KR101918643B1 - Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL) - Google Patents

Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL) Download PDF

Info

Publication number
KR101918643B1
KR101918643B1 KR1020180053839A KR20180053839A KR101918643B1 KR 101918643 B1 KR101918643 B1 KR 101918643B1 KR 1020180053839 A KR1020180053839 A KR 1020180053839A KR 20180053839 A KR20180053839 A KR 20180053839A KR 101918643 B1 KR101918643 B1 KR 101918643B1
Authority
KR
South Korea
Prior art keywords
fermentation
acid
fermentation step
days
kombucha
Prior art date
Application number
KR1020180053839A
Other languages
Korean (ko)
Inventor
황진수
Original Assignee
주식회사 프레시코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프레시코 filed Critical 주식회사 프레시코
Priority to KR1020180053839A priority Critical patent/KR101918643B1/en
Application granted granted Critical
Publication of KR101918643B1 publication Critical patent/KR101918643B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/166Addition of, or treatment with, enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/40Tea flavour; Tea oil; Flavouring of tea or tea extract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/022Acetic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/04Gluconic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/042Lactic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/214Tea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Abstract

The present invention relates to a method for producing kombucha containing high concentration of glucuronic acid and D-saccharic acid-1,4-lactone (DSL). More specifically, provided is kombucha with high content of organic acid by producing the same via a production method which comprises the following steps: a primary extraction step of mixing black tea, raw sugar, and water at a weight ratio of 1 : 1 : 8, extracting the mixture at 75-100°C for 2 hours, and carrying out a reaction by adding 1 wt% of viscozyme with respect to the weight of the black tea added therein; a secondary fermentation step of adding 5-25% kombucha starter yeast with respect to the total weight of an extract obtained in the primary extraction step and adding 10-50 ml of Maxinvert L10000 per 1 kg of the raw sugar so as to ferment the same at 20-32°C for 17 days; a tertiary fermentation step of adding 1.0-2.0 wt% of galacto-oligosaccharide (GOS) with respect the total weight of a ferment obtained in the secondary fermentation step and then fermenting the same at 10-15°C for 2 days; and a quaternary fermentation step of adding an acidity adjustment agent to the ferment obtained in the tertiary fermentation step to adjust pH of the ferment to pH 5.5-6 and then fermenting and aging the same at 5-10°C for two days.

Description

Glucuronic acid와 D-saccharic acid-1,4-lactone(DSL) 함량이 증진된 콤부차 제조방법 {Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL)}{Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-Saccharic Acid-1,4-Lactone (DSL)} with Increased Glucuronic Acid and D-

본 발명은 생리활성물질인 glucuronic acid와 D-saccharicacid-1,4- lactone(DSL) 성분이 고 함유된 콤부차의 제조방법에 관한 것이다.The present invention relates to a method for producing combat carrageenan, which contains a physiologically active substance glucuronic acid and a D-saccharic acid-1,4-lactone (DSL) component.

최근 생리활성을 가지는 새로운 기능성 신소재의 탐색 및 이들의 기능성을 과학적으로 검증하기 위한 체계적인 연구가 진행되고 있고, 식물자원 및 식품소재로부터 질병 예방을 위한 새로운 소재 개발에 대한 관심이 증가되고 있다.Recently, systematic researches have been conducted to search for new functional new materials having physiological activity and to scientifically verify their functionality, and interest in the development of new materials for preventing diseases from plant resources and food materials is increasing.

차의 생리활성 작용이 과학적으로 증명되고 상쾌한 향과 제조 과정 중 생성되는 독특한 향으로 인하여 많이 음용되는 기호식품으로 자리매김하였으며 소비자의 관심 또한 높아지고 있다. 또한 현대의 차는 단순히 마시는 기호음료로써의 용도 이외에도 차를 이용한 생활용품, 요리, 식품 등 새로운 기능성 소재로서도 널리 이용되고 있는 등 차에 대한 일반인들의 인식이 크게 변화 확대되고 있다.The physiological activity of tea has been scientifically proved, and it has become a favorite food to be consumed because of refreshing fragrance and unique fragrance produced during the manufacturing process, and consumer interest is also increasing. In addition, modern cars are widely used as new functional materials such as daily necessities such as tea, food, food, etc., besides their use as drinking beverages.

차는 크게 제조 방법에 따라 불발효차(녹차 등), 반발효차(10% - 65% 발효, 백차, 황차, 우롱차 등), 발효차(85% 이상 발효, 홍차 등) 및 후발효차(보이차 등)로 분류한다. 오늘날 차와 관련하여 ‘발효’라는 단어를 사용하는 공정에는 산화발효(효소발효), 미생물 발효, 숙성발효가 있다(Han et al., 2010). 즉, ‘발효’의 의미가 폭넓게 사용되고 있음을 알 수 있다. 이중에서 전통적인 발효의 의미에 완전히 부합되는 것은 ‘미생물 발효’이다. Tea is largely produced according to the manufacturing method, such as non-fermented tea (green tea), semi-fermented tea (10% - 65% fermentation, white tea, Boi Cha, etc.). Processes that use the word 'fermentation' in relation to tea today include oxidative fermentation (enzyme fermentation), microbial fermentation, and fermentation (Han et al., 2010). That is, the meaning of 'fermentation' is widely used. Of these, microbial fermentation is the perfect match for conventional fermentation.

콤부차는 국내에서는 홍차버섯으로 알려졌으며, 세균과 효모의 공생균체 발효에 의해 얻어지는 발효 음료로 주로 홍차와 설탕을 주원료로 한다. 콤부차는 고대 중국의 진나라로부터 기원되었고 해독작용과 강장효과가 높아 “신성한 차”로 불렸다고 하며, 이후 서기 414년경에 한국을 거쳐 일본으로 전해졌고 현재는 주로 러시아 지역을 중심으로 “Tea Kvass”라는 이름으로 불리며 많이 음용되고 있다(Dufresne and Farnworth, 2000).Kombucha is known as black tea mushroom in Korea. It is a fermented drink obtained by fermentation of bacteria and yeast. It mainly contains black tea and sugar. Com Bucha originated in ancient China's Qin Dynasty, and was said to have been called "sacred tea" because of its detoxification effect and tonic effect. After that, it passed through Korea in 414 AD to Japan, and now mainly "Tea Kvass" (Dufresne and Farnworth, 2000).

콤부차(Kombucha)는 약간 달고 신맛이 나는 발효 음료로 당이 첨가된 홍차 추출액에 박테리아와 효모의 공생균체(synbiom)를 접종하여 약 14일간 발효하면 얻을 수 있다(Greenwalt et al., 2000). 현재까지 연구를 통해 분리된 콤부차의 균주는 대부분이 초산균이며, 그중 Acetobacter xylinum은 콤부차 상층부에 “tea fungus”라 불리는 cellulose막을 형성하는 역할을 한다고 알려져 있다. 또한 콤부차를 발효시키는 균은 Acetobader xylinum과 다양한 효모의 공생체로, Brettanomyces, ZygosaccharomycesSaccharomyces 등이 주된 균종이다.Kombucha is a slightly sweet and sour fermented beverage that can be obtained by fermentation for about 14 days (Greenwalt et al., 2000), inoculated with a sugar-added black tea extract and synbiomes of bacteria and yeast. Acetobacter xylinum is known to act as a cellulose film called "tea fungus" in the upper part of the comb. In addition, bacterial fermenting a comb secondary is the major species in Acetobader xylinum and symbiote variety of yeast, such as Brettanomyces, Zygosaccharomyces and Saccharomyces.

최근 몇 년 동안, kombucha는 발효 동안 초산균에 의해 합성된 glucuronic acid(GlcUA, 글루쿠론산)의 풍부한 공급원이기 때문에 많은 과학적 관심을 끌었다. GlcUA는 카르복실산이며 인체에서 외인성 화학 물질을 제거하는 해독제 역할을 한다. 따라서 많은 연구는 기질을 변형시키고 락토 바실러스 종으로 배양하여 동시 발효를 촉진 시키거나 발효 조건을 최적화함으로써 많은 식품 및 의약 물질의 kombucha 생산을 향상시키는 데 초점을 맞추고 있다.In recent years, kombucha has attracted a lot of scientific interest because it is an abundant source of glucuronic acid (GlcUA, glucuronic acid) synthesized by acetic acid bacteria during fermentation. GlcUA is a carboxylic acid and acts as an antidote to remove exogenous chemicals from the body. Therefore, many studies have focused on improving kombucha production of many food and medicinal materials by modifying substrates and culturing them into Lactobacillus species to promote simultaneous fermentation or optimize fermentation conditions.

(연구논문 0001) Han SK, Song YS, Lee JS, Bang JK, Suh SJ, Choi JY, Moon JH, and Park KH. 2010. Changes of the chemical constituents and antioxidant activity during microbial-fermented tea (Camellia sinensis L.) processing. Korean J Food Sci Technol 42: 21-26.(Research Papers 0001) Han SK, Song YS, Lee JS, Bang JK, Suh SJ, Choi JY, Moon JH, and Park KH. 2010. Changes of the chemical constituents and antioxidant activity during microbial-fermented tea (Camellia sinensis L.) processing. Korean J Food Sci Technol 42: 21-26. (연구논문 0002) Dufresne C, Farnworth E. 2000. Tea, Kombucha, and health: a review. Food Res Int 33: 409-421.(Research papers 0002) Dufresne C, Farnworth E. 2000. Tea, Kombucha, and health: a review. Food Res Int 33: 409-421. (연구논문 0003) Greenwalt CJ, Steinkraus KH, Ledford RA. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63: 976-981.(Research paper 0003) Greenwalt CJ, Steinkraus KH, Ledford RA. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63: 976-981. (연구논문 0004) Vina I, Linde R, Patetko A, Semjonovs P. 2013. Glucuronic acid from fermented beverages: Biochemical functions in humans and its role in health protection. Int J Res Rev Appl Sci 14: 217-230.(Research paper 0004) Vina I, Linde R, Patetko A, Semjonovs P. 2013. Glucuronic acid from fermented beverages: Biochemical functions in humans and its role in health protection. Int J Res Rev Appl Sci 14: 217-230. (연구논문 0005) Yavari N, Assadi MM, Moghadam MB, Larijani K. 2011. Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Aus J Basic Appl Sci 5(11): 1788-1794.(Research paper 0005) Yavari N, Assadi MM, Moghadam MB, Larijani K. 2011. Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Aus J Basic Appl Sci 5 (11): 1788-1794.

본 발명은 유기산의 함량이 높은 콤부차 제조방법에 관한 것으로, 4차 발효과정을 거쳐 glucuronic acid 및 DSL의 함량이 높은 콤부차를 제조하는 방법 및 상기 방법으로 제조된 콤부차를 제공하는 것을 목적으로 한다.The present invention relates to a method for producing comb-carcass having a high content of organic acid, and a method for producing a comb-carcass having a high content of glucuronic acid and DSL through a fourth fermentation process and a comb- do.

상기와 같은 목적을 달성하기 위하여 본 발명은 유기산 함량이 증대된 콤부차 제조방법으로, 홍차, 원당, 물을 1:1:8 중량비로 혼합하여 75℃ 내지 100℃에서 2시간 추출한 후, viscozyme을 투입된 홍차의 1% 중량비로 넣어 반응하는 1차 추출단계; 상기 1차 추출단계의 추출액 전체 중량대비 5% 내지 25%의 콤부차 종균 효모와, 원당 1 kg 당 10 ml 내지 50 ml Maxinvert L10000을 첨가하여 20℃ 내지 32℃에서 17일간 발효하는 2차 발효단계; 상기 2차 발효단계의 발효액 전체 중량대비 1.0% 내지 2.0% 중량비로 galacto-oligosaccharide(GOS)를 첨가하여 10℃ 내지 15℃에서 2일간 발효하는 3차 발효단계; 및 상기 3차 발효단계의 발효액에 산도조절제를 첨가하여 발효액의 pH를 5.5 내지 6으로 조절한 후 5℃ 내지 10℃에서 2일간 숙성 발효시키는 4차 발효단계;를 포함한다.In order to achieve the above object, the present invention relates to a method for manufacturing a combat carcass having an increased content of organic acids, comprising mixing tea, raw sugar and water at a weight ratio of 1: 1: 8 and extracting the mixture at 75 ° C to 100 ° C for 2 hours, A primary extraction step of adding 1% by weight of the added black tea to react; A secondary fermentation step in which 5% to 25% of combus-terminal seed yeast and 10 ml to 50 ml of Maxinvert L10000 per 1 kg of the raw material are added to the total weight of the extract of the primary extraction step and fermented at 20 ° C to 32 ° C for 17 days ; A third fermentation step in which galacto-oligosaccharide (GOS) is added at a weight ratio of 1.0% to 2.0% based on the total weight of the fermentation broth of the second fermentation step and fermented at 10 ° C to 15 ° C for 2 days; And a fourth fermentation step in which the pH of the fermentation broth is adjusted to 5.5 to 6 by adding an acidity regulator to the fermentation broth of the third fermentation stage and then aged fermentation at 5 to 10 ° C for 2 days.

본 발명의 일 실시예에 있어서, 상기 4차 발효단계에서 부원료를 추가로 더 첨가하는 것을 특징으로 한다.In an embodiment of the present invention, an additional raw material is further added in the fourth fermentation step.

본 발명의 일 실시예에 있어서, 상기 부원료는 인삼, 히비스커스, 석류, 레몬 및 허브 중 어느 하나 이상을 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the sub ingredient includes at least one of ginseng, hibiscus, pomegranate, lemon and herb.

본 발명의 일 실시예에 있어서, 상기 유기산은 acetic acid, glucuronic acid, D-saccharic acid-1,4- lactone (DSL) 및 lactic acid인 것을 특징으로 한다. In one embodiment of the present invention, the organic acid is acetic acid, glucuronic acid, D-saccharic acid-1,4-lactone (DSL), and lactic acid.

본 발명은 1차 추출단계, 2차 발효단계, 3차 발효단계, 4차 발효단계를 포함하는 유기산 함량이 높은 콤부차를 제조하는 방법에 관한 것으로, 다양한 활성물질을 고함량으로 함유하고 있는 콤부차를 제공하는데 그 목적이 있다.The present invention relates to a method for producing a combat carcass having a high content of organic acids, including a first extraction step, a second fermentation step, a third fermentation step and a fourth fermentation step, The purpose is to provide secondary.

도 1은 1차 발효 후 viscozyme 처리 전과 후의 총 당함량과 폴리페놀 함량을 나타낸 것이다.
도 2는 2차 발효 시 Maxinvert 처리 유무에 따른 총 당함량, 환원당 함량, 알코올 함량을 분석한 결과이다.
도 3은 2차 발효 시 Maxinvert 처리 유무에 따른 효모 및 초산균의 균총의 변화를 나타낸 것이다.
도 4는 3차 발효 시 GOS 처리 유무에 따른 효모, 초산균 및 유산균의 균총의 변화를 나타낸 것이다.
도 5는 3차 발효 시 GOS 처리 유무에 따른 유기산의 함량을 비교분석한 결과이다.
도 6은 4차 발효 시 산도조절제의 처리 유무에 따른 효모, 초산균 및 유산균의 균총의 변화를 나타낸 것이다.
도 7은 4차 발효 시 산도조절제의 처리 유무에 따른 유기산의 함량을 비교분석한 결과이다.
Figure 1 shows total sugar content and polyphenol content before and after viscozyme treatment after primary fermentation.
FIG. 2 shows the results of analysis of total sugar content, reducing sugar content, and alcohol content with or without Maxinvert treatment during the second fermentation.
FIG. 3 shows changes in the microflora of yeast and acetic acid bacteria with and without Maxinvert treatment during the secondary fermentation.
Fig. 4 shows changes in the number of microflora of yeast, acetic acid bacteria and lactic acid bacteria with or without GOS treatment during the third fermentation.
FIG. 5 is a result of comparing the content of organic acid with the presence or absence of GOS treatment in the third fermentation.
FIG. 6 shows the changes of the microflora of yeast, acetic acid bacterium and lactic acid bacteria depending on the presence or absence of the treatment with the acidity controlling agent during the fourth fermentation.
FIG. 7 shows the results of comparative analysis of the contents of organic acids with and without the treatment of the acidity regulator during the fourth fermentation.

이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.Hereinafter, the present invention will be described in detail based on examples. It is to be understood that the terminology, examples and the like used in the present invention are merely illustrative of the present invention in order to more clearly explain the present invention and to facilitate understanding of the ordinary artisan, and should not be construed as being limited thereto.

본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다.Technical terms and scientific terms used in the present invention mean what the person skilled in the art would normally understand unless otherwise defined.

콤부차는 복합균주에 의해 발효가 진행된다. 1차 추출단계에서 첨가한 설탕을 원료로 효모가 생육하면서 알코올을 생성하면 콤부차의 발효균주에 함유되어 있던 초산균이 작용하여 콤부차 특유의 발효산물인 유기산, glucuronic acid 및 DSL을 생산하게 된다. 각 발효단계는 콤부차 발효 특성을 부여할 수 있는 우세균주를 유지하는 것이 콤부차 품질에 중요한 역할을 하게 된다. Fermentation proceeds by the complex strain of the comb. When the yeast grows with the sugar added as the raw material in the first extraction step, alcohol is produced, and the fermentation bacteria contained in the fermentation strain of the combus act on the bacteria to produce the fermented products of organic acid, glucuronic acid and DSL. Each fermentation step plays an important role in the quality of the combat quality by maintaining predominant strains capable of imparting the combat fermentation characteristics.

콤부차 발효액의 주성분은 glucuronic acid, fructose, acetic acid 등으로 알려져 있다. The main components of the comb-fermentation broth are known as glucuronic acid, fructose, and acetic acid.

발효된 콤부차에는 유기산, 당류, 비타민과 차의 폴리페놀이 함유되어 있고, 주성분은 glucuronic acid, fructose, acetic acid 이다. Fermented kombucha contains organic acids, sugars, vitamins and tea polyphenols, and its main components are glucuronic acid, fructose and acetic acid.

콤부차 발효과정 중 생성된 단당류는 아세트산, 글루콘산, 일부 미량 영양소 및 글루쿠론산을 비롯한 다양한 유기 화합물의 생산을 위한 주요 기질이 된다.The monosaccharides formed during the combing step fermentation process are the main substrate for the production of various organic compounds including acetic acid, gluconic acid, some micronutrients and glucuronic acid.

콤부차의 주요 활성물질 중 하나인 glucuronic acid는 해독 특성 때문에 최근 몇 년간 관심의 대상이 되고 있다. Urinary system을 통해 오염 물질, 외인성 화학 물질, 과량 스테로이드 호르몬 및 빌리루빈과 같은 여러 유형의 독성 물질을 제거하는 것으로 보고되고 있다(Vina et al. 2013). 또한 glucuronic acid는 골관절염 치료와 관련된 연골, 콜라겐 및 체액과 관련된 유익한 물질인 글루코사민으로 전환 될 수 있고, 비타민 C의 생합성을 위한 precursor로 작용한다. Glucuronic acid, one of the major active ingredients in combat, has become a subject of interest in recent years due to its detoxifying properties. Urinary system has been reported to remove several types of toxic substances such as pollutants, exogenous chemicals, excess steroid hormones and bilirubin (Vina et al. 2013). In addition, glucuronic acid can be converted to glucosamine, a beneficial substance related to cartilage, collagen and fluids associated with osteoarthritis treatment, and acts as a precursor for the biosynthesis of vitamin C.

콤부차의 활성 물질 중 하나인 D-saccharic acid-1,4-lactone(DSL)은 β-glucuronidase의 경쟁적 저해제로써, β-glucuronidase에 의한 독성 및 발암성 물질의 생성을 억제할 수 있다. D-saccharic acid-1, 4-lactone (DSL), one of the active substances in combat, is a competitive inhibitor of β-glucuronidase and can inhibit the production of toxic and carcinogenic substances by β-glucuronidase.

따라서 콤부차의 생리활성물질인 glucuronic acid와 DSL 증진을 위해 발효조건을 변화시킴으로써 미생물 공생구조(microbial symbiosis model)를 형성하도록 하여 활성물질 증진 조건을 설정하였다. Therefore, glucuronic acid, which is a physiologically active substance of Combauca, and a microbial symbiosis model were formed by changing the fermentation conditions to enhance DSL.

본 발명은, 홍차, 원당, 물을 1:1:8 중량비로 혼합하여 75℃ 내지 100℃에서 2시간 추출한 후, viscozyme을 투입된 홍차의 1% 중량비로 넣어 반응하는 1차 추출단계; 상기 1차 추출단계의 추출액 전체 중량대비 5% 내지 25%의 콤부차 종균 효모와, 원당 1 kg 당 10 ml 내지 50 ml Maxinvert L10000을 첨가하여 20℃ 내지 32℃에서 17일간 발효하는 2차 발효단계; 상기 2차 발효단계의 발효액 전체 중량대비 1.0% 내지 2.0% 중량비로 galacto-oligosaccharide(GOS)를 첨가하여 10℃ 내지 15℃에서 2일간 발효하는 3차 발효단계; 및 상기 3차 발효단계의 발효액에 산도조절제를 첨가하여 발효액의 pH를 5.5 내지 6으로 조절한 후 5℃ 내지 10℃에서 2일간 숙성 발효시키는 4차 발효단계;로 구성되는 것을 특징으로 하는 유기산 함량이 증대된 콤부차 제조방법을 제공하는 것에 목적이 있다.The present invention relates to a process for preparing a tea, comprising: a first extraction step of mixing black tea, raw sugar, and water at a weight ratio of 1: 1: 8, extracting the mixture at 75 ° C to 100 ° C for 2 hours, adding viscozyme at a weight ratio of 1% A secondary fermentation step in which 5% to 25% of combus-terminal seed yeast and 10 ml to 50 ml of Maxinvert L10000 per 1 kg of the raw material are added to the total weight of the extract of the primary extraction step and fermented at 20 ° C to 32 ° C for 17 days ; A third fermentation step in which galacto-oligosaccharide (GOS) is added at a weight ratio of 1.0% to 2.0% based on the total weight of the fermentation broth of the second fermentation step and fermented at 10 ° C to 15 ° C for 2 days; And a fourth fermentation step of adding an acidity regulator to the fermentation broth of the third fermentation step to adjust the pH of the fermentation broth to 5.5 to 6 and fermenting the fermentation broth for aging at 5 to 10 ° C for 2 days. It is an object of the present invention to provide a method for manufacturing the comb tooth portion.

상기 1차 추출단계는 홍차, 원당, 물을 0.5:1:9.5 내지 1:1:8 중량비로 혼합하여 75℃ 내지 100℃에서 2시간 동안 추출한다. In the primary extraction step, black tea, raw sugar and water are mixed at a weight ratio of 0.5: 1: 9.5 to 1: 1: 8 and extracted at 75 to 100 ° C for 2 hours.

상기 1차 추출 후 viscozyme을 투입하여 카테킨, 갈산 등 홍차의 폴리페놀 성분의 추출양을 증가시킬 수 있다. viscozyme의 투입량은 홍차 투입량의 0.1% 내지 10% 중량비로 첨가할 수 있다.After the first extraction, viscozyme can be added to increase the extraction amount of polyphenol component of black tea such as catechin and gallic acid. The dosage of viscozyme may be added in a weight ratio of 0.1% to 10% of the amount of black tea.

본 발명에서 원당은 백설탕, 흑설탕, 황설탕, 과당, 맥아당, 코코넛슈가 등을 사용할 수 있으나, 미네랄, 비타민 등이 풍부한 유기농 원당이 바람직하다.In the present invention, the raw sugar may be white sugar, brown sugar, sulfur sugar, fructose, maltose, coconut sugar, and the like, but organic sugars rich in minerals and vitamins are preferred.

상기 2차 발효단계는 콤부차 발효균주인 효모균주의 증식을 원활하게 하여 후발효에 중요한 역할을 하는 초산균의 원료인 알코올 생성을 목적으로 하고 있다. 이에 따라 2차 발효에서는 DSM 사에서 공급하는 Maxinvert L10000을 참가하여 효모의 증식 증대와 알코올 생산의 원료물질인 환원당 함량을 증가시킨다.The secondary fermentation step is aimed at producing alcohol which is a raw material of acetic acid bacteria which plays an important role in post-fermentation by facilitating propagation of yeast strains of yeast strains belonging to the comb-tertiary fermenting bacteria. Therefore, in the second fermentation, Maxinvert L10000 supplied by DSM participates to increase the growth of yeast and increase the reducing sugar content, which is a raw material of alcohol production.

상기 2차 발효단계는 1차 추출액에 콤부차 종균 효모와 Maxinvert L10000를 투입하여 발효하는 단계로 상기 종균 효모는 상업용 콤부차 원액 또는 분리균주를 사용할 수 있다. 종균효모의 투입량은 1차 추출액 전체 중량대비 5% 내지 30% 이고, 발효온도는 20℃ 내지 40℃에서 15 내지 20 일간 발효한다. Maxinvert L10000은 원당 1 kg 당 10 ml 내지 50 ml 첨가한다.The secondary fermentation step is a step of adding fermentation yeast and Maxinvert L10000 to the primary extract to ferment the fermentation yeast, and the fermentation yeast can be used as a commercially available supernatant or isolated strain. The input amount of the yeast strain is 5% to 30% based on the total weight of the primary extract and the fermentation temperature is 20 to 40 캜 for 15 to 20 days. Maxinvert L10000 is added at 10 ml to 50 ml per kg of raw sugar.

상기 3차 발효단계는 2차 발효에서 생성된 알코올을 원료로 유기산 및 glucuronic acid 생산을 목적으로 한다. 이를 위하여 3차 발효단계에서는 2차 발효액에 galacto-oligosaccharide(GOS)를 첨가하여 콤부차 발효균주중에 초산균과 유산균의 생육을 촉진하여 4차 발효를 준비하는 것이 목적이다. 3차 발효단계에서는 2차 발효에서 생성된 알코올로부터 acetic acid가 생성되면 3차 발효단계에서 주 균주인 초산균에 의해 glucuronic acid 생산이 유의적으로 증가하게 되고, galacto-oligosaccharide(GOS) 첨가에 따라 증가된 유산균에 의해 glucuronic acid의 대사체인 D-saccharic acid-1,4- lactone (DSL)의 함량도 유의적으로 증가한다.The third fermentation step aims to produce organic acids and glucuronic acid from the alcohol produced in the second fermentation as a raw material. For this purpose, in the third fermentation step, galacto-oligosaccharide (GOS) is added to the second fermentation broth to prepare the fourth fermentation by promoting the growth of acetic acid bacteria and lactic acid bacteria in the broth fermentation broth. In the tertiary fermentation stage, when acetic acid is produced from the alcohol produced in the secondary fermentation, glucuronic acid production is significantly increased by the acetic acid bacteria, which is the main strain in the tertiary fermentation stage, and increased by the addition of galacto-oligosaccharide (GOS) The content of D-saccharic acid-1,4-lactone (DSL), which is a metabolite of glucuronic acid, is also significantly increased by lactic acid bacteria.

상기 3차 발효단계는 2차 발효액에 galacto-oligosaccharide(GOS)를 첨가하여 5℃ 내지 20℃에서 1 내지 2일간 발효하고, GOS는 전체 중량대비 1% 내지 5% 중량비로 첨가한다. In the third fermentation step, galacto-oligosaccharide (GOS) is added to the second fermentation broth and fermented at 5 to 20 ° C for 1 to 2 days, and GOS is added at a weight ratio of 1 to 5% based on the total weight.

상기 4차 발효단계는 D-saccharic acid-1,4- lactone (DSL)증진을 위한 유산균의 생육 증진을 목적으로 하고 있다. 이를 위하여 3차 발효 후 3 내지 4까지 떨어진 pH를 5.5-6.0으로 조정하여 유산균의 증식을 꾀하였다. pH조정을 위하여 산도조절제를 첨가 사용하였다. 산도조절제로는 탄산칼륨, 탄산수소나트륨, 폴리인산나트륨, 피로인산나트륨, 포리믹스-CS, 제2인산칼륨, 제2인산나트륨, 수산화칼슘 등 식품첨가물로 사용가능한 것이면 사용할 수 있다.The fourth fermentation step is aimed at promoting the growth of lactic acid bacteria for D-saccharic acid-1,4-lactone (DSL) enhancement. For this purpose, the pH of the third lactic acid bacteria was adjusted to 5.5-6.0 after the third fermentation, thereby proliferating the lactic acid bacteria. An acidity regulator was added to adjust the pH. As the acidity controlling agent, any of those which can be used as food additives such as potassium carbonate, sodium hydrogen carbonate, sodium polyphosphate, sodium pyrophosphate, formic acid-CS, potassium phosphate dibasic, sodium phosphate and calcium hydroxide can be used.

상기 4차 발효단계는 산도조절제를 첨가한 후 5℃ 내지 10℃에서 2일간 숙성발효하여 유기산의 함량을 증가시킨다.In the fourth fermentation step, an acidity controlling agent is added, followed by aging fermentation at 5 ° C to 10 ° C for 2 days to increase the content of organic acid.

본 발명은 상기 4차 발효단계에서 콤부차의 맛과 향미를 증진키기 위하여 인삼, 히비스커스, 석류, 레몬, 허브 등의 부원료를 추가로 더 첨가할 수 있다.In the fourth fermentation step, in order to enhance the taste and flavor of the ginseng root, ginseng, hibiscus, pomegranate, lemon and herb may be further added.

본 발명은 상기 4차 발효단계 후 여과하여 포장하는 단계를 추가로 더 포함할 수 있다. The present invention may further include a step of filtering and packaging after the fourth fermentation step.

이하 실시예를 통해 본 발명을 상세히 설명한다. 하기 실시예는 본 발명의 실시를 위하여 예시된 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. The following examples are intended to illustrate the practice of the present invention and are not intended to limit the scope of the present invention.

<시험예><Test Example>

1. 총 당함량 분석방법1. Analysis of total sugar content

콤부차 발효 중 성분변화 측정: 콤부차 및 콤부차 발효중의 성분 변화를 측정하기 위하여, 총 당함량은 phenol-sulfuric acid법(Dubois et al., 1956)을 이용하여 측정하였으며, 표준물질로는 D-glucose를 적당한 농도로 희석하여 검량선을 작성한 후, 표준물질 대비 총 당함량을 구하였다.Measurement of compositional change during fermentation of Kombucha fermentation: To determine the changes in the components during the fermentation of Kombucha and Kombucha fermentation, the total sugar content was measured using the phenol-sulfuric acid method (Dubois et al., 1956) D-glucose was diluted to an appropriate concentration and a calibration curve was prepared. The total sugar content of the standard substance was determined.

2. 환원당 함량분석2. Reducing sugar content analysis

환원당의 함량은 Miller(1959)의 방법을 변형하여 시료 1 ㎖에 DNS(3,5-dinitrosalicylic acid) 시약 3 ㎖를 test tube에 넣고 끓는 물에서 5분간 가열하고 냉각한 뒤에 540 nm에서 흡광도를 측정하였다. 표준물질로는 glucose를 이용하였다. The content of reducing sugar was modified by Miller (1959), and 3 ml of DNS (3,5-dinitrosalicylic acid) reagent was added to 1 ml of the sample. The mixture was heated in boiling water for 5 minutes, cooled, and then absorbance was measured at 540 nm Respectively. As a standard substance, glucose was used.

총 폴리페놀 함량은 Singleton(1999)의 방법을 변형하여 증류수 800 ㎕에 시료 10 ㎕를 넣고 0.9 N Folin-Ciocalteu reagent 50 ㎕, 20% sodium carbonate solution 150 ㎕와 각각 섞은 다음 2시간 동안 암소에 방치하였다. 이는 Folin-Ciocalteu reagent가 콤부차 배양액의 폴리페놀성 화합물에 의해 환원된 결과 몰리브덴 청색으로 발색하는 것을 이용한 것으로 반응액의 흡광도는 750 nm에서 측정하였다. 표준물질로 gallic acid를 희석하여 사용하였으며, 검량선 작성 후 총 폴리페놀성 화합물 함량은 시료 1 g중 mg gallic acid equivalent(GAE)로 나타내었다. The total polyphenol content was modified by the method of Singleton (1999), adding 10 μl of sample to 800 μl of distilled water, mixing 50 μl of 0.9 N Folin-Ciocalteu reagent and 150 μl of 20% sodium carbonate solution, then left in the dark for 2 hours . The absorbance of the Folin-Ciocalteu reagent was measured at 750 nm using Molybdenum blue color as a result of the reduction of the polyphenolic compound in the supernatant. The total polyphenolic compound content after the calibration curve was expressed as mg gallic acid equivalent (GAE) in 1 g of the sample.

3. 유기산 함량 분석3. Analysis of organic acid content

유기산의 측정은 시료를 Sep-pak C18 cartridge에 통과시키고 0.45 ㎛ membrane filter로 여과하여 HPLC(Agilent HPLC series 1100, Agilent, Waldbronn, Germany)로 분석하였다. 이때 유기산 분석용 column은 YMC Triart C18(250 × 4.6 ㎜, 5 ㎛)를 사용하였으며 UV detector를 이용하여 210 nm에서 검출하였다. 이동상은 KH2PO4(pH 2.4) 과 메탄올(97 : 3) 혼합액을 사용하였으며 flow rate는 1.0 ㎖/min이었다. 시료의 일회 주입량은 20 ㎕이었으며, 유기산 표준품은 acetic acid, malic acid, succinic acid, lactic acid(Sigma Chemical Co., St. Louis, MO, USA)를 사용하였다. Glucuronic acid와 DSL분석도 유기산 분석 조건에서 실시하였다. The organic acids were analyzed by HPLC (Agilent HPLC series 1100, Agilent, Waldbronn, Germany) by passing through a Sep-pak C18 cartridge and filtering through 0.45 ㎛ membrane filter. At this time, YMC Triart C18 (250 × 4.6 ㎜, 5 ㎛) column was used for the analysis of organic acids and detected at 210 nm using a UV detector. The mobile phase was a mixture of KH 2 PO 4 (pH 2.4) and methanol (97: 3) and the flow rate was 1.0 ㎖ / min. Acetic acid, malic acid, succinic acid, and lactic acid (Sigma Chemical Co., St. Louis, Mo., USA) were used as the organic acid standards. Glucuronic acid and DSL were also analyzed under organic acid analysis.

4. 통계분석4. Statistical Analysis

실험 결과는 SPSS 12.0 (SPSS Inc., IL, USA)을 이용하여 통계 처리하였으며 따로 표기되지 않은 측정 항목에 대한 평균 (mean)과 표준편차 (standard deviation, SD)를 산출하였다. 실험군 간의 유의성은 ANOVA test 후 구체적인 사후 검증은 p<0.05 수준에서 Duncan's multiple range test로 실시하였다.The results were statistically processed using SPSS 12.0 (SPSS Inc., IL, USA) and the mean and standard deviation (SD) were calculated for the items not indicated separately. The significance of the ANOVA test was tested by Duncan's multiple range test at p <0.05.

<실시예 : 콤부차 발효>&Lt; Example: Fermentation of combux tea >

1차 추출단계Primary extraction stage

추출탱크에 홍차원료와 유기농 사탕수수 원당과 UV 살균수를 1:1:8 중량비로 넣고 75℃ 내지 100℃에서 2시간 동안 발효하였다. 이후 냉각 과정을 거치면서 70℃가 될 때 viscozyme을 투입된 홍차의 1% 중량비로 넣어 반응하였다. The extraction tank was charged with the raw materials of black tea, organic sugar cane sugar and UV sterilized water at a weight ratio of 1: 1: 8 and fermented at 75 to 100 ° C for 2 hours. After cooling, viscozyme was added at 1% by weight of black tea at 70 ℃.

추출공정에서 viscozyme 효소 처리전과 후의 총 당함량 및 폴리페놀의 함량을 측정 비교한 결과, 도 1에서와 같이 viscozyme 처리 후의 총 당함량과 폴리페놀 함량이 처리전에 비하여 유의적으로 증가하는 것을 확인하였다. As a result of measuring and comparing the total sugar content and the content of polyphenol before and after the treatment with viscozyme enzyme in the extraction process, it was confirmed that the total sugar content and polyphenol content after viscozyme treatment were significantly increased as compared with before treatment as shown in FIG.

2차 발효단계Second fermentation step

2차 발효의 주된 목적은 효모균주의 증식을 원활하게 하여 후발효에 중요한 역할을 하는 초산균주의 원료인 알코올 생성을 목적으로 하고 있다. 2차 발효에서 효모 증식 증대와 알코올 생성 증진을 위하여 DSM 사에서 공급하는 Maxinvert L10000을 참가하여 효모의 증대와 알코올 생산의 원료물질인 환원당 함량 증진을 시도하였다. The main purpose of the secondary fermentation is to produce the alcohol which is the raw material of the acetic acid bacteria which plays an important role in the post fermentation by facilitating the growth of the yeast bacteria. Maxinvert L10000 supplied by DSM was added to increase the yeast growth and alcohol production in the secondary fermentation, and the increase of the yeast and the reducing sugar content, which is the raw material for the alcohol production, were attempted.

1차 발효가 끝난 후 콤부차 종균 효모를 1차 추출액 전체 중량대비 25% 첨가하고, Maxinvert L10000을 유기농 사탕수수 원당 1㎏ 당 10 내지 50㎖ 첨가한 후 20℃ 내지 32℃에서 17일간 발효하였다. 콤부차 종균효모는 상업용 콤부차 원액을 사용하였다.After the first fermentation, 25% of the total weight of the primary extract was added, and Maxinvert L10000 was added in an amount of 10 to 50 ml per 1 kg of the organic sugar cane, followed by fermentation at 20 to 32 ° C for 17 days. The comb-bacteriocin-derived yeast strain was used as a commercial solution for comb-aquaculture.

2차 발효 후 총 당함량과 환원당의 함량을 측정한 결과, 도 2에서와 같이 총 당함량은 Maxinvert 처리 후 약간 감소하였으나 처리전과 유의적인 차이는 없었다. 환원당의 함량은 Maxinvert 처리 후 10.9 ㎎/㎖로 처리 전 6.7 ㎎/㎖에 비해 증가하였으며, 알코올 함량 역시 처리 전에 비하여 유의적으로 증가하는 것을 확인하였다. As a result of measuring the total sugar content and the reducing sugar content after the second fermentation, the total sugar content was slightly decreased after the Maxinvert treatment as shown in FIG. 2, but there was no significant difference between them before the treatment. The content of reducing sugar was increased to 10.9 ㎎ / ㎖ after Maxinvert treatment, compared with 6.7 ㎎ / ㎖ before treatment, and the alcohol content was also significantly increased compared to before treatment.

2차 발효 후 균총의 변화를 확인한 결과, 도 3에서와 같이 Maxinvert 처리 후의 효모는 증가하는 경향을 보인 반면, 초산균은 다소 감소하는 경향을 보였다. As shown in FIG. 3, the yeast after the Maxinvert treatment tended to increase, whereas the bacterial strain tended to decrease slightly.

3차 발효단계Third fermentation step

3차 발효는 2차 발효에서 생성된 알코올을 원료로 유기산 및 glucuronic acid를 생산하고 galacto-oligosaccharide(GOS)를 첨가하여 유산균의 생육을 촉진하는 것이 목적이다.The purpose of the tertiary fermentation is to promote the growth of lactic acid bacteria by adding organic acid and glucuronic acid as a raw material of alcohol produced in the secondary fermentation and adding galacto-oligosaccharide (GOS).

3차 발효는 콤부차의 특성을 부여하는 주요 발효과정으로 초산균이 주된 균주로 관여하며, 초산균에 의해 유기산 및 glucuronic acid 생성량이 증가한다. The tertiary fermentation is the main fermentation process which gives the characteristics of combat, which is the main strain, and the amount of organic acid and glucuronic acid is increased by acetic acid bacteria.

2차 발효가 끝난 후 발효액에 galacto-oligosaccharide(GOS)를 전체 발효액의 1.0-2.0% 중량비로 첨가하여 10℃ 내지 15℃에서 2일 동안 발효하였다. After the secondary fermentation, galacto-oligosaccharide (GOS) was added to the fermentation broth at a weight ratio of 1.0-2.0% of the total fermentation broth and fermented at 10 ° C to 15 ° C for 2 days.

도 4는 3차 발효에 관여하는 주된 균총의 변화를 측정한 결과이다. 유기산 생성에 중요한 역할을 하는 균주인 초산균은 2차 발효에 비하여 증가하였고, 효모는 2차 발효에 비해 다소 감소한 것을 확인하였다. 3차 발효에서는 유산균이 유의적으로 증가하였으며, GOS의 첨가에 따라 모든 균총이 증가하는 경향을 확인하였다. Fig. 4 shows the results of measurement of changes in the main microflora involved in the third fermentation. Acetic acid bacteria, which plays an important role in the production of organic acids, was increased compared to the secondary fermentation, and yeast was slightly decreased compared to the secondary fermentation. Lactic acid bacteria were significantly increased in tertiary fermentation, and all strains were increased with the addition of GOS.

3차 발효 후 유기산의 함량을 측정한 결과, 도 5에서와 같이 GOS를 첨가하였을 경우 첨가하지 않은 경우에 비해 acetic acid, lactic acid, glucuronic acid 및 이의 대사체인 D-saccharic acid-1,4-lactone(DSL)이 증가하는 것을 확인하였다.As a result of measuring the content of organic acids after the third fermentation, the addition of acetic acid, lactic acid, glucuronic acid and its metabolite D-saccharic acid-1,4-lactone (DSL) was increased.

4차 발효단계Fourth fermentation step

4차 발효는 유산균을 주된 균주로 하여 DSL을 고생산하는 단계이다.The 4th fermentation is a step of high production of DSL using lactic acid bacteria as a main strain.

DSL을 생성하는 유산균의 생장촉진을 위해 3차 발효가 끝난 발효액에 산도조절제를 첨가하여 발효액의 pH를 5.5 내지 6.0으로 조정한 후 5℃ 내지 10℃에서 2일간 숙성하였다.To accelerate the growth of the lactic acid bacteria producing DSL, the pH of the fermentation broth was adjusted to 5.5 to 6.0 and then aged at 5 to 10 ° C for 2 days by adding an acidity regulator to the fermentation broth after the third fermentation.

도 6은 4차 발효 후 발효액의 효모의 균총의 변화는 pH 조절 전후의 유의적인 차이는 없고, 3차 발효에 비하여 효모균수가 줄어드는 경향을 나타낸다. 또한 초산균과 유산균의 변화는 pH 조정 후 유의적으로 증가하는 경향을 보였으며, 3차 발효에 비해서도 증가하는 경향을 나타낸다. FIG. 6 shows that the change in the microflora of the yeast of the fermentation broth after the fourth fermentation showed no significant difference before and after the pH adjustment, and the number of yeast bacteria decreased as compared with the third fermentation. In addition, the changes of acetic acid and lactic acid bacteria showed a tendency to increase significantly after pH adjustment.

4차 발효 후 유기산의 함량을 측정한 결과, 도 7에서와 같이 acetic acid, DSL 및 lactic acid 함량은 3차 발효에 비해 증가한 반면, glucuronic acid는 3차 발효에 비해 4차 발효 후 유의적으로 감소하는 경향을 보였다. 산도조절제 첨가 유무에 따른 유기산의 함량은 acetic acid, glucuronic acid, DSL 및 lactic acid 모두 증가하는 경향을 보였다.As a result of measuring the content of organic acid after the fourth fermentation, acetic acid, DSL and lactic acid contents were increased compared to the third fermentation as shown in FIG. 7, while glucuronic acid was significantly decreased after the fourth fermentation Respectively. Acetic acid, glucuronic acid, DSL and lactic acid showed the tendency to increase with the addition of acid modifier.

Claims (4)

홍차, 원당, 물을 1:1:8 중량비로 혼합하여 75℃ 내지 100℃에서 2시간 추출한 후, viscozyme을 투입된 홍차의 1% 중량비로 넣어 반응하는 1차 추출단계;
상기 1차 추출단계의 추출액 전체 중량대비 5% 내지 25%의 콤부차 종균 효모와, 원당 1 kg 당 10 ml 내지 50 ml Maxinvert L10000을 첨가하여 20℃ 내지 32℃에서 17일간 발효하는 2차 발효단계;
상기 2차 발효단계의 발효액 전체 중량대비 1.0% 내지 2.0% 중량비로 galacto-oligosaccharide(GOS)를 첨가하여 10℃ 내지 15℃에서 2일간 발효하는 3차 발효단계; 및
상기 3차 발효단계의 발효액에 산도조절제를 첨가하여 발효액의 pH를 5.5 내지 6으로 조절한 후 5℃ 내지 10℃에서 2일간 숙성 발효시키는 4차 발효단계;로 구성되는 것을 특징으로 하는 유기산 함량이 증대된 콤부차 제조방법.
A first extraction step of mixing black tea, raw sugar and water at a weight ratio of 1: 1: 8, extracting the mixture at 75 ° C to 100 ° C for 2 hours, adding viscozyme at a weight ratio of 1%
A secondary fermentation step in which 5% to 25% of combus-terminal seed yeast and 10 ml to 50 ml of Maxinvert L10000 per 1 kg of the raw material are added to the total weight of the extract of the primary extraction step and fermented at 20 ° C to 32 ° C for 17 days ;
A third fermentation step in which galacto-oligosaccharide (GOS) is added at a weight ratio of 1.0% to 2.0% based on the total weight of the fermentation broth of the second fermentation step and fermented at 10 ° C to 15 ° C for 2 days; And
And a fourth fermentation step of adding an acidity regulator to the fermentation broth of the third fermentation step to adjust the pH of the fermentation broth to 5.5 to 6, followed by aging fermentation at 5 to 10 ° C for 2 days. Increased comb secondary manufacturing method.
제 1 항에 있어서,
상기 4차 발효단계에서 부원료를 추가로 더 첨가하는 것을 특징으로 하고,
상기 부원료는 인삼, 히비스커스, 석류, 레몬 및 허브 중 어느 하나 이상을 포함하는 것을 특징으로 하는, 유기산 함량이 증대된 콤부차 제조방법.
The method according to claim 1,
Characterized in that an additional raw material is further added in the fourth fermentation step,
Wherein the additive material comprises at least one of ginseng, hibiscus, pomegranate, lemon and herb.
삭제delete 제 1 항 또는 제 2 항에 있어서,
상기 유기산은 acetic acid, glucuronic acid, D-saccharic acid-1,4- lactone (DSL) 및 lactic acid인 것을 특징으로 하는, 유기산 함량이 증대된 콤부차 제조방법.
3. The method according to claim 1 or 2,
Wherein the organic acid is acetic acid, glucuronic acid, D-saccharic acid-1,4-lactone (DSL) and lactic acid.
KR1020180053839A 2018-05-10 2018-05-10 Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL) KR101918643B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180053839A KR101918643B1 (en) 2018-05-10 2018-05-10 Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180053839A KR101918643B1 (en) 2018-05-10 2018-05-10 Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL)

Publications (1)

Publication Number Publication Date
KR101918643B1 true KR101918643B1 (en) 2018-11-14

Family

ID=64328283

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180053839A KR101918643B1 (en) 2018-05-10 2018-05-10 Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL)

Country Status (1)

Country Link
KR (1) KR101918643B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200066842A (en) * 2018-12-03 2020-06-11 롯데칠성음료주식회사 A kombucha composition and a prepartion method thereof
KR20200137232A (en) * 2019-05-29 2020-12-09 한국식품산업클러스터진흥원 Preparation method of kombucha using autolysate of yeast as nitrogen source
KR20220028851A (en) 2020-08-31 2022-03-08 전라남도 Methods of manufacturing kombucha beverage using black tea and beetroot extracts fermented by microorganisms
KR102541360B1 (en) * 2022-02-18 2023-06-13 주식회사 메르시코 Manufacturing method of kombucha extract with improved preservation and active ingredient content

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200066842A (en) * 2018-12-03 2020-06-11 롯데칠성음료주식회사 A kombucha composition and a prepartion method thereof
KR102176334B1 (en) * 2018-12-03 2020-11-09 롯데칠성음료주식회사 A kombucha composition and a prepartion method thereof
KR20200137232A (en) * 2019-05-29 2020-12-09 한국식품산업클러스터진흥원 Preparation method of kombucha using autolysate of yeast as nitrogen source
KR102273812B1 (en) * 2019-05-29 2021-07-05 한국식품산업클러스터진흥원 Preparation method of kombucha using autolysate of yeast as nitrogen source
KR20220028851A (en) 2020-08-31 2022-03-08 전라남도 Methods of manufacturing kombucha beverage using black tea and beetroot extracts fermented by microorganisms
KR102450013B1 (en) * 2020-08-31 2022-10-04 전라남도 Methods of manufacturing kombucha beverage using black tea and beetroot extracts fermented by microorganisms
KR102541360B1 (en) * 2022-02-18 2023-06-13 주식회사 메르시코 Manufacturing method of kombucha extract with improved preservation and active ingredient content

Similar Documents

Publication Publication Date Title
KR101918643B1 (en) Manufacturing Method of Kombucha Containing High Amounts of Glucuronic Acid and D-saccharicacid-1,4-lactone (DSL)
KR20110003739A (en) Preparation method of jujube wine
Sarkaya et al. Use of kombucha culture in the production of fermented dairy beverages
ÖZYURT Changes in the content of total polyphenols and the antioxidant activity of different beverages obtained by Kombucha ‘tea fungus’
CN107475018A (en) A kind of preparation method of anti-oxidant chrysanthemum yellow peach fruit wine
Tomar Determination of some quality properties and antimicrobial activities of kombucha tea prepared with different berries
KR100864941B1 (en) Making method for matured liqueur of incubated wild ginseng root by maturing in oak bottle
KR20200137232A (en) Preparation method of kombucha using autolysate of yeast as nitrogen source
Chun et al. Manufacture and quality evaluation of purple sweet potato Makgeolli vinegar using a 2-stage fermentation
CN104974893A (en) Normal-juice roxburgh rose wine and preparation method thereof
KR100648000B1 (en) Manufacturing method of the liquors comprising cultured root of wild ginseng and alcoholic liquors using the same
Dziedziński et al. Supplementation of beer with Pinus sylvestris L. shoots extracts and its effect on fermentation, phenolic content, antioxidant activity and sensory profiles
KR101918942B1 (en) Fermented drink using glycine max (L.) merrill and herbal ingredients and manufacturing method thereof
KR101874330B1 (en) Production method of fermentation vinegar using balloon flower
KR101422247B1 (en) A fermentation method of function and taste enhanced melomel using schizandra chinensis and honey and melomel fermented by the same
KR20200077374A (en) Noni-juice Concentrate Surpressed a nasty smell and fortified an effective component and preparation method of the same
KR102621242B1 (en) Kombucha vinegar containing Rubus coreanus and manufacturing method thereof
KR20230129136A (en) Composition for antibacterial, antioxidant, or anti-inflammatory comprising fermented extracts of Canavalia gladiata leaf as an active ingredient
KR102464052B1 (en) Composition of complex-fermented sprout ginseng having increased ginsenoside F2, Rg3, Rd2 and compound K, chlorogenic acid, coumaric acid, catechin and quercetin, and preparation method thereof
KR20100089192A (en) The manufacturing method for wine of tea-leaf and included tea-flower
KR101184890B1 (en) Preparing Method for Functional Wine Using Black Garlic
KR20160116664A (en) The manufacturing method of fermentation vinegar using sevenberry concentration solution and beverage base composition containing sevenberry fermentation vinegar
KR102484962B1 (en) Method for producing peach blending wine
Dygas et al. Szyma nska
Morales et al. Novel kombucha beverages with antioxidant activity based on fruits as alternative substrates

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant