity using high-purity human undifferentiated pre-differentiating stem cells. As shown in FIG. 1B, the differentiation inducer used for hepatocyte- ; Activin A, CHIR99021, BMP2, bFGF / hepatocyte inducer, BMP4, FGF4 Rerinoic acid, Ascorbic cid, Nicotinamide, bFGF / mature hepatocyte inducer, HGF and Dexamethasone).

또한, 도 2는 간세포 유도 분화 전 고순도의 인간 미분화 전분화능 줄기세포를 수득하기 위한 정제 과정 중 계대 배양을 거치면서 순수한 미분화 줄기세포만 얻어지는 과정을 나타내고 있다.FIG. 2 shows a process in which only pure undifferentiated stem cells are obtained through subculture during purification to obtain high purity human undifferentiated pre-differentiating stem cells before hepatocyte-induced differentiation.

본 발명인 간세포 분화 유도 방법은 간세포 분화 유도 전단계로서, 인간 전분화능 줄기세포에 TrypLETM select를 3단계에 걸쳐 처리하여 고순도의 미분화 줄기세포만 정제하는 A단계; 상기 정제된 미분화 줄기세포에 Activin A 및 CHIR99021을 동시에 처리하여 내배엽성세포를 수득하는 B단계; 상기 수득한 내배엽성세포에 레티노산(retinoic acid, RA)를 처리하여 간모세포를 수득하는 C단계; 및 상기 수득한 간모세포를 분화용 플레이트에서 부유시킨 후, 독성 평가가 가능한 96 웰 플레이트(well plate)에 부착시키고 HGF(hepatocyte growth factor) 및 DEX(Dexamethasone)를 처리하여 간세포를 유도하는 D단계;를 포함하고 있다.The method of inducing hepatocyte differentiation according to the present invention is a step A in which only high purity undifferentiated stem cells are purified by treating the human pre-differentiating stem cells with TrypLE TM select in three steps, Treating the purified undifferentiated stem cells with Activin A and CHIR99021 simultaneously to obtain endodermal cells; Treating the obtained endodermal-derived cells with retinoic acid (RA) to obtain a hepatocyte; And D) suspending the obtained hepatic stem cells on a differentiation plate, attaching the obtained hepatic stem cells to a 96-well plate capable of evaluating toxicity, treating HGF (hepatocyte growth factor) and DEX (Dexamethasone) to induce hepatocytes; .

또한, 상기 B단계에서, 중내배엽성 세포로 유도한 세포를 완전내배엽성 세포로 분화를 유도하기 위하여 BMP2(bone morphogenetic protein 2) 및 bFGF(basic fibroblast growth factor)를 추가로 처리하는 것을 포함할 수 있다.Further, in step B, further treatment of bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) may be performed to induce differentiation of mesenchymal stem cells into totally endodermally differentiated cells have.

아울러, 상기 C단계를 수행하기 전에, 상기 B단계에서 수득한 완전내배엽성 세포에 BMP4(bone morphogenetic protein 4)를 처리하는 단계를 더 포함할 수 있다.In addition, the method may further include treating BMP4 (bone morphogenetic protein 4) with the complete endodermically-derived cell obtained in step B before performing step C.

그리고, 상기 C단계에서, 상기 수득한 간모세포를 약물 독성 실험을 위해 TrypLETM select를 이용하여 세포를 부유시킨 후 96 웰 플레이트(well plate)에 다시 부착시킬 있다.Then, in step C, the obtained hepatic stem cells are suspended in cells using TrypLE TM select for drug toxicity test, and then reattached to a 96-well plate.

한편, 본 발명은 상기 D단계를 통해 수득한 간세포에 HGF 및 DEX를 처리하여 간세포를 성숙시키는 E단계를 더 포함할 수 있다.In the meantime, the present invention may further comprise an E step of treating hepatocytes obtained through step D with HGF and DEX to mature hepatocytes.

본 발명인 인간 줄기세포 유래 간세포 분화 방법에서, 줄기세포는 시험관 내 배양에서 간세포로 분화할 수 있는 능력을 가진 인간 유래의 세포, 바람직하게는 전분화능 줄기세포(pluripotent stem cells) 또는 상기 세포의 기원 세포를 말한다. In the human stem cell-derived hepatocyte differentiation method of the present invention, the stem cell is a human-derived cell capable of differentiating into hepatocytes in in vitro culture, preferably a pluripotent stem cell or a source cell of the cell .

여기서, 전분화능 줄기세포란 시험관 내 배양에 의해 미분화 상태로 유지된, 거의 영속적 또는 장기간 세포 증식이 가능하며, 적당한 조건에서 삼배엽(외배엽, 중배엽, 내배엽)의 모든 계보의 세포로 분화할 수 있는 능력을 가진 세포를 의미한다. 현재 전분화능 줄기세포는, 이미 배양 세포로서 널리 사용되고 있는 마우스, 원숭이, 인간 등의 포유동물 유래의 초기 배아에서 분리한 배아 줄기세포 (embryonic stem cells, 이하 "ES 세포"로 약칭함), 배아기(embryonic stage)의 원시 생식세포에서 분리한 배아 생식세포(embryonic germ cells, 이하 "EG 세포"로 약칭함) 및 성체의 골수에서 분리한 다능성 줄기세포(multipotent adult progenitor cells, 이하 "MAPC"으로 약칭함) 등이 있다.Here, the term "precursor differentiation stem cell" refers to a cell capable of almost enduring or prolonged cell proliferation maintained in an undifferentiated state by in vitro culture, capable of differentiating into cells of all lineage of trichomes (ectoderm, mesoderm, endoderm) under appropriate conditions Means cells with ability. Present pre-differentiation stem cells are known as embryonic stem cells (hereinafter abbreviated as "ES cells"), embryonic stem cells (hereinafter referred to as "ES cells") isolated from early embryos derived from mammals such as mouse, monkey, embryonic germ cells (hereinafter abbreviated as "EG cells") and pluripotent adult progenitor cells (hereinafter referred to as "MAPC") isolated from adult bone marrow ).

본 발명인 인간 줄기세포 유래 간세포 분화 방법에 있어서, 전분화능 줄기세포는 ES 세포, 각종 체세포의 역분화를 통해 제작된 배아 줄기세포와 유사한 형질을 가지는 세포(induced pluripotent stem cells, iPSC), EG 세포, 또는 MAPC인 방법, 바람직하게는 ES세포, 더욱 바람직하게는 인간 ES 세포인 줄기세포의 분화유도 방법일 수 있다.In the human stem cell-derived hepatocyte differentiation method of the present invention, the pluripotent stem cells are derived from ES cells, induced pluripotent stem cells (iPSC), EG cells, which are similar to embryonic stem cells prepared through the reprogramming of various somatic cells, Or MAPC, preferably a ES cell, more preferably a human ES cell.

또한, 본 발명에서 이용 가능한 세포는 상기 3종으로 한정되지 않으며, 인간의 배아나 태아, 제대혈, 또는 성체 장기나 골수 등의 성체 조직, 또는 혈액 등으로부터 유래된 모든 전분화능 줄기세포를 포함한다. 구체적인 예로, 모근 초세포나 표피세포에 5-아자사이티딘(5-azacytidine, 이하 "AZC"로 약칭함) 등의 약제를 처리하여 수득한 줄기세포 (Sharda & Zahner, 국제공개특허 제02/051980호)나, 단핵구 세포에 CR3/43 항체를 처리하여 수득한 줄기세포(Abuljadayel, Curr. Med. Res. Opinion 19: 355, 2003), 또는 성체내 귀세포 유래 줄기세포(Li et al, Nature Med., Advance online publication) 등의 ES 세포와 유사한 형질을 가지는 줄기세포를 들 수 있다. 이 경우, ES 세포와 유사한 형질이란, ES 세포에 특이적인 표면(항원) 마커가 존재하거나, ES 세포 특이적인 유전자를 발현하거나, 또는 테라토마 (teratoma) 형성 기능을 가지거나, 또는 키메라 마우스 형성능이 있는 등의 ES 세포에 특이적인 세포 생물학적 성질로 정의할 수 있다.In addition, the cells usable in the present invention are not limited to the above three species, and include all the pluripotent stem cells derived from human embryo, fetus, umbilical cord blood, adult tissues such as adult organs or bone marrow, or blood. As a specific example, stem cells (Sharda & Zahner, International Patent Publication No. 02/051980) obtained by treating medicinal agents such as 5-azacytidine (hereinafter abbreviated as "AZC" (Abuljadayel, Curr. Med. Res. Opin. 19: 355, 2003) or adult stem cells derived from adult cells (Li et al, Nature Med ., Advance online publication). In this case, the ES cell-like trait refers to a cell having a surface (antigen) marker specific to an ES cell, an ES cell specific gene, a teratoma forming function, or a chimeric mouse capable , And the like.

한편, '영양세포(feeder)' 또는 '피더세포'는 다른 유형의 세포와 공배양되어 제2 유형의 세포가 성장할 수 있는 환경을 제공하는, 한 유형의 세포를 기술하기 위해 사용되는 용어이다.On the other hand, 'feeder' or 'feeder cell' is a term used to describe a type of cell that provides an environment in which a second type of cell can co-cultivate with another type of cell.

<미분화(undifferentiated) 인간 줄기세포의 배양>&Lt; Culture of undifferentiated human stem cells >

인간 배아줄기세포(hESCs) 및 유도만능줄기세포(hiPSCs)는 지지영양세포(feeder layer)와 공동 배양을 통하여 미분화를 지속적으로 유지시킨다. 구체적으로는, 마이토마이신-C(10㎍/㎖)를 처리하여 세포 분열이 불활성화된 생쥐 배아 섬유아세포(Mouse embryonic fibroblasts, MEFs)로 만들어진 지지영양세포 상에 인간 배아줄기세포를 배양하는 것이며, 배양에 사용되는 배지는 20% 녹아웃 혈청대체물(knockout serum replacement, Invitrogen Life Technologies, USA), 8ng/㎖ bFGF, 1% 비필수아미노산 및 100 mM 베타메르캅토에탄올을 포함하는 DMEM/F12 배지이다. 상기 세포를 표준조건(37℃, 5% CO2 및 포화습도)의 배양기(incubator)에서 배양하고, 배지 교체는 매일 수행한다. hESCs 및 iPSCs는 약 6~8일 정도에 한번씩 계대 배양을 실시하고 계대 배양시 미분화 유지를 위하여 일부 미분화 hESCs 및 iPSCs는 상기와 동일한 배양 배지를 포함한 새로운 지지영양세포로 옮겨주고, 일부 미분화 hESCs 및 iPSCs는 간세포 유도 분화를 위하여 마트리겔이 코팅된 60mm 배양 접시에 옮겨주고 mTeSR1(STEMCELL technologies) 배지를 이용하여 배양한다. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) continue to undifferentiate through co-culture with feeder layers. Specifically, human embryonic stem cells are cultured on supporting nutrient cells made of mouse embryonic fibroblasts (MEFs) in which cell division is inactivated by treating mitomycin-C (10 μg / ml) The medium used for the culture is DMEM / F12 medium containing 20% knockout serum replacement (Invitrogen Life Technologies, USA), 8 ng / ml bFGF, 1% non essential amino acid and 100 mM beta mercaptoethanol. The cells are cultured in an incubator under standard conditions (37 ° C, 5% CO 2 and saturated humidity) and medium replacement is performed daily. The hESCs and iPSCs are subcultured once every 6 to 8 days. To maintain undifferentiated state during subculture, some undifferentiated hESCs and iPSCs are transferred to new supporting nutrition cells containing the same culture medium as above, and some undifferentiated hESCs and iPSCs Are transferred to a 60 mm culture dish coated with Matrigel for hepatocyte-induced differentiation and cultured using mTeSR1 (STEMCELL technologies) medium.

60mm 배양 접시 상에 영양지지세포 없이 배양한 hESCs 및 iPSCs가 배양 접시 상의 80% 정도 면적으로 콜로니를 형성하면, 배양한 hESCs 및 iPSCs는 간세포 분화를 시작하기 위하여 배지를 제거 후, TrypLETM select(Invitrogen)를 1분 동안 처리하여 먼저 일부 분화된 세포를 제거한다. 이후, 다시 TrypLETM select를 3분 동안 처리하여 배양된 hESCs 및 iPSCs를 단일세포로 분산시킨 다음, 1000rpm에서 5분간 원심 분리하여 세포만 분리하여 수획한다. 수획된 hESCs 및 iPSCs는 마트리겔이 코팅된 100mm 배양 접시에 5 X 106cells로 도포 후, mTeSR1 배지에 단백질 인산화효소 억제제인 10μM Y-27632(ROCK inhibitor) 첨가하여 1일간 37℃ 5% CO2 조건 배양기에서 배양 후 Y-27632(ROCK inhibitor)가 포함되지 않은 mTeSR1 배지로 1일간 추가 배양한 다음, 간세포 분화를 수행한다.When hESCs and iPSCs cultured on nutrient-free cells on a 60 mm culture dish form colonies on an area of about 80% on the culture dish, the cultured hESCs and iPSCs are cultured on a TrypLE select (Invitrogen ) For 1 minute to remove some of the differentiated cells. Then, trypLE TM select is treated again for 3 minutes to disperse the cultured hESCs and iPSCs into single cells, and centrifuged at 1000 rpm for 5 minutes to isolate and collect only the cells. Harvested with hESCs and iPSCs is matrigel after coated with 5 X 10 6 cells to the coated 100mm culture dishes, to 10μM Y-27632 (ROCK inhibitor) of protein kinase inhibitor is added to mTeSR1 medium 1 days 37 ℃ 5% CO 2 After culturing in a conditioner, the cells are further cultured in mTeSR1 medium containing no Y-27632 (ROCK inhibitor) for 1 day, and hepatocyte differentiation is performed.

<간세포로의 유도 분화>&Lt; Induction differentiation into hepatocytes >

간세포 분화 유도에 있어서 단계별로 필요한 시약 및 처리 기간에 관한 구체적인 내용은 [표 1]에 요약되어 있다.Table 1 summarizes the details of required reagents and treatment periods in the induction of hepatocyte differentiation.

단계step 조 합Combination 배지badge 처리시간Processing time 1
One
2μM CHIR99021 (Tocris), 100ng/㎖ Activin A (RαD)2 [mu] M CHIR99021 (Tocris), 100 ng / ml Activin (R [alpha] D) RPMIRPMI 1 d1 d
20ng/㎖ BMP2 (Peprotech), 5ng/㎖ bFGF (Peprotech)20ng / ml BMP2 (Peprotech), 5ng / ml bFGF (Peprotech) RPMI +B27RPMI + B27 2 d2 d
2


2

20ng/㎖ BMP4 (Peprotech)20 ng / ml BMP4 (Peprotech) RPMI +B27RPMI + B27 2 d2 d
2μM Retinoic acid (Sigma)2 [mu] M Retinoic acid (Sigma) DMEM +B27DMEM + B27 2 d2 d 1ng/㎖ bFGF (Peprotech), 100μM Ascorbic acid (Sigma), 1 mM nicotinamide (Sigma)1 ng / ml bFGF (Peprotech), 100 μM Ascorbic acid (Sigma), 1 mM nicotinamide (Sigma) DMEM +B27DMEM + B27 4 d4 d 3
3
20ng/㎖ HGF (Peprotech)20ng / ml HGF (Peprotech) ITS ITS 2 d2 d
10-6M Dexamethasone (DEX, Sigma)10-6M Dexamethasone (DEX, Sigma) L15 +B27L15 + B27 2 d2 d

① 1단계: 미분화 전 ① Step 1: Before undifferentiation 분화능Ability to distinguish 줄기세포의 내배엽성 세포 및  Endodermal cells of stem cells and 배쪽Abdomen 전장세포의 분화 유도 Induction of differentiation of whole cell

인간 발생 과정 중 소화관, 간 및 폐를 포함하는 내부 장기는 내배엽성 세포로부터 형성된다. 따라서, 생체 외 분화 유도 방법에서 전능성 줄기세포를 간 전구세포 및 간세포로 분화시키기 위해서는 그 첫 번째 단계로 높은 효율의 내배엽성 세포를 습득하는 것이 필수적이다. 따라서, 본 발명에서는 분화 1단계로 hESCs 및 iPSCs를 내배엽성 세포 및 배쪽 전장세포로 분화를 유도하였다. 구체적으로는, 100 mm 배양접시에 지지영양세포 없이 2일간 배양한 hESCs 및 iPSCs를 mTeSR1 배지를 제거 후, 2μM CHIR99021 및 100ng/㎖ AA(activin A)를 포함하는 RPMI 배지에서 1일간 배양한다. 이후, 상기 배양액을 20ng/㎖ BMP2 및 5ng/㎖ bFGF를 포함하는 RPMI 배지에서 추가로 2일간 분화 유도한다. During the process of human development, the internal organs, including the digestive tract, liver and lung, are formed from endoderm cells. Therefore, in order to differentiate the pluripotent stem cells into hepatic progenitor cells and hepatocytes in the in vitro differentiation induction method, it is essential to acquire highly efficient endoderm cells as a first step. Therefore, in the present invention, hESCs and iPSCs were induced to differentiate into endothelial cells and dorsal haematopoietic cells in one stage of differentiation. Specifically, hESCs and iPSCs cultured for 2 days without supporting nutrition cells in a 100 mm culture dish are cultured in RPMI medium containing 2 μM CHIR99021 and 100 ng / ㎖ AA (activin A) for 1 day after removing the mTeSR1 medium. Thereafter, the culture is further induced for 2 days in RPMI medium containing 20ng / ml BMP2 and 5ng / ml bFGF.

② 2단계: 내배엽성 세포의 ② Stage 2: Endoderm cells 간모세포Hepatocyte (( hepatoblastshepatoblasts ) 및 간 ) And liver 전구세포로의As a precursor cell 분화 유도 Induction of differentiation

1단계에서 수득한 내배엽성 세포를 추가로 8일간 배양하여 간모세포 및 간 전구세포로의 분화를 유도한다. 구체적으로는, 간모세포 분화를 위하여 20ng/㎖ BMP4 및 B27 보조제가 포함된 RPMI 배지에 분화 유도된 내배엽성 세포를 2일간 배양한 후, 추가로 2일간 2μM 레티노산(Retinoic acid) 및 B27 보조제가 포함된 DMEM 배지에서 분화 유도 후, 간 전구세포로의 분화를 위하여, DMEM 배지에 1ng/㎖ bFGF, 100μM 아스코르브산(Ascorbic acid) 및 1mM 니코틴아미드(nicotinamide)를 포함한 배지에 4일간 추가 분화 유도한다.The endogenous cells obtained in step 1 are further cultured for 8 days to induce differentiation into hepatic and hepatic progenitor cells. Specifically, for the hepatocyte differentiation, differentiation-induced endodermal cells were incubated for 2 days in RPMI medium supplemented with 20 ng / ml BMP4 and B27 adjuvant, followed by addition of 2 μM retinoic acid and B27 adjuvant for 2 days After induction of differentiation in the DMEM medium, for the differentiation into hepatocyte progenitor cells, DMEM medium was further induced to differentiate for 4 days in a medium containing 1 ng / ml bFGF, 100 μM ascorbic acid and 1 mM nicotinamide .

③ 3단계: 최종 간세포로의 분화③ Step 3: Differentiation into the final hepatocyte

2단계에서 분화된 간 전구세포로부터 최종 간세포 분화를 위하여 4일 동안 ITS와 B27 보조제가 첨가된 DMEM/F12에 20ng/㎖ HGF를 첨가하여 분화를 유도한다. 분화가 끝난 후 최종 신약개발 및 약물 독성 평가(실험)에 적합한 플랫폼 형성을 위하여 분화된 간세포에 TrypLETM select를 처리하여 단세포화 하고 제 1형 콜라겐이 미리 코팅된 96 well 배양용기에 1 X 105cells/well로 부착시킨 후 ITS와 B27 보조제가 첨가된 DMEM/F12에 10ng/㎖ 온코스타틴M(Oncostatin M), 10-6M 덱사메타손(Dexamethasone)을 첨가하여 6일 동안 배양한다. 상기 방법으로 최종 분화 유도된 간세포를 간세포 특이적 마커인 ALB, ASGPR1, NTCP와 MRP1을 유세포 분리법을 이용하여 확인하고 또한 간세포 기능성 평가를 위하여 PAS, 활성도를 확인한다. For the final hepatocyte differentiation from the differentiated hepatocyte precursor cells in stage 2, 20 ng / ml HGF was added to DMEM / F12 supplemented with ITS and B27 adjuvant for 4 days to induce differentiation. After the differentiation, the differentiated hepatocytes were treated with TrypLE TM select to form a platform suitable for final drug development and drug toxicity evaluation (experiment), and single-celled and cultured in a 96-well culture vessel pre-coated with type 1 collagen at 1 × 10 5 cells / well. Then, 10 ng / ml Oncostatin M and 10-6 M Dexamethasone are added to DMEM / F12 supplemented with ITS and B27 adjuvant and cultured for 6 days. Hepatocyte-specific markers such as ALB, ASGPR1, NTCP and MRP1 were identified by flow cytometry, and PAS activity was evaluated for hepatocyte functional assay.

<분화 분석 방법><Method of differentiation analysis>

면역형광Immunofluorescence 염색법 process of dyeing

96 웰플레이트(well plate)에서 최종 분화된 간세포에 4% PFA(paraformaldehyde)를 포함하는 PBS를 처리하여 20분 동안 상온에서 고정시킨 후 PBS로 3회 세척한다. 그 다음 0.3% Triton X-100/PBS 및 10% 혈청을 포함하는 PBS로 처리하여 블로킹 및 천공시킨 다음, 1차 항체를 처리 비율에 따라 희석 후, 4℃에서 12 ~ 16시간 동안 반응시켰다. 동형 마우스 IgG 또는 정상 당나귀 혈청을 음성 대조군으로 사용하였는데, 상기 음성대조군에서는 형광이 검출되지 않았다. ALB(1:400), AFP(1:400)에 대한 1차 항체를 희석하였다. PBS로 3회 세척하고, FITC(fluorescein isothiocyanate) 또는 TRITC(rhodamine)가 결합되고, 1:400으로 희석된 2차 항체를 가하고, 상온에서 1시간 30분 동안 반응시켰다. 다음으로, 1㎍/㎖ DAPI(4',6-diamidino-2-phenylindole)를 사용하여 세포의 핵을 염색하였다. 각 단계 사이에 세포와 절편을 인산완충액 식염수(phosphate-buffered saline, PBS)로 세척하였다. The final differentiated hepatocytes in a 96-well plate were treated with PBS containing 4% PFA (paraformaldehyde), fixed at room temperature for 20 minutes, and washed three times with PBS. The cells were then blocked and perforated by treatment with PBS containing 0.3% Triton X-100 / PBS and 10% serum, and the primary antibody was diluted according to the treatment ratio and reacted at 4 ° C for 12-16 hours. Homologous mouse IgG or normal donkey serum was used as a negative control, but no fluorescence was detected in the negative control. The primary antibody against ALB (1: 400), AFP (1: 400) was diluted. After washing three times with PBS, a secondary antibody diluted 1: 400 with FITC (fluorescein isothiocyanate) or TRITC (rhodamine) was added, and reacted at room temperature for 1 hour and 30 minutes. Next, the nuclei of the cells were stained using 1 / / ml DAPI (4 ', 6-diamidino-2-phenylindole). Between each step, cells and sections were washed with phosphate-buffered saline (PBS).

유세포Flow cell 분석 analysis

최종 분화된 간세포에 TrypLETM select를 가하여 단일세포로 분리한 다음, 4% PFA(paraformaldehyde)를 처리하여 4℃에서 20분 동안 고정시켰다. 상기 세포에 BD사에서 판매하는 FACS 세척 버퍼를 이용하여 세척 후, 1차 항체인 성숙 간세포 마커로 알려져 있는 ALB, ASGPR 1, NTCP와 MRP1 항체를 각각 처리하고 4℃에서 30분 동안 반응시켰다. 3번의 세척 과정 후 다시 2차 항체를 각각 4℃에서 30분 동안 반응시켰다. 이후 세척한 세포를 BD-FACS Calibur Flow Cytometer(FACS Calibur, USA)를 사용하여 분석하였다. 각 마커별로 3회의 독립적인 실험을 수행하였다. 실험결과는 Flowjo 소프트웨어를 사용하여 분석하였다. ALB의 경우 세포 분리기(FACS)로 분화 정도를 확인하였다.The final differentiated hepatocytes were separated into single cells by adding TrypLE select, and fixed with 4% paraformaldehyde (PFA) for 20 min at 4 ° C. The cells were washed with FACS washing buffer (BD) and treated with ALB, ASGPR 1, NTCP and MRP1 antibodies, respectively, which were known as primary mature hepatocyte markers, and reacted at 4 ° C for 30 minutes. After 3 washing steps, the secondary antibody was reacted at 4 ° C for 30 minutes. The washed cells were then analyzed using a BD-FACS Calibur Flow Cytometer (FACS Calibur, USA). Three independent experiments were performed for each marker. Experimental results were analyzed using Flowjo software. In the case of ALB, the degree of differentiation was confirmed by a cell separator (FACS).

PAS(Periodic Acid-PAS (Periodic Acid- SchiffSchiff ) 염색) dyeing

최종 분화된 간세포를 4% 포르말린과 95% 에탄올을 포함하는 용액으로 고정시키고, PAS(Periodic Acid Schiff) 용액으로 실온에서 5분 동안 반응시켰다. 증류수로 여러 번 세척한 다음, 세포에 Schiff's 시약을 15분 동안 처리하고, 흐르는 물에 5분간 세척한 다음, 헤마톡실린을 사용하여 실온에서 90초 동안 염색하였다. 세포내 글리코겐 입자(보라색)를 광학현미경(Carl Zeiss)으로 검출하였다. 2D 배양된 HLCs세포와 3D 배양된 스페로이드에서 모두 글리코겐의 축적이 잘 이루어졌음을 확인하였다.The final differentiated hepatocytes were fixed with a solution containing 4% formalin and 95% ethanol, and reacted with PAS (Periodic Acid Schiff) solution at room temperature for 5 minutes. After several washes with distilled water, the cells were treated with Schiff's reagent for 15 minutes, washed in running water for 5 minutes, and then stained with hematoxylin for 90 seconds at room temperature. Intracellular glycogen particles (purple) were detected with an optical microscope (Carl Zeiss). Both the 2D cultured HLCs cells and the 3D cultured spoloids showed good accumulation of glycogen.

역전사Reverse transcription PCRPCR 및 정량적  And quantitative PCRPCR

간모세포 및 최종 분화된 간세포로부터 TRIzol 시약을 사용하여 생체 이물질에 반복적으로 노출된 세포로부터 수득하고, 역전사 시스템(Promega Corp., USA)을 사용한 역전사 과정을 수행하였다. PCR 증폭 조건은 94℃ 5분, 35사이클(94℃ 30초, 50-57℃ 30초 및 72℃ 30초) 및 72℃ 10분으로 설정하였다. From the hepatocytes and the final differentiated hepatocytes, TRIzol reagent was used to obtain cells that were repeatedly exposed to a living body foreign substance, and a reverse transcription procedure using a reverse transcription system (Promega Corp., USA) was performed. PCR amplification conditions were 94 ° C for 5 minutes, 35 cycles (94 ° C for 30 seconds, 50-57 ° C for 30 seconds and 72 ° C for 30 seconds) and 72 ° C for 10 minutes.

RT-PCR 분석은 SYBR Green PCR Master Mix(Applied Biosystems, USA)를 사용하여 수행하였다. PCR 반응물은 12.5㎕ SYBR Green PCR Master Mix, 각각 0.8㎕ 10 mM의 프라이머, 10.4㎕ 증류수및 0.5㎕ 주형 cDNA를 포함하는 25㎕로 구성하여 각 프라이머에 맞는 조건에서 증폭하여 확인하였다. 각 유전자의 상대적인 발현수준은 GAPDH을 사용하여 정규화하여 측정하였다. 여기서 사용된 프라이머의 서열은 [표 2]와 같다.RT-PCR analysis was performed using SYBR Green PCR Master Mix (Applied Biosystems, USA). The PCR reactions consisted of 12.5 μl of SYBR Green PCR Master Mix, 25 μl each containing 0.8 μl of 10 mM primer, 10.4 μl of distilled water and 0.5 μl of template cDNA, and amplification was confirmed under conditions appropriate for each primer. Relative expression levels of each gene were normalized using GAPDH. The sequences of the primers used here are shown in Table 2.

유전자gene 정방향(5' → 3')The forward direction (5 '- &gt; 3' 정방향(5' → 3')The forward direction (5 '- &gt; 3' 산물크기 (bp)Product size (bp) ALB
AFP
HNF4a
CYP3A4
GAPDH
ALB
AFP
HNF4a
CYP3A4
GAPDH
CTAGGAAAAGTGGGCAGCAAATG
CCCGAACTTTCCAAGCCATA
ACTACATCAACGACCGCCAGT
GTGGTGAATGAAACGCTCAG
GCTCTCTGCTCCTCCTGTTC
CTAGGAAAAGTGGGCAGCAAATG
CCCGAACTTTCCAAGCCATA
ACTACATCAACGACCGCCAGT
GTGGTGAATGAAACGCTCAG
GCTCTCTGCTCCTCCTGTTC
GCGTTTTCTCATGCAACACACAT
TACATGGGCCACATCCAGG
ATCTGCTCGATCATCTGCCAG
CACCCCTTTGGGAATGAACA
CCATGGTGTCTGAGCGATGT
GCGTTTCTCATGCAACACACAT
TACATGGGCCACATCCAGG
ATCTGCTCGATCATCTGCCAG
CACCCCTTTGGGAATGAACA
CCATGGTGTCTGAGCGATGT
114
100
102
102
80
114
100
102
102
80

<분석 결과><Analysis result>

도 3은 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 수를 나타낸 비교 그래프로서, 본 출원인의 기존 출원 발명에 명시된 간세포 분화 유도 방법(1st protocol, 출원번호: 제10-2015-0113616호)에서 얻어진 간세포의 수와 본 발명의 간세포 분화 유도 방법(2nd protocol)으로 얻어진 간세포의 수를 비교하여 나타내고 있다. 각 간세포 분화 유도 방법을 통해 최종 분화된 총 3번의 서로 다른 실험에서 동일한 배양 접시 면적에서 얻어진 간세포의 수를 비교한 결과 본 발명의 분화 유도 방법으로 간세포 분화 유도시 본 발명자의 기존 출원에 명시된 방법으로 분화 유도한 간세포에 비하여 간세포 수득 비율이 약 5배 증가했음을 확인할 수 있다.FIG. 3 is a graph showing the number of hepatocytes obtained by the hepatocyte differentiation induction method of the present invention, and is a graph obtained by the method of inducing hepatocyte differentiation (1 st protocol, The number of hepatocytes obtained by the number of hepatocytes and the method for inducing hepatocyte differentiation according to the present invention (2 nd protocol) are shown in comparison. As a result of comparing the number of hepatocytes obtained from the same culture dish area in three different experiments, which were final differentiated by each hepatocyte differentiation induction method, the method of inducing hepatocyte differentiation according to the induction method of the present invention, It can be confirmed that the ratio of hepatocyte to hepatocyte-derived hepatocytes increased about 5 times.

또한, 도 4a는 최종 분화된 간세포의 형태와 분화된 간세포를 간세포 특이적 표지 인자(알부민; ALB, 알파페토프로테인; AFP)로 형광 염색한 도면으로써, 본 발명의 간세포 분화 유도 방법으로 인간 전분화능 줄기세포로부터 간세포 분화가 효과적으로 분화되었음을 확인할 수 있다. 4A is a graph showing the final differentiated hepatocyte morphology and differentiated hepatocytes by fluorescent staining with hepatocyte-specific markers (albumin, ALB, alpha-fetoprotein; AFP) It can be confirmed that hepatocyte differentiation from stem cells is effectively differentiated.

그리고, 도 4b는 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 정량적 분화 수율을 확인하기 위한 유세포 분석 결과를 나타낸 도면으로써, 성체 간세포 표지 인자인 ALB 및 ASGPR1를 발현하는 간세포가 98% 이상이며, 간세포 기능성을 나타내는 표지 인자인 NTCP를 발현하는 간세포는 83.7%, MRP2를 발현하는 간세포는 53.5%로, 이를 통해 본 발명의 간세포 분화 유도 방법으로 분화된 간세포는 고순도의 고기능성 간세포임을 확인할 수 있다.4B is a graph showing the results of flow cytometry for confirming the yield of quantitative differentiation of hepatocytes obtained by the hepatocyte differentiation induction method of the present invention, wherein hepatocytes expressing adult hepatocyte markers ALB and ASGPR1 are 98% or more, hepatocyte functional , 83.7% of the hepatocytes expressing NTCP and 53.5% of the hepatocytes expressing MRP2, respectively. As a result, the hepatocytes differentiated by the hepatocyte differentiation induction method of the present invention are high-purity highly functional hepatocytes.

아울러, 도 5a는 본 발명인 간세포 분화 유도 방법으로 얻어진 간세포의 성숙 정도를 나타낸 도면으로써, 분화된 간세포의 RNA 발현 양상을 실시간 중합효소 연쇄 반응 (Real-time PCR)을 통하여 비교한 결과, 간세포의 최종 분화 후(Day 17차) 미성숙 간세포의 표지 인자인 AFP의 발현이 감소하고, 성체 간세포의 표지 인자인 ALB가 현저히 증가했으며, 간세포의 대표적 약물 대사 효소인 CYP 3A4 또한 현저히 증가했음을 보여주고 있다.FIG. 5A is a graph showing the degree of maturation of hepatocytes obtained by the hepatocyte differentiation induction method of the present invention. As a result of comparing the RNA expression patterns of differentiated hepatocytes through real-time PCR, The expression of AFP, a marker of immature hepatocyte, and ALB, a marker of adult hepatocyte, were significantly increased after the differentiation (Day 17), and CYP 3A4, a representative drug metabolizing enzyme of hepatocytes, was also significantly increased.

마지막으로, 도 5b는 본 발명에서 최종 분화 유도된 17일차 간세포의 글리코겐 합성 능력을 PAS(periodic acid-Schiff) 염색을 통해 나타낸 도면으로써, 본 발명의 간세포 분화 방법으로 유도 분화된 대부분의 간세포가 글리코겐 합성 능력이 있는 기능성 간세포라는 것을 보여주고 있다.5B is a graph showing glycogen synthesis ability of 17 day hepatocytes final differentiation induced in the present invention through PAS (periodic acid-Schiff) staining. As shown in FIG. 5B, most hepatocytes induced and differentiated by the hepatocyte differentiation method of the present invention are glycogen Functional hepatocytes with synthetic ability.

요약하면, 본 출원은 종래기술(본 출원인의 기출원 발명인 출원번호 : 제10-2015-0113616호 포함) 대비 간세포의 수득률을 5배 증가시킬 수 있는 효과가 있다. 구체적으로 기존 특허에서는 Activin A를 3일 동안 처리하면서 분화 중 세포의 사멸이 많았으나, 본 발명에서는 Activin A를 1일 동안 처리하고 BMP2와 bFGF를 이용하여 내배엽성 세포를 유도하는 분화 단계에서 발생되는 세포의 사멸을 줄일 뿐만 아니라 세포의 증식을 높여 기존 방법에서 최종 수득되는 간세포 2 X 106cells/T75 flask에 비하여 5배 증가된 1 X 107cells/T75 flask를 수득할 수 있는 효과가 있다.In summary, the present application has an effect that the yield of hepatocytes can be increased five-fold compared to that of the prior art (including Applicant's No. 10-2015-0113616 of the present applicant). Specifically, in the conventional patent, Activin A was treated for 3 days and cell death during differentiation was high. In the present invention, Activin A was treated for 1 day, and BMP2 and bFGF were used to induce endoderm cells. It is possible to obtain 1 X 10 7 cells / T75 flask which is 5-fold increased as compared with 2 x 10 6 cells / T75 flask of hepatocytes obtained in the conventional method by increasing cell proliferation as well as reducing cell death.

이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 일 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.While the present invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Further, it is obvious that various modifications and variations can be made without departing from the scope of the technical idea of the present invention by anyone having ordinary skill in the art.

Claims (6)

간세포 분화 유도 전단계로서, 인간 전분화능 줄기세포에 TrypLETM select를 3단계에 걸쳐 처리하여 고순도의 미분화 줄기세포만 정제하는 A단계;
상기 정제된 미분화 줄기세포에 Activin A 및 CHIR99021 만을 동시에 처리하여 1일 동안 배양하되, 중내배엽성 세포로 유도한 세포를 완전내배엽성 세포로 분화를 유도하기 위하여 BMP2(bone morphogenetic protein 2) 및 bFGF(basic fibroblast growth factor)를 추가로 처리하여 2일 동안 배양하여 내배엽성세포를 수득하는 B단계;
상기 수득한 내배엽성세포에 레티노산(retinoic acid, RA)를 처리하여 간모세포를 수득하는 C단계;
상기 수득한 간모세포를 분화용 플레이트에서 부유시킨 후, 독성 평가가 가능한 96 웰 플레이트(well plate)에 부착시키고 HGF(hepatocyte growth factor) 및 DEX(Dexamethasone)를 처리하여 간세포를 유도하는 D단계; 및
상기 D단계를 통해 수득한 간세포에 HGF 및 DEX를 처리하여 간세포를 성숙시키는 E단계;를 포함하되,
상기 C단계를 수행하기 전에,
상기 B단계에서 수득한 완전내배엽성 세포에 BMP4(bone morphogenetic protein 4)를 처리하여 2일 동안 배양하는 단계를 더 포함하는 것을 특징으로 하는 인간 줄기세포 유래 간세포 분화 방법.
As a pre-induction stage of hepatocyte differentiation, step A is a step of treating human precursor stem cells with TrypLE TM select in three steps to purify only highly purified undifferentiated stem cells;
The purified undifferentiated stem cells were treated with Activin A and CHIR99021 alone at the same time for 1 day. BMP2 (bone morphogenetic protein 2) and bFGF (bFGF) were induced to induce differentiation of mesenchymal stem cells into fully endodermically differentiated cells basic fibroblast growth factor) for 2 days to obtain endodermal cells;
Treating the obtained endodermal-derived cells with retinoic acid (RA) to obtain a hepatocyte;
A step D for suspending the obtained hepatic stem cells on a differentiation plate, attaching the obtained hepatic stem cells to a 96-well plate capable of evaluating toxicity, treating HGF (hepatocyte growth factor) and DEX (Dexamethasone) to induce hepatocytes; And
And E step of treating the hepatocytes obtained through the step D with HGF and DEX to mature hepatocytes,
Before performing step C,
Further comprising the step of treating BMP4 (bone morphogenetic protein 4) with the complete endodermically-derived cells obtained in the step B for 2 days.
삭제delete 삭제delete 제 1항 있어서,
상기 C단계에서,
상기 수득한 간모세포를 약물 독성 실험을 위해 TrypLETM select를 이용하여 세포를 부유시킨 후 96 웰 플레이트(well plate)에 다시 부착시키는 것을 특징으로 하는 인간 줄기세포 유래 간세포 분화 방법.
The method of claim 1,
In the step C,
The obtained hepatic stem cells are suspended in cells using TrypLE TM select for drug toxicity test and then reattached to a 96-well plate.
삭제delete 삭제delete
KR1020160129064A 2016-10-06 2016-10-06 Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte KR101918817B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160129064A KR101918817B1 (en) 2016-10-06 2016-10-06 Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte
CN201710066109.9A CN107916248A (en) 2016-10-06 2017-02-06 From the hepatocyte differentiation method of human stem cells and liver cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160129064A KR101918817B1 (en) 2016-10-06 2016-10-06 Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte

Publications (2)

Publication Number Publication Date
KR20180038227A KR20180038227A (en) 2018-04-16
KR101918817B1 true KR101918817B1 (en) 2018-11-14

Family

ID=61898550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160129064A KR101918817B1 (en) 2016-10-06 2016-10-06 Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte

Country Status (2)

Country Link
KR (1) KR101918817B1 (en)
CN (1) CN107916248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230071224A (en) 2021-11-16 2023-05-23 고려대학교 산학협력단 Nanoscreen and method for controlling adhesion and differentiation of stem cells using the same
KR20230102323A (en) 2021-12-30 2023-07-07 고려대학교 산학협력단 Nanosatellite-substrate composite and method for controlling adhesion and differentiation of stem cells using the same
KR20230103508A (en) 2021-12-31 2023-07-07 고려대학교 산학협력단 Nanosatellite-substrate complex and method for controlling adhesion and polarization of macrophage using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060256B1 (en) * 2018-10-23 2019-12-27 (주) 넥셀 Methods for preparing in vitro cultured hepatocytes using er stress reliever and in vitro cultured hepatocytes prepared by thereof
KR102200555B1 (en) * 2019-08-14 2021-01-08 아주대학교산학협력단 Method for differentiation of hepatocyte derived from human adipose-derived stem cells and Hepatocyte
CN113604420B (en) * 2021-07-07 2022-07-08 南方医科大学珠江医院 Method for inducing human placental mesenchymal stem cells to differentiate into liver cells in vitro and composition containing schisandrin B

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951792B2 (en) * 2007-07-20 2015-02-10 Cellartis Ab Methods for making definitive endoderm hepatocyte (DE-hep) progenitor cells
US9090878B2 (en) * 2010-06-17 2015-07-28 Katholieke Universiteit Leuven Methods for differentiating cells into hepatic stellate cells and hepatic sinusoidal endothelial cells, cells produced by the methods, and methods for using the cells
GB201119335D0 (en) * 2011-11-09 2011-12-21 Univ Leuven Kath Hepatitis virus infectable stem cells
EP2925859B1 (en) * 2012-11-29 2018-05-02 Takara Bio Europe AB Maturation of hepatocyte-like cells derived from human pluripotent stem cells
WO2016104717A1 (en) * 2014-12-26 2016-06-30 国立大学法人京都大学 Hepatocyte induction method
US20160256672A1 (en) * 2015-02-10 2016-09-08 Cedars-Sinai Medical Center Induced pluripotent stem cell-derived hepatocyte based bioartificial liver device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hepatology, 2010, Vol. 51(1), p. 297-305*
TOXICOLOGICAL SCIENCES, Vol. 147 (1), 2015, p. 190-206*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230071224A (en) 2021-11-16 2023-05-23 고려대학교 산학협력단 Nanoscreen and method for controlling adhesion and differentiation of stem cells using the same
KR20230102323A (en) 2021-12-30 2023-07-07 고려대학교 산학협력단 Nanosatellite-substrate composite and method for controlling adhesion and differentiation of stem cells using the same
KR20230103508A (en) 2021-12-31 2023-07-07 고려대학교 산학협력단 Nanosatellite-substrate complex and method for controlling adhesion and polarization of macrophage using the same

Also Published As

Publication number Publication date
CN107916248A (en) 2018-04-17
KR20180038227A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
KR101918817B1 (en) Method for differentiation of hepatocyte derived from human stem cells and Hepatocyte
Kang et al. Differentiating characterization of human umbilical cord blood‐derived mesenchymal stem cells in vitro
EP3119881B1 (en) Production of midbrain dopaminergic neurons and methods for the use thereof
JP6678107B2 (en) Method of expanding pancreatic progenitor cells
EP2277993B1 (en) Method for producing endothelial cells (variants)
EP2457998A1 (en) Methods for obtaining hepatic cells, hepatic endoderm cells and hepatic precursor cells by inducing the differentiation
JP2020162608A (en) Methods and compositions for generating epicardium cells
KR20110042093A (en) Compositions for mesoderm derived isl1+ multipotent cells(imps), epicardinal progenitor cells (epcs) and multipotent cxcr4+cd56+ cells (c56cs) and method of use
KR20140004707A (en) Highly functional liver cells derived from pluripotent stem cells, method for producing same, and method for testing metabolism/toxicity of drug
WO2019093340A1 (en) Method for inducing primitive endoderm from naive pluripotent stem cells
CN110809625A (en) Compositions and methods for obtaining organoids
JP6421335B2 (en) Method for culturing hepatic progenitor-like cells and culture thereof
Illing et al. Definitive endoderm formation from plucked human hair-derived induced pluripotent stem cells and SK channel regulation
WO2023106122A1 (en) Method for producing neural crest cells specialized for differentiation into mesenchymal lineage
CA2983845C (en) Generation of glucose-responsive beta cells
WO2021202898A1 (en) Methods of making pluripotent stem cells and uses thereof
Streckfuss-Bömeke et al. Efficient generation of hepatic cells from multipotent adult mouse germ-line stem cells using an OP9 co-culture system
KR101783977B1 (en) Preparing methods for pluripotent stem cell derived-neuronal progenitor cell inhibiting formation of teratoma
KR101390613B1 (en) Selenium-based differentiation method of human pluripotent stem cells into hematopoietic progenitor, vascular progenitor, endothelial and smooth muscle cells
KR102018783B1 (en) Method for enhancing metabolizing activity of hepatocytes
JP7148134B2 (en) Stepwise induction method from hepatoblasts to bile duct epithelial progenitor cells
KR102038503B1 (en) Method for differentiation of hepatocyte
KR101970642B1 (en) A medium composition for culturing stem cells and a method of culturing stem cells using the same
US20240139256A1 (en) Methods for the production of cardiac fibroblasts
US20230078230A1 (en) Methods for the production of committed cardiac progenitor cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant