KR101911331B1 - Manufacturing method of injection-molded heat-radiating material with improved emissivity - Google Patents

Manufacturing method of injection-molded heat-radiating material with improved emissivity Download PDF

Info

Publication number
KR101911331B1
KR101911331B1 KR1020180084834A KR20180084834A KR101911331B1 KR 101911331 B1 KR101911331 B1 KR 101911331B1 KR 1020180084834 A KR1020180084834 A KR 1020180084834A KR 20180084834 A KR20180084834 A KR 20180084834A KR 101911331 B1 KR101911331 B1 KR 101911331B1
Authority
KR
South Korea
Prior art keywords
mwcnt
heat
emissivity
resin
pellets
Prior art date
Application number
KR1020180084834A
Other languages
Korean (ko)
Inventor
김승수
안재만
Original Assignee
더원씨엔티(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더원씨엔티(주) filed Critical 더원씨엔티(주)
Priority to KR1020180084834A priority Critical patent/KR101911331B1/en
Application granted granted Critical
Publication of KR101911331B1 publication Critical patent/KR101911331B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/04Conditioning or physical treatment of the material to be shaped by cooling
    • B29B13/045Conditioning or physical treatment of the material to be shaped by cooling of powders or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing an injection molded heat radiating material having improved emissivity. More specifically, the present invention relates to a method for manufacturing an injection molded heat radiating material having improved emissivity, simply and easily injection molding a heat radiating material such as a heat radiating board, used in various industrial fields, by mixing polymer resins, carbon nanotubes (CNT), and aluminum powder to enable the heatradiating material to have emissivity higher than aluminum even without performing aluminum die casting with respect to the heat radiating material. Accordingly, functional characteristics can be increased in all the aspects such as molding capacity, manufacturing costs, heat radiating characteristics, and weight reduction.

Description

방사율이 개선된 사출성형 방열소재 제조방법{Manufacturing method of injection-molded heat-radiating material with improved emissivity}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing an injection-molded heat-

본 발명은 방사율이 개선된 사출성형 방열소재 제조방법에 관한 것으로, 보다 상세하게는 다양한 산업분야에서 활용되고 있는 방열판 등의 방열소재를 알루미늄 타이캐스팅하지 않고도 그보다 높은 방사율 특성을 갖도록 고분자수지와 CNT(Carbon NanoTube) 및 알루미늄분말의 혼용을 통해 간단하고 용이하게 사출 성형할 수 있어 성형성, 제조비용, 방열특성, 경량화 등 모든 면에서 기능적 특성이 향상된 방사율이 개선된 사출성형 방열소재 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an injection molded heat-radiating material with improved emissivity, and more particularly, to a method of manufacturing an injection-molded heat-radiating material having improved emissivity and, more particularly, A carbon nanotube, and an aluminum powder. The present invention also relates to a method of manufacturing an injection-molded heat-radiating material having improved emissivity in all aspects, such as moldability, manufacturing cost, heat dissipation characteristics, .

방열특성을 갖는 방열소재는 LED 조명기구에서 사용되는 방열판을 비롯하여 다양한 산업분야에서 활용되고 있다.Heat dissipation materials with heat dissipation properties are used in various industries including heat sinks used in LED lighting fixtures.

이러한 방열소재는 전통적으로 알루미늄을 다이캐스팅하여 제조하고 있기 때문에 제조비용은 물론 성형성 측면에서 한계에 직면해 있다.These heat-dissipating materials are traditionally manufactured by die-casting aluminum, which limits the manufacturing cost as well as the formability.

특히, 세계적으로 급격히 도약하고 있는 기술분야로 전기자동차, 자율주행 자동차, 전자기기, 웨어러블 기기, 로봇기기 등을 들 수 있는데, 이들은 고성능화, 경량화, 고집적화를 요구한다.In particular, electric vehicles, autonomous vehicles, electronic devices, wearable devices, robotic devices, and the like, which are rapidly advancing in the world, require high performance, light weight, and high integration.

하지만, 전통적인 방식인 알루미늄 다이캐스팅법으로 제조된 방열소재는 이러한 세계적인 변화 추세에 부합되지 않을 뿐만 아니라, 무엇보다도 방열성능을 더 이상 향상시키기 어렵고, 또한 고열과 전파간섭 등으로 인해 방열소재의 성능저하 및 수명저하를 초래하고 있으며, 나아가 인체에도 부정적인 영향을 미치고, 경량화에도 한계가 있다.However, the heat-dissipating material manufactured by the conventional aluminum die-casting method does not meet this global change trend, and it is difficult to further improve the heat dissipation performance above all, and the performance degradation of the heat dissipation material due to high heat and radio wave interference The life span is deteriorated, and further, the human body is also adversely affected, and there is also a limit in weight reduction.

이를 개선하기 위한 노력들이 지속적으로 이루지고 있으며, 그 일환으로 다양한 고분자수지를 베이스로 한 CNT를 일정량 분산처리하여 CNT 마스터배치를 활용하는 예가 있지만, 이는 최종재로서의 원료이기 보다는 중간재로서의 성격이 강하며, 주로 방열코팅층을 형성하는 수준이어서 이들을 기본원료로 한 상태에서 다이캐스팅이 아닌 다른 방식으로 성형할 수 있는 수준에는 이르지 못해 알루미늄 다이캐스팅된 방열소재를 완전히 대체하지는 못하고 있는 실정이다.As a part of this, efforts have been made to improve this, and there have been examples of using a CNT master batch by dispersing a certain amount of CNTs based on various polymer resins, but this is an intermediate material rather than a raw material as a final material, It is impossible to completely replace aluminum die-casted heat dissipation material because it can not be formed at a level that can be molded by a method other than die casting while using them as basic raw materials.

대한민국 특허 등록번호 제10-1240662호(2013.02.28.) '탄소나노튜브를 이용한 방열판 및 이의 제조방법'Korean Patent Registration No. 10-1240662 (Feb. 28, 2013) 'Heat Sink Using Carbon Nanotubes and Its Manufacturing Method' 대한민국 특허 등록번호 제10-1483758호(2015.01.12.) '탄소나노튜브를 포함하여 우수한 방열 특성을 가지는 엘이디(LED) 조명등기구'Korea Patent Registration No. 10-1483758 (Feb. 12, 2015) 'LED light fixture with excellent heat dissipation characteristics including carbon nanotubes'

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 다양한 산업분야에서 활용되고 있는 방열판 등의 방열소재를 알루미늄 타이캐스팅하지 않고도 그보다 높은 방사율 특성을 갖도록 고분자수지와 CNT(Carbon NanoTube) 및 알루미늄분말의 혼용을 통해 간단하고 용이하게 사출 성형할 수 있어 성형성, 제조비용, 방열특성, 경량화 등 모든 면에서 기능적 특성이 향상된 방사율이 개선된 사출성형 방열소재 제조방법을 제공함에 그 주된 목적이 있다.The present invention has been made in view of the above-mentioned problems in the prior art, and it is an object of the present invention to provide a heat dissipating material such as a heat sink, which is used in various industrial fields, The present invention provides a method of manufacturing an injection-molded heat-radiating material with improved emissivity in all aspects, such as moldability, manufacturing cost, heat dissipation characteristics, and light weight, by simple and easy injection molding using a mixture of Carbon NanoTube and aluminum powder. There is a main purpose in.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 방사율이 개선된 사출성형 가능한 방열소재를 제조하는 방법에 있어서; MWCNT(Multi Walled CNT)를 고분자수지에 균일하게 분산시키는 제1단계와; MWCNT가 분산된 고분자수지를 압출하여 수지펠릿으로 만드는 제2단계와; 수지펠릿을 동결분쇄기에 넣고 질소가스를 충전하여 급속냉각한 후 분쇄하는 제3단계와; 분쇄된 수지펠릿분말을 건조하여 함수율을 조절하는 제4단계와; 건조된 수지펠릿분말에 그라파이트와 금속 또는 비금속 파우더를 넣고 전자믹서로 믹싱한 후 압출하여 방열소재용 펠릿인 소재펠릿으로 만드는 제5단계와; 소재펠릿을 제습건조한 후 알루미늄 내피로 된 지대 포장지에 넣고 진공포장하는 제6단계;로 이루어진 것을 특징으로 하는 방사율이 개선된 사출성형 방열소재 제조방법을 제공한다.The present invention provides a method of manufacturing a heat-radiating material capable of performing injection molding with improved emissivity, comprising the steps of: A first step of uniformly dispersing MWCNT (Multi Walled CNT) in a polymer resin; A second step of extruding the polymer resin in which the MWCNT is dispersed into resin pellets; A third step in which the resin pellets are placed in a freeze-crusher, filled with nitrogen gas, rapidly cooled, and then pulverized; A fourth step of drying the pulverized resin pellet powder to control the water content; A fifth step of mixing graphite and metal or nonmetal powder into the dried resin pellet powder, mixing the mixture with an electromagnetic mixer, and extruding the pellet into a material pellet as a pellet for heat radiation material; And a sixth step of dehydrating and drying the material pellets, placing the material pellets in a wrapping paper made of an aluminum foil, and vacuum-packing the pellets. The method of manufacturing an injection molded heat radiating material with improved emissivity.

본 발명에 따르면, 다양한 산업분야에서 활용되고 있는 방열판 등의 방열소재를 알루미늄 타이캐스팅하지 않고도 그보다 높은 방사율 특성을 갖도록 고분자수지와 CNT(Carbon NanoTube) 및 알루미늄분말의 혼용을 통해 간단하고 용이하게 사출 성형할 수 있어 성형성, 제조비용, 방열특성, 경량화 등 모든 면에서 기능적 특성이 향상되는 효과를 얻을 수 있다.According to the present invention, a heat dissipation material such as a heat sink used in various industrial fields can be easily and easily injected through a mixture of a polymer resin, carbon nanotube (CNT) and aluminum powder so as to have a higher emissivity than aluminum tie casting It is possible to obtain an effect of improving the functional characteristics in all respects such as moldability, manufacturing cost, heat dissipation characteristics, and light weight.

도 1은 본 발명에 따른 방사율이 개선된 사출성형 방열소재 제조방법을 보인 플로우챠트이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method of manufacturing an injection molded heat radiating material with improved emissivity according to the present invention.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Before describing the present invention, the following specific structural or functional descriptions are merely illustrative for the purpose of describing an embodiment according to the concept of the present invention, and embodiments according to the concept of the present invention may be embodied in various forms, And should not be construed as limited to the embodiments described herein.

또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, since the embodiments according to the concept of the present invention can make various changes and have various forms, specific embodiments are illustrated in the drawings and described in detail herein. It should be understood, however, that it is not intended to limit the embodiments according to the concepts of the present invention to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention.

본 발명은 종래 개시되고 있는 단순한 방열코팅층 정도의 수준에서는 방열코팅층의 계면 박리는 물론 방사율 특성의 현저한 향상을 결코 기대할 수 없고, 성형방식도 피착재를 별도로 만든 다음 그 외표면에 방열코팅층을 코팅하는 것이기 때문에 제조비용이 이중으로 낭비되는 단점도 있음을 감안하여 성형조성물 자체를 제조하되 사출가능하게 구성하여 사출된 성형품임에도 불구하고 방열특성이 기존 알루미늄 다이캐스팅품 보다 더 월등하게 향상되게 만든 것에 특징이 있다.The present invention can never be expected to remarkably improve the emissivity characteristic as well as the interfacial delamination of the heat-radiating coating layer at the level of a simple heat-radiating coating layer as disclosed in the prior art. In addition, the heat-radiating coating layer is coated on the outer surface The molding composition itself is manufactured, but it is constituted so as to be injection-molded so that the heat-radiating property is remarkably improved as compared with the existing aluminum die casting product even though it is an injection molded product .

즉, 본 발명은 고분자수지의 우수한 기계적 물성과 CNT와 알루미늄의 높은 열전도 특성 및 전기전도 특성을 그대로 포함시켜 극대화시킬 수 있도록 성형조성물을 펠릿화하여 사출가능하게 구성함으로써 용이한 성형성을 확보하고, 생산성을 높이며, 가격경쟁력이 우수하고, 방열특성도 현저히 향상되며, 경량화도 가능한 방열소재를 제공한다.That is, the present invention can easily mold the molding composition by pelletizing and molding the molding composition so as to maximize the mechanical properties of the polymer resin and the high thermal conductivity and electrical conductivity of CNT and aluminum, Provides a heat-dissipating material that improves productivity, has excellent price competitiveness, significantly improves heat dissipation characteristics, and is lightweight.

특히, 현재 LED 조명기구의 경우 백열등 및 형광등을 LED 조명으로 전환하고 있는 전환률이 22% 수준에 머물고 있지만, 2022년까지 60%로 계획하고 있어 방열소재의 폭발적인 수요가 예상되므로 알루미늄 방열판과 같은 금속재를 대체할 고방열 복합소재의 개발이 시급히 요청되고 있다.In particular, currently, the conversion rate of LED lighting equipment, which converts incandescent and fluorescent lamps into LED lighting, remains at 22%, but the explosive demand for heat dissipation materials is expected to be 60% until 2022, Development of a composite material with high heat dissipation is urgently required.

이러한 방열소재는 비단 조명기구에 그치지 않고 앞서 설명하였듯이 산업전반에서 요구하고 있는데, 이를 테면 전기자동차, 자율주행 자동차, 전자기기, 웨어러블 기기, 로봇기기를 비롯하여 컴퓨터 ECU, 전기자동차 인버터, 로봇컨트롤러 인버터, 중계기 인버터 등 거의 모든 산업분야에서 필요하다.Such heat dissipation materials are not limited to light fixtures, but as described above, they are required in the industry as a whole, such as electric automobiles, autonomous vehicles, electronic devices, wearable devices, robotic devices, computer ECUs, electric vehicle inverters, Repeater inverters, and so on.

이를 위해, 본 발명에 따른 방사율이 개선된 사출성형 방열소재 제조방법은 도 1의 예시와 같이, MWCNT(Multi Walled CNT)를 고분자수지에 균일하게 분산시키는 제1단계와; MWCNT가 분산된 고분자수지를 압출하여 수지펠릿으로 만드는 제2단계와; 수지펠릿을 동결분쇄기에 넣고 질소가스를 충전하여 급속냉각한 후 분쇄하는 제3단계와; 분쇄된 수지펠릿분말을 건조하여 함수율을 조절하는 제4단계와; 건조된 수지펠릿분말에 그라파이트와 금속 또는 비금속 파우더를 넣고 전자믹서로 믹싱한 후 압출하여 방열소재용 펠릿인 소재펠릿으로 만드는 제5단계와; 소재펠릿을 제습건조한 후 알루미늄 내피로 된 지대 포장지에 넣고 진공포장하는 제6단계;로 이루어진다.To this end, a method for manufacturing an injection molded heat-radiating material with improved emissivity according to the present invention includes a first step of uniformly dispersing MWCNT (Multi Walled CNT) in a polymer resin, as shown in FIG. A second step of extruding the polymer resin in which the MWCNT is dispersed into resin pellets; A third step in which the resin pellets are placed in a freeze-crusher, filled with nitrogen gas, rapidly cooled, and then pulverized; A fourth step of drying the pulverized resin pellet powder to control the water content; A fifth step of mixing graphite and metal or nonmetal powder into the dried resin pellet powder, mixing the mixture with an electromagnetic mixer, and extruding the pellet into a material pellet as a pellet for heat radiation material; And a sixth step of dehydrating and drying the material pellets, placing the material pellets in a wrapping paper made of aluminum and then vacuum-packing the pellets.

즉, 본 발명은 방열판과 같은 방열특성을 갖는 제품을 사출성형할 수 있는 원료인 방열소재, 더 정확하게는 펠릿형 방열재료를 제공하는 것이다.That is, the present invention provides a heat dissipation material, more precisely a pellet type heat dissipation material, which is a raw material capable of injection molding a product having a heat dissipation property such as a heat dissipation plate.

이때, 본 발명에서는 높은 열전도율과 전기전도도가 우수한 CNT를 활용하는데, 그 중에서도 MWCNT를 사용한다.At this time, in the present invention, CNTs having high thermal conductivity and electrical conductivity are utilized, among which MWCNT is used.

CNT는 육각형의 벌집모양으로 이루어진 그라펜시트가 직경이 수 나노미터 크기로 둥글게 말려 튜브 형태를 이루고 있으며, 말린 방향 및 형태에 따라 서로 다른 성질을 갖는다.The CNT has a hexagonal honeycomb-shaped graphene sheet with a diameter of several nanometers and is formed into a tubular shape by rounding and has different properties depending on the dried direction and shape.

이러한 CNT는 외벽수에 따라 Sing Walled CNT(SWCNT), Double Walled CNT(DWCNT), Multi Walled CNT(MWCNT), Nanotube Rope 등으로 구분된다.These CNTs are divided into Sing Walled CNT (SWCNT), Double Walled CNT (DWCNT), Multi Walled CNT (MWCNT) and Nanotube Rope according to the number of outer walls.

본 발명은 이 중에서도 분산력과 응집력을 향상시킬 수 있으면서 상대적으로 가격이 저렴한 MWCNT를 활용한다.Among them, the present invention utilizes MWCNT, which can improve dispersion and cohesion, but is relatively inexpensive.

그런데, CNT는 매우 낮은 분산특성 때문에 쉽게 잘 뭉치므로 단순 첨가시에는 원하는 특성을 얻을 수 있다. 따라서, CNT를 첨가했을 때 응집 또는 침전되지 않고 안정된 상태로 균일하게 분산시키기 위해서는 CNT와 복합소재의 매트릭스와의 동시 친화력을 부여할 수 있도록 해야 한다.However, since the CNTs are easily aggregated due to their very low dispersion characteristics, desired characteristics can be obtained by simple addition. Therefore, in order to uniformly disperse the CNTs in a stable state without agglomeration or precipitation when adding CNT, it is necessary to provide simultaneous affinity between the CNTs and the matrix of the composite material.

이와 같은 CNT 분산 방법으로는 초음파법, 화학처리법, 계면활성제처리법, 고분자래핑(Wrapping)법 등을 들 수 있다.Examples of the CNT dispersion method include an ultrasonic method, a chemical treatment method, a surfactant treatment method, and a polymer wrapping method.

여기에서, 초음파법은 초음파장치로 CNT 희석용액을 균일분사하여 분산시키는 방식으로서 편리하지만 나노튜브의 손상, 재응집 발생 등의 문제가 있다.Here, the ultrasonic method is convenient as a method of uniformly spraying and dispersing the CNT diluting solution with the ultrasonic device, but there are problems such as damage of the nanotube and re-coagulation.

또한, 화학처리법은 황산 혹은 질산 등으로 표면에 표면관능기를 도입시키는 산용액처리방식이지만 CNT 입자의 절단, 낮은 분산안정성 때문에 많이 활용되지는 않는다.The chemical treatment method is an acid solution treatment method in which surface functional groups are introduced onto the surface by sulfuric acid or nitric acid, but it is not widely used because of cutting of CNT particles and low dispersion stability.

그리고, 계면활성제처리법은 CNT 표면 코팅 후 정전기적 반발력이나 입체(Steric) 반발력을 유도하여 분산시키는 방식으로서 CNT 고유특성유지가 가능하고 분산안정성이 좋지만, 후속 공정시 표면계면활성제를 제거해야 하는 단점을 갖는다.The surfactant treatment method is a method of inducing and dispersing electrostatic repulsion force or Steric repulsion force after CNT surface coating, which can maintain CNT intrinsic characteristics and is good in dispersion stability. However, it has a disadvantage of removing surface surfactant in a subsequent process .

이와 달리, 고분자래핑법은 모노머수준에서 CNT를 혼합하여 복합체를 제조하기 때문에 분산효율성이 매우 높고, 균일성을 유지할 수 있으므로 본 발명에 적합하다.In contrast, the polymer lapping method is suitable for the present invention because CNTs are mixed at the monomer level to produce a composite, and thus the dispersion efficiency is very high and the uniformity can be maintained.

이러한 고분자래핑법에 사용될 수 있는 고분자수지로는 PP(polypropylene), PA6(Polyamide6), PET(Polyethylene terephthalate), PBT(poly-butylene-terephthalate), PA66(Polyamide66) 등을 포함하고, ABS, PC, PA의 경우도 적용할 수 있다.Examples of the polymer resin that can be used in the polymer lapping method include polypropylene (PP), polyamide 6 (PA6), polyethylene terephthalate (PET), polybutylene terephthalate (PBT) PA can also be applied.

이때, 고분자래핑을 위해 MWCNT를 얼마만큼 분산시킬 것인가가 매우 중요한 요소가 된다.At this time, how much MWCNT is dispersed for polymer lapping is very important factor.

왜냐하면, MWCNT의 분산정도에 따라 열전도율, 방사율, 경량화 등이 달라지기 때문이다.This is because the degree of dispersion of the MWCNT changes the thermal conductivity, emissivity and weight.

이에, 본 발명에서는 상기 제1단계의 가장 효율화된 MWCNT 분산 효과를 확인하기 위해 후술되는 바와 같이 그라파이트(Graphite)와 금속 또는 비금속 파우더, 바람직하게는 알루미늄 파우더를 믹싱하여 시험용 펠릿으로 만든 후 이 시험용 펠릿에 대하여 열전도율(W/mK), 방사율(%), 경량화(%)를 테스트한 결과 MWCNT가 5% 분산처리했을 때 가장 효과적이었다.Accordingly, in order to confirm the most efficient MWCNT dispersion effect of the first step, graphite and metal or non-metal powder, preferably aluminum powder are mixed and made into test pellets as described later, (W / mK), emissivity (%), and weight loss (%) were tested for MWCNT.

즉, 본 발명에 따른 방열소재의 기본조성은 MWCNT가 분산된 고분자수지 30중량%와, 그라파이트 10중량%와, 금속 또는 비금속 파우더 60중량%로 이루어지며, 이 경우 MWCNT를 고분자수지에 얼마만큼 균일하게 분산시킬 것인가가 중요한데 이는 알루미늄 다이캐스팅에 의한 제품과의 차별화를 분명하게 보여야 하기 때문이다.That is, the basic composition of the heat-radiating material according to the present invention is composed of 30 wt% of MWCNT-dispersed polymer resin, 10 wt% of graphite, and 60 wt% of metal or nonmetal powder. In this case, This is because it is necessary to clearly distinguish the product from the product by aluminum die casting.

여기에서, 본 발명에 따른 바람직한 실시예로 상술한 바와 같이 여러종류의 고분자수지가 있지만, 나일론 6을 고분자수지로 예시하며, 또한 금속 혹은 비금속의 경우에도 알루미늄, 구리, 니켈, 은, 금, 세라믹, 마그네슘, 텡스텐 등을 예시할 수 있지만, 가장 바람직한 예로 알루미늄 파우더를 예시하여 설명하기로 한다.Here, as described in the preferred embodiments of the present invention, there are various kinds of polymer resins. However, nylon 6 is exemplified by polymer resin, and in the case of metal or non-metal, aluminum, copper, nickel, silver, gold, ceramics , Magnesium, tungsten and the like can be exemplified, but aluminum powder will be described as the most preferable example.

또한, 그라파이트는 경량화와 높은 방사율 특성을 얻으면서 분산효과를 높이기 위해 200메쉬 입도를 사용해야 하며, 금속 또는 비금속 파우더의 경우에도 210메쉬 입도를 사용해야 하는데 특히 입자모양이 플레이크 타입을 갖도록 함으로써 고분자수지 사이에 긴밀히 혼입되게 하여 열전도 특성과 원만한 분산효과를 얻도록 하여야 한다.In addition, the graphite should have a 200 mesh particle size in order to obtain a light weight and a high emissivity while improving the dispersion effect. In the case of metal or non-metal powder, a 210 mesh particle size should be used. Particularly, So that the heat conduction characteristics and the smooth dispersion effect are obtained.

본 발명에서는 적어도 방열소재로서의 특성을 갖기 위해서는 열전도율 3W/mK 이상, 방사율 0.5%를 가져야 하며, 덧붙여 경량화도 함께 달성할 수 있도록 30%의 경량화를 목표로 한다.In the present invention, at least a thermal conductivity of 3 W / mK or more and an emissivity of 0.5% is required in order to have characteristics as a heat-dissipating material. In addition, the object of the present invention is to reduce the weight by 30%.

이를 위해, MWCNT의 가장 바람직한 분산 함량을 테스트하였으며, 이때 고분자수지는 나일론 6을 사용하였고, 금속 또는 비금속 파우더는 알루미늄 파우더(210메쉬)를 사용하였으며, MWCNT의 분산함량을 3%, 5%, 10%로 나누어 실험하였고, 그 결과는 표 1에 나타내었다. 이때, 함량은 중량비이며, 특성확인을 위해 제5단계에서 설명될 본 발명에 따른 방열소재의 최종 배합비를 먼저 설명하기로 한다.For this purpose, the most desirable dispersing amount of MWCNT was tested. Nylon 6 was used as the polymer resin, aluminum powder (210 mesh) was used as the metal or nonmetal powder, and the dispersion amount of MWCNT was 3%, 5% %, And the results are shown in Table 1. In this case, the content is a weight ratio, and the final blending ratio of the heat-radiating material according to the present invention, which will be described in the fifth step, will be described first.

구분division 나일론 6Nylon 6 알루미늄파우더 210# Aluminum Powder 210 # GraphiteGraphite 열전도율
(W/mK)
Thermal conductivity
(W / mK)
방사율
(%)
Emissivity
(%)
경량화
(%)
Lightweight
(%)
비고Remarks
MWCNT3%MWCNT3% 3030 6060 1010 22 0.50.5 30.630.6 기본값Default MWCNT5%MWCNT5% 3030 6060 1010 3.23.2 0.50.5 30.630.6 목표값Goal Value MWCNT10%MWCNT10% 3030 6060 1010 88 0.50.5 30.630.6 목표값이상Above target value

(여기서, #은 입도인 메쉬를 의미한다)(Where "# " means a mesh having particle size)

표 1의 결과에서와 같이, 고분자수지인 나일론 6에 MWCNT를 3% 분산처리한 후 알루미늄 파우더와 그라파이트를 믹싱하여 방열소재용 펠릿(이하 '소재펠릿')으로 펠릿화했을 때 열전도율과 방사율값은 기본적인 특성을 나타내었고, 경량화는 목?값인 30%를 달성하였다.As shown in Table 1, when 3% dispersion of MWCNT was dispersed in nylon 6, which is a polymer resin, and aluminum powder and graphite were mixed and pelletized with heat-resistant pellets (hereinafter referred to as "material pellets"), the thermal conductivity and emissivity The basic characteristics were shown, and the light weight achieved the target value of 30%.

그런데, 본 발명이 목표로 하는 열전도율과 방사율에는 미치지 못하였다.However, the thermal conduction rate and the emissivity of the present invention are not achieved.

반면, 고분자수지인 나일론 6에 MWCNT를 5% 분산처리한 후 알루미늄 파우더와 그라파이트를 믹싱하여 펠릿화했을 때 열전도율과 방사율값과 경량화는 모두 달성하였다.On the other hand, when 5% dispersion of MWCNT in nylon 6, a polymer resin, was mixed with aluminum powder and graphite, the thermal conductivity, emissivity value and light weight were both achieved.

덧붙여, 고분자수지인 나일론 6에 MWCNT를 10% 분산처리한 경우에는 월등한 열전도율을 확보할 수 있었지만 현실적으로 MWCNT를 10% 이상 분산시키는 것이 쉽지 않고 또한 가격 상승이 급격히 높아지기 때문에 실험적으로는 가능하지만 현실적으로는 상용화하기 어렵다.In addition, when 10% dispersion of MWCNT is dispersed in nylon 6, a polymer resin, it is possible to secure a superior thermal conductivity. However, it is practically possible to disperse MWCNT in an amount of 10% or more, It is difficult to commercialize.

때문에, 상기 표 1의 실험을 통해서 현실적으로 구현할 수 있는 MWCNT 5% 분산처리시 목표하는 특성을 얻을 수 있음 확인하는 중요한 실험이었다.Therefore, it was an important experiment to confirm that the target characteristics can be obtained in the 5% dispersion treatment of MWCNT that can be practically realized through the experiment of Table 1 above.

따라서, 본 발명에서는 MWCNT를 고분자수지에 5% 분산처리한 것을 사용하며, 이는 본 발명에 따른 제조방법중 제1단계에 해당된다.Therefore, in the present invention, MWCNT is dispersed in 5% of the polymer resin, which is the first step of the manufacturing method according to the present invention.

한편, 본 발명에서는 MWCNT의 적합한 분산함량을 구했으나 고분자함량과 금속 또는 비금속 파우더의 함량변화에 따른 열전도율 특성과 방사율 특성이 어떻게 나타나는가에 대한 결과도 확인할 필요가 있었다.Meanwhile, in the present invention, it was necessary to confirm the results of how the thermal conductivity and emissivity characteristics of the MWCNT are affected by the change of the polymer content and the content of the metal or non-metal powder.

이에, 그라파이트는 통상 10중량%로 고정되기 때문에 고분자수지의 함량을 변화시킬 수 있는 최소값 30중량%와 최대값 50중량% 범위내에서 변화시키면서 그에 따라 당연히 변화되는 금속 또는 비금속 파우더의 함량을 조절한 상태로 표 1과 같은 형태로 실험하였고, 그 결과는 표 2에 나타내었다. 참고를 위해 MWCNT의 분산은 5%, 10% 2개에 대해 실시하였다. 이때, 3% 분산은 목표값에 도달하지 못했기 때문에 제외하였다.Since the graphite is usually fixed at 10% by weight, the content of the metal or non-metallic powder is changed by changing the content within the range of the minimum value of 30% by weight and the maximum value of 50% by weight which can change the content of the polymer resin The results are shown in Table 2. For reference, the MWCNT dispersion was performed for 5% and 10% of the two. At this time, 3% dispersion was excluded because it did not reach the target value.

구분division 나일론6Nylon 6 알루미늄파우더
210#
Aluminum powder
210 #
GraphiteGraphite 열전도율
(W/mK)
Thermal conductivity
(W / mK)
방사율
(%)
Emissivity
(%)
비고Remarks
MWCNT5%MWCNT5% 3030 6060 1010 3.23.2 0.50.5 목표값Goal Value MWCNT5%MWCNT5% 5050 4040 1010 2.52.5 0.250.25 기본값Default MWCNT10%MWCNT10% 3030 6060 1010 88 0.50.5 목표값이상Above target value MWCNT10%MWCNT10% 5050 4040 1010 55 0.250.25 목표값이상Above target value

실험결과, 표 2에서와 같이 고분자수지와, 금속 또는 비금속 파우더 및 그라파이트가 각각 30중량%와, 60중량%와, 10중량%로 믹싱되었을 때 목표값을 달성함을 확인하였고, 고분자수지가 많아지면 열전도율 및 방사율이 모두 떨어지는 것으로 확인되었다.As a result of the experiment, it was confirmed that when the polymer resin, the metal or the non-metal powder and the graphite were mixed at 30 wt%, 60 wt% and 10 wt%, respectively, as shown in Table 2, The ground thermal conductivity and emissivity were all found to be low.

이에, 본 발명에서는 상기 비율을 기본 믹싱비율로 결정하였다.In the present invention, the ratio is determined as a basic mixing ratio.

덧붙여, 본 발명에서는 상기 제1단계를 수행하기 전에 MWCNT의 분산력을 더욱 높이고, MWCNT의 안정적인 교합을 위해 표면을 처리하는 전처리단계가 더 수행될 수 있다.In addition, in the present invention, a pre-treatment step of further increasing the dispersing power of the MWCNT before the first step and treating the surface for stable occlusion of the MWCNT may be further performed.

상기 전처리단계는 플라즈마처리기로 MWCNT의 표면을 디스미어(Desmear)하는 제1과정과, 플라즈마 처리된 MWCNT 표면에 실란 혼합물을 분무하여 표면 개질을 준비하는 제2과정과, 실란 혼합물이 잔류된 MWCNT 표면에 자외선을 조사하여 MWCNT 표면을 개질하는 제3과정을 포함한다.The pretreatment step may include a first step of desmearing the surface of the MWCNT with a plasma processor, a second step of preparing a surface modification by spraying a silane mixture on the surface of the plasma-treated MWCNT, And modifying the surface of the MWCNT by irradiating ultraviolet rays onto the MWCNT surface.

이때, 제1과정은 MWCNT를 챔버에 넣고 챔버를 회전시켜 MWCNT를 교반하면서 챔버 상부에 설치된 플라즈마처리기에서 발생된 플라즈마를 MWCNT 표면에 조사하여 라디칼 반응에 의한 디스미어를 진행하는 과정이다. 이것도 하나의 표면 개질 작업으로서 MWCNT가 타 물질과의 친화성, 접착성을 증대시켜 분산이 잘되게 하기 위함이다.In this case, the first step is a process of irradiating the plasma generated in the plasma processor installed on the chamber with the MWCNT by rotating the chamber, rotating the chamber, and irradiating the plasma on the MWCNT surface to proceed the desmear by the radical reaction. This is also one of the reasons for improving the affinity and adhesiveness of the MWCNT with other materials as a surface modification work, thereby facilitating dispersion.

또한, 제2과정은 실란 성분이 자외선과 반응하면서 MWCNT의 표면을 효율적으로 개질하기 때문에 자외선을 조사하기 전에 실란 성분을 도포하는 과정이다.In addition, the second step is a process of applying a silane component before irradiating ultraviolet rays because the silane component reacts with ultraviolet rays and efficiently modifies the surface of MWCNT.

이 과정에서 사용되는 실란 혼합물은 옥타데실트리클로로실란(Octadecyltrichlorosilane)와 아미노실란이 1:1의 중량비로 혼합된 것이다.The silane mixture used in this process is a mixture of octadecyltrichlorosilane and aminosilane in a weight ratio of 1: 1.

그리고, 제3과정은 실란과의 반응성을 높여 개질효과를 증대시키기 위해 10-200nm의 파장대역을 갖는 진공자외선을 사용하여 표면을 개질시킴으로써 친환경성 개선, 접착성 향상을 달성하는 과정이다.The third step is to improve the environment friendliness and the adhesion improvement by modifying the surface by using the vacuum ultraviolet ray having a wavelength band of 10-200 nm in order to increase the reactivity with the silane and to increase the modifying effect.

이에 더하여, 상기 제3과정 후 MWCNT의 젖음성을 높이도록 MWCNT의 표면에 SnO2를 뿌리는 제4과정이 더 수행될 수 있다.In addition, a fourth process of spraying SnO 2 on the surface of the MWCNT may be further performed to enhance the wettability of the MWCNT after the third process.

이렇게 하여, 제1단계가 완료되면 MWCNT가 분산된 고분자수지를 압출하여 수지펠릿으로 만드는 제2단계가 수행된다.Thus, when the first step is completed, a second step of extruding the polymer resin in which the MWCNT is dispersed into resin pellets is carried out.

상기 제2단계를 통해 수지펠릿으로 만드는 이유는 후속단계에서 동결분쇄를 용이하게 하면서 재분산력을 높이기 위함이다.The reason for making resin pellets through the second step is to facilitate redissolving power while facilitating frozen pulverization in a subsequent step.

아울러, 본 발명에서는 나일론6을 고분자수지로 채택함이 가장 바람직한데, 이는 나일론 싱글의 경우 내마모성 및 내열성, 강도특성과 수지 흐름성이 매우 우수하여 MWCNT를 분산하였을 때 고분자의 기계적 물성이 잘 발현되기 때문이다.In the present invention, it is most preferable to adopt nylon 6 as a polymer resin. In the case of a nylon single, the abrasion resistance, the heat resistance, the strength and the resin flowability are excellent, so that when the MWCNT is dispersed, the mechanical properties of the polymer are well expressed Because.

뿐만 아니라, 후술되는 바와 같이 압출성이 좋고, 함수율 조절도 쉬울 뿐만 아니라 압출 후 표면상태가 매끄러워 전도율을 일정하게 유지하는 장점도 있기 때문이다.In addition, as described later, the extrudability is good, the water content is easily controlled, and the surface state after extrusion is smooth, thereby maintaining the conductivity constant.

그리고, 상기 제3단계는 수지펠릿을 동결분쇄기에 넣고 질소가스를 충전하여 -40~-60℃로 급속 냉각한 다음 25Hz의 속도로 분쇄하여 200-300메쉬의 입도를 갖도록 분말화하는 단계이다.In the third step, the resin pellets are placed in a freeze grinder, filled with nitrogen gas, cooled rapidly at -40 to -60 ° C, pulverized at a rate of 25 Hz, and powdered to have a particle size of 200-300 mesh.

이렇게 수지펠릿을 다시 분말화하는 이유는 후술되는 제5단계에서 정량 배합할 수 있도록 하기 위함도 있지만, 제1단계를 통해 분산된 MWCNT를 수지펠릿으로 만들어 다시 분쇄하여 미분으로 만들게 되면 재분산이 일어나 완전히 균일화된 분산효과를 얻을 수 있기 때문이다.The reason why the resin pellets are re-pulverized is that it is possible to formulate the resin pellets in a quantitative manner in the following step 5, but when dispersed MWCNTs are made into resin pellets by re-pulverizing them into fine powders, A completely uniform dispersion effect can be obtained.

이때, 질소가스를 사용하는 이유는 열안정화를 얻기 위함이며, 동시에 고분자수지, 특히 나일론 6은 고속회전시켜 분말화할 경우 뭉침현상이 발생되기 때문에 급속냉각시킬 수 있는 질소가스를 사용해야 하는 것이며, 이와 같이 급속냉각한 상태에서 파쇄하여 분말화시키는 것이 안정적이다.The reason why nitrogen gas is used is to obtain thermal stabilization. At the same time, when a polymer resin, especially nylon 6, is pulverized by high-speed rotation to generate powder, a nitrogen gas which can be rapidly cooled must be used. It is stable to pulverize and pulverize in a state of rapid cooling.

이러한 질소가스는 액체질소를 기화기를 통해 기화 공급하는 형태를 갖는다.Such nitrogen gas has a form of vaporizing and supplying liquid nitrogen through a vaporizer.

이후, 제4단계가 수행되는데, 상기 제4단계는 분쇄된 수지펠릿을 건조하여 함수율을 조절하는 단계이다.Then, a fourth step is performed, wherein the fourth step is to dry the pulverized resin pellets to adjust the water content.

이와 같은 제4단계를 통해 함수율을 조절해야 하는 이유는 MWCNT가 분산된 고분자수지, 특히 나일론 6의 초기 함수율은 0.2% 정도인데 이를 0.04%까지 맞추지 않게 되면 압출시 고분자수지가 수분과 함께 용융될 때 가수분해현상이 발생하여 고분자의 사슬이 파괴되어 원하는 물성을 얻을 수 없기 때문이다. 따라서, 제4단계에서의 함수율 조절은 매우 중요하다.The reason for controlling the water content through the fourth step is that the initial water content of the polymer resin dispersed with MWCNT, especially nylon 6, is about 0.2%. If it is not adjusted to 0.04%, when the polymer resin melts together with water during extrusion The hydrolysis phenomenon occurs and the chains of the polymer are destroyed, so that desired physical properties can not be obtained. Therefore, the control of the water content in the fourth step is very important.

또한, 이렇게 잘 건조되어야 미분 상태의 분말이 그라파이트 및 알루미늄 파우더와 믹싱될 때 균일한 믹싱이 가능하여 고품질의 사출 방열품을 만들 수 있게 된다.In addition, when the powders of the fine powder state are mixed with the graphite and the aluminum powder, it is possible to perform uniform mixing and thus to produce a high quality injection and heat radiation article.

이때, 0.04%까지의 함수율 조절은 건조기를 통해 80℃에서 4-6시간 건조한다.At this time, the water content adjustment to 0.04% is carried out at 80 ° C for 4-6 hours through a dryer.

예컨대, 하기한 표 3에는 여러 종류의 고분자수지에 대한 초기함수율과 건조온도, 건조시간에 따른 함수율 관계를 나타내었다.For example, Table 3 below shows the water content of various polymer resins depending on initial moisture content, drying temperature, and drying time.

수지종류Resin type 초기함수율(%)Initial moisture content (%) 건조온도(°c)Drying temperature (° C) 건조시간(h)Drying time (h) 목표함수율(%)Target water content (%) ABSABS 0.20.2 8080 2~32 to 3 0.040.04 PCPC 0.20.2 120120 2~32 to 3 0.0040.004 PA6PA6 0.20.2 8080 4~64 to 6 0.040.04 PETPET 0.10.1 120120 2~42 to 4 0.0040.004 PBTPBT 0.10.1 120120 2~42 to 4 0.0040.004

표 3을 참고하면, 에너지를 많이 소모하지 않는 비교적 낮은 온도인 80℃에서 목표함수율을 쉽게 얻을 수 있는 나일론 6이 특성, 가격 등을 전체적으로 고려했을 때 가장 적합하다.Referring to Table 3, nylon 6, which can easily obtain the target moisture content at a relatively low temperature of 80 ° C, which does not consume a large amount of energy, is most suitable when considering characteristics, price, and the like as a whole.

이어, 제5단계가 수행된다.Then, the fifth step is performed.

상기 제5단계는 방열소재로 만들기 위해 성분들을 믹싱하며, 압출하여 방열소재용 소재펠릿으로 만드는 단계이다.In the fifth step, the components are mixed to form a heat-dissipating material, and the material is extruded and made into a material pellet for a heat-radiating material.

이 경우, 상기 제5단계는 압출조건이 또한 중요하다.In this case, the extrusion conditions are also important in the fifth step.

먼저, 믹싱은 건조된 수지펠릿분말 30중량%와, 알루미늄 파우더 60중량%와, 그라파이트 10중량%를 전자믹서에 넣고 60rpm의 속도로 10분간 믹싱한다. 이렇게 저속으로 전자믹서를 사용해야 하는 이유는 균일하고 온전한 혼합이 이루어지도록 하기 위함인데 균일한 혼합이 이루어지지 않으면 트윈압출기를 통해 압출될 때 트윈압출기 내부에서 압출스크류를 통해 일정한 압력과 온도를 받게 되어 압출 후 표면상태가 고르지 못하여 열전도도 및 방사율 특성을 저해할 수 있기 때문이다.First, 30% by weight of the dried resin pellet powder, 60% by weight of aluminum powder and 10% by weight of graphite are mixed in an electronic mixer at a speed of 60 rpm for 10 minutes. The reason why the electronic mixer should be used at such a low speed is to ensure uniform and intimate mixing. Unless it is mixed uniformly, when it is extruded through a twin extruder, a certain pressure and temperature are received through the extruding screw in the twin extruder, This is because the surface condition of the back surface is uneven and thermal conductivity and emissivity characteristics may be hindered.

이러한 이유로 압출압력은 2-5 MPa, 압출시 온도변화는 240-250℃ 범위를 유지해야 한다.For this reason, the extrusion pressure should be in the range of 2-5 MPa, and the temperature change in extrusion should be in the range of 240-250 ° C.

그렇지 않게 되면, 하기한 표 4와 같이 표면이 거칠어져 전도율이 불규칙해질 수 있다.Otherwise, the surface may become rough as shown in Table 4 below and the conductivity may become irregular.

나일론6CNT분말+알루미늄분말+GraphiteNylon 6CNT powder + Aluminum powder + Graphite 스크류내 압력Screw pressure 온도변화Temperature change 압출표면
상태
Extruded surface
condition
기능효과Function Effect
MIX OKMIX OK 2~5 Mpa 안정Stable at 2-5 Mpa 240℃~250℃일정240 ° C to 250 ° C constant 매끄러움lubricity 전도율 일정Conductivity schedule MIX NGMIX NG 2~10Mpa불안정2 ~ 10Mpa unstable 220℃~250불안정220 ℃ ~ 250 Unstable 거칠거칠Rough 전도율 불규칙Irregularity of conductivity

여기에서, 알루미늄 파우더는 미분상태일 때 수분이나 인화성물질과 접촉하게 되면 강력한 산화성 때문에 폭발할 위험이 있다.Here, aluminum powder is in a fine state, and when it comes into contact with water or flammable substances, there is a risk of explosion due to its strong oxidizing ability.

때문에, 본 발명에서는 안전성을 확보할 수 있도록 상기 알루미늄 파우더를 첨가하기 전에 알루미늄 파우더 100중량부에 대해 소듐파이로설파이트(Sodium Pyrosulfite, NaS2O5)를 1.5중량부, DBA(Dibytylaurate) 1.0중량부 더 혼합한 상태에서 첨가한다.Therefore, in order to ensure safety, 1.5 parts by weight of sodium pyrosulfite (NaS 2 O 5 ) and 1.0 part by weight of DBA (dibytylaurate) are added to 100 parts by weight of the aluminum powder before the aluminum powder is added so as to ensure safety. Add the additive in a mixed state.

이때, 소듐파이로설파이트는 산화를 억제하여 폭발을 방지하고, DBA는 내열안정성 및 완충성을 강화시켜 폭발을 방지한다.At this time, sodium pyrosulfite inhibits oxidation to prevent explosion, and DBA enhances thermal stability and buffering property to prevent explosion.

그리고, 트윈압출기(L/D 40, 35.6φ)는 믹싱존이 3곳 이상인 스크류를 사용한다. 때문에, 트윈압출기의 표준온도는 고분자수지의 종류에 따라 다를 수 있어 압출조건들도 달라질 수 있다.The twin extruder (L / D 40, 35.6φ) uses a screw having three or more mixing zones. Therefore, the standard temperature of the twin extruder may be different depending on the kind of the polymer resin, and the extrusion conditions may be changed.

일반적으로, 이종수지의 혼합이나 충진재 등의 혼합을 위해 트윈압출기가 사용되며, 내부에는 트윈스크류 엘리먼트를 구비하는데, 이는 피딩존, 리딩존, 믹싱존으로 구분되고, 믹싱존은 2곳 정도로 조합되어 있다.In general, a twin extruder is used for the mixing of diatomaceous earth or for mixing fillers and the like, and a twin screw element is provided therein, which is divided into a feeding zone, a reading zone and a mixing zone, and two mixing zones are combined .

하지만, 본 발명에서는 고분자수지와 금속 분말(알루미늄 파우더)과의 안정된 혼합을 위해 믹싱존을 3곳 이상 조합시켜 압출온도 및 압출압을 일정하게 유지하도록 구성된다.However, in the present invention, at least three mixing zones are combined to stably mix the polymer resin and the metal powder (aluminum powder) to maintain the extrusion temperature and the extrusion pressure constant.

이 경우, 압출온도 안정화와 균일화를 위해 압출시 질소가스를 원료투입시 일정량 함께 주입성형하면 더욱 좋다.In this case, in order to stabilize and homogenize the extrusion temperature, it is better to inject the nitrogen gas at the time of extrusion with a certain amount of the raw material.

참고로, 고분자수지 종류별 압출온도 조건은 아래 표 5의 예시와 같다. For reference, the extrusion temperature conditions for each type of polymer resin are shown in Table 5 below.

구분division 피딩존(℃)Feeding zone (℃) 믹싱존(℃)Mixing zone (℃) 리딩존(℃)Leading Zone (℃) 다이스(℃)Dice (℃) PPPP 180180 210210 210210 220220 PA6PA6 200200 230230 220220 230230 PET,PBTPET, PBT 200200 230230 230230 240240 PA66PA66 210210 250250 240240 250250

이와 같은 단계를 거쳐 소재펠릿으로 만들어지면 이어 제6단계가 수행된다.After the pellet is formed through the above steps, the sixth step is performed.

상기 제6단계는 소재펠릿을 제습건조한 후 알루미늄 내피로 된 지대 포장지에 넣고 진공포장하는 단계이다.The sixth step is a step of dehumidifying and drying the material pellets, placing the material pellets in a wrapping paper made of aluminum and then vacuum-packing the pellets.

이때, 제6단계 수행시 포장전에 반드시 소재펠릿을 제습건조해야 하는데 압출 성형 후 포장대기 동안 수분을 흡수하여 함수율이 높아져 있기 때문이다.In this case, the material pellets must be dehumidified before the packaging in the sixth step, because moisture is absorbed during the pavement after extrusion molding to increase the water content.

즉, 압출 후 열이 식으면서 고분자수지가 수분을 흡수하기 때문에 수분이 높아지면 사출성형시 특성이 저하될 수 있다.That is, since the polymer resin absorbs moisture while the heat is cooled after the extrusion, if the water content is high, the characteristics during injection molding may be deteriorated.

때문에, 상기 제6단계에서는 반드시 제습 후 포장해야 하고, 포장도 진공포장해야 하며, 포장지의 내피도 알루미늄으로 되어야 한다.Therefore, in the sixth step, it is necessary to carry out dehumidification after wrapping, and the package should also be vacuum packaged, and the inner surface of the wrapping paper should also be made of aluminum.

그리고, 제습건조는 제습효율을 높이기 위해 허니컴(Honey Comb) 구조를 갖는 챔버에서 이루어는데 이는 적은 공간 대비 단면적이 5배 이상 넓기 때문에 제습효율을 극대화시키고 안정적인 제습 건조가 가능하기 때문이며, 목표 함수율은 0.04%이다.The dehumidification drying is performed in a chamber having a honeycomb structure in order to increase the dehumidification efficiency because it maximizes the dehumidification efficiency and enables stable dehumidification drying because the sectional area is 5 times larger than that of the small space. %to be.

아울러, 포장은 자동계량기를 통해 25kg 단위로 계량하여 진공포장한다.In addition, the packaging is weighed and packed in vacuum by automatic meter.

이와 같은 본 발명에 따른 제조방법으로 제조된 방열소재를 사출성형하여 실제품화되었을 때 특성 차이를 확인하기 위해 현재 시판되고 있는 LED 조명용 방열판(알루미늄 다이캐스팅)과 동일한 규격으로 샘플을 만들고 특성을 확인하였고, 이를 표 6에 나타내었다.In order to confirm the difference in properties when the heat-radiating material manufactured by the manufacturing method according to the present invention was injection-molded into an actual product, a sample was manufactured with the same specifications as those of heat sinks (aluminum die casting) This is shown in Table 6.

시험항목Test Items 기준치Reference value 단위unit 시험결과(방열판)Test result (heat sink) 기존제품시험결과Existing product test result 신제품시험결과(본 발명)New product test results (present invention) 알루미늄aluminum 방사율향상된
CNT복합소재
Emissivity-enhanced
CNT composite material
모듈규격Module Specifications 한국도로공사 표준부속서A에 적합할 것Adhere to Annex A of the Korea Highway Corporation Standard. -- 적합fitness 적합fitness 모듈방수방진등급Module waterproof and dustproof grade KSCIEC 60529에 따라 시험했을 때 IP66ㅇ이상일것When tested according to KSCIEC 60529, IP66 ㅇ or higher. -- 적합(IP66)Fit (IP66) 적합(IP66)Fit (IP66) 온도시험 케이스온도(200H)Temperature Test Case Temperature (200H) 85℃이상일 것Above 85 ℃ 5353 6060 광효율Light efficiency 95ml/W이상일것Must be more than 95ml / W ml/Wml / W 131131 128(98%)128 (98%) 무게weight 소재별 다름Different by material g/eag / ea 295295 205(30.6%)205 (30.6%) 방사율Emissivity 0.2이상0.2 or more %% 0.2%0.2% 0.5%0.5%

상기 표 6에서 확인되는 바와 같이, 기존 다이캐스팅 대비 본 발명에 따른 사출품이 50% 이상 향상된 방열효과를 얻고 있음을 확인할 수 있었다.As shown in Table 6 above, it was confirmed that the heat radiation effect of the present invention was improved by 50% or more compared to the conventional die casting.

이에, 본 발명은 기존 알루미늄 다이캐스팅법과 본 발명에 따른 CNT분산형 사출법에 따른 방열품간의 특성, 효과상 차이를 비교하여 정리하면 다음 표 7과 같을 것이다.Accordingly, the present invention can be summarized as follows by comparing the differences in characteristics and effects between the conventional aluminum die casting method and the heat dissipation method according to the CNT dispersion injection method according to the present invention.

구분division 장점Advantages 단점Disadvantages 생산방법Production method 기대효과Benefit 가격경쟁력price competitiveness 알루미늄aluminum 열전도우수, 강도우수Excellent heat conduction, excellent strength 방사율낮음
채산성낮음
내구성낮음
디자인성형불편
Low emissivity
Low profitability
Low durability
Design discomfort
다이캐스팅Die casting 수입의존도에
따른 변화가능
Dependence on imports
Can change according to
저가low price
CNT복합소재CNT composite material 채산성높음
내구성 높음
경량화 가능
친환경
방열성능우수
Profitability High
Durable
Lightweight
Eco
Excellent heat dissipation performance
초기생산비용높음
High initial production cost
사출성형Injection molding 국내의 사출기술 활용 가능
역수출가능
금속 대체 가능
품질 경쟁력 재고
Can utilize domestic injection technology
Re-exportable
Metal replacement possible
Quality Competitiveness Inventory
저가 와 고가격대 형성가능Low cost and high price

Claims (1)

방사율이 개선된 사출성형 가능한 방열소재를 제조하는 방법에 있어서;
MWCNT(Multi Walled CNT)를 고분자수지에 균일하게 분산시키는 제1단계와;
MWCNT가 분산된 고분자수지를 압출하여 수지펠릿으로 만드는 제2단계와;
수지펠릿을 동결분쇄기에 넣고 질소가스를 충전하여 급속냉각한 후 분쇄하는 제3단계와;
분쇄된 수지펠릿분말을 건조하여 함수율을 조절하는 제4단계와;
건조된 수지펠릿분말에 그라파이트와 금속 또는 비금속 파우더를 넣고 전자믹서로 믹싱한 후 압출하여 방열소재용 펠릿인 소재펠릿으로 만드는 제5단계와;
소재펠릿을 제습건조한 후 알루미늄 내피로 된 지대 포장지에 넣고 진공포장하는 제6단계;로 이루어진 것을 특징으로 하는 방사율이 개선된 사출성형 방열소재 제조방법.
A method for producing an injection-moldable heat-radiating material having improved emissivity, the method comprising:
A first step of uniformly dispersing MWCNT (Multi Walled CNT) in a polymer resin;
A second step of extruding the polymer resin in which the MWCNT is dispersed into resin pellets;
A third step in which the resin pellets are placed in a freeze-crusher, filled with nitrogen gas, rapidly cooled, and then pulverized;
A fourth step of drying the pulverized resin pellet powder to control the water content;
A fifth step of mixing graphite and metal or nonmetal powder into the dried resin pellet powder, mixing the mixture with an electromagnetic mixer, and extruding the pellet into a material pellet as a pellet for heat radiation material;
And a sixth step of dehydrating and drying the material pellets, and then vacuum packing the pellets in a wrapping paper made of aluminum.
KR1020180084834A 2018-07-20 2018-07-20 Manufacturing method of injection-molded heat-radiating material with improved emissivity KR101911331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180084834A KR101911331B1 (en) 2018-07-20 2018-07-20 Manufacturing method of injection-molded heat-radiating material with improved emissivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180084834A KR101911331B1 (en) 2018-07-20 2018-07-20 Manufacturing method of injection-molded heat-radiating material with improved emissivity

Publications (1)

Publication Number Publication Date
KR101911331B1 true KR101911331B1 (en) 2018-10-25

Family

ID=64131934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180084834A KR101911331B1 (en) 2018-07-20 2018-07-20 Manufacturing method of injection-molded heat-radiating material with improved emissivity

Country Status (1)

Country Link
KR (1) KR101911331B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976079B1 (en) 2018-11-29 2019-05-09 더원씨엔티(주) A method for manufacturing a heat-radiating material composition having improved heat stability and water resistance
KR102092649B1 (en) 2018-11-07 2020-03-24 (주)티에이치엔 Manufacturing method of packaging electronic device equipped with thermal radiation and dissipation function
KR20210063109A (en) * 2019-11-22 2021-06-01 더원씨엔티(주) Heat sink material using carbon composite and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735819B1 (en) 2016-02-05 2017-05-16 이석 Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735819B1 (en) 2016-02-05 2017-05-16 이석 Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092649B1 (en) 2018-11-07 2020-03-24 (주)티에이치엔 Manufacturing method of packaging electronic device equipped with thermal radiation and dissipation function
KR101976079B1 (en) 2018-11-29 2019-05-09 더원씨엔티(주) A method for manufacturing a heat-radiating material composition having improved heat stability and water resistance
KR20210063109A (en) * 2019-11-22 2021-06-01 더원씨엔티(주) Heat sink material using carbon composite and manufacturing method thereof
KR102280275B1 (en) 2019-11-22 2021-07-21 더원씨엔티(주) Heat sink material using carbon composite and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101911331B1 (en) Manufacturing method of injection-molded heat-radiating material with improved emissivity
KR101976079B1 (en) A method for manufacturing a heat-radiating material composition having improved heat stability and water resistance
KR101324707B1 (en) Composition for radiating heat and product for radiating heat using the same
CN104559149A (en) Carbon composite high-thermal-conductivity plastic material and preparation method thereof
US11365336B2 (en) Polymer-polymer fiber composite for high thermal conductivity
Yoon et al. Review on three-dimensional ceramic filler networking composites for thermal conductive applications
CN103756252B (en) A kind of thermosetting resin base heat-conductive composite material and its preparation method and application
CN111454546B (en) Electromagnetic shielding composite material and preparation method thereof
CN103756298B (en) A kind of thermoplastic polymer based thermal conductive composite and its preparation method and application
CN106675008B (en) High-thermal-conductivity nylon 6 composite material and preparation method thereof
Shen et al. Achieving a high thermal conductivity for segregated BN/PLA composites via hydrogen bonding regulation through cellulose network
KR102280275B1 (en) Heat sink material using carbon composite and manufacturing method thereof
KR101709686B1 (en) Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
KR20180045746A (en) A method for manufacturing high heat-radiating filament for three dimensional printing
CN114685980B (en) Polyamide composition and application thereof
Damacena et al. High‐performance hierarchical composites based on polyamide 6, carbon fiber and graphene oxide
CN104559146A (en) Whisker reinforced thermally conductive plastic material and preparation method thereof
KR101432264B1 (en) Method for Manufacturing Polymer Composite Improved Heat Dissipating Efficiency
CN105694102B (en) A kind of composite graphite alkene microplate radiating masterbatch and its preparation method and application
CN109369930A (en) A kind of preparation method of thermoplastics type's heat-conducting plastic of graphite enhancing
CN102936410A (en) Method for preparing polyamide-base heat-conducting composite material by in-situ polymerization
CN105985623A (en) PC-PET (polycarbonate and polyethylene terephthalate) based LED radiating material comprising modified tetrapod-like zinc oxide whiskers and preparation method thereof
CN112457625A (en) Graphene composite material, graphene composite heat-conducting plastic and preparation method thereof
CN107686635A (en) A kind of preparation method of graphene/solid epoxy high-heat-conductive composite material
KR102477555B1 (en) high strength and Lightweight material containing graphene, and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant