KR101887412B1 - Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same - Google Patents

Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same Download PDF

Info

Publication number
KR101887412B1
KR101887412B1 KR1020170144518A KR20170144518A KR101887412B1 KR 101887412 B1 KR101887412 B1 KR 101887412B1 KR 1020170144518 A KR1020170144518 A KR 1020170144518A KR 20170144518 A KR20170144518 A KR 20170144518A KR 101887412 B1 KR101887412 B1 KR 101887412B1
Authority
KR
South Korea
Prior art keywords
weight
content
sio
sodium
wastewater
Prior art date
Application number
KR1020170144518A
Other languages
Korean (ko)
Inventor
한승우
Original Assignee
엠씨글로벌 주식회사
한승우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠씨글로벌 주식회사, 한승우 filed Critical 엠씨글로벌 주식회사
Priority to KR1020170144518A priority Critical patent/KR101887412B1/en
Application granted granted Critical
Publication of KR101887412B1 publication Critical patent/KR101887412B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Abstract

The present invention relates to a method for producing an alkaline coagulant which is polyaluminate sodium silicate with 3-15 wt% of Al_2O_3 content and 0.2-1.3 wt% of SiO_2 content, and a water treatment method using the same. According to the present invention, the polyaluminate sodium silicate which is an alkaline coagulant maintaining excellent fluorine removing and neutralizing abilities, and having excellent stability as precipitation of a solid precipitate is not detected during a long-term storage time.

Description

알카리성 응집제의 제조방법 및 이를 이용한 수처리방법{Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for preparing an alkaline coagulant and a water treatment method using the same,

본 발명은 알카리성 응집제의 제조방법에 관한 것이며, 구체적으로는 알카리성을 유지하는 응집제의 제조방법 및 이를 이용한 수처리 방법에 관한 것이다.The present invention relates to a method for producing an alkaline flocculant, and more particularly, to a method for producing an alkaline flocculant and a water treatment method using the flocculant.

제철소 제강, 연주공장, 미니밀 공장 및 전자부품공장 등에서는 화학적 활성이 강한 불소화합물을 많이 사용하고 있으며, 특히 전자부품공장에서 세척 및 에칭 작업 등에 사용되는 불소화합물은 불화나트륨(NaF), 불화알루미늄(AlF3), 불화수소(HF) 형태로 폐수에 다량 함유되어 배출되기 때문에 폐수처리에 많은 애로사항을 야기하고 있다.Fluorine compounds that have strong chemical activity are used in steel mills, casting mills, casting mills, mini mills, and electronic parts factories. In particular, fluorine compounds used in washing and etching operations in electronic component factories are made of sodium fluoride (NaF) AlF 3 ) and hydrogen fluoride (HF), and it causes many difficulties in the treatment of wastewater.

불소를 함유하고 있는 폐수에 대하여 수질 및 수생태계 보전에 관한 법률은 15ppm 이하로 배출허용기준을 정하고 있으며, 환경친화기업으로 지정받기 위해서는 7ppm이하로 낮추어야 하므로 배출허용기준 및 환경친화기업으로 지정받기 위한 기준을 만족시키기 위해 다단계의 처리공정 등으로 많은 비용을 투자하여 처리하고 있고, 수처리제 제조업체와 연구단체 등에서 다양한 처리제 및 처리방법의 개발에 노력하고 있지만 현재까지 특이한 방안을 제시하지 못하고 있는 실정이다.The law on the conservation of water quality and aquatic ecosystem for fluorine-containing wastewater has set the emission limit below 15ppm and should be lowered to 7ppm or less in order to be designated as an environment friendly company. In order to satisfy the criteria, we are investing a lot of money in multi-stage processing, etc., and we are trying to develop various treatment agents and treatment methods in water treatment agent manufacturers and research organizations.

현재까지 불소화합물을 함유한 폐수 처리방법으로는 크게 이온교환수지와 다공질의 알루미나를 사용하는 방법, Ca 화합물 및 Al 화합물을 사용한 응집침전법, 희토류 화합물을 사용한 침전법 등이 있으며, 상기 이온교환수지와 다공질 알루미나를 사용하는 방법은 교환용량의 한계로 인해 산업폐수에는 적용하기가 어려우며, 주로 불소함유 폐수처리에는 Ca 화합물과 Al 화합물 또는 희토류 화합물을 사용하는 응집침전법 등이 사용되고 있으나, Ca 화합물과 Al 화합물 사용하여 불소를 제거하는 경우, 불소 이외에 유기물질을 대표하는 COD(화학적 산소요구량, Chemical Oxygen Demand)의 제거도 가능한 특징을 가지고 있지만 불소의 제거율이 낮고 약품 투입량과 슬러지 발생량이 많아 유지관리비용이 크다는 단점을 가지고 있다. 뿐 만 아니라, 희토류 화합물을 이용하는 방법에서는 불소제거율은 높으나 폐수중에 함유되어 있는 COD 제거효율이 낮은 문제점을 가지고 있다.The wastewater treatment methods containing fluorine compounds to date include mainly a method of using an ion exchange resin and porous alumina, a coagulation precipitation method using a Ca compound and an Al compound, a precipitation method using a rare earth compound, And porous alumina are difficult to apply to industrial wastewater due to limit of exchange capacity. Coagulation and precipitation method using Ca compound and Al compound or rare earth compound is mainly used for treatment of fluorine-containing wastewater. However, In the case of removing fluorine by using Al compound, COD (Chemical Oxygen Demand) which is representative of organic substance besides fluorine can be removed. However, since the removal rate of fluorine is low and the amount of chemical input and sludge generation are large, This is a large disadvantage. In addition, the method using a rare earth compound has a problem that the removal efficiency of COD contained in the wastewater is low although the fluorine removal rate is high.

그리고 응집시설에서 사용되고 있는 무기응집제로 황산알루미늄(Alum), 폴리염화알루미늄(PAC), 폴리염화알루미늄규산(PACS), 폴리염화알루미늄칼슘(PACC), 저염기도 폴리염화알루미늄, 고염기도 폴리염화알루미늄 등의 알루미늄계 무기응집제와 염화제2철(FeCl3), 황산제2철, 폴리황산철 등의 철염계 무기응집제가 있으며, 이들 무기응집제는 강산성을 이루고 있으므로 수처리효율을 향상시키기 위해서는 무기응집제의 사용에 따라 적정 응집 pH를 유지하기 위한 중화제의 사용은 필수적이라 할 수 있다. 일반적으로 사용되는 중화제로는 가성소다(NaOH)와 소석회(Ca(OH)2)가 있으나, 소석회(Ca(OH)2)의 경우 사용에 따라 슬러지 발생량이 증가하여 슬러지 처리비용을 감안할 때 처리비용 및 유지관리 비용 등의 경제성 결여로 사용하지 않고 있으며, 수처리 현장에서는 중화제로 가성소다(NaOH)가 가장 많이 사용되고 있다.Inorganic coagulants used in flocculation facilities include aluminum sulfate (Alum), polychlorinated aluminum (PAC), polychlorinated aluminum silicate (PACS), aluminum polychlorinated calcium (PACC), low salt polychlorinated aluminum, (FeCl 3 ), ferric sulfate, and iron salt-based inorganic flocculants such as iron polysulfate. Since these inorganic flocculants have strong acidity, the use of inorganic flocculants The use of a neutralizing agent to maintain an appropriate flocculation pH is indispensable. Neutralizing agent commonly used is sodium hydroxide (NaOH) and calcium hydroxide (Ca (OH) 2) are however, calcium hydroxide (Ca (OH) 2) processing costs when the sludge generation amount depending on the increase given the sludge treatment cost for And maintenance cost. In the water treatment site, caustic soda (NaOH) is the most used as a neutralizing agent.

상기의 가성소다(NaOH)는 함유량 5%이상일 경우 유해화학물질로 분류되어 유해화학물질 관리에 대한 규제의 강화로 인해 많은 애로사항이 발생되고 있다. 이는 지난 2012년 9월 구미에서 발생된 불산누출사고 이후 2016년 6월 현재 황산누출사고 까지 각종의 유해화학물질에 대한 사고가 다량 발생됨에 따라 화학물질관리에 대한 규제가 강화됨으로써 각종 수처리현장에서 사용되는 중화제 관리에 대한 법적 규제의 대응책에 애로사항이 많은 실정이다. When the content of NaOH is above 5%, it is classified as a harmful chemical substance, and many difficulties are caused due to the strengthening of regulations on the management of harmful chemical substances. This is due to a large number of accidents involving various hazardous chemical substances, ranging from the Foshan leak in Gumi in September 2012 to the sulfuric acid leak in June 2016, There are many difficulties in the countermeasures of legal regulations on the management of neutralizing agents.

불소를 함유하고 있는 폐수 처리에 있어서 불소를 제거하기 위한 수처리제 및 처리방법과 관련된 선행기술로 예를 들면, 국내 등록특허공보 등록번호 제10-0984448호에 고농도의 불소가 함유된 폐수처리시 전기로의 환원슬러그를 이용하여 안정적으로 불소를 제거할 수 있는 폐수의 불소제거방법을 개시하고 있는데, 상기 선행기술은 불소가 함유된 폐수를 충전탑에 집수한 후 상기 충전탑내로 전기로의 환원슬러그를 투입하여 폐수중의 불소를 형석(CaF2) 형태로 침전제거하는 제 1단계와; 상기 제 1단계에서의 폐수를 반응 응집조로 투입하고 소석회(Ca(OH)2)를 주입하여 폐수내 잔여 불소를 응집침전시키는 제 2단계와; 상기 제 2단계 실시 후 폐수를 침전조로 배출하여 상등수만 방류시키는 제 3단계;를 통하여 불소를 제거하고 있는 것으로 응집침전 이전에 별도의 충진탑이 필요하며, 작업효율 및 불소의 처리효율이 낮은 문제점을 가지고 있는 것으로 판단된다. 그리고 국내 등록특허공보 등록번호 제10-1010733호에 불소함유 폐수의 처리방법을 개시하고 있으며, 상기 선행기술은 불소함유 폐수를 1차 반응조에 투입하고 불소제거제로서 염기도가 50% 이상인 폴리염화알루미늄을 주입하여 불화알루미늄(AlF3)을 생성하는 제 1단계; 상기 1차 반응조의 생성물 및 처리수를 2차 반응조로 이송하고 알루민산나트륨을 투입하여 폐수로부터 잔여불소를 제거하는 제 2단계; 상기 2차 반응조의 생성물 및 처리수를 응집조로 이송하고 유기응집제를 사용하여 플럭화된 입자를 침전시키는 단계; 및 상기 응집입자를 침전조로 이송하고 처리수를 배출하는 단계를 포함하는 불소함유 폐수의 처리방법을 제공하고 있다. 또 국내 공개특허공보 공개번호 특1999-0046414호에는 불소를 함유한 산업폐수처리제로서 탄산칼슘(CaCO3) 37∼55중량%, 염산 34∼42 중량% 및 붕사(Na2B4O7·10H2O) 0.1∼12 중량%로 이루어지는 불소 함유한 산업폐수 처리제를 사용하여 수산화칼슘(Ca(OH)2), 수산화나트륨(NaOH) 또는 이들의 혼합물 첨가하여 pH 9-10.5정도로 조정하여 20분간 폭기 교반하여 반응시키는 1차단계와 황산알루미늄(Alum)을 소량씩 첨가하여 10분간 교반하여 반응시키면서 pH를 6.5-7.5로 조정한 다음 응집제를 소량 투입하여 1-3시간정도 침전시키는 2차단계로 불소를 함유한 산업폐수를 처리할 수 있는 폐수처리제를 개시하고 있다.Background Art [0002] Prior art related to a water treatment agent and a treatment method for removing fluorine in the treatment of fluorine-containing wastewater is disclosed in Korean Patent Registration No. 10-0984448, for example, in the treatment of wastewater containing high- Discloses a method of removing fluorine from wastewater that can stably remove fluorine using a reducing slag. In the prior art, the waste water containing fluorine is collected in a packing tower, and a reducing slug of an electric furnace is charged into the packing tower A first step of precipitating and removing fluorine in waste water in the form of fluorite (CaF 2 ); A second step of introducing wastewater from the first step into a reactive coagulation bath and injecting calcium hydroxide (Ca (OH) 2 ) to coagulate and precipitate residual fluorine in the wastewater; The third step is to discharge the wastewater to the settling tank after the second step and discharge only the supernatant. The fluorine is removed through the third step. A separate filling tower is required before coagulation and sedimentation. As shown in Fig. In the prior art, fluorine-containing wastewater is introduced into a primary reaction tank, and polychlorinated aluminum having a basicity of 50% or more as a fluorine removing agent is introduced into the reaction tank. A first step of injecting aluminum fluoride (AlF 3 ) to form aluminum fluoride; A second step of transferring the product of the first reaction tank and the treated water to the second reaction tank and adding sodium aluminate to remove residual fluorine from the wastewater; Transferring the product and treated water of the secondary reaction tank to an aggregation tank and precipitating the flocculated particles using an organic flocculant; And transferring the aggregated particles to a settling tank and discharging treated water. In addition, Korean Patent Laid-Open Publication No. 1999-0046414 discloses a fluorine-containing industrial wastewater treatment agent containing 37 to 55% by weight of calcium carbonate (CaCO 3 ), 34 to 42% by weight of hydrochloric acid and borax (Na 2 B 4 O 7 · 10H 2 O) by using a fluorine-containing industrial waste water treatment agent consisting of 0.1~12% by weight of calcium hydroxide (Ca (OH) 2), sodium hydroxide (NaOH) or 20 minutes by adjusting the aeration stirring about pH 9-10.5 by addition of a mixture thereof The reaction was carried out by adding a small amount of aluminum sulfate (Alum) and stirring for 10 minutes. The pH was adjusted to 6.5-7.5, and then a small amount of coagulant was added to precipitate for 1-3 hours. Which is capable of treating industrial wastewater containing water.

본 출원인은 일반적으로 수처리공정 중 응집공정에서 사용되는 기존의 중화제를 대체할 수 있고 응집제의 사용량을 저감을 할 수 있을 뿐 만 아니라, 응집효율을 개선시킬 수 있는 알카리성 응집제인 폴리알루민산규산소다를 제조함으로써 본 발명을 완성하였다.The present applicant has found that it is generally possible to replace conventional neutralizing agents used in the coagulation process during the water treatment process and to reduce the amount of coagulant used and also to improve the cohesion efficiency by using an alkaline coagulant such as polyaluminium silicate The present invention has been completed.

본 발명에서 해결하려는 과제는 알카리성 응집제인 폴리알루민산규산나트륨의 제조방법 및 이를 이용한 수처리 방법에 관한 것이며, 보다 상세하게는 폐수로부터 불소제거 능력을 향상시키고, 응집공정에서 사용하는 가성소다를 대체하여 응집효율을 향상시키고 응집제의 절감할 뿐 아니라 슬러지 발생량을 저감하는 등의 불소제거를 위한 알카리성을 유지하는 응집제인 폴리알루민산규산나트륨의 제조방법 및 이를 이용한 수처리 방법의 제공을 목적으로 하는 것이다.The present invention is directed to a method for producing sodium aluminosilicate polyaluminate, which is an alkaline flocculant, and a water treatment method using the same, and more particularly, to a method for improving sodium fluoride A method for producing sodium polyaluminate silicate which is an aggregating agent for maintaining alkalinity for fluorine removal such as improvement of flocculation efficiency, reduction of flocculant and reduction of sludge generation amount, and a water treatment method using the same.

본 발명의 목적인 알카리성 응집제인 폴리알루민산규산나트륨의 제조방법의 해결수단으로는 a). 수산화알루미늄(Al(OH)3)과 가성소다(NaOH)를 물에 용해시킨 후, 105 ~ 150℃ 온도에서 반응시켜 Al2O3 함량이 3.9 ~ 17.7중량%의 알루민산나트륨 용액을 제조하는 제 1단계반응과, b). SiO2 함량이 28 ~ 30중량%의 규산소다와 20 ~ 50중량% 농도의 무기산을 물에 용해시킨 후, 30 ~ 60℃ 온도에서 반응시켜 SiO2 함량이 1.4 ~ 4.2중량%의 폴리규산 용액을 제조하는 제 2단계반응 및 c). 상기 제 1단계반응에서 제조한 Al2O3 함량 3.9 ~ 17.7중량%의 알루민산나트륨 용액 70 ~ 90중량%와 상기 제 2단계반응에서 제조한 SiO2 함량 1.4 ~ 4.2중량%의 폴리규산 용액 10 ~ 30중량%를 30 ~ 60℃ 온도에서 1 ~ 3시간 동안 반응시켜 Al2O3 함량 3 ~ 15중량%, SiO2 함량 0.1 ~ 1.3중량%의 아래 [일반식 1]의 단위체로 표현되는 폴리알루민산규산나트륨인 알카리성 응집제 용액을 제조하는 제3단계반응을 포함하는 것으로 이루어진다.As means for solving the process for producing sodium polyaluminate silicate which is an alkaline flocculant for the purpose of the present invention, a). (Al (OH) 3 ) and caustic soda (NaOH) in water and reacting at a temperature of 105 to 150 ° C. to produce a sodium aluminate solution having an Al 2 O 3 content of 3.9 to 17.7% by weight Step reaction and b). Sodium silicate having an SiO 2 content of 28 to 30% by weight and inorganic acid having a concentration of 20 to 50% by weight are dissolved in water and reacted at a temperature of 30 to 60 ° C to prepare a polysilicate solution having an SiO 2 content of 1.4 to 4.2% The second stage reaction to produce and c). The polysilicic acid solution 10 of 70 to 90% by weight of the sodium aluminate solution prepared in the first step reaction and the SiO 2 content of 1.4 to 4.2% by weight of the Al 2 O 3 solution prepared in the second step reaction To 30% by weight of a polyol represented by the unit of the general formula (1) below at a temperature of 30 to 60 ° C for 1 to 3 hours to obtain a polyol represented by the following general formula (1) with an Al 2 O 3 content of 3 to 15% by weight and a SiO 2 content of 0.1 to 1.3% And a third-stage reaction for producing an alkaline flocculant solution which is sodium aluminate silicate.

[일반식 1][Formula 1]

(NaAlO2·xH2O)·ySiO2 (NaAlO 2 · xH 2 O) · ySiO 2

상기 식에서 3≤x≤7, 0.003≤y≤0.04 이다3? X? 7, and 0.003? Y? 0.04 in the above formula

본 발명에 따른 상기 제 1단계반응의 생성물인 Al2O3 함량이 3.9 ~ 17.7중량%의 알루민산나트륨 용액은 구체적으로, 물(용수) 100중량부에 수산화알루미늄(Al(OH)3) 10 ~ 45중량부와 가성소다(NaOH) 20 ~ 55중량부를 용해시킨 후 1 ~ 3시간 동안 반응시켜 제조하는 것으로 이루어지며, 수산화알루미늄(Al(OH)3)는 Al(OH)3로 99.0중량% 이상 함유한다.The sodium aluminate solution having a content of Al 2 O 3 of 3.9 to 17.7% by weight, which is the product of the first step reaction according to the present invention, specifically includes aluminum hydroxide (Al (OH) 3 ) 10 (Al (OH) 3 ) is dissolved in an amount of 99.0% by weight based on the weight of Al (OH) 3 , and the reaction is carried out for 1 to 3 hours after dissolving 20 to 55 parts by weight of sodium hydroxide Or more.

또 본 발명에 따른 상기 제 2단계반응의 생성물인 SiO2 함량이 1.4 ~ 4.2중량%의 폴리규산 용액은 구체적으로, 물(용수) 100중량부에 SiO2 함량이 28 ~ 30중량%의 규산소다 5.5 ~ 20중량부와 20 ~ 50중량% 농도의 무기산 3.5 ~ 14중량부를 용해시킨 후 1 ~ 3시간 동안 반응시켜 제조하는 것으로 이루어지며, 상기 무기산은 강산인 황산, 염산 및 질산 중 어느 하나의 성분이 선택되는 것으로 이루어진다.The polysilicate solution having a SiO 2 content of 1.4 to 4.2 wt%, which is the product of the second-step reaction according to the present invention, specifically comprises 100 parts by weight of water (water), and SiO 2 content of 28 to 30 wt% Wherein the inorganic acid is prepared by dissolving 5.5 to 20 parts by weight of an inorganic acid and 3.5 to 14 parts by weight of an inorganic acid at a concentration of 20 to 50% by weight and reacting the mixture for 1 to 3 hours, wherein the inorganic acid is any one of sulfuric acid, hydrochloric acid and nitric acid Is selected.

상기 본 발명의 제 3단계반응에 따라 제조된 폴리알루민산규산나트륨의 Al2O3 함량은 시험분석에 의해 얻어진 결과치이며, 상기 폴리알루민산규산나트륨은 알카리성 응집제로써 액상으로 얻어진다.The Al 2 O 3 content of the sodium polyaluminate silicate prepared according to the third step reaction of the present invention is a resultant value obtained by the test analysis, and the sodium polyaluminate silicate is obtained as a liquid phase as an alkaline flocculant.

또 상기 본 발명에서 제조되는 [일반식 1]의 단위체로 표현되는 알카리성 응집제인 폴리알루민산규산나트륨은 우수한 불소제거능력과 중화능력이 유지되고, 또 장기간의 저장 기간 동안 고체상의 침전물이 석출되지 않는 등의 우수한 안정성을 나타낸다.In addition, sodium polyaluminate silicate, which is an alkaline flocculant represented by the unit represented by the general formula (1) prepared in the present invention, has excellent fluorine-removing ability and neutralizing ability, and does not precipitate solid precipitates during a long- And the like.

본 발명의 제조방법에 따라 제조된 Al2O3 함량 3 ~ 15중량%, SiO2 함량 0.2 ~ 1.3중량%로 조절된 알카리성 응집제인 폴리알루민산규산나트륨은 우수한 불소제거능력이 유지되며, 또 중화능력이 우수하고, 장기간의 저장 기간 동안 고체상의 침전물이 석출되지 않는 등의 우수한 안정성을 나타낸다.The sodium polyaluminate silicate, which is an alkaline coagulant adjusted to an Al 2 O 3 content of 3 to 15% by weight and a SiO 2 content of 0.2 to 1.3% by weight, produced according to the production method of the present invention maintains excellent fluorine removal ability, And exhibits excellent stability such as precipitation of solid phase precipitates during long-term storage period.

도 1은 <실시예1 및 실시예 2>에서 제조한 폴리규산의 FT-IR 분석결과를 나타낸 그래프
도 2는 <실시예1>에서 제조한 알카리성 응집제인 폴리알루민산규산나트륨의 FT-IR 분석결과를 나타낸 그래프
1 is a graph showing FT-IR analysis results of the polysilicic acid produced in Examples 1 and 2
2 is a graph showing FT-IR analysis results of sodium polyaluminate silicate, which is an alkaline coagulant prepared in Example 1

이하에서는 실시예 및 시험예를 통하여 본 발명을 보다 구체적으로 설명하기로 하겠으며, 하기 실시예가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and test examples, but the following examples do not limit the present invention.

<실시예 1>&Lt; Example 1 >

-제1 단계반응- First step reaction

수산화알루미늄[Al(OH)3, Al(OH)3로 99.0% 이상] 40kg과 가성소다(NaOH, 98.0%) 55kg, 용수(H2O) 105kg을 투입하여 110℃의 온도로 2시간 동안 반응시켜 Al2O3 함량이 12중량%인 알루민산나트륨 용액을 제조하였다.40 kg of aluminum hydroxide [Al (OH) 3 , Al (OH) 3 99.0% or more], 55 kg of caustic soda (NaOH, 98.0%) and 105 kg of water (H 2 O) To prepare a sodium aluminate solution having an Al 2 O 3 content of 12 wt%.

-제 2단계반응- Second stage reaction

규산소다(Na2O·SiO2·H2O; SiO2 함량이 28 ~ 30중량%) 30kg, 용수(H2O) 270kg, 황산(H2SO4, 30%) 17kg을 45℃의 온도로 2시간 동안 반응시켜 폴리규산 용액(SiO2 함량2.6중량%)을 제조하였다.Sodium silicate (Na 2 O · SiO 2 · H 2 O; SiO 2 content is 28-30 wt.%) 30kg, water (H 2 O) 270kg, sulfuric acid (H 2 SO 4, 30% ) temperature of the 17kg 45 ℃ It was reacted for 2 hours to prepare a poly-silicate solution (SiO 2 content of 2.6% by weight).

-제3단계반응- The third stage reaction

상기 제 1단계반응 생성물인 알루민산나트륨 용액(Na2O·Al2O3; Al2O3 함량 12중량%, Na2O 함량 25중량%) 180kg과 상기 제 2단계반응 생성물인 폴리규산 용액(SiO2 함량 2.6중량%) 20kg을 60℃의 온도로 2시간 동안 반응시켜 본 발명에 따른 SiO2 함량이 0.26중량%, Al2O3 함량이 10.8중량%인 알카리성 응집제 폴리알루민산규산나트륨 용액 200kg을 제조하였다.180 kg of a sodium aluminate solution (Na 2 O.Al 2 O 3 ; Al 2 O 3 content: 12 wt%, Na 2 O content: 25 wt%), which is the first step reaction product, and 180 kg of a polysilicic acid solution (SiO 2 content: 2.6 wt%) were reacted at a temperature of 60 ° C for 2 hours to obtain an alkali flocculant sodium polyaluminate solution having an SiO 2 content of 0.26 wt% and an Al 2 O 3 content of 10.8 wt% 200 kg.

<실시예2>&Lt; Example 2 >

-제1 단계반응- First step reaction

수산화알루미늄[Al(OH)3, Al(OH)3로 99.0중량% 이상] 20kg과 가성소다(NaOH, 98.0중량%) 55kg, 용수(H2O) 210kg을 투입하여 110℃의 온도로 2시간 동안 반응시켜 Al2O3 함량이 4.2중량%인 알루민산나트륨 용액을 제조하였다.20 kg of aluminum hydroxide [Al (OH) 3 , Al (OH) 3 , 99.0 wt% or more], 55 kg of caustic soda (NaOH, 98.0 wt%) and 210 kg of water (H 2 O) To prepare a sodium aluminate solution having an Al 2 O 3 content of 4.2 wt%.

-제 2단계반응- Second stage reaction

규산소다(Na2O·SiO2·H2O, SiO2 함량이 28 ~ 30중량%) 30kg, 용수(H2O) 270kg, 황산(H2SO4, 30중량%) 17kg을 45℃의 온도로 2시간 동안 반응시켜 폴리규산 용액(SiO2 함량2.6중량%)을 제조하였다.Sodium silicate (Na 2 O · SiO 2 · H 2 O, SiO 2 content of 28 to 30% by weight) 30kg, water (H 2 O) 270kg, sulfuric acid (H 2 SO 4, 30% by weight) of a 17kg 45 ℃ It was reacted for 2 hours at a temperature to prepare a poly-silicate solution (SiO 2 content of 2.6% by weight).

-제3단계반응- The third stage reaction

상기 제 1단계 반응 생성물인 알루민산나트륨 용액(Na2O·Al2O3; Al2O3 함량 4.2중량%, Na2O 함량 18.5중량%) 180kg과 상기 제 2단계반응 생성물인 폴리규산 용액(SiO2 함량2.6중량%) 20kg을 60℃의 온도로 2시간 동안 반응시켜 SiO2 함량이 0.26중량%, Al2O3 함량이 3.8중량%인 알카리응집제 폴리알루민산규산나트륨 용액 200kg을 제조하였다.180 kg of a sodium aluminate solution (Na 2 O.Al 2 O 3 ; Al 2 O 3 content: 4.2 wt%, Na 2 O content: 18.5 wt%), which is the first step reaction product, and 180 kg of a polysilicic acid solution a (SiO 2 content of 2.6% by weight) 20kg at a temperature of 60 ℃ by reacting for 2 hours, 200 kg of an alkali flocculant polyaluminic acid sodium silicate solution having an SiO 2 content of 0.26% by weight and an Al 2 O 3 content of 3.8% by weight was prepared.

상기 <실시예1>과 <실시예2>에서 제조한 폴리규산의 FT-IR 분석결과를 [도 1]로 나타내었으며 [도 1]을 설명하면, 972, 1085, 1200, 1500, 2340, 그리고 3300㎝-1 부근에서 흡수 band가 형성되었다. 1500과 3300㎝-1 부근에서의 흡수 band는 2.6% (as SiO2) 규산소다 희석액의 경우와 같이 물분자의 존재를 나타내는 흡수 band를 가리킨다. 그리고 2340㎝-1 부근의 약하게 나타나는 흡수 band는 규소(Si) 원자와 수소 결합에 의한 Si-H 형태로 존재하는 구간이다. 972, 1085 그리고 1200㎝-1부근의 흡수 band는 규소(Si) 원자에 배위하는 물분자에 의한 흡수 band 영역을 나타낸 것으로 2.6% (as SiO2)로 희석한 규산소다 희석액에 황산을 첨가하여 제조한 폴리규산에 있어서 Si-O-Si로 약하게 가교결합에 되어 있는 영역에 황산에 의한 수소의 공격으로 형성된 흡수 band로 판단된다. (aquatic chemistry, p781-783)The FT-IR analysis results of the polysilicate prepared in Example 1 and Example 2 are shown in FIG. 1, and the results are shown in FIG. 1. In FIG. 1, 972, 1085, 1200, 1500, 2340 and An absorption band was formed at around 3300 cm -1 . The absorption band near 1500 and 3300 cm -1 indicates an absorption band indicating the presence of water molecules as in the case of 2.6% (as SiO 2 ) sodium silicate diluent. And the weakly absorptive band near 2340 cm -1 is a Si-H form due to hydrogen bonding with silicon (Si) atoms. The absorption band near 972, 1085 and 1200 cm -1 indicates the absorption band region due to the water molecules coordinated to the silicon (Si) atoms. It is produced by adding sulfuric acid to a sodium silicate dilution diluted with 2.6% (as SiO 2 ) It is judged to be an absorption band formed by attack of hydrogen by sulfuric acid in a region which is weakly crosslinked with Si-O-Si in one polysilicic acid. (aquatic chemistry, p781-783)

그리고 상기 <실시예1>에서 제조한 본 발명에 따른 알카리성 응집제인 폴리알루민산규산나트륨(Al2O3 함량 10.8중량%)의 FT-IR 분석결과를 [도 2]로 나타내었으며 [도 2]를 설명하면, 870, 980, 1630, 2350, 그리고 3200㎝-1 부근에서 흡수 band가 형성되었으며, 870, 980㎝-1 부근의 흡수 band는 알루민산나트륨에 첨가되는 폴리규산에 의해 함유되어 있는 알루미늄(Al)과 규소(Si) 원자에 배위하는 수산기(OH-)에 의해 결합되어 나타나는 것으로 판단되며, 1630, 2350㎝-1 부근의 흡수 band는 알루미늄(Al)에 의한 흡수band로 판단된다. 그리고 3200㎝-1 부근에서의 흡수 band는 물분자의 존재를 나타내는 흡수 band를 가리킨다. And were expressed as the <Example 1> of the alkaline coagulant according to the invention prepared in poly aluminate, sodium silicate (Al 2 O 3 content of 10.8 wt%) of the FT-IR analysis of the [2] [2] Turning to the, 870, 980, 1630, 2350, and the absorption band was formed in the vicinity 3200㎝ -1, 870, the absorption band in the vicinity 980㎝ -1 is aluminum contained by a poly silicic acid to be added to the sodium aluminate (OH - ) coordinating to the silicon (Si) atom, and the absorption band near 1630 and 2350 cm -1 is considered to be an absorption band due to aluminum (Al). And an absorption band near 3200 cm -1 indicates an absorption band indicating the presence of water molecules.

<시험예 1>&Lt; Test Example 1 >

상기 <실시예 1 및 실시예 2>에서 제조한 폴리알루민산규산나트륨의 안정성 확보를 위하여 영하 20℃, 실온 20℃ 및 고온 50℃에서 각각 4개월 동안의 장기간 저장에 따른 동결발생, 침전물 발생에 대한 상태 및 동결여부 등을 측정하고, 그 시험결과(제품의 안정성)를 아래 [표 1]에 나타내었다.In order to secure the stability of the sodium polyaluminate silicate prepared in the above <Examples 1 and 2>, freezing and precipitation occurred during long-term storage at -20 ° C, room temperature 20 ° C and high temperature 50 ° C for 4 months, And the freezing condition were measured. The results of the test (stability of the product) are shown in Table 1 below.

항목Item 실시예 1Example 1 실시예 2Example 2 온도Temperature 영하 20℃Minus 20 ° C 20℃20 ℃ 50℃50 영하 20℃Minus 20 ° C 20℃20 ℃ 50℃50 ℃ 동결발생Freezing 없음none -- -- 없음none -- -- 침전물발생Sediment generation 없음none 없음none 없음none 없음none 없음none 없음none 상태condition 안정stability 안정stability 안정stability 안정stability 안정stability 안정stability 동결여부Whether to freeze 없음none -- -- 없음none -- --

상기 [표 1]에 나타난 바와 같이 본 발명에 따른 알칼리성 응집제인 폴리알루민산규산나트륨은 장기간의 저장기간 동안 고체상의 침전물이 석출되지 않는 등의 우수한 안정성을 나타내는 것을 확인할 수 있었다.As shown in Table 1, it was confirmed that the sodium polyaluminate silicate as an alkaline coagulant according to the present invention exhibits excellent stability such as not precipitating a solid phase precipitate during a long-term storage period.

<시험예 2>&Lt; Test Example 2 &

본 발명에 따른 <실시예 1>에서 제조된 알카리성 응집제인 폴리알루민산규산나트륨의 불소제거효율에 대한 비교시험을 위하여 수처리 현장에서 널리 사용하고 있는 폴리염화알루미늄(PAC)을 이용하여 불소제거효율에 대한 비교시험을 하고 그 결과를 아래 [표 2]로 나타내었다. 단, 시험에 사용한 원수는 전자부품공장에서 발생되는 폐수를 이용하였으며, 폐수에는 불소농도가 48.5mg/L, pH 7.5, 탁도 300NTU가 함유됨.For the comparative test of the fluorine removal efficiency of the sodium polyaluminate sodium silicate coagulant prepared in Example 1 according to the present invention, the fluorine removal efficiency was measured by using poly (aluminum chloride) (PAC) widely used in the water treatment field And the results are shown in Table 2 below. However, the raw water used in the test was wastewater generated from the electronic component factory, and the wastewater contained 48.5 mg / L of fluorine concentration, pH 7.5 and turbidity of 300 NTU.


구분

division

투입량 (ppm)

Input (ppm)
불소 농도 (mg/L)및 제거효율(%)Fluorine concentration (mg / L) and removal efficiency (%) 탁도(NTU) 및 제거효율(%)Turbidity (NTU) and Removal Efficiency (%)
mg/Lmg / L %% NTUNTU %% 본 발명 실시예 1 Invention Example 1 400400 7.57.5 84.584.5 4.54.5 98.598.5 폴리염화알루미늄(PAC)Aluminum polychloride (PAC) 400400 13.513.5 72.272.2 12.812.8 95.795.7

<시험예 3>&Lt; Test Example 3 >

본 발명에 따른 <실시예 2>에서 제조된 알카리성 응집제인 폴리알루민산규산나트륨의 불소제거효율에 대한 비교시험을 위하여 수처리 현장에서 널리 사용하고 있는 폴리염화알루미늄(PAC)을 이용하여 불소제거효율에 대한 비교시험을 하고 그 결과를 아래 [표 3]으로 나타내었다. 단, 사용한 원수는 상시 <시험예2>의 원수와 같다.For the comparative test of the fluorine removal efficiency of the sodium polyaluminate silicate, which is an alkaline coagulant prepared in Example 2 according to the present invention, the fluorine removal efficiency was measured by using poly (aluminum chloride) (PAC) widely used in the water treatment field And the results are shown in Table 3 below. However, the used raw water is always equal to the raw water of <Test Example 2>.


구분

division

투입량 (ppm)

Input (ppm)
불소 농도 (mg/L)및 제거효율(%)Fluorine concentration (mg / L) and removal efficiency (%) 탁도(NTU) 및 제거효율(%)Turbidity (NTU) and Removal Efficiency (%)
mg/Lmg / L %% NTUNTU %% 본 발명 Invention 700700 11.511.5 76.376.3 9.89.8 96.796.7 폴리염화알루미늄(PAC)Aluminum polychloride (PAC) 700700 14.514.5 70.170.1 13.213.2 95.695.6

상기 [표 2] 및 [표 3]에 나타난 바와 같이 본 발명에 따른 알카리성 응집제인 폴리알루민산규산나트륨이 기존의 폴리염화알루미늄(PAC)에 비하여 불소제거효율이 향상되는 것을 확인할 수 있었다.As shown in [Table 2] and [Table 3], it was confirmed that the sodium silicate polyaluminate, which is an alkaline coagulant according to the present invention, has improved fluorine removal efficiency as compared with the conventional polyaluminum chloride (PAC).

<시험예 4><Test Example 4>

본 발명에 따른 <실시예1 및 2>에서 제조된 알카리성 응집제인 폴리알루민산규산나트륨으로 중화실험을 시험하였으며, 수처리 현장에서 중화제로 많이 사용하고 있는 가성소다(NaOH, 50%)를 이용하여 중화능력을 비교시험하고 그 결과를 아래 [표 4]로 나타내었다.Neutralization experiments were carried out with polyaluminic acid sodium silicate, which is an alkaline coagulant prepared in Examples 1 and 2 according to the present invention, and neutralization tests were carried out using caustic soda (NaOH, 50%), The results are shown in Table 4 below.

중화능력 시험에 사용한 원수는 식품공장에서 발생되는 폐수를 이용하였으며, 폐수에는 COD(화학적산소요구량)가 520mg/L, SS 1,300mg/L, pH 4.93을 함유하고 있었다.The raw water used in the neutralization capacity test was wastewater generated from a food factory, and the wastewater contained 520 mg / L of COD (Chemical Oxygen Demand), 1,300 mg / L of SS and pH of 4.93.


구분

division
응집제
투입량
(ppm)
Coagulant
input
(ppm)
응집제
투입후
pH
Coagulant
After input
pH
중화제
투입량
(ppm)
corrector
input
(ppm)
중화제
투입후
pH
corrector
After input
pH
COD
(mg/L)
COD
(mg / L)
SS
(mg/L)
SS
(mg / L)
슬러지양
(ml/L)
Sludge amount
(ml / L)
본발명
(실시예1)
Invention
(Example 1)

200

200

4.63

4.63

450

450

6.51

6.51

68.3

68.3

27.6

27.6

80

80
본발명
(실시예2)
Invention
(Example 2)

200

200

4.63

4.63

560

560

6.54

6.54

72.7

72.7

46

46

90

90
비교예 1
PAC
Comparative Example 1
PAC

200

200

4.62

4.62

520

520

6.56

6.56

107.6

107.6

63

63

100

100
비교예 2
PAC
Comparative Example 2
PAC

400

400

4.49

4.49

570

570

6.55

6.55

98.3

98.3

60

60

100

100
비교예 3
PAC
Comparative Example 3
PAC

600

600

4,33

4,33

610

610

6.60

6.60

82.9

82.9

59

59

90

90
비교예 4
PAC
Comparative Example 4
PAC

1,000

1,000

3.78

3.78

720

720

6.45

6.45

78.1

78.1

55

55

80

80

상기 [표 4]에 나타난 바와 같이 본 발명에 따른 알카리성 응집제인 폴리알루민산규산나트륨가 기존의 폴리염화알루미늄(PAC)에 비하여 응집제의 투입량과 중화제의 투입량이 감소되는 것을 확인할 수 있으므로 본 발명에 따른 알카리성 응집제인 폴리알루민산규산나트륨 중화능력이 우수한 것을 알 수 있으며, 또 슬러지량도 감소하는 것을 확인할 수 있었다.As shown in the above Table 4, it can be confirmed that the amount of the coagulant and the amount of the neutralizing agent are reduced compared to the conventional polyaluminum chloride (PAC), which is the alkaline flocculant of the present invention, sodium aluminosilicate polyaluminate, It was found that the neutralization ability of sodium polyaluminate silicate as a flocculant was excellent, and that the amount of sludge also decreased.

Claims (6)

a). 물 100중량부에 수산화알루미늄(Al(OH)3) 10 ~ 45중량부와 가성소다(NaOH) 20 ~ 55중량부를 용해시킨 후, 105 ~ 150℃ 온도에서 1 ~ 3시간 동안 반응시켜 Al2O3 함량 3.9% ~ 17.7중량%의 알루민산나트륨 용액을 제조하는 제 1단계반응과,
b). SiO2 함량 28 ~ 30중량%의 규산소다와 20 ~ 50중량% 농도의 무기산을 물에 용해시킨 후, 반응시켜 SiO2 함량 1.4 ~ 4.2중량%의 폴리규산 용액을 제조하는 제 2단계반응 및
c). 상기 제 1단계반응에서 제조한 Al2O3 함량 3.9 ~ 17.7중량%의 알루민산나트륨 용액 70 ~ 90중량%와 상기 제 2단계반응에서 제조한 SiO2 함량 1.4 ~ 4.2중량%의 폴리규산 용액 10 ~ 30중량%를 30 ~ 60℃의 온도에서 1 ~ 3시간 동안 반응시켜 Al2O3 함량 3 ~ 15중량%, SiO2 함량 0.1 ~ 1.3중량%의 아래 [일반식 1]의 단위체로 표현되는 폴리알루민산규산나트륨의 알칼리 응집제 용액을 제조하는 제3단계반응을 포함하는 것을 특징으로 하는 알카리성 응집제의 제조방법.
[일반식 1]
(NaAlO2·xH2O)·ySiO2
상기 식에서 3≤x≤7, 0.003≤y≤0.04 이다
a). 10 to 45 parts by weight of aluminum hydroxide (Al (OH) 3 ) and 20 to 55 parts by weight of caustic soda (NaOH) are dissolved in 100 parts by weight of water and reacted at 105 to 150 ° C for 1 to 3 hours to obtain Al 2 O 3 content of 3.9% to 17.7% by weight of sodium aluminate solution,
b). A second stage reaction in which SiO 2 content is 28 to 30% by weight of sodium silicate and 20 to 50% by weight of inorganic acid is dissolved in water and then reacted to prepare a polysilicic acid solution having a SiO 2 content of 1.4 to 4.2%
c). The polysilicic acid solution 10 of 70 to 90% by weight of the sodium aluminate solution prepared in the first step reaction and the SiO 2 content of 1.4 to 4.2% by weight of the Al 2 O 3 solution prepared in the second step reaction To 30 wt% is reacted at a temperature of 30 to 60 ° C for 1 to 3 hours to obtain a polymer having an Al 2 O 3 content of 3 to 15 wt% and an SiO 2 content of 0.1 to 1.3 wt% And a third stage reaction for producing an alkali flocculant solution of sodium polyaluminate silicate.
[Formula 1]
(NaAlO 2 · xH 2 O) · ySiO 2
3? X? 7, and 0.003? Y? 0.04 in the above formula
삭제delete 삭제delete 청구항 1에 있어서, 무기산은 황산, 염산 및 질산 중 어느 하나의 성분이 선택되는 것을 특징으로 하는 알카리성 응집제의 제조방법.The method according to claim 1, wherein the inorganic acid is selected from the group consisting of sulfuric acid, hydrochloric acid and nitric acid. 청구항 1 기재의 제조방법에 따라 제조된 Al2O3 함량 3 ~ 15중량%, SiO2 함량 0.1 ~ 1.3중량%의 아래 [일반식 1]의 단위체로 표현되는 폴리알루민산규산나트륨인 알카리성 응집제 용액을 폐수에 투입하여 응집 및 중화하는 것을 특징으로 하는 폐수 처리방법.
[일반식 1]
(NaAlO2·xH2O)·ySiO2
상기 식에서 3≤x≤7, 0.003≤y≤0.04 이다
An alkaline flocculant solution, which is sodium polyaluminate silicate expressed by the unit of the general formula (1) below, having an Al 2 O 3 content of 3 to 15% by weight and an SiO 2 content of 0.1 to 1.3% by weight prepared according to the production method of claim 1 Is added to the wastewater to coagulate and neutralize the wastewater.
[Formula 1]
(NaAlO 2 · xH 2 O) · ySiO 2
3? X? 7, and 0.003? Y? 0.04 in the above formula
청구항 5에 있어서, 폐수 중에 불소이온농도를 감소시키는 것을 특징으로 하는 폐수 처리방법.
The method according to claim 5, wherein the fluorine ion concentration in the wastewater is reduced.
KR1020170144518A 2017-11-01 2017-11-01 Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same KR101887412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170144518A KR101887412B1 (en) 2017-11-01 2017-11-01 Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170144518A KR101887412B1 (en) 2017-11-01 2017-11-01 Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same

Publications (1)

Publication Number Publication Date
KR101887412B1 true KR101887412B1 (en) 2018-08-10

Family

ID=63229573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170144518A KR101887412B1 (en) 2017-11-01 2017-11-01 Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same

Country Status (1)

Country Link
KR (1) KR101887412B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217912A (en) * 2019-06-28 2019-09-10 内蒙古久科康瑞环保科技有限公司 The purification method of silicon-containing wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018449A (en) * 2000-06-02 2002-01-22 Jae-Choon So Agent for removing dissolved fluoride ion and method for treating fluorine-containing wastewater using the agent
KR20020039274A (en) * 2002-02-18 2002-05-25 주식회사 천호기업 Metod of manufacturing for Aluminium silicate soltes
KR20050011293A (en) * 2003-07-22 2005-01-29 삼구화학공업 주식회사 Manufacturing method of waste water cohesive agents and manufactured goods thereof
KR100589989B1 (en) * 2004-03-05 2006-06-14 케이지케미칼 주식회사 Manufacturing Method for Poly Aluminium Chloride Silicate
KR20130055321A (en) * 2011-11-18 2013-05-28 (주)서정화학 Process for preparing a high alkalinity flocculant for watertreatment mixed active silicate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018449A (en) * 2000-06-02 2002-01-22 Jae-Choon So Agent for removing dissolved fluoride ion and method for treating fluorine-containing wastewater using the agent
KR20020039274A (en) * 2002-02-18 2002-05-25 주식회사 천호기업 Metod of manufacturing for Aluminium silicate soltes
KR20050011293A (en) * 2003-07-22 2005-01-29 삼구화학공업 주식회사 Manufacturing method of waste water cohesive agents and manufactured goods thereof
KR100589989B1 (en) * 2004-03-05 2006-06-14 케이지케미칼 주식회사 Manufacturing Method for Poly Aluminium Chloride Silicate
KR20130055321A (en) * 2011-11-18 2013-05-28 (주)서정화학 Process for preparing a high alkalinity flocculant for watertreatment mixed active silicate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217912A (en) * 2019-06-28 2019-09-10 内蒙古久科康瑞环保科技有限公司 The purification method of silicon-containing wastewater

Similar Documents

Publication Publication Date Title
KR101656825B1 (en) Composition for removing fluorine component from waste water and method of removing fluorine component from waste water
KR20150091929A (en) Improved ability to remove fluoride method of producing a coagulant for water treatment and its preparation method of manufacturing a coagulant for water treatment
KR101887412B1 (en) Method of preparation for Alkaline coagulant and treating method of water/wastewater using the same
CN102689906A (en) Method for preparing polysilicate aluminum ferric chloride by using aluminum foil acid and ferrous acid
KR20130055321A (en) Process for preparing a high alkalinity flocculant for watertreatment mixed active silicate
KR20120043832A (en) Inorganic coagulants for water treatment method
KR101128864B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
KR101297435B1 (en) The preparing method of aluminium sulfate from waste water
KR101010733B1 (en) Method for treating wastewater including fluorine
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
KR101119623B1 (en) Inorganic cohesive agents for water-treatment and Preparing method thereof
CN105776475A (en) Compound polysilicate aluminum water purifying agent
CN105600977A (en) Treating method for waste water contaning fluoroboric acid produced in etch process
KR20150103940A (en) A inorganic coagulant of fluoride ion in water treatment and the preparation method thereof
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
KR20150103939A (en) A inorganic coagulant of fluoride ion in water treatment and the preparation method thereof
KR102154483B1 (en) Preparation method for flocculant composition for treating wastewater with improved water treatment efficiency and stability
CN109095573B (en) Preparation method of inorganic coagulant for defluorination water treatment
KR102261027B1 (en) Composition for neutralizing acidic waste water or harmful gas
KR102567638B1 (en) Water treatment method to reduce residual aluminum
KR20160043322A (en) Wastewater Treatment System for Removing Fluorine
KR102254568B1 (en) Preparation method for flocculant composition for treating wastewater with improved water treatment efficiency and stability
JP4631420B2 (en) Fluorine-containing water treatment method
JP4232019B2 (en) Treatment method for fluorine-containing wastewater
KR102325084B1 (en) Composition for neutralizing acidic waste water or harmful gas having low freezing point

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant