KR101905261B1 - Method for producing recombinant protein of silkworm storage protein 1 using fructose - Google Patents
Method for producing recombinant protein of silkworm storage protein 1 using fructose Download PDFInfo
- Publication number
- KR101905261B1 KR101905261B1 KR1020160110261A KR20160110261A KR101905261B1 KR 101905261 B1 KR101905261 B1 KR 101905261B1 KR 1020160110261 A KR1020160110261 A KR 1020160110261A KR 20160110261 A KR20160110261 A KR 20160110261A KR 101905261 B1 KR101905261 B1 KR 101905261B1
- Authority
- KR
- South Korea
- Prior art keywords
- protein
- met
- delete delete
- fructose
- recombinant
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43563—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
- C07K14/43586—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/64—Proteins; Peptides; Derivatives or degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/22—Affinity chromatography or related techniques based upon selective absorption processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/34—Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Microbiology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Plant Pathology (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Insects & Arthropods (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 프룩토오스를 이용한 누에의 저장 단백질 1(Storage Protein 1; SP1)의 재조합 단백질 생산방법에 관한 것으로, 더욱 상세하게는 세포 배양에 의해 생산된 재조합 SP1 단백질을 사이즈 배제 크로마토그래피(Size exclusion chromatography)를 이용해 정제할 때 용출 버퍼(Elution buffer)에 프룩토오스(Fructose)를 소정량 첨가함으로써, 재조합 SP1의 응집(Aggregation) 현상을 억제하고, 후속의 초미세여과(Ultrafiltration)를 통한 농축 후에도 이러한 응집 현상을 현저하게 감소시켜 고농도의 재조합 SP1을 대량으로 생산할 수 있도록 한, 누에의 저장 단백질 1의 재조합 단백질 생산방법, 이에 의해 생산된 재조합 SP1 단백질, 및 이의 세포사멸(Apoptosis) 억제, 세포 배양 배지 첨가물, 바이오 의약품 생산용의 세포주 제작, 항-산화 소재 내지 (기능성) 화장품 소재로의 용도에 관한 것이다.The present invention relates to a method for producing a recombinant protein of silkworm storage protein 1 (SP1) using fructose, and more particularly, to a method for producing recombinant SP1 protein produced by cell culture by size exclusion chromatography chromatography, the addition of a certain amount of fructose to the elution buffer suppresses the aggregation phenomenon of the recombinant SP1, and even after concentration through subsequent ultrafiltration, A recombinant SP1 protein produced by the silkworm storage protein 1, a recombinant SP1 protein produced by the silkworm SP1 protein and its inhibition of apoptosis, a cell culture Culture media for the production of biopharmaceuticals, use as anti-oxidation or functional (cosmetic) materials will be.
Description
본 발명은 프룩토오스를 이용한 누에의 저장 단백질 1(Storage Protein 1; SP1)의 재조합 단백질 생산방법에 관한 것으로, 더욱 상세하게는 세포 배양에 의해 생산된 재조합 SP1 단백질을 사이즈 배제 크로마토그래피(Size exclusion chromatography)를 이용해 정제할 때 용출 버퍼(Elution buffer)에 프룩토오스(Fructose)를 소정량 첨가함으로써, 재조합 SP1의 응집(Aggregation) 현상을 억제하고, 후속의 초미세여과(Ultrafiltration)를 통한 농축 후에도 이러한 응집 현상을 현저하게 감소시켜 고농도의 재조합 SP1을 대량으로 생산할 수 있도록 한, 누에의 저장 단백질 1의 재조합 단백질 생산방법, 이에 의해 생산된 재조합 SP1 단백질, 및 이의 세포사멸(Apoptosis) 억제, 세포 배양 배지 첨가물, 바이오 의약품 생산용의 세포주 제작, 항-산화 소재 내지 (기능성) 화장품 소재로의 용도에 관한 것이다.
The present invention relates to a method for producing a recombinant protein of silkworm storage protein 1 (SP1) using fructose, and more particularly, to a method for producing recombinant SP1 protein produced by cell culture by size exclusion chromatography chromatography, the addition of a certain amount of fructose to the elution buffer suppresses the aggregation phenomenon of the recombinant SP1, and even after concentration through subsequent ultrafiltration, A recombinant SP1 protein produced by the
현재 바이오 의약 산업에서 생물 배양기를 통해 동물세포를 배양하는 과정에서 일어나는 세포사멸(Apoptosis)이 큰 문제로 대두되고 있다. 생물 배양기에서의 세포 대량 배양시 세포는 저산소증이나 영양분 부족, 전단응력 등과 같은 세포사멸이 유도되는 환경들에 놓이게 된다. 세포사멸에 의해 세포의 생존율(Cell viability)이 감소하게 되면 결과적으로 재조합 단백질의 생산량이 감소하게 된다. 게다가 세포 배양에서 일어나는 세포사멸은 원하지 않는 부산물을 만들 위험성을 높이고, 이러한 부산물을 제거하기 위해서는 또 다른 정제 과정을 필요로 한다.In the biopharmaceutical industry, the apoptosis that occurs during the cultivation of animal cells through biological incubators is becoming a big problem. During cell culture in a biological incubator, the cells are placed in environments where cell death is induced, such as hypoxia, lack of nutrients, and shear stress. The decrease in cell viability due to apoptosis results in a decrease in the production of recombinant protein. Furthermore, apoptosis in cell culture increases the risk of creating unwanted byproducts and requires further purification to remove these by-products.
따라서, 바이오 의약품의 생산성을 증대시키고, 생산 공정에서의 추가 공정의 필요성을 배제하기 위해 세포사멸 억제 물질을 개발하여 세포 배양 배지 첨가물로 활용하는 방법이 필요하다.
Therefore, in order to increase the productivity of biopharmaceuticals and to eliminate the necessity of further processing in the production process, it is necessary to develop a cell death inhibiting substance and utilize it as a cell culture medium additive.
한편, 국내 화장품 시장 규모는 꾸준히 증가하고 있으며, 특히 기능성 화장품의 시장 규모가 급속히 커지고 있다. 과학의 발달과 함께 인간의 수명은 점점 연장되고 있고 여기에 저출산 등의 요인으로 인해 급속히 고령화 사회로 접어들었다. 이에 대해 화장품 산업 분야에서도 장기적인 관점에서의 대응이 필요한 상황이며, 특히 기능성 화장품에 대한 관심은 점점 높아질 것으로 예상된다. 이에 소비자 욕구에 부합되는 보다 높은 효능의 기능성 화장품의 개발이 요구되고 있다. 구체적으로 인간은 시간이 흐름에 따라서 생리적인 기능이 저하되는 노화 현상을 경험하게 된다. 개개인에 따라 노화의 정도가 차이 나게 되는데, 이러한 개개인의 생체적인 노화 정도를 판단할 수 있는 가장 큰 지표가 되는 것이 피부이다. 피부는 외부 환경에 항상 노출되어 있으므로 노화에 따른 피부 변화는 많은 부분이 외부인자들의 영향에 의한 것이라고 할 수 있다. 특히 외부인자 중 자외선과 호흡을 통해 생성되는 활성산소는 피부 노화의 가장 중요한 원인으로 간주되고 있다. 활성산소는 피부세포 및 조직 손상을 주도하고 항-산화 방어체계를 파괴한다.Meanwhile, the domestic cosmetics market is steadily growing, and the market for functional cosmetics is growing rapidly. With the development of science, the life span of human beings has been getting longer, and due to factors such as low fertility, it has rapidly entered into an aging society. In the cosmetics industry, there is a long-term need to respond, and interest in functional cosmetics is expected to grow. Therefore, it is required to develop functional cosmetics having higher efficacy in accordance with consumer needs. Specifically, humans experience aging phenomena in which physiological functions are degraded with time. The degree of aging varies according to each individual, and skin is the biggest indicator that can judge the extent of the individual's biological aging. Since the skin is always exposed to the external environment, a lot of skin changes due to aging can be attributed to the influence of external factors. Among the external factors, ultraviolet rays and active oxygen generated through respiration are regarded as the most important cause of skin aging. Active oxygen leads to skin cell and tissue damage and destroys anti-oxidation defense systems.
따라서, 현재 피부 노화에 큰 영향을 미치는 활성산소에 의한 노화를 방지하여 피부 노화를 지연시키고 예방하는 것이 중요하며, 이와 관련하여 항-산화 작용이 뛰어난 새로운 화장품 소재 개발의 필요성이 높아지고 있는 시점이다.
Therefore, it is important to prevent and aging skin aging by aging caused by active oxygen, which has a great influence on skin aging at present, and it is time to develop new cosmetic materials having excellent anti-oxidative action in this regard.
본 발명자는 선행 연구를 통해, 누에(Silkworm)의 저장 단백질 1(Storage Protein 1; SP1)이 인간을 포함한 포유동물 세포에 대해 세포사멸 억제 효과가 있으며, 항-산화 작용도 함께 발휘함을 확인한 바 있다. 즉 SP1 단백질을 생산할 수 있는 유전자를 활용하여 세포사멸 저항성 세포를 제작하면 세포가 그 배양 중 발생되는 여러 스트레스로부터 저항성을 갖게 되고, 이를 이용하여 항체 등의 바이오 의약품 생산을 위한 세포주를 개발할 수 있을 것이다. 또한 SP1의 항-산화 기능은 피부 노화를 억제하는 기능성 화장품 소재로의 가능성도 함께 제시해 주고 있다.
The inventors of the present invention have confirmed through previous studies that silkworm storage protein 1 (SP1) exerts cytotoxic and anti-oxidative effects on mammalian cells including humans have. That is, when a cell capable of producing the SP1 protein is used to produce an apoptosis-resistant cell, the cell is resistant to various stresses generated during the culture, and a cell line for the production of an antibody or the like can be developed using the cell . The antioxidant function of SP1 also suggests possibility of functional cosmetic material which inhibits skin aging.
이처럼 SP1의 바이오 산업에서의 활용도를 높이기 위해서는 SP1을 재조합 단백질로 대량 생산해야 할 필요가 있다. 이 경우 생산된 재조합 SP1 단백질은 바이오 의약품 생산용 세포 배양 배지의 첨가물로 사용될 수도 있으며, 항-산화 작용을 활용한 항-노화 화장품 소재로도 그 개발 가능성이 매우 크다.
In order to increase the utilization of SP1 in the biotechnology industry, it is necessary to mass-produce SP1 as a recombinant protein. In this case, the recombinant SP1 protein produced may be used as an additive to a cell culture medium for production of biopharmaceuticals, and it is highly possible to develop anti-aging cosmetic materials utilizing anti-oxidation.
이와 관련하여, 본 발명자는 SP1 발현 벡터를 제작하여 대장균에 넣어 형질전환된 세포를 제작함으로써 SP1을 재조합 단백질로 생산하고, 이를 정제하는 연구를 수행하였다. In this regard, the present inventors produced a SP1 expression vector and inserted it into Escherichia coli to produce transformed cells, thereby producing SP1 as a recombinant protein and purifying it.
SP1 유전자가 들어가 있는 발현 벡터에는 C 말단에 히스티딘 태그(Histidine tag)가 붙어 있기 때문에, 배양된 세포에 있는 수용성 SP1을 세포 파쇄 후 Histidine tag에 대해 결합이 가능한 친화 칼럼(Affinity column)을 이용하여 1차적으로 세포 불순물로부터 SP1을 분리할 수 있다. 이어서 사이즈 배제 크로마토그래피(Size exclusion chromatography)를 이용하여 SP1을 정제하고, 정제된 SP1의 농도를 높이기 위해 초미세여과(Ultrafiltration)을 통해 농축할 수 있다.Since the expression vector containing the SP1 gene has a histidine tag attached to the C terminus, the affinity column capable of binding to the histidine tag after cell disruption of the water-soluble SP1 in the cultured cells was used to express 1 SP1 can be separated from cellular impurities. The SP1 can then be purified using size exclusion chromatography and concentrated through ultrafiltration to increase the concentration of purified SP1.
그러나, SP1의 정제 과정에서 SP1의 농도가 높아질 경우 응집(Aggregation) 현상이 발생하며, 특히 초미세여과 후에 이러한 응집 현상이 심하게 발생하는바, 고농도의 재조합 SP1을 생산하기 위해서는 이러한 문제를 해결해야만 한다.
However, when the concentration of SP1 is increased in the purification process of SP1, aggregation phenomenon occurs, and especially in the case of superfine filtration, such coagulation phenomenon occurs severely, so that it is necessary to solve this problem in order to produce high concentration of recombinant SP1 .
본 발명은 상기와 같은 종래의 요구를 충족시키기 위한 것으로, 본 발명자는 예의 연구를 거듭한 결과, 사이즈 배제 크로마토그래피의 용출 과정에 있어 용출 버퍼에 프룩토오스를 첨가할 경우, 생산된 재조합 SP1의 응집 현상이 (초미세여과 후에도) 효과적으로 억제됨을 확인하고 본 발명에 이르렀다. 이렇게 정제된 재조합 SP1은 이를 배양 배지에 첨가하였을 경우 여전히 세포사멸 억제와 항-산화 효과를 유지하였다.DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned conventional needs. As a result of intensive studies, the present inventors have found that when fructose is added to the elution buffer in the elution process of size exclusion chromatography, It was confirmed that the aggregation phenomenon was effectively suppressed (even after ultrafine filtration), and the present invention was accomplished. The purified recombinant SP1 retained cell death inhibition and anti - oxidative effects when added to the culture medium.
즉, 본 발명은 프룩토오스를 사용하여 정제시의 응집 현상 없이 고농도의 SP1을 재조합 단백질의 형태로 대량 생산할 수 있는 새로운 방법과, 이처럼 생산된 재조합 SP1 단백질의 생물학적 기능에 기초한 다양한 용도를 제공함을 기술적 과제로 한다.
That is, the present invention provides a novel method of mass-producing SP1 at a high concentration in the form of a recombinant protein without causing coagulation at the time of purification using fructose and a variety of uses based on the biological function of the recombinant SP1 protein thus produced It is a technical task.
상기한 기술적 과제를 달성하고자, 본 발명은 누에의 저장 단백질 1(Storage Protein 1; SP1)의 재조합 단백질 생산방법으로서, 생산된 재조합 SP1을 사이즈 배제 크로마토그래피(또는 분자체 크로마토그래피, Size exclusion chromatography)를 이용하여 정제하되, 상기 사이즈 배제 크로마토그래피의 용출(또는 용리, Elution) 과정에서 사용되는 용출 버퍼(Elution buffer)에 프룩토오스(Fructose)를 첨가하는 것을 특징으로 하는, 프룩토오스를 이용한 누에의 저장 단백질 1의 재조합 단백질 생산방법을 제공한다.
In order to accomplish the above object, the present invention provides a method for producing a recombinant protein of silkworm storage protein 1 (SP1), wherein the produced recombinant SP1 is subjected to Size Exclusion Chromatography (or molecular exclusion chromatography) , Wherein the fructose is added to an elution buffer used for the elution (or elution) of the size exclusion chromatography. The fructose-containing silkworm Lt; RTI ID = 0.0 > 1 < / RTI >
상기 저장 단백질 1(SP1)은 누에 체액(Silkworm hemolymph)으로부터 분리된 곤충 헤모시아닌 단백질의 일종으로서, 누에의 암컷-특이적 단백질이며, 메티오닌이 많은 부분(10% 이상) 함유되어 있다.The above-mentioned storage protein 1 (SP1) is a kind of insect hemocyanin protein isolated from silkworm hemolymph, which is a female-specific protein of silkworm and contains a large amount (10% or more) of methionine.
구체적으로, 상기 저장 단백질 1(SP1)은 하기 서열목록에 의해 표시되는 아미노산 서열을 갖는 것일 수 있다.Specifically, the storage protein 1 (SP1) may have an amino acid sequence represented by the following sequence listing.
[SP1 아미노산 서열] 이 중 본 발명에서 사용된 SP1은 16번인 Thr부터 해당됨.[SP1 amino acid sequence] Among them, SP1 used in the present invention corresponds to Thr 16 amino acids.
상기 SP1을 누에 체액으로부터 분리, 정제하는 방법은 특별히 제한되지 않으며, 예를 들어 한국등록특허 제10-0530506호, 또는 본 발명자의 선행 연구인 「Kim, E. J., W. J. Rhee, and T. H. Park (2001) Isolation and Characterization of an Apoptosis-Inhibiting Component from the Hemolymph of Bombyx mori. Biochem. Biophys . Res . Commun . 285: 224-228.」 및 「Rhee, W. J., E. H. Lee, J. H. Park, J. E. Lee, and T. H. Park (2007) Inhibition of HeLa cell apoptosis by storage-protein 2. Biotechnol . Prog . 23: 1441-1446.」를 참조하여 SP1을 수득할 수 있다.
For example, Korean Patent No. 10-0530506, or Kim, EJ, WJ Rhee, and TH Park (2001), which is a prior study of the present inventor, discloses a method for isolating and purifying SP1 from a body fluid, Isolation and Characterization of an Apoptosis-Inhibiting Component from the Hemolymph of Bombyx mori . Biochem. Biophys . Res . Commun . 285: 224-228. "And Rhee, WJ, EH Lee, JH Park, JE Lee, and TH Park (2007) Inhibition of HeLa cell apoptosis by storage-
구체적으로, 본 발명은Specifically, the present invention provides
a) SP1 발현 벡터를 대장균에 도입하여 형질전환된 세포를 제작하는 단계;a) introducing the SP1 expression vector into Escherichia coli to prepare transformed cells;
b) 형질전환된 세포를 배양하여 재조합 SP1을 생산하는 단계;b) culturing the transformed cells to produce recombinant SP1;
c) 재조합 SP1가 생산된 세포를 파쇄한 후, 친화 크로마토그래피(Affinity chromatography)를 수행하여 세포 불순물로부터 SP1을 1차적으로 분리하는 단계;c) disrupting the cells from which recombinant SP1 has been produced, followed by affinity chromatography to primarily isolate SP1 from cellular impurities;
d) 분리물에 대해 프룩토오스(Fructose)가 첨가된 용출 버퍼(Elution buffer)를 이용한 사이즈 배제 크로마토그래피(Size exclusion chromatography)를 수행하여 SP1을 정제하는 단계; 및d) purifying SP1 by performing size exclusion chromatography using an elution buffer to which fructose is added to the separated product; And
e) 정제물을 초미세여과(Ultrafiltration)하여 농축시키는 단계;를 포함하는,e) concentrating the purified product by ultrafiltration.
프룩토오스를 이용한 누에의 저장 단백질 1의 재조합 단백질 생산방법을 제공한다.
A method for producing a recombinant protein of a
상기 SP1 발현 벡터(예컨대, pET23a 벡터에 SP1 유전자가 삽입된 것)에는 히스티딘 태그(Histidine tag)가 부착되어 있을 수 있다. 이를 통해 배양된 세포에 있는 수용성 SP1을 세포 파쇄 후 Histidine tag에 대해 결합이 가능한 친화 칼럼(Affinity column)을 이용하여 1차적으로 세포 불순물로부터 SP1을 분리할 수 있다. 한편 벡터에 삽입되는 저장 단백질 1(SP1) 유전자는 유전자 등록번호(GenBank accession number) NM_001113276인 것일 수 있으며, 상기 대장균은 BL21(DE3) 균주일 수 있다.
The SP1 expression vector (for example, the SP1 gene inserted in the pET23a vector) may have a histidine tag attached thereto. In this way, the soluble SP1 in the cultured cells can be firstly disrupted from the cell impurities by affinity column capable of binding to Histidine tag after cell disruption. On the other hand, the storage protein 1 (SP1) gene inserted into the vector may be a gene accession number NM_001113276 and the E. coli may be a BL21 (DE3) strain.
상기 c) 단계의 세포 파쇄 및 친화 크로마토그래피는, b) 단계를 거쳐 수득된 펠릿(Pellet)을 Lysis buffer에 서스펜션시킨 후 소니케니션한 다음 원심분리하여 상등액과 펠릿으로 분리하고, 상기 상등액에 존재하는 SP1을 친화 크로마토그래피를 수행하여 분리하는 것일 수 있다. 이 경우 상기 분리된 상등액에는 SP1의 수용성 형태(Soluble form)가 존재하고, 상기 분리된 펠릿에는 SP1의 불용성 형태(Insoluble form)가 존재하게 된다.
In the cell disruption and affinity chromatography in the step c), the pellet obtained in the step b) is suspended in a lysis buffer, sonicated and centrifuged to separate into supernatant and pellet, Lt; RTI ID = 0.0 > SP1 < / RTI > by affinity chromatography. In this case, there is a soluble form of SP1 in the separated supernatant, and an insoluble form of SP1 is present in the separated pellet.
상기 d) 단계의 사이즈 배제 크로마토그래피(Size exclusion chromatography) 수행시 용출 버퍼(내지 용출 용매)에 프룩토오스를 첨가하는 양은 재조합 SP1의 뭉침 방지에 적절한 양, 예컨대 2 M 정도의 농도가 되도록 첨가될 수 있다. 또한 상기 용출 버퍼로는 단백질 정제를 위한 사이즈 배제 크로마토그래피에 있어 당분야에서 통상적으로 사용되는 종류의 것을 특별한 제한없이 채택하여 사용할 수 있다. 한편 본 단계를 거치면 이미다졸(Imidazole)과 같은 불순물이 제거되어 순수한 재조합 SP1 단백질을 정제할 수 있게 된다.
The amount of fructose to be added to the elution buffer (elution solvent) when performing size exclusion chromatography in step d) is added in an amount sufficient to prevent aggregation of the recombinant SP1, for example, to a concentration of about 2 M . As the elution buffer, any of the types commonly used in the art for size exclusion chromatography for protein purification can be employed without any particular limitation. On the other hand, impurities such as imidazole are removed through this step, and pure recombinant SP1 protein can be purified.
상기 e) 단계는 d) 단계를 거친 정제물을 초미세여과(또는 한외여과, Ultrafiltration)하여 농축시키는 단계로서, 본 발명의 경우 상기 프룩토오스의 첨가에 따라 이처럼 고농도로 농축하여도 재조합 SP1가 응집되지 않는 차별화된 장점이 있다.
The step e) of the step e) is a step of concentrating the supernatant by ultrafiltration (ultrafiltration or ultrafiltration), and in the case of the present invention, when the fructose is added, the recombinant SP1 There is a distinct advantage that does not aggregate.
본 발명의 다른 측면에 따르면, 전술한 바와 같은 방법에 따라 생산/정제된 재조합 SP1 단백질이 제공된다.According to another aspect of the present invention there is provided a recombinant SP1 protein produced / purified according to the method as described above.
본 발명에 따른 재조합 SP1 단백질은 인간을 비롯한 포유동물의 세포사멸(아포토시스 또는 에이파토시스; Apoptosis), 특히 내재성 아포토시스 경로(Intrinsic apoptosis pathway)에 의해 유발되는 세포사멸, 예컨대 스타우로스포린(Staurosporine; STS)에 의해 유발되는 내재성 아포토시스를 특이적으로 억제하는 물질로 사용될 수 있다. 이를 통해 본 발명은 세포 배양시 세포의 생존율(Cell viability)을 증가시켜 바이오 의약품 등의 생산성을 크게 높일 수 있다. 한편 본 발명의 대량 생산 대상인 SP1은 Bcl-2 종류, 30K 단백질 또는 IAP(Inhibitor of apoptosis protein)와 같은 기존의 아포토시스 억제제와는 어떠한 서열상 일치성(Sequence homology)도 공유하지 않는바, 신규한 아포토시스 억제제로 취급될 수 있다.The recombinant SP1 protein according to the present invention is useful for the treatment of cell death (apoptosis or apoptosis), particularly apoptosis induced by mammals, including humans, in particular by intrinsic apoptosis pathway, such as Staurosporine. Lt; RTI ID = 0.0 > (STS). ≪ / RTI > Accordingly, the present invention can significantly increase the cell viability of cells during cell culture, thereby greatly increasing the productivity of biopharmaceuticals and the like. Meanwhile, SP1, which is a target of mass production of the present invention, does not share any sequence homology with existing apoptosis inhibitors such as Bcl-2, 30K protein or IAP (Inhibitor of apoptosis protein) Can be treated as an inhibitor.
또한, 본 발명자는 SP1의 인간세포 아포토시스에 대한 효과, 구체적으로 헬라세포(HeLa cell)에 대한 SP1의 항-아포토시스 효과를 실험을 통해 확인한 바 있다. In addition, the present inventors have experimentally confirmed the effect of SP1 on human cell apoptosis, specifically, the anti-apoptosis effect of SP1 on Hela cells.
따라서, 본 발명에 따른 재조합 SP1 단백질은 바이오 의약품(예컨대, 단백질) 생산용 세포 배양 배지의 첨가물, 또는 바이오 의약품(예컨대, 단백질) 생산을 위한 세포주 제작에 적합하게 사용될 수 있다. 여기서 상기 바이오 의약품은 치료용 단백질로서 모노클론 항체일 수 있다.
Therefore, the recombinant SP1 protein according to the present invention can be suitably used for the production of cell cultures for the production of additives for cell culture medium for the production of biopharmaceuticals (for example, proteins), or biopharmaceuticals (for example, proteins). Here, the biologic drug may be a monoclonal antibody as a therapeutic protein.
아울러, 본 발명에 따른 재조합 SP1 단백질은 세포사멸(Apoptosis) 억제 효과와 더불어, 항-산화 효과 및 활성산소 억제 효과를 갖는다. 그 결과 본 발명에 따른 재조합 SP1 단백질은 일반 화장품은 물론, 항-노화 등 기능성 화장품의 소재로도 매우 적합하게 활용될 수 있다.
In addition, the recombinant SP1 protein according to the present invention has an anti-oxidizing effect and an active oxygen inhibiting effect in addition to the apoptosis inhibiting effect. As a result, the recombinant SP1 protein according to the present invention can be suitably used not only as general cosmetics but also as a material for functional cosmetics such as anti-aging.
본 발명에 따른 재조합 SP1 단백질 생산방법은 정제 과정에서 발생하는 SP1의 응집 현상을 효과적으로 억제할 수 있으며, 특히 이러한 응집 억제 효과가 초미세여과를 통한 농축 후에도 현저하게 발휘되어 고농도의 재조합 SP1 단백질을 대량 생산할 수 있게 하는 장점이 있다.The recombinant SP1 protein production method according to the present invention can effectively inhibit the aggregation of SP1 generated during the purification process. Especially, the aggregation suppression effect is remarkably exhibited even after concentration through ultrafiltration, There is an advantage to be able to produce.
또한, 이렇게 정제된 재조합 SP1 단백질을 배양 배지에 첨가하였을 경우, 여전히 세포사멸(Apoptosis) 억제와 항-산화(및 활성산소 억제) 효과를 유지하였다.In addition, when the purified recombinant SP1 protein was added to the culture medium, it still retained apoptosis inhibition and anti-oxidation (and reactive oxygen inhibition) effects.
따라서, 본 발명은 세포사멸 억제가 필요하거나 항-산화 소재가 필요한 분야에 있어 이런 기능을 갖고 있는 SP1을 대량으로 생산하는 과정에서 발생되는 문제를 해결하여 생산성을 극대화할 수 있는 방법이 된다.
Accordingly, the present invention is a method for maximizing productivity by solving the problems occurring in the process of mass production of SP1 having such functions in the field where inhibition of cell death is required or anti-oxidation material is required.
도 1은 재조합 SP1 단백질의 SDS-PAGE, Western blot 및 I-TASSER 결과이다.
도 2는 재조합 SP1 단백질의 각 정제 과정에서의 수율 분석 결과이다.
도 3은 재조합 SP1 단백질의 항-아포토시스 및 항-산화 효과를 보여주는 그래프이다.Figure 1 shows SDS-PAGE, Western blot and I-TASSER results of the recombinant SP1 protein.
Fig. 2 shows the yield analysis results of the recombinant SP1 protein in each purification step.
Figure 3 is a graph showing anti-apoptosis and anti-oxidative effects of recombinant SP1 protein.
이하, 실시예 및 실험예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It should be understood, however, that these examples are for illustrative purposes only and are not intended to limit the scope of the invention in any way.
실시예Example
(1) 미생물 배양 및 (1) microbial culture and SP1SP1 생산 production
플레이트(w/Amp.)에 스트리킹(Streaking)되어 있는 BL21(DE3)-pET23a(+)SP1 균주의 콜로니를 수집하여 LB broth(w/Amp.) 5mL에 종 배양(OD600 0.6~0.8)한 후, 1L LB broth에 접종하여 본 배양(OD600 0.6~0.8)하였다.Colonies of strain BL21 (DE3) -pET23a (+) SP1 streaked on a plate (w / Amp.) Were collected and seeded (OD600 0.6-0.8) in 5 mL of LB broth (w / , And cultured (OD600 0.6-0.8) by inoculation on 1 L LB broth.
IPTG(0.5 mM)를 넣고 30℃에서 12시간 동안 인큐베이션하여 인덕션(Induction)하였다.IPTG (0.5 mM) was added thereto, followed by incubation at 30 ° C for 12 hours and induction.
펠릿(Pellet)을 Lysis buffer에 서스펜션시킨 후, 소니케이션하고 원심분리를 실시하여 상등액과 펠릿을 분리하였다.The pellet was suspended in a lysis buffer, sonicated and centrifuged to separate the supernatant and the pellet.
이때, 상등액에 SP1의 가용성(수용성) 형태(Soluble form)가, 펠릿에 SP1의 불용성 형태(Insoluble form)가 존재하였고, 상기 상등액에서 SP1을 정제하기 위해 여과(Filtration)를 실시하였다.
At this time, soluble form (soluble form) of SP1 was present in the supernatant, insoluble form of SP1 was present in the pellet, and filtration was performed to purify SP1 from the supernatant.
(2) (2) SP1SP1 정제 및 농축 Purification and concentration
여과(Filtration)한 상등액에 대해 His-Trap 컬럼을 이용하여 친화 크로마토그래피(Affinity chromatography)를 수행하였다.Affinity chromatography was performed on the supernatant by filtration using a His-Trap column.
재조합 SP1 단백질의 His-tag으로 바인딩(Binding)이 되었고 세척(Washing) 및 용출(Elution) 과정을 거쳐 SP1 단백질만을 분리해 내었다.The His-tag binds to the recombinant SP1 protein, followed by washing and elution to isolate only the SP1 protein.
용출 과정에서 혼합되어 있는 것으로 세포 독성이 있는 물질인 이미다졸을 제거하기 위해 사이즈 배제 크로마토그래피를 수행하였다.Size exclusion chromatography was performed to remove the cytotoxic substance imidazole which was mixed in the elution process.
크기에 따라 나오는 순서가 달라지는 원리를 이용하여, 크기가 작은 이미다졸보다 먼저 나오는 SP1 단백질만을 취하였다. 이때 SP1 단백질의 응집을 막기 위해 프룩토오스 2 M 용액을 사용하였다.Using the principle that the order in which they come out depends on the size, only the SP1 protein that precedes the smaller imidazole was taken. At this time, a 2 M solution of fructose was used to prevent aggregation of SP1 protein.
이렇게 분리한 SP1 단백질 용액을 초미세여과하여 농축시켜 정량하였다.
The SP1 protein solution thus separated was concentrated by ultrafiltration and quantified.
실험예Experimental Example
(1) 재조합 (1) Recombination SP1SP1 단백질의 Protein SDSSDS -- PAGEPAGE , , WesternWestern blotblot 및 I- And I- TASSERTASSER 결과 result
상기 실시예에 따라 생산된 재조합 SP1(rSP1)의 수용성 형태(lane #1), 리폴딩된 형태(Refolded form)(lane #2) 및 불용성 형태(lane #3)을 각각 로딩한 SDS-PAGE의 결과를 도 1A에 나타내었다. 이때 각각 2, 1 및 0.5μg 로딩된 BSA standard를 이용하여 정량하였다.SDS-PAGE loaded with the soluble form (lane # 1), refolded form (lane # 2) and insoluble form (lane # 3) of recombinant SP1 (rSP1) The results are shown in Figure 1A. At this time, 2, 1 and 0.5 μg of each sample were quantified using the BSA standard.
또한, 안티-히스 태그 항체(Anti-His tag antibody)를 이용하여 수용성 형태(lane #1), 불용성 형태(lane #2) 및 정제된 rSP1(lane #3)를 각각 웨스턴 블롯하여 도 1B에 나타내었다.In addition, western blotting of the water-soluble form (lane # 1), insoluble form (lane # 2) and purified rSP1 (lane # 3) using an anti- .
이들을 통해, 본 발명에 따라 생산된 재조합 SP1을 검출하고 정량할 수 있었다.Through these, the recombinant SP1 produced according to the present invention could be detected and quantified.
또한, I-TASSER를 통해 rSP1의 구조를 예상하여 시각화한 결과를 도 1C에 나타내었다.
Fig. 1C shows the visualization result of the structure of rSP1 through I-TASSER.
(2) 재조합 (2) Recombination SP1SP1 단백질의 각 정제 과정에서의 수율 분석 결과 Yield analysis results for each purification of protein
각 정제 과정에서의 수율을 분석하기 위해, 해당 과정의 생산물들을 SDS-PAGE 하여 밴드 정량(Band quantification)하고, 그 결과를 도 2에 나타내었다.In order to analyze the yield in each purification process, the products of the process were subjected to band quantification by SDS-PAGE, and the results are shown in FIG.
도 2에서 보듯이, 본 발명에 따를 경우 높은 수율 및 농도로 재조합 SP1 단백질을 최종 수득할 수 있음을 확인할 수 있다.
As shown in FIG. 2, it can be confirmed that the recombinant SP1 protein can be finally obtained at a high yield and concentration according to the present invention.
(3) 재조합 (3) Recombination SP1SP1 단백질의 항- The anti- 아포토시스Apoptosis 및 항-산화 효과 And anti-oxidative effect
rSP1의 항-아포토시스(Anti-apoptosis) 효과를 분석하기 위해, rSP1을 세포(예컨대, HeLa 세포)와 함께 인큐베이션한 다음 1 μM의 스타우로스포린(STS)으로 처리하여 0, 12, 18시간 후 트라이판 블루 배제 분석(Trypan blue exclusion assay)을 통해 세포 생존율(Cell viability)을 측정하고, 그 결과를 도 3A에 나타내었다.To analyze the anti-apoptosis effect of rSP1, rSP1 was incubated with cells (e.g., HeLa cells) and then treated with 1 μM of staurosporine (STS), and after 0, 12, Cell viability was measured by trypan blue exclusion assay, and the results are shown in FIG. 3A.
또한, rSP1의 항-산화 스트레스(Anti-oxidative stress) 효과를 분석하기 위해, rSP1을 세포와 함께 인큐베이션한 다음, 0.6 M의 H2O2로 처리하여 0, 12, 18시간 후 트라이판 블루 배제 분석을 통해 세포 생존율을 측정하고, 그 결과를 도 3B에 나타내었다.In order to analyze the anti-oxidative stress effect of rSP1, rSP1 was incubated with the cells and treated with 0.6 M H 2 O 2 for 0, 12, and 18 hours, The cell viability was measured through analysis, and the results are shown in FIG. 3B.
도 3A 및 3B에서 보듯이, 본 발명에 따라 프룩토오스를 사용하여 정제된 재조합 SP1 단백질은 여전히 우수한 항-아포토시스 및 항-산화 효과를 발휘함을 확인할 수 있다.
As shown in FIGS. 3A and 3B, it can be confirmed that the purified recombinant SP1 protein using fructose according to the present invention still exerts excellent anti-apoptosis and anti-oxidative effects.
<110> INCHEON UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> METHOD FOR PRODUCING RECOMBINANT PROTEIN OF SILKWORM STORAGR PROTEIN 1 USING FRUCTOSE <130> P16-0090 <140> 10-2016-0110261 <141> 2016-08-29 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 747 <212> PRT <213> Bombyx mori <400> 1 Met Arg Val Leu Val Leu Leu Ala Cys Leu Ala Ala Ala Ser Ala Thr 1 5 10 15 Ala Ile Ser Gly Gly Tyr Gly Thr Met Val Phe Thr Lys Glu Pro Met 20 25 30 Val Asn Leu Asp Met Lys Met Lys Glu Leu Cys Ile Met Lys Leu Leu 35 40 45 Asp His Ile Leu Gln Pro Thr Met Phe Glu Asp Ile Lys Glu Ile Ala 50 55 60 Lys Glu Tyr Asn Ile Glu Lys Ser Cys Asp Lys Tyr Met Asn Val Asp 65 70 75 80 Val Val Lys Gln Phe Met Glu Met Tyr Lys Met Gly Met Leu Pro Arg 85 90 95 Gly Glu Thr Phe Val His Thr Asn Glu Leu Gln Met Glu Glu Ala Val 100 105 110 Lys Val Phe Arg Val Leu Tyr Tyr Ala Lys Asp Phe Asp Val Phe Met 115 120 125 Arg Thr Ala Cys Trp Met Arg Glu Arg Ile Asn Gly Gly Met Phe Val 130 135 140 Tyr Ala Phe Thr Ala Ala Cys Phe His Arg Thr Asp Cys Lys Gly Leu 145 150 155 160 Tyr Leu Pro Ala Pro Tyr Glu Ile Tyr Pro Tyr Phe Phe Val Asp Ser 165 170 175 His Val Ile Ser Lys Ala Phe Met Met Lys Met Thr Lys Ala Ala Lys 180 185 190 Asp Pro Val Leu Trp Lys Tyr Tyr Gly Ile Thr Val Thr Asp Asp Asn 195 200 205 Leu Val Val Ile Asp Trp Arg Lys Gly Val Arg Arg Ser Leu Ser Gln 210 215 220 Asn Asp Val Met Ser Tyr Phe Met Glu Asp Val Asp Leu Asn Thr Tyr 225 230 235 240 Met Tyr Tyr Leu His Met Asn Tyr Pro Phe Trp Met Thr Asp Asp Ala 245 250 255 Tyr Gly Ile Asn Lys Glu Arg Arg Gly Glu Ile Met Met Tyr Ala Asn 260 265 270 Gln Gln Leu Leu Ala Arg Met Arg Leu Glu Arg Leu Ser His Lys Met 275 280 285 Cys Asp Val Lys Pro Met Met Trp Asn Glu Pro Leu Glu Thr Gly Tyr 290 295 300 Trp Pro Lys Ile Arg Leu Pro Ser Gly Asp Glu Met Pro Val Arg Gln 305 310 315 320 Asn Asn Met Val Val Ala Thr Lys Asp Asn Leu Lys Met Lys Gln Met 325 330 335 Met Asp Asp Val Glu Met Met Ile Arg Glu Gly Ile Leu Thr Gly Lys 340 345 350 Ile Glu Arg Arg Asp Gly Thr Val Ile Ser Leu Lys Lys Ser Glu Asp 355 360 365 Ile Glu Asn Leu Ala Arg Leu Val Leu Gly Gly Leu Glu Ile Val Gly 370 375 380 Asp Asp Ala Lys Val Ile His Leu Thr Asn Leu Met Lys Lys Met Leu 385 390 395 400 Ser Tyr Gly Gln Tyr Asn Met Asp Lys Tyr Thr Tyr Val Pro Thr Ser 405 410 415 Leu Asp Met Tyr Thr Thr Cys Leu Arg Asp Pro Val Phe Trp Met Ile 420 425 430 Met Lys Arg Val Cys Asn Ile Phe Thr Val Phe Lys Asn Met Leu Pro 435 440 445 Lys Tyr Thr Arg Glu Gln Phe Ser Phe Pro Gly Val Lys Val Glu Lys 450 455 460 Ile Thr Thr Asp Glu Leu Val Thr Phe Val Asp Glu Tyr Asp Met Asp 465 470 475 480 Ile Ser Asn Ala Met Tyr Leu Asp Ala Thr Glu Met Gln Asn Lys Thr 485 490 495 Ser Asp Met Thr Phe Met Ala Arg Met Arg Arg Leu Asn His His Pro 500 505 510 Phe Gln Val Ser Ile Asp Val Met Ser Asp Lys Thr Val Asp Ala Val 515 520 525 Val Arg Ile Phe Leu Gly Pro Lys Tyr Asp Cys Met Gly Arg Leu Met 530 535 540 Ser Val Asn Asp Lys Arg Leu Asp Met Phe Glu Leu Asp Ser Phe Met 545 550 555 560 Tyr Lys Leu Val Asn Gly Lys Asn Thr Ile Val Arg Ser Ser Met Asp 565 570 575 Met Gln Gly Phe Ile Pro Glu Tyr Leu Ser Thr Arg Arg Val Met Glu 580 585 590 Ser Glu Met Met Pro Ser Gly Asp Gly Gln Thr Met Val Lys Asp Trp 595 600 605 Trp Cys Lys Ser Arg Asn Gly Phe Pro Gln Arg Leu Met Leu Pro Leu 610 615 620 Gly Thr Ile Gly Gly Leu Glu Met Gln Met Tyr Val Ile Val Ser Pro 625 630 635 640 Val Arg Thr Gly Met Leu Leu Pro Thr Leu Asp Met Thr Met Met Lys 645 650 655 Asp Arg Cys Ala Cys Arg Trp Ser Ser Cys Ile Ser Thr Met Pro Leu 660 665 670 Gly Tyr Pro Phe Asp Arg Pro Ile Asp Met Ala Ser Phe Phe Thr Ser 675 680 685 Asn Met Lys Phe Ala Asp Val Met Ile Tyr Arg Lys Asp Leu Gly Met 690 695 700 Ser Asn Thr Ser Lys Thr Val Asp Thr Ser Glu Met Val Met Met Lys 705 710 715 720 Asp Asp Leu Thr Tyr Leu Asp Ser Asp Met Leu Val Lys Arg Thr Tyr 725 730 735 Lys Asp Val Met Met Met Ser Ser Met Met Asn 740 745 <110> INCHEON UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> METHOD FOR PRODUCING RECOMBINANT PROTEIN OF SILKWORM STORAGR PROTEIN 1 USING FRUCTOSE <130> P16-0090 <140> 10-2016-0110261 <141> 2016-08-29 <160> 1 <170> KoPatentin 3.0 <210> 1 <211> 747 <212> PRT <213> Bombyx mori <400> 1 Met Arg Val Leu Val Leu Leu Ala Cys Leu Ala Ala Ala Ser Ala Thr 1 5 10 15 Ala Ile Ser Gly Gly Tyr Gly Thr Met Val Phe Thr Lys Glu Pro Met 20 25 30 Val Asn Leu Asp Met Lys Met Lys Glu Leu Cys Ile Met Lys Leu Leu 35 40 45 Asp His Ile Leu Gln Pro Thr Met Phe Glu Asp Ile Lys Glu Ile Ala 50 55 60 Lys Glu Tyr Asn Ile Glu Lys Ser Cys Asp Lys Tyr Met Asn Val Asp 65 70 75 80 Val Val Lys Gln Phe Met Glu Met Tyr Lys Met Gly Met Leu Pro Arg 85 90 95 Gly Glu Thr Phe Val His Thr Asn Glu Leu Gln Met Glu Glu Ala Val 100 105 110 Lys Val Phe Arg Val Leu Tyr Tyr Ala Lys Asp Phe Asp Val Phe Met 115 120 125 Arg Thr Ala Cys Trp Met Arg Glu Arg Ile Asn Gly Gly Met Phe Val 130 135 140 Tyr Ala Phe Thr Ala Ala Cys Phe His Arg Thr Asp Cys Lys Gly Leu 145 150 155 160 Tyr Leu Pro Ala Pro Tyr Glu Ile Tyr Pro Tyr Phe Phe Val Asp Ser 165 170 175 His Val Ile Ser Lys Ala Phe Met Met Lys Met Thr Lys Ala Ala Lys 180 185 190 Asp Pro Val Leu Trp Lys Tyr Tyr Gly Ile Thr Val Thr Asp Asp Asn 195 200 205 Leu Val Val Ile Asp Trp Arg Lys Gly Val Arg Arg Ser Leu Ser Gln 210 215 220 Asn Asp Val Met Ser Tyr Phe Met Glu Asp Val Asp Leu Asn Thr Tyr 225 230 235 240 Met Tyr Tyr Leu His Met Asn Tyr Pro Phe Trp Met Thr Asp Asp Ala 245 250 255 Tyr Gly Ile Asn Lys Glu Arg Arg Gly Glu Ile Met Met Tyr Ala Asn 260 265 270 Gln Gln Leu Leu Ala Arg Met Met Leu Glu Arg Leu Ser His Lys Met 275 280 285 Cys Asp Val Lys Pro Met Met Trp Asn Glu Pro Leu Glu Thr Gly Tyr 290 295 300 Trp Pro Lys Ile Arg Leu Pro Ser Gly Asp Glu Met Pro Val Arg Gln 305 310 315 320 Asn Asn Met Val Val Ala Thr Lys Asp Asn Leu Lys Met Lys Gln Met 325 330 335 Met Asp Asp Val Glu Met Met Ile Arg Glu Gly Ile Leu Thr Gly Lys 340 345 350 Ile Glu Arg Arg Asp Gly Thr Val Ile Ser Leu Lys Lys Ser Glu Asp 355 360 365 Ile Glu Asn Leu Ala Arg Leu Val Leu Gly Gly Leu Glu Ile Val Gly 370 375 380 Asp Asp Ala Lys Val Ile His Leu Thr Asn Leu Met Lys Lys Met Leu 385 390 395 400 Ser Tyr Gly Gln Tyr Asn Met Asp Lys Tyr Thr Tyr Val Pro Thr Ser 405 410 415 Leu Asp Met Tyr Thr Thr Cys Leu Arg Asp Pro Val Phe Trp Met Ile 420 425 430 Met Lys Arg Val Cys Asn Ile Phe Thr Val Phe Lys Asn Met Leu Pro 435 440 445 Lys Tyr Thr Arg Glu Gln Phe Ser Phe Pro Gly Val Lys Val Glu Lys 450 455 460 Ile Thr Thr Asp Glu Leu Val Thr Phe Val Asp Glu Tyr Asp Met Asp 465 470 475 480 Ile Ser Asn Ala Met Tyr Leu Asp Ala Thr Glu Met Gln Asn Lys Thr 485 490 495 Ser Asp Met Thr Phe Met Ala Arg Met Arg Arg Leu Asn His His Pro 500 505 510 Phe Gln Val Ser Ile Asp Val Met Ser Asp Lys Thr Val Asp Ala Val 515 520 525 Val Arg Ile Phe Leu Gly Pro Lys Tyr Asp Cys Met Gly Arg Leu Met 530 535 540 Ser Val Asn Asp Lys Arg Leu Asp Met Phe Glu Leu Asp Ser Phe Met 545 550 555 560 Tyr Lys Leu Val Asn Gly Lys Asn Thr Ile Val Arg Ser Ser Ser Met Asp 565 570 575 Met Gln Gly Phe Ile Pro Glu Tyr Leu Ser Thr Arg Arg Val Met Glu 580 585 590 Ser Glu Met Met Pro Ser Gly Asp Gly Gln Thr Met Val Lys Asp Trp 595 600 605 Trp Cys Lys Ser Arg Asn Gly Phe Pro Gln Arg Leu Met Leu Pro Leu 610 615 620 Gly Thr Ile Gly Gly Leu Glu Met Gln Met Tyr Val Ile Val Ser Pro 625 630 635 640 Val Arg Thr Gly Met Leu Leu Pro Thr Leu Asp Met Thr Met Met Lys 645 650 655 Asp Arg Cys Ala Cys Arg Trp Ser Ser Cys Ile Ser Thr Met Pro Leu 660 665 670 Gly Tyr Pro Phe Asp Arg Pro Ile Asp Met Ala Ser Phe Phe Thr Ser 675 680 685 Asn Met Lys Phe Ala Asp Val Met Ile Tyr Arg Lys Asp Leu Gly Met 690 695 700 Ser Asn Thr Ser Lys Thr Val Asp Thr Ser Glu Met Val Met Met Lys 705 710 715 720 Asp Asp Leu Thr Tyr Leu Asp Ser Asp Met Leu Val Lys Arg Thr Tyr 725 730 735 Lys Asp Val Met Met Met Ser Ser Met Met Asn 740 745
Claims (19)
b) 형질 전환된 세포를 배양하여 재조합 SP1을 생산하는 단계;
c) 재조합 SP1가 생산된 세포를 파쇄한 후, 상등액에 존재하는 SP1을 His-Trap 컬럼을 이용하여 친화 크로마토그래피(Affinity chromatography)를 수행하여 세포 불순물로부터 SP1을 1차적으로 분리하는 단계;
d) 분리물에 대해 2 M의 프룩토오스(Fructose)가 첨가된 용출 버퍼(Elution buffer)를 이용한 사이즈 배제 크로마토그래피(Size exclusion chromatography)를 수행하여 이미다졸을 제거하고 SP1을 정제하는 단계; 및
e) 정제물을 초미세여과(Ultrafiltration)하여 농축시키는 단계;를 포함하며,
상기 프룩토오스(Fructose)는 SP1의 응집을 억제하고, SP1 단백질은 농축 후에도 항-아포토시스 및 항-산화 효과를 유지하는 것을 특징으로 하는,
프룩토오스를 이용한 누에의 저장 단백질 1의 재조합 단백질 생산방법.
a) preparing a transformed cell by introducing a pET23a vector into which a histidine tag is attached and a SP1 gene is inserted into E. coli BL21 (DE3);
b) culturing the transformed cells to produce recombinant SP1;
c) disrupting the cells from which the recombinant SP1 has been produced, then subjecting the SP1 present in the supernatant to affinity chromatography using a His-Trap column to firstly separate SP1 from the cell impurity;
d) removing the imidazole and purifying SP1 by performing size exclusion chromatography using an elution buffer to which 2 M of fructose is added to the separated product; And
e) concentrating the purified product by ultrafiltration,
Wherein the fructose inhibits aggregation of SP1 and the SP1 protein retains anti-apoptosis and anti-oxidative effects after concentration.
A method for producing recombinant proteins of stored protein 1 of silkworm using fructose.
상기 c) 단계는,
b)단계에서 배양된 세포를 원심분리하여 얻어진 펠릿(Pellet)을 Lysis buffer에 서스펜션시킨 후 소니케니션한 다음 원심분리하여 상등액과 펠릿으로 분리하고,
상기 상등액에 존재하는 SP1을 친화 크로마토그래피를 수행하여 분리하는 것임을 특징으로 하는,
프룩토오스를 이용한 누에의 저장 단백질 1의 재조합 단백질 생산방법.
3. The method of claim 2,
The step c)
After the cells cultured in step b) were centrifuged, the pellet was suspended in a lysis buffer, sonicated, centrifuged, and separated into supernatant and pellet.
Characterized in that SP1 present in the supernatant is separated by affinity chromatography.
A method for producing recombinant proteins of stored protein 1 of silkworm using fructose.
상기 상등액에는 SP1의 수용성 형태(Soluble form)가 존재하고, 상기 펠릿에는 SP1의 불용성 형태(Insoluble form)가 존재하는 것을 특징으로 하는,
프룩토오스를 이용한 누에의 저장 단백질 1의 재조합 단백질 생산방법.
The method according to claim 6,
Characterized in that the supernatant has a soluble form of SP1 and the pellet has an insoluble form of SP1.
A method for producing recombinant proteins of stored protein 1 of silkworm using fructose.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160110261A KR101905261B1 (en) | 2016-08-29 | 2016-08-29 | Method for producing recombinant protein of silkworm storage protein 1 using fructose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160110261A KR101905261B1 (en) | 2016-08-29 | 2016-08-29 | Method for producing recombinant protein of silkworm storage protein 1 using fructose |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180024310A KR20180024310A (en) | 2018-03-08 |
KR101905261B1 true KR101905261B1 (en) | 2018-10-05 |
Family
ID=61725560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160110261A KR101905261B1 (en) | 2016-08-29 | 2016-08-29 | Method for producing recombinant protein of silkworm storage protein 1 using fructose |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101905261B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108713534B (en) * | 2018-03-16 | 2020-06-16 | 浙江大学 | Method for increasing quantity of protein SP stored in early blood of silkworm larva |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008501639A (en) * | 2004-04-23 | 2008-01-24 | ノベシン リミテッド | Methods and kits for stabilizing, protecting and solubilizing proteins |
KR100861881B1 (en) | 2007-01-12 | 2008-10-09 | 한국생명공학연구원 | Detection kit for infection by measuring the expression of gram positive bacteria or gram negative bacteria infection marker genes |
-
2016
- 2016-08-29 KR KR1020160110261A patent/KR101905261B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008501639A (en) * | 2004-04-23 | 2008-01-24 | ノベシン リミテッド | Methods and kits for stabilizing, protecting and solubilizing proteins |
KR100861881B1 (en) | 2007-01-12 | 2008-10-09 | 한국생명공학연구원 | Detection kit for infection by measuring the expression of gram positive bacteria or gram negative bacteria infection marker genes |
Non-Patent Citations (2)
Title |
---|
Biotechnol. Prog., 2007, Vol. 23, p. 1441-1446 |
Lee J.H. et al, Biotechnology and Bioprocess Engineering 20:p.807-813 (2015)* |
Also Published As
Publication number | Publication date |
---|---|
KR20180024310A (en) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zdybicka-Barabas et al. | Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria | |
Fan et al. | Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity | |
CN111349177B (en) | Preparation method and application of fusion antibacterial peptide CAT | |
Shlyapnikov et al. | Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom | |
Sun et al. | Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker | |
Wang et al. | Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis | |
Lü et al. | Expression profiling of Bombyx mori gloverin2 gene and its synergistic antifungal effect with cecropin A against Beauveria bassiana | |
Yang et al. | Antimicrobial activities of a proline-rich proprotein from Spodoptera litura | |
KR101905261B1 (en) | Method for producing recombinant protein of silkworm storage protein 1 using fructose | |
Zheng et al. | Novel family of antimicrobial peptides from the skin of Rana shuchinae | |
Sun et al. | Expression of the hybrid antimicrobial peptide lactoferrin–lysozyme in Pichia pastoris | |
Yu et al. | Identification, eukaryotic expression and structure & function characterizations of β-defensin like homologues from Pelodiscus sinensis | |
CN110468143B (en) | Preparation method and application of antibacterial peptide NZX | |
Yari et al. | Molecular cloning, expression and purification of recombinant soluble mouse endostatin as an anti-angiogenic protein in Escherichia coli | |
Lü et al. | Molecular cloning, bioinformatic analysis, and expression of Bombyx mori lebocin 5 gene related to Beauveria bassiana infection | |
Sawa et al. | Cky811 protein expressed by polydnavirus and venom gland of Cotesia kariyai regulates the host Mythimna separata larvae immune response function of C‐type lectin responsible for foreign substance recognition which suppresses its melanization and encapsulation | |
CN104387465B (en) | A kind of cecropin A P 57 and its preparation method and application method | |
Richards et al. | Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies | |
Guo et al. | Production and characterization of recombinant 9 and 15 kDa granulysin by fed-batch fermentation in Pichia pastoris | |
Korobov et al. | Isolation and characterization of a new low-molecular antibacterial peptide of the lantibiotics family | |
Sun et al. | Molecular characterization of a short peptidoglycan recognition protein (PGRP-S) from Asian corn borer (Ostrinia furnacalis) and its role in triggering proPO activity | |
CN107245491B (en) | Type III bacteriocin from lactobacillus crispatus as well as preparation method and application thereof | |
Dani et al. | Identification, cloning and expression of a second gene (vpr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca that displays immunosuppressive activity | |
Yan et al. | A novel antimicrobial peptide from skin secretions of the tree frog Theloderma kwangsiensis | |
CN115057918B (en) | In vitro recombinant expression and identification of American eel antibacterial peptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |