KR101898378B1 - Method of producing high reactive polyisobutene - Google Patents
Method of producing high reactive polyisobutene Download PDFInfo
- Publication number
- KR101898378B1 KR101898378B1 KR1020170017871A KR20170017871A KR101898378B1 KR 101898378 B1 KR101898378 B1 KR 101898378B1 KR 1020170017871 A KR1020170017871 A KR 1020170017871A KR 20170017871 A KR20170017871 A KR 20170017871A KR 101898378 B1 KR101898378 B1 KR 101898378B1
- Authority
- KR
- South Korea
- Prior art keywords
- boron trifluoride
- catalyst
- molecular weight
- polyisobutene
- trifluoride complex
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/08—Butenes
- C08F10/10—Isobutene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/06—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
- C08F4/12—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of boron, aluminium, gallium, indium, thallium or rare earths
- C08F4/14—Boron halides or aluminium halides; Complexes thereof with organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/01—Additive used together with the catalyst, excluding compounds containing Al or B
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명은 고반응성 폴리이소부텐의 제조방법에 관한 것으로, 상세하게는 삼불화붕소 착화합물 촉매; 및 산소 원자를 함유하는 탄소수 10개 이하의 유기 화합물을 투입하는 공정을 포함하며, 분자량 조절이 우수한, α-비닐리덴 함량이 80% 이상인 고반응성 폴리이소부텐의 제조방법에 관한 것이다.The present invention relates to a process for producing highly reactive polyisobutene, and more particularly to a process for producing polyisobutene using a boron trifluoride complex catalyst; And an organic compound containing 10 or less carbon atoms containing oxygen atoms, and which is excellent in molecular weight control and has an? -Vinylidene content of 80% or more.
Description
본 발명은 고반응성 폴리이소부텐의 제조방법에 관한 것으로, 상세하게는 삼불화붕소 착화합물 촉매; 및 산소 원자를 함유하는 탄소수 10개 이하의 유기 화합물을 투입하는 공정을 포함하며, 분자량 조절이 우수한, α-비닐리덴 함량이 80% 이상인 고반응성 폴리이소부텐의 제조방법에 관한 것이다.The present invention relates to a process for producing highly reactive polyisobutene, and more particularly to a process for producing polyisobutene using a boron trifluoride complex catalyst; And an organic compound containing 10 or less carbon atoms containing oxygen atoms, and which is excellent in molecular weight control and has an? -Vinylidene content of 80% or more.
폴리이소부텐 (polyisobutene, PIB)은 이소부텐을 중합한 것이다. 폴리이소부텐은 말단에 위치하는 α-비닐리덴 (α-vinylidene)의 함량에 따라 구분되며, α-비닐리덴 함량이 20 % 이하를 일반 폴리이소부텐 (conventional PIB)이라 하고, α-비닐리덴 함량이 80 % 이상을 고반응성 폴리이소부텐(high reactive PIB)이라 한다. Polyisobutene (PIB) is a polymer of isobutene. Polyisobutene is classified according to the content of? -Vinylidene located at the terminal, and? -Vinylidene content is 20% or less as general polyisobutene (conventional PIB), and? -Vinylidene content More than 80% of this is referred to as highly reactive polyisobutene (high reactive PIB).
일반 폴리이소부텐은 점착제, 접착제, 절연유로 주로 사용이 되는 반면, 고반응성 폴리이소부텐은 엔진오일의 내마모제, 연료 청정제 등으로 사용되고 있다. General polyisobutene is mainly used as a pressure-sensitive adhesive, an adhesive, and an insulating oil, while highly reactive polyisobutene is used as an anti-wear agent and a fuel detergent for engine oil.
과거에는 일반 폴리이소부텐의 반응성을 높이기 위해, 염소 기체를 이용하여 폴리이소부텐를 염소화 (chlorination)한 다음, 무수말레인산 (maleic anhydride)과 반응시키는 방법이 사용되었다. 그러나 이와 같은 경우에는 염소 처리를 위한 장치 비용 발생과 미반응 염소 기체 처리에 따른 환경 문제가 발생할 수 있기 때문에 바람직하지 못하였다. In the past, in order to increase the reactivity of general polyisobutene, a method of chlorinating polyisobutene with chlorine gas and reacting with maleic anhydride was used. In this case, however, it is not preferable because the apparatus cost for chlorine treatment and the environmental problem due to unreacted chlorine gas treatment may occur.
고반응성 폴리이소부텐은 α-비닐리덴 함량이 높아, 무수말레인산과 직접적으로 반응할 수 있기 때문에, 각종 첨가제의 유도체인 폴리이소부테닐숙신산무수물 (polyisobutenylsuccinic anhydride, PIBSA), 폴리이소부테닐숙시미드 (polyisobutenylsuccimide, PIBSI)를 만드는데 용이하다. Since highly reactive polyisobutene has a high content of alpha -vinylidene and can react directly with maleic anhydride, polyisobutenylsuccinic anhydride (PIBSA), polyisobutenyl succinimide (polyisobutenyl succinimide), which is a derivative of various additives, PIBSI).
현재 상업적으로 일반 폴리이소부텐은 삼염화알루미늄 촉매를 이용하여 생산하고, 고반응성 폴리이소부텐은 삼불화붕소 촉매를 이용하여 생산하는 것으로 알려져 있다. It is now known that commercially available polyisobutene is produced using aluminum trichloride catalysts and that highly reactive polyisobutene is produced using boron trifluoride catalysts.
미국특허 US4605808에서는 삼불화붕소 및 알코올로 이루어진 것을 특징으로 하는 삼불화붕소 착화합물 촉매 존재 하에 1-올레핀을 포함하는 원료를 반응온도 -100~+50℃에서 8분이상 중합시키는 α-비닐리덴 함량을 70% 이상 포함하는 폴리이소부텐의 제조방법이 개시되어 있다. 그러나 상기 특허는 α-비닐리덴 함량이 높아지면 반응 활성이 떨어지는 문제점이 있다. U.S. Patent No. 4,605,808 discloses a process for producing a 1-olefin-containing raw material which comprises polymerizing a 1-olefin-containing raw material in the presence of a boron trifluoride complex catalyst comprising boron trifluoride and an alcohol at a temperature of -100 to +50 ° C for 8 minutes or more, By weight or more and 70% or more by weight of the polyisobutene. However, the above patent has a problem in that the reaction activity is lowered when the content of? -Vinylidene is increased.
본 발명은 분자량 조절이 우수하고, α-비닐리덴 함량이 80% 이상인 고반응성 폴리이소부텐의 제조방법을 제공하는 것이다.The present invention provides a method for producing highly reactive polyisobutene having excellent molecular weight control and having an? -Vinylidene content of 80% or more.
상기 목적을 달성하기 위하여, 본 발명은 고반응성 폴리이소부텐을 제조하는 방법에 있어서, 이소부텐을 포함하는 C4 유분과 산소 원자를 함유하는 탄소수 1~10의 유기 화합물의 혼합물에, 삼불화붕소 착화합물 촉매를 투입하는 단계를 포함하고, 상기 삼불화붕소 착화합물 촉매는 삼불화붕소; 및 제 1 조촉매 및 제 2 조촉매 중 적어도 1종 이상의 조촉매로 이루어지고, 상기 제1조촉매는 탄소수 1 내지 4의 알코올 화합물이고, 상기 제2조촉매는 탄소수 3 내지 10의 알킬에테르 화합물이며, 하기 식 (1)을 만족하는 고반응성 폴리이소부텐의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing high-reactivity polyisobutene, comprising the steps of adding a boron trifluoride complex compound to a mixture of C4 oil fraction containing isobutene and an organic compound having 1 to 10 carbon atoms, And introducing a catalyst, wherein the boron trifluoride complex catalyst catalyst comprises boron trifluoride; And a second co-catalyst, wherein the first co-catalyst is an alcohol compound having 1 to 4 carbon atoms, and the second co-catalyst is an alkyl ether compound having 3 to 10 carbon atoms , And a process for producing highly reactive polyisobutene satisfying the following formula (1) is provided.
<식 1><Formula 1>
50 < Mn - 520 x Z < 200050 < Mn - 520 x Z < 2000
Z= 이고, 0.3 < Z < 1.4Z = , 0.3 < Z < 1.4
Mn : 고반응성 폴리이소부텐의 수 평균 분자량Mn: number average molecular weight of highly reactive polyisobutene
Y : 유기 화합물의 함량(mmol)Y: content of organic compounds (mmol)
Xa : 상기 삼불화붕소 착화합물 중의 삼불화붕소의 함량(mmol)Xa: the content of boron trifluoride in the boron trifluoride complex (mmol)
Xc : 상기 삼불화중소 착화합물 중의 제 2 조촉매의 함량(mmol)Xc: the content (mmol) of the second co-catalyst in the above-
본 발명에 따른 고반응성 폴리이소부텐의 제조방법에 의하면, 삼불화붕소 착화합물 촉매를 단독 사용했을 때보다 α-비닐리덴 함량이 향상되고 분자량 조절이 우수한 고반응성 폴리이소부텐을 제조할 수 있다.According to the method for producing highly reactive polyisobutene according to the present invention, highly reactive polyisobutene having an improved .alpha.-vinylidene content and excellent molecular weight control can be produced than when the boron trifluoride complex catalyst is used alone.
또한, 상기 방법으로 제조한 고반응성 폴리이소부텐은 높은 α-비닐리덴 함량으로 자체 반응성이 좋아 염소기체를 사용하지 않고서도 윤활유, 연료 청정제 등에 적용할 수 있어 경제적이며 친환경적이다.In addition, the highly reactive polyisobutene produced by the above method is highly economical and eco-friendly since it has high reactivity with high? -Vinylidene content and can be applied to lubricating oil and fuel detergent without using chlorine gas.
이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 고반응성 폴리이소부텐의 제조방법은, 이소부텐을 포함하는 C4 유분과 산소 원자를 함유하는 탄소수 1~10의 유기 화합물의 혼합물에, 삼불화붕소 착화합물 촉매를 투입하는 단계를 포함하고, 상기 삼불화붕소 착화합물 촉매는 삼불화붕소; 및 제 1 조촉매 및 제 2 조촉매 중 적어도 1종 이상의 조촉매로 이루어지고, 상기 제1조촉매는 탄소수 1 내지 4의 알코올 화합물이고, 상기 제2조촉매는 탄소수 3 내지 10의 알킬에테르 화합물이며, 하기 식 (1)을 만족한다.The method for producing highly reactive polyisobutene according to the present invention includes the step of introducing a boron trifluoride complex catalyst into a mixture of C4 olefins containing isobutene and an organic compound having 1 to 10 carbon atoms containing oxygen atoms , Said boron trifluoride complex catalyst catalyst is selected from the group consisting of boron trifluoride; And a second co-catalyst, wherein the first co-catalyst is an alcohol compound having 1 to 4 carbon atoms, and the second co-catalyst is an alkyl ether compound having 3 to 10 carbon atoms And satisfies the following formula (1).
<하기 식 1>≪ Formula 1 >
50 < Mn - 520 x Z < 200050 < Mn - 520 x Z < 2000
Z= 이고, 0.3 < Z < 1.4Z = , 0.3 < Z < 1.4
Mn : 고반응성 폴리이소부텐의 수 평균 분자량Mn: number average molecular weight of highly reactive polyisobutene
Y : 유기 화합물의 함량(mmol)Y: content of organic compounds (mmol)
Xa : 상기 삼불화붕소 착화합물 중의 삼불화붕소의 함량(mmol)Xa: the content of boron trifluoride in the boron trifluoride complex (mmol)
Xc : 상기 삼불화중소 착화합물 중의 제 2 조촉매의 함량(mmol)Xc: the content (mmol) of the second co-catalyst in the above-
본 발명에 사용되는 산소 원자를 함유하는 탄소수 1~10개 이하의 유기화합물은 2차 또는 3차 알코올, 탄소수 3 내지 10의 알킬에테르에서 선택된 것을 사용하는 것이 바람직하다. The organic compounds containing oxygen atoms and containing 1 to 10 carbon atoms used in the present invention are preferably those selected from secondary or tertiary alcohols and alkyl ethers having 3 to 10 carbon atoms.
상기 2차 알코올류로는 2-프로판올, 2-부탄올, 2-메틸-2-부탄올, 3-메틸-2-부탄올, 3,3-디메틸-2-부탄올, 2-펜탄올, 3-펜탄올, 4-메틸-2-펜탄올, 3-메틸-2-펜탄올, 2-메틸-3-펜탄올, 2,4-디메틸-3-펜탄올, 4,4-디메틸-2-펜탄올, 2-헥산올, 3-헥산올, 2-메틸-3-헥산올, 5-메틸-2-헥산올, 2-헵탄올, 3-헵탄올, 6-메틸-2-헵탄올, 6-메틸-3-헵탄올, 2,6-디메틸-4-헵탄올, 3-메틸-2-헵탄올, 2-옥탄올, 3-옥탄올, 4-옥탄올, 2,2-디메틸-3-옥탄올, 2-메틸-3-옥탄올, 3-메틸-4-옥탄올, 6-에틸-3-옥탄올, 2-노난올, 5-노난올, 2-메틸-3-노난올, 2-메틸-4-노난올, 3-메틸-4-노난올, 2-데칸올, 3-데칸올 등에서 선택된 것을 사용할 수 있다. Examples of the secondary alcohols include 2-propanol, 2-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, Methyl-3-pentanol, 2,4-dimethyl-3-pentanol, 4,4-dimethyl-2-pentanol, Methyl-2-heptanol, 6-methyl-2-heptanol, 6-methyl-2-heptanol, 3-heptanol, 2-octanol, 4-octanol, 2,2-dimethyl-3-octane Methyl-3-octanol, 2-methyl-3-octanol, 6-ethyl-3-octanol, Methyl-4-nonanol, 3-methyl-4-nonanol, 2-decanol, 3-decanol and the like.
상기 3차 알코올류로는 2-메틸-2-부탄올, 2,3-디메틸-2-부탄올, 3-메틸-3-펜탄올, 2-메틸-2-펜탄올, 3-에틸-3-펜탄올, 2,3-디메틸-3-펜탄올, 2-메틸-2-헥산올, 3,6-디메틸-3-헵탄올, 3-에틸-3-헵탄올, 3-메틸-3-헵탄올, 3,7-디메틸-3-옥탄올, 3-메틸-3-옥탄올, 4-메틸-4-노난올 등에서 선택된 것을 사용할 수 있다. Examples of the tertiary alcohols include 2-methyl-2-butanol, 2,3-dimethyl-2-butanol, 3-heptanol, 3-methyl-3-heptanol, 3-methyl-2-pentanol, , 3,7-dimethyl-3-octanol, 3-methyl-3-octanol, 4-methyl-4-nonanol and the like.
상기 알킬에테르류로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 디이소프로필 에테르, 디부틸 에테르, 디펜틸 에테르, 이소아밀 에테르, 디헥실 에테르, 부틸 메틸 에테르, 부틸 에틸 에테르, sec-부틸 에테르, sec-부틸 메틸 에테르, sec-부틸 에틸 에테르, tert-부틸 메틸 에테르, tert-부틸 에틸 에테르, tert-아밀 메틸 에테르 등에서 선택된 것을 사용할 수 있다. Examples of the alkyl ethers include dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, isoamyl ether, dihexyl ether, butyl methyl ether, butyl ethyl ether, sec- sec-butyl methyl ether, sec-butyl ethyl ether, tert-butyl methyl ether, tert-butyl ethyl ether, tert-amyl methyl ether and the like.
본 발명에 사용되는 산소 원자를 함유하는 탄소수 1~10개 이하의 유기 화합물은 이소부텐 100 중량부에 대하여 0.05 내지 1.0 중량부가 되도록 첨가하는 것이 바람직하다. 상기 유기 화합물 양이 1.0 중량부를 초과하면 활성이 저하되어 이소부텐의 전환율이 낮아져, 생산성이 떨어진다.The organic compound having 1 to 10 carbon atoms and containing oxygen atoms used in the present invention is preferably added in an amount of 0.05 to 1.0 part by weight based on 100 parts by weight of isobutene. If the amount of the organic compound exceeds 1.0 part by weight, the activity is lowered and the conversion of isobutene is lowered, resulting in lower productivity.
본 발명에 사용되는 삼불화붕소 착화합물 촉매는 제1조촉매 및 제2 조촉매 중 적어도 1종 이상을 삼불화붕소를 투입하여 제조되는데, 조촉매로는 2 종 이상 사용하는 것이 바람직하다. The boron trifluoride complex catalyst used in the present invention is prepared by introducing boron trifluoride into at least one of the first catalyst and the second catalyst, and it is preferable to use at least two catalysts as the promoter.
상기 촉매에 투입되는 조촉매는 투입 순서에 따라 제1조촉매 (Xb), 제2 조촉매 (Xc)로 나타낸다. The promoter to be added to the catalyst is represented by the first co-catalyst (Xb) and the second co-catalyst (Xc) according to the order of addition.
본 발명에 사용되는 삼불화붕소 착화합물 촉매는 삼불화붕소(Xa) 및 제1조촉매(Xb) 이거나, 삼불화붕소(Xa), 제1조촉매(Xb) 및 제2 조촉매(Xc)로 이루어진 것이 바람직하다. 상기 제1조촉매(Xb)은 탄소수 1 내지 4의 알코올 화합물로 이루어지며, 제2 조촉매(Xc)는 탄소수 3 내지 10의 알킬에테르로 이루어진 것이 바람직하다. The boron trifluoride complex catalyst used in the present invention may be a mixture of boron trifluoride Xa and first co-catalyst Xb, boron trifluoride Xa, first co-catalyst Xb and second co- . The first co-catalyst (Xb) is composed of an alcohol compound having 1 to 4 carbon atoms, and the second co-catalyst (Xc) is preferably composed of an alkyl ether having 3 to 10 carbon atoms.
본 발명의 중합 반응에 사용되는 촉매량은, 이소부텐 100 중량부에 대하여 촉매 성분 중 삼불화붕소의 양이 0.05~1.0 중량부가 되도록 첨가하는 것이 바람직하다. 촉매 성분 중 삼불화붕소의 양이 1.0 중량부를 초과하면 촉매당 생산성이 떨어져 경제성이 없으며, 0.05 중량부 미만이면 고분자의 수율이 낮아져 역시 경제성이 떨어진다. The amount of the catalyst used in the polymerization reaction of the present invention is preferably such that the amount of boron trifluoride in the catalyst component is 0.05 to 1.0 part by weight based on 100 parts by weight of isobutene. If the amount of the boron trifluoride in the catalyst component exceeds 1.0 part by weight, the productivity per catalyst is low and it is not economical. If the amount is less than 0.05 part by weight, the yield of the polymer is low and the economical efficiency is also low.
일 실시예에 의하면, 상기 삼불화붕소 착화합물 촉매에서, 삼불화붕소와 제1 조촉매의 몰비는 1 : 1.1 내지 2.0, 바람직하게는 1.1 내지 1.7이다. According to one embodiment, in the boron trifluoride complex catalyst, the molar ratio of boron trifluoride to the first cocatalyst is 1: 1.1 to 2.0, preferably 1.1 to 1.7.
일 실시예에 의하면, 상기 삼불화붕소 착화합물 촉매에서, 삼불화붕소: 제1조촉매: 및 제2 조촉매의 몰비는 1 : 1.1 내지 2.0 : 0.1 내지 1.0 이며, 바람직하게는 1 : 1.1 내지 1.7 : 0.1 내지 0.6이다. According to one embodiment, in the boron trifluoride complex catalyst catalyst, the molar ratio of boron trifluoride: first promoter: and second promoter is 1: 1.1 to 2.0: 0.1 to 1.0, preferably 1: 1.1 to 1.7 : 0.1 to 0.6.
상기 삼불화붕소 착화합물 촉매의 몰비가 상기 범위를 벗어날 경우, 삼불화붕소 착화합물 촉매의 활성이 저하되거나, 고분자의 α-비닐리덴 함량이 80% 미만으로 저하된다. When the molar ratio of the boron trifluoride complex catalyst is out of the above range, the activity of the boron trifluoride complex catalyst is lowered or the content of the? -Vinylidene in the polymer is lowered to less than 80%.
본 발명에 따른 삼불화붕소 착화합물 제조 시, 착화합물 형성 온도는 10℃ 이하가 적당하다. 삼불화붕소와 에탄올 및 알코올류의 착화합물 형성 반응은 발열 반응으로, 촉매의 안정성 유지 및 폭발의 위험을 방지하지 위해 반응열을 제거하는 것이 바람직하다. 따라서 10℃ 이하, 바람직하게는 -40℃~0℃의 낮은 온도에서 착화합물 형성 반응을 진행하는 것이 좋다.In the preparation of the boron trifluoride complex according to the present invention, the complex formation temperature is suitably 10 DEG C or less. The complex formation reaction of boron trifluoride with ethanol and alcohols is an exothermic reaction, and it is desirable to remove the reaction heat in order to maintain the stability of the catalyst and prevent the danger of explosion. Therefore, it is preferable to conduct the complex formation reaction at a low temperature of 10 ° C or less, preferably -40 ° C to 0 ° C.
상기 중합 반응 온도는 -40℃~20℃가 바람직하며, 반응 압력은 원료가 액체 상태를 유지하기 위해 3kg/cm2 이상이 바람직하고, 바람직하게는 3kg/cm2~7kg/cm2이고, 반응 시간은 1분~90분이 바람직하다.The polymerization reaction temperature is preferably -40 ° C to 20 ° C. The reaction pressure is preferably 3 kg / cm 2 or more, preferably 3 kg / cm 2 to 7 kg / cm 2 to maintain the raw material in a liquid state, Preferably from 1 minute to 90 minutes.
중합 반응기는 회분식(Batch reactor) 또는 연속식 반응기를 사용할 수 있다. 상기 연속식 반응기는 연속교반탱크 반응기(Continous Flow Stirred Tank reactor), 플러그흐름 반응기(Plug Flow Reactor or Tubular Flow Reactor), 루프 반응기(loop reactor)와 같은 반응기들을 사용할 수 있다.The polymerization reactor may be a batch reactor or a continuous reactor. The continuous reactor may use a reactor such as a Continuous Flow Stirred Tank reactor, a Plug Flow Reactor or a Tubular Flow Reactor, and a loop reactor.
본 발명에 따라 제조된 고반응성 폴리이소부텐는 300~5000의 수평균 분자량 (Mn) 을 가지며, 1.3~5의 분자량분포 (Mw/Mn)을 가지며, α-비닐리덴 함량이 80% 이상이다The highly reactive polyisobutene prepared according to the present invention has a number average molecular weight (Mn) of 300 to 5,000, a molecular weight distribution (Mw / Mn) of 1.3 to 5, and an alpha -vinylidene content of 80%
상기 고반응성 폴리이소부텐의 분자량(Mn, 수평균 분자량) 및 분자량 분포(Mw/Mn, Molecular weight distribution)는 GPC(Gel permeation chromatography)로 분석하였고, α-비닐리덴 함량은 1H-NMR로 분석하였다.The molecular weight of the highly reactive poly isobutene (Mn, number average molecular weight) and the molecular weight distribution (Mw / Mn, Molecular weight distribution ) was analyzed by GPC (Gel permeation chromatography), α- vinylidene content is analyzed by 1 H-NMR Respectively.
하기 실시예는 본 발명을 설명하기 위한 것이지, 이를 한정하기 위한 것은 아니다.The following examples are intended to illustrate but not to limit the invention.
[[ 제조예Manufacturing example 1] 삼불화붕소 착화합물 촉매 제조 1] Preparation of boron trifluoride complex catalyst
에탄올 23.67g(514mmol)이 들어있는 플라스크를 -20℃로 유지하고, 교반하면서 삼불화붕소 23.4g(344mmol)를 기체상태로 2시간 동안 투입하여 삼불화붕소 착화합물 촉매를 제조하였다.The flask containing 23.67 g (514 mmol) of ethanol was kept at -20 ° C, and 23.4 g (344 mmol) of boron trifluoride was added in gaseous state for 2 hours while stirring to prepare a boron trifluoride complex catalyst.
[[ 제조예Manufacturing example 2] 삼불화붕소 착화합물 촉매 제조 2] Preparation of boron trifluoride complex catalyst
에탄올 23.67g(514mmol), 디이소프로필 에테르 16.79g(164mmol)이 들어있는 플라스크를 -20℃로 유지하고, 교반하면서 삼불화붕소 34.1g(463mmol)를 기체상태로 3시간 동안 투입하여 삼불화붕소 착화합물 촉매를 제조하였다.A flask containing 23.67 g (514 mmol) of ethanol and 16.79 g (164 mmol) of diisopropyl ether was kept at -20 ° C., and 34.1 g (463 mmol) of boron trifluoride was added in gaseous state for 3 hours while stirring to form boron trifluoride Complex catalyst was prepared.
[[ 제조예Manufacturing example 3] 삼불화붕소 착화합물 촉매 제조 3] Preparation of boron trifluoride complex catalyst
프로판올 30.42g(660mmol), 디이소프로필에테르 16.79g(164mmol)이 들어있는 플라스크를 -20℃로 유지하고, 교반하면서 삼불화붕소 30.0g(443mmol)를 기체상태로 3시간 동안 투입하여 착화합물 촉매를 제조하였다.A flask containing 30.42 g (660 mmol) of propanol and 16.79 g (164 mmol) of diisopropyl ether was kept at -20 ° C. and 30.0 g (443 mmol) of boron trifluoride was added in gaseous state for 3 hours while stirring. .
[[ 제조예Manufacturing example 4] 삼불화붕소 착화합물 촉매 제조 4] Preparation of boron trifluoride complex catalyst
에탄올 7.14g(155mmol), 디이소프로필 에테르 16.2g(158mmol)이 들어있는 플라스크를 -20℃로 유지하고, 교반하면서 삼불화붕소 9.5g(140mmol)를 기체상태로 1시간 동안 투입하여 착화합물 촉매를 제조하였다.A flask containing 7.14 g (155 mmol) of ethanol and 16.2 g (158 mmol) of diisopropyl ether was kept at -20 ° C. and 9.5 g (140 mmol) of boron trifluoride was added in gaseous state for 1 hour while stirring, .
[[ 실시예Example 1] One] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -20℃로 유지하면서, 표 1과 같은 조성의 원료 100g과 헥산 300g을 주입하였다. 원료가 액상이 되도록 반응기 압력을 3기압으로 유지하고, 교반기를 돌리면서 온도 안정화시킨다. 온도가 안정되면 반응기에 디이소프로필 에테르 0.37g (3.6mmol)를 주입하여 교반하고, 1분 후 제조예 1에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어주었다. 반응 시간 30분 후, 중합액을 5 중량% 가성 소다 수용액에 담아 중합을 중지하고 촉매 성분을 중화시켰다. 추가로 수세척을 2회 반복하여, 촉매를 제거한 후, 중합액을 회전증발농축기 (rotary evaporator)를 이용하여 용매를 제거하였다. 마지막으로 0.9 Torr, 150℃에서 증류하여, 잔여 저비점의 성분을 제거함으로써 고반응성 폴리이소부텐을 얻었다. 얻어진 고반응성 폴리이소부텐의 이소부텐 전환율은 81%, 수평균 분자량(Mn)은 930 g/mol, 분자량분포(Mw/Mn) 2.2, α-비닐리덴 함량은 92%이었다. 이때 Z는 (3.45/3.6)= 0.958로서 Mn=930을 대입하면, 식 1을 만족한다.A 2-liter batch reactor connected to a cooling line was charged with 100 g of the starting material of the composition shown in Table 1 and 300 g of hexane while maintaining the temperature at -20 캜. The reactor pressure is kept at 3 atm so that the raw material is in a liquid state, and the temperature is stabilized while turning the agitator. When the temperature was stabilized, 0.37 g (3.6 mmol) of diisopropyl ether was injected into the reactor and stirred. After 1 minute, the boron trifluoride complex catalyst prepared in Preparation Example 1 was added to the boron trifluoride complex And 0.3 parts by weight of boron trifluoride in the catalyst. After 30 minutes of the reaction time, the polymerization solution was poured into a 5 wt% caustic soda aqueous solution to stop the polymerization and neutralize the catalyst component. The water washing was further repeated twice to remove the catalyst, and then the solvent was removed using a rotary evaporator. Finally, distillation was conducted at 0.9 Torr at 150 DEG C to remove the remaining low-boiling components to obtain highly reactive polyisobutene. The resulting highly reactive polyisobutene had an isobutene conversion of 81%, a number average molecular weight (Mn) of 930 g / mol, a molecular weight distribution (Mw / Mn) of 2.2 and an alpha -vinylidene content of 92%. At this time, when Z is (3.45 / 3.6) = 0.958 and Mn = 930 is substituted, the formula 1 is satisfied.
[[ 실시예Example 2] 2] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -20℃로 유지하면서, 실시예 1의 디이소프로필 에테르 대신 2-프로판올 0.37g (3.6mmol)을 주입하고, 제조예 1에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고반응성 폴리이소부텐의 이소부텐 전환율은 85%, 수평균 분자량(Mn)은 1500 g/mol, 분자량분포(Mw/Mn) 2.0, α-비닐리덴 함량은 89%이었다. 이때 Z는 (3.45/3.6)= 0.958로서 Mn=1500을 대입하면, 식 1을 만족한다.2-propanol (0.37 g, 3.6 mmol) instead of the diisopropyl ether of Example 1 was fed into the 2-liter batch reactor connected to the cooling line at -20 캜, and the boron trifluoride complex catalyst prepared in Preparation Example 1 Highly reactive polyisobutene was obtained in the same manner as in Example 1, except that 0.3 parts by weight of boron trifluoride was contained in the boron trifluoride complex compound catalyst based on 100 parts by weight of isobutene. The obtained highly reactive polyisobutene had an isobutene conversion of 85%, a number average molecular weight (Mn) of 1500 g / mol, a molecular weight distribution (Mw / Mn) of 2.0 and an alpha -vinylidene content of 89%. At this time, when Z is (3.45 / 3.6) = 0.958 and Mn = 1500 is substituted, equation (1) is satisfied.
[[ 실시예Example 3] 3] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 제조예 2에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 86%, 수평균 분자량(Mn)은 650 g/mol, 분자량분포(Mw/Mn) 1.8, α-비닐리덴 함량은 93%이었다. 이때 Z는 [3.45/(1.22+3.6)]= 0.716로서 Mn=650을 대입하면, 식 1을 만족한다.The boron trifluoride complex catalyst prepared in Preparation Example 2 was added to a boron trifluoride complex catalyst catalyst in an amount of 0.3 part by weight based on 100 parts by weight of isobutene while keeping the 2 liter batch reactor connected to the cooling line at -19 캜 High-reactivity polyisobutene was obtained in the same manner as in Example 1. The results are shown in Table 1. The obtained polymer had an isobutene conversion of 86%, a number average molecular weight (Mn) of 650 g / mol, a molecular weight distribution (Mw / Mn) of 1.8, and an alpha -vinylidene content of 93%. At this time, when Z is [3.45 / (1.22 + 3.6)] = 0.716 and Mn = 650 is substituted, expression 1 is satisfied.
[[ 실시예Example 4] 4] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -18℃로 유지하면서, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 88%, 수평균 분자량은 980 g/mol, 분자량분포(Mw/Mn) 1.7, α-비닐리덴 함량은 95%이었다. 이때 Z는 [3.45/(1.277+3.6)]= 0.707로서 Mn=980을 대입하면, 식 1을 만족한다.The boron trifluoride complex catalyst prepared in Preparation Example 3 was added to a boron trifluoride complex catalyst catalyst in an amount of 0.3 part by weight based on 100 parts by weight of isobutene while keeping the 2 liter batch reactor connected to the cooling line at -18 캜 High-reactivity polyisobutene was obtained in the same manner as in Example 1. The results are shown in Table 1. The obtained polymer had an isobutene conversion of 88%, a number average molecular weight of 980 g / mol, a molecular weight distribution (Mw / Mn) of 1.7, and an alpha -vinylidene content of 95%. At this time, when Z is [3.45 / (1.277 + 3.6)] = 0.707 and Mn = 980 is substituted, expression 1 is satisfied.
[[ 실시예Example 5] 5] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 실시예 1의 디이소프로필 에테르 0.73g(7.2mmol)을 주입하고, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 85%, 수평균 분자량은 1300 g/mol, 분자량분포(Mw/Mn) 2.1, α-비닐리덴 함량은 93%이었다. 이때 Z는 [3.45/(1.277+7.2)]= 0.407로서 Mn=1300을 대입하면, 식 1을 만족한다.0.73 g (7.2 mmol) of the diisopropyl ether of Example 1 was introduced while maintaining the 2-liter batch reactor connected to the cooling line at -19 캜, and the boron trifluoride complex catalyst prepared in Preparation Example 3 was added to 100 parts by weight of isobutene Highly reactive polyisobutene was obtained in the same manner as in Example 1, except that 0.3 parts by weight of boron trifluoride was contained in the boron trifluoride complex catalyst. The resulting polymer had an isobutene conversion of 85%, a number average molecular weight of 1300 g / mol, a molecular weight distribution (Mw / Mn) of 2.1, and an alpha -vinylidene content of 93%. At this time, when Z is [3.45 / (1.277 + 7.2)] = 0.407 and Mn = 1300 is substituted, the formula 1 is satisfied.
[[ 실시예Example 6] 6] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 실시예 1의 디이소프로필 에테르 1.0g(9.8mmol)을 주입하고, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 81%, 수평균 분자량은 2000 g/mol, 분자량분포(Mw/Mn) 2.1, α-비닐리덴 함량은 90%이었다. 이때 Z는 [3.45/(1.277+9.8)]= 0.311로서 Mn=2000을 대입하면, 식 1을 만족한다.1.0 g (9.8 mmol) of the diisopropyl ether of Example 1 was introduced while maintaining the 2-liter batch reactor connected to the cooling line at -19 캜, and the boron trifluoride complex catalyst prepared in Preparation Example 3 was added to 100 parts by weight of isobutene Highly reactive polyisobutene was obtained in the same manner as in Example 1, except that 0.3 parts by weight of boron trifluoride was contained in the boron trifluoride complex catalyst. The resulting polymer had an isobutene conversion of 81%, a number average molecular weight of 2000 g / mol, a molecular weight distribution (Mw / Mn) of 2.1, and an alpha -vinylidene content of 90%. At this time, if Z is [3.45 / (1.277 + 9.8)] = 0.311 and Mn = 2000 is substituted, equation (1) is satisfied.
[[ 실시예Example 7] 7] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -18℃로 유지하면서, 실시예 1의 디이소프로필 에테르 대신 4-메틸-2-프로판올 0.16g(1.6mmol)을 주입하고, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 91%, 수평균 분자량은 1100 g/mol, 분자량분포(Mw/Mn) 2.0, α-비닐리덴 함량은 91%이었다. 이때 Z는 [3.45/(1.277+1.6)]= 1.199로서 Mn=1100을 대입하면, 식 1을 만족한다.(1.6 mmol) of 4-methyl-2-propanol instead of the diisopropyl ether of Example 1 while keeping the 2-liter batch reactor connected to the cooling line at -18 占 폚, Highly reactive polyisobutene was obtained in the same manner as in Example 1, except that the boron complex catalyst was used in an amount of 0.3 parts by weight based on 100 parts by weight of isobutene and boron trifluoride in the boron trifluoride complex catalyst. The obtained polymer had an isobutene conversion of 91%, a number average molecular weight of 1100 g / mol, a molecular weight distribution (Mw / Mn) of 2.0, and an alpha -vinylidene content of 91%. At this time, if Z is [3.45 / (1.277 + 1.6)] = 1.199 and Mn = 1100 is substituted, expression 1 is satisfied.
[[ 실시예Example 8] 8] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 실시예 1의 디이소프로필 에테르 대신 tert-아밀 알코올 0.16g(1.8mmol)을 주입하고, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3중량부 되도록 넣어준 것을 제외하고는, 실시예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 88%, 수평균 분자량은 960 g/mol, 분자량분포(Mw/Mn) 1.9, α-비닐리덴 함량은 89%이었다. 이때 Z는 [3.45/(1.277+1.8)]= 1.121로서 Mn=960을 대입하면, 식 1을 만족한다.(1.8 mmol) of tert-amyl alcohol instead of the diisopropyl ether of Example 1 was fed while maintaining the 2-liter batch reactor connected with the cooling line at -19 캜, and the boron trifluoride complex catalyst Was prepared in the same manner as in Example 1, except that 0.3 parts by weight of boron trifluoride was contained in the boron trifluoride complex compound catalyst on the basis of 100 parts by weight of isobutene to obtain highly reactive polyisobutene. The obtained polymer had an isobutene conversion of 88%, a number average molecular weight of 960 g / mol, a molecular weight distribution (Mw / Mn) of 1.9 and an alpha -vinylidene content of 89%. At this time, when Z is [3.45 / (1.277 + 1.8)] = 1.121 and Mn = 960 is substituted, the formula 1 is satisfied.
[[ 비교예Comparative Example 1] One] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하였고, 표 1과 같은 조성의 원료 100g과 헥산 300g을 주입하였다. 원료가 액상이 되도록 반응기 압력을 3기압으로 유지하고, 교반기를 돌리면서 온도 안정화시킨다. 온도 안정화가 된 반응기에 제조예 1에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 상불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어주었다.The 2-liter batch reactor connected to the cooling line was maintained at -19 ° C., and 100 g of the raw material having the composition shown in Table 1 and 300 g of hexane were injected. The reactor pressure is kept at 3 atm so that the raw material is in a liquid state, and the temperature is stabilized while turning the agitator. The boron trifluoride complex catalyst prepared in Preparation Example 1 was added to the temperature stabilized reactor so that boron trifluoride in the boron trifluoride complex catalyst was 0.3 part by weight based on 100 parts by weight of isobutene.
반응 시간 30분 후, 중합액을 5 중량% 가성 소다 수용액에 담아 중합을 중지하고 촉매 성분을 중화시켰다. 추가로 수세척을 2회 반복하여, 촉매를 제거한 후, 중합액을 회전증발농축기 (rotary evaporator)를 이용하여 용매를 제거하였다. 마지막으로 증류 장치를 이용하여 잔여 저비점의 성분을 제거함으로써 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 86%, 수평균 분자량은 2200 g/mol, 분자량분포(Mw/Mn) 3.5, α-비닐리덴 함량은 76%이었다.After 30 minutes of the reaction time, the polymerization solution was poured into a 5 wt% caustic soda aqueous solution to stop the polymerization and neutralize the catalyst component. The water washing was further repeated twice to remove the catalyst, and then the solvent was removed using a rotary evaporator. Finally, the remaining low boiling point components were removed using a distillation apparatus to obtain highly reactive polyisobutene. The resulting polymer had an isobutene conversion of 86%, a number average molecular weight of 2200 g / mol, a molecular weight distribution (Mw / Mn) of 3.5, and an alpha -vinylidene content of 76%.
이때 Z는 [3.45/0]= ∞로서 식 1의 Z 범위를 만족하지 않는다. 또한, 중합 공정에서 산소를 포함하는 유기 화합물의 투입이 없었다.At this time, Z is [3.45 / 0] = ∞ and does not satisfy the Z range of Equation 1. Further, there was no introduction of an organic compound containing oxygen in the polymerization step.
[[ 비교예Comparative Example 2] 2] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -20℃로 유지하면서, 제조예 2에서 제조한 삼불화붕소 착화합물 촉매를 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 73%, 수평균 분자량은 1800 g/mol, 분자량분포(Mw/Mn) 2.9, α-비닐리덴 함량은 83 %이었다. 이때 Z는 [3.45/(1.22)]= 2.828로서 식 1의 Z의 범위를 만족하지 않는다. 또한, 중합 공정에서 산소를 포함하는 유기 화합물의 투입이 없었다.Reactive polyisobutene was obtained in the same manner as in Comparative Example 1, except that the boron trifluoride complex catalyst prepared in Preparation Example 2 was used while maintaining the 2-liter batch reactor connected to the cooling line at -20 캜. The resulting polymer had an isobutene conversion of 73%, a number average molecular weight of 1800 g / mol, a molecular weight distribution (Mw / Mn) of 2.9 and an alpha -vinylidene content of 83%. At this time, Z is [3.45 / (1.22)] = 2.828, which does not satisfy the range of Z in Equation 1. Further, there was no introduction of an organic compound containing oxygen in the polymerization step.
[[ 비교예Comparative Example 3] 3] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -20℃로 유지하면서, 제조예 3에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 되도록 넣어준 것을 제외하고는, 비교예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 76%, 수평균 분자량은 2500 g/mol, 분자량분포(Mw/Mn) 2.6, α-비닐리덴 함량은 84 %이었다. 이때 Z는 [3.45/1.277]= 2.702로서 식 1의 Z의 범위를 만족하지 않는다. 또한, 중합 공정에서 산소를 포함하는 유기 화합물의 투입이 없었다.The boron trifluoride complex catalyst prepared in Preparation Example 3 was added to the boron trifluoride complex catalyst catalyst in an amount of 0.3 part by weight based on 100 parts by weight of isobutene while keeping the 2 liter batch reactor connected to the cooling line at -20 占 폚 High-reactivity polyisobutene was obtained in the same manner as in Comparative Example 1. The results are shown in Table 1. < tb > < TABLE > The obtained polymer had an isobutene conversion of 76%, a number average molecular weight of 2500 g / mol, a molecular weight distribution (Mw / Mn) of 2.6, and an alpha -vinylidene content of 84%. At this time, Z is [3.45 / 1.277] = 2.702, which does not satisfy the range of Z in Equation 1. Further, there was no introduction of an organic compound containing oxygen in the polymerization step.
[[ 비교예Comparative Example 4] 4] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 제조예 4에서 제조한 삼불화붕소 착화합물 촉매를 이소부텐 100 중량부 기준으로, 상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 0.3 중량부 넣어준 것을 제외하고는, 비교예 1과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 21%, 수평균 분자량은 1800 g/mol, 분자량분포(Mw/Mn) 4.5, α-비닐리덴 함량은 83 %이었다. 이때 Z는 [3.45/3.90]= 0.885로서 Mn=1800을 대입하면, 식 1을 만족한다. 다만, 중합 공정에서 산소를 포함하는 유기 화합물의 투입이 없었다.The boron trifluoride complex catalyst prepared in Preparation Example 4 was added to the boron trifluoride complex catalyst catalyst in an amount of 0.3 part by weight based on 100 parts by weight of isobutene while keeping the 2 liter batch reactor connected to the cooling line at -19 캜 High-reactivity polyisobutene was obtained in the same manner as in Comparative Example 1. [ The obtained polymer had an isobutene conversion of 21%, a number average molecular weight of 1800 g / mol, a molecular weight distribution (Mw / Mn) of 4.5, and an alpha -vinylidene content of 83%. At this time, when Z is [3.45 / 3.90] = 0.885 and Mn = 1800 is substituted, expression 1 is satisfied. However, there was no introduction of an organic compound containing oxygen in the polymerization process.
[[ 비교예Comparative Example 5] 5] 고반응성High reactivity 폴리이소부텐Polyisobutene 중합 polymerization
냉각 라인이 연결된 2 리터 회분식 반응기를 -19℃로 유지하면서, 제조예 2의 삼불화붕소 착화합물 촉매 대신에 에탄올 0.18g(3.83mmol), 디이소프로필 에테르 0.13g(1.22mmol)를 반응기에 직접 주입한 후, 삼불화붕소 0.23g(3.45mmol)을 주입한 것을 제외하고는, 실시예 3과 동일한 방법으로 고반응성 폴리이소부텐을 얻었다. 얻어진 고분자의 이소부텐 전환율은 67%, 수평균 분자량은 610 g/mol, 분자량분포(Mw/Mn) 2.9, α-비닐리덴 함량은 78 %이었다. 이때 Z는 [3.45/(1.22+3.6)]= 0.716로서 식 1을 만족한다. 다만, 삼불화붕소 착화합물 촉매로서 투입하지 않고 반응기에 삼불화붕소, 제1조촉매 및 제2 조촉매를 직접 투입하여 중합제조한 것이다.0.18 g (3.83 mmol) of ethanol and 0.13 g (1.22 mmol) of diisopropyl ether were fed directly into the reactor instead of the boron trifluoride complex catalyst of Production Example 2 while maintaining the 2-liter batch reactor connected to the cooling line at -19 캜 Thereafter, highly reactive polyisobutene was obtained in the same manner as in Example 3, except that 0.23 g (3.45 mmol) of boron trifluoride was added. The obtained polymer had an isobutene conversion of 67%, a number average molecular weight of 610 g / mol, a molecular weight distribution (Mw / Mn) of 2.9 and an alpha -vinylidene content of 78%. At this time, Z satisfies Equation 1 as [3.45 / (1.22 + 3.6)] = 0.716. However, boron trifluoride, the first co-catalyst and the second co-catalyst were directly added to the reactor without being added as the boron trifluoride complex catalyst, thereby producing a polymer.
상기 표2로부터, 본 발명에 따른 실시예의 경우, 삼불화붕소 착화합물 촉매를 단독 사용하여 제조(비교예1~3)했을 때보다 유기화합물을 투입한 경우 α-비닐리덴 함량이 높은 고반응성 폴리이소부텐이 제조됨을 알 수 있다. From the above Table 2, it can be seen that, in the case of the examples according to the present invention, when the organic compound is added to the polybasic boron trifluoride complex catalyst from the boron trifluoride complex catalyst alone (Comparative Examples 1 to 3) It can be seen that tin is produced.
또한, 동일한 몰비의 알킬에테르를 사용한 경우(실시예 3, 비교예 4), 유기화합물로 따로 투입하지 않고 삼불화붕소 착화합물 촉매로 제조하였을 때 (비교예 4), 반응 활성이 현저히 낮고, α-비닐리덴 함량은 10% 낮으며, 분자량은 증가하고 분자량분포가 넓은 고반응성 폴리이소부텐이 제조됨을 알 수 있다. In addition, when the same molar ratio of alkyl ether was used (Example 3 and Comparative Example 4), when the boron trifluoride complex catalyst was prepared without adding the organic compound separately (Comparative Example 4), the reaction activity was extremely low, The vinylidene content is 10% lower and the molecular weight is increased and the highly reactive polyisobutene having a broad molecular weight distribution is produced.
또한, 비교예5에 의하면, 실시예 3과 동일한 몰비 조건에서, 착물 형성없이 삼불화붕소, 알코올, 알킬에테르를 이소부텐을 포함하는 C4 유분에 투입하여 중합 공정을 진행했을 때, 이소부텐 전환율이 낮고, α-비닐리덴 함량도 낮아지는 것을 확인할 수 있었다. Further, according to Comparative Example 5, when the polymerization process was carried out by introducing boron trifluoride, alcohol and alkyl ether into C4 oil fraction containing isobutene in the same molar ratio condition as in Example 3, the isobutene conversion And the content of alpha -vinylidene was also lowered.
높은 α-비닐리덴 함량의 고분자는 윤활유, 연료청정제 등의 제조시 반응이 일어나는 유효성분의 함량이 높아, 경제적으로 제조할 수 있는 장점이 있다.The high-α-vinylidene content polymer has a high content of effective components which react in the production of lubricating oil, fuel detergent and the like, which is economically advantageous.
또한, 상업적으로 생산되고 있는 고반응성 폴리이소부텐의 수평균 분자량 범위는 750~2300g/mol 으로, 상기 표 2의 실시예 4~6의 경우, 삼불화붕소 착화합물 촉매 종류, 촉매 투입 함량, 반응온도가 동일한 조건에서, 유기화합물 투입 함량을 변경하여 원하는 분자량으로 조절할 수 있고, 이는 공정면에서 효율적으로 제조할 수 있다.The number average molecular weight of the highly reactive polyisobutene being produced commercially is in the range of 750 to 2300 g / mol, and in the case of Examples 4 to 6 of Table 2, the boron trifluoride complex catalyst type, the catalyst feed amount, Can be adjusted to a desired molecular weight by changing the content of the organic compound in the same condition, which can be efficiently produced in view of the process.
Claims (10)
상기 삼불화붕소 착화합물 촉매는 삼불화붕소; 및 제 1 조촉매; 및 제 2 조촉매로 이루어지고,
상기 제1조촉매는 탄소수 1 내지 4의 알코올 화합물이고,
상기 제2조촉매는 탄소수 3 내지 10의 알킬에테르 화합물이며,
하기 식 (1)을 만족하는 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.
<하기 식 1>
50 < Mn - 520 x Z < 2000
Z= 이고, 0.3 < Z < 1.4
Mn : 고반응성 폴리이소부텐의 수 평균 분자량
Y : 유기 화합물의 함량(mmol)
Xa : 상기 삼불화붕소 착화합물 중의 삼불화붕소의 함량(mmol)
Xc : 상기 삼불화붕소 착화합물 중의 제 2 조촉매의 함량(mmol)
(상기 Xa:Y의 몰비는 1: 0.47~2.85이다)Comprising the step of introducing a boron trifluoride complex catalyst into a mixture of C4 olefins containing isobutene and an alkyl ether having 3 to 10 carbon atoms as an organic compound or a secondary or tertiary alcohol,
Wherein the boron trifluoride complex catalyst is selected from the group consisting of boron trifluoride; And a first co-catalyst; And a second co-catalyst,
The first co-catalyst is an alcohol compound having 1 to 4 carbon atoms,
The second co-catalyst is an alkyl ether compound having 3 to 10 carbon atoms,
(1): < EMI ID = 1.0 >
≪ Formula 1 >
50 < Mn - 520 x Z < 2000
Z = , 0.3 < Z < 1.4
Mn: number average molecular weight of highly reactive polyisobutene
Y: content of organic compounds (mmol)
Xa: the content of boron trifluoride in the boron trifluoride complex (mmol)
Xc: the content of the second co-catalyst in the boron trifluoride complex (mmol)
(The molar ratio of Xa: Y is 1: 0.47 to 2.85)
상기 유기화합물은 상기 이소부텐 100 중량부에 대하여 0.05 내지 1.0 중량부로 포함되는 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the organic compound is contained in an amount of 0.05 to 1.0 part by weight based on 100 parts by weight of the isobutene.
상기 삼불화붕소 착화합물 촉매 중 삼불화붕소가 이소부텐 100 중량부에 대하여 0.05 내지 1.0 중량부 포함되게 사용하는 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the boron trifluoride complex catalyst is used so that boron trifluoride is contained in an amount of 0.05 to 1.0 part by weight based on 100 parts by weight of isobutene.
상기 삼불화붕소와 제1 조촉매의 몰비는 1: 1.1~2.0인 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the molar ratio of the boron trifluoride to the first cocatalyst is 1: 1.1 to 2.0.
상기 삼불화붕소: 상기 제1조촉매: 상기 제2조촉매의 몰비는 1:1.1~2.0: 0.1~1.0인 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the molar ratio of the boron trifluoride: the first co-catalyst: the second co-catalyst is 1: 1.1 to 2.0: 0.1 to 1.0.
상기 삼불화붕소 착화합물은 -40~10℃의 온도에서 제조된 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the boron trifluoride complex is prepared at a temperature of -40 to 10 占 폚.
상기 중합 단계에서 반응 온도는 -40℃~20℃이고, 반응 압력은 3kg/cm2 이상이며, 반응 시간은 1분~90분인 것을 특징으로 하는 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the reaction temperature in the polymerization step is -40 ° C to 20 ° C, the reaction pressure is 3 kg / cm 2 or more, and the reaction time is 1 minute to 90 minutes.
상기 고반응성 폴리이소부텐의 수평균 분자량(Mn)은 300~5000인 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the highly reactive polyisobutene has a number average molecular weight (Mn) of 300 to 5,000.
상기 고반응성 폴리이소부텐의 분자량 분포(Mw/Mn)은 1.3~5인 것을 특징으로 하는 고반응성 폴리이소부텐의 제조방법.The method according to claim 1,
Wherein the highly reactive polyisobutene has a molecular weight distribution (Mw / Mn) of 1.3 to 5. [
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170017871A KR101898378B1 (en) | 2017-02-09 | 2017-02-09 | Method of producing high reactive polyisobutene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170017871A KR101898378B1 (en) | 2017-02-09 | 2017-02-09 | Method of producing high reactive polyisobutene |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180098708A KR20180098708A (en) | 2018-09-05 |
KR101898378B1 true KR101898378B1 (en) | 2018-10-31 |
Family
ID=63594245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170017871A KR101898378B1 (en) | 2017-02-09 | 2017-02-09 | Method of producing high reactive polyisobutene |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101898378B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102203006B1 (en) * | 2019-04-24 | 2021-01-13 | 대림산업 주식회사 | Method for producing highly reactive polybutene |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101394941B1 (en) * | 2012-04-12 | 2014-05-15 | 대림산업 주식회사 | Boron trifluoride complex catalyst and method for preparing high reactivity polybutene using the same |
-
2017
- 2017-02-09 KR KR1020170017871A patent/KR101898378B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101394941B1 (en) * | 2012-04-12 | 2014-05-15 | 대림산업 주식회사 | Boron trifluoride complex catalyst and method for preparing high reactivity polybutene using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20180098708A (en) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100486044B1 (en) | Method for producing polybutene | |
EP1483303B1 (en) | Method for the production of isobutene polymers | |
KR101458404B1 (en) | Method for preparing polybutene | |
JP4124788B2 (en) | Process for producing polyisobutene | |
KR101511701B1 (en) | Apparatus and method for recirculation of raw material used during the polyisobutylene preparation process | |
JP6748242B2 (en) | Apparatus and method for producing polybutene having various molecular weights | |
KR101898378B1 (en) | Method of producing high reactive polyisobutene | |
KR101007952B1 (en) | Method for the production of polyisobutene | |
KR101523568B1 (en) | Apparatus and method for selectively preparing reactive polyisobutylene and non-reactive polyisobutylene | |
KR100787851B1 (en) | Polybutene polymer composition and process for producing the same | |
KR101394941B1 (en) | Boron trifluoride complex catalyst and method for preparing high reactivity polybutene using the same | |
KR102203006B1 (en) | Method for producing highly reactive polybutene | |
KR101871071B1 (en) | Device of preparing polybutene, Method of preparing polybutene, Polybutene prepared by the same and Device of preparing polybutent prepared by the same | |
KR101511707B1 (en) | Apparatus and method for preparing polyisobutylene which is easy to adjust molecular weight | |
KR101628897B1 (en) | Method for preparing polyisobutylene using the normal propanol | |
KR101457452B1 (en) | Apparatus and method for preparing polyisobutylene having a various molecular weight | |
KR101549208B1 (en) | Preparation method of 3-methyl-3-buten-1-ol | |
KR20220012206A (en) | Polymerization Catalyst System and Process to Produce Highly Reactive Polyisobutylene | |
DE1908340C3 (en) | 2-norbornene compounds, process for their preparation and their use as comonomers for the preparation of copolymers | |
KR100827273B1 (en) | Method for preparing bf3 complex catalyst and method for preparing polybutene with high reactivity using the same | |
KR20220069555A (en) | Preparation method of alkylene oxide adduct | |
JP2000063436A (en) | Preparation of butene polymer | |
KR840002199B1 (en) | Process for converting glycol dialkyl ether | |
JP2002193847A (en) | METHOD FOR PRODUCING LINEAR alpha-OLEFIN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |