KR101883951B1 - Bifacial CIGS type solar cells and the manufacturing method thereof - Google Patents

Bifacial CIGS type solar cells and the manufacturing method thereof Download PDF

Info

Publication number
KR101883951B1
KR101883951B1 KR1020170010421A KR20170010421A KR101883951B1 KR 101883951 B1 KR101883951 B1 KR 101883951B1 KR 1020170010421 A KR1020170010421 A KR 1020170010421A KR 20170010421 A KR20170010421 A KR 20170010421A KR 101883951 B1 KR101883951 B1 KR 101883951B1
Authority
KR
South Korea
Prior art keywords
cigs
graphene
solar cell
patterned
glass substrate
Prior art date
Application number
KR1020170010421A
Other languages
Korean (ko)
Inventor
김우경
박도현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020170010421A priority Critical patent/KR101883951B1/en
Application granted granted Critical
Publication of KR101883951B1 publication Critical patent/KR101883951B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a technology related to a bifacial CIGS-based solar cell which utilizes a graphene layer and a Mo layer patterned on the graphene layer as a back contact electrode. Therefore, the bifacial CIGS-based solar cell receives external solar light on both faces of a CIGS-based thin film.

Description

양면수광형 CIGS계 태양전지 셀 및 상기 양면수광형 CIGS계 태양전지 셀의 제조 방법{Bifacial CIGS type solar cells and the manufacturing method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a double-side light-receiving CIGS solar cell and a method of manufacturing the double-side light-receiving CIGS solar cell,

본 발명은 CIGS계 태양전지에 관한 기술로서, 특히, 전면전극뿐만 아니라 후면전극으로도 수광이 가능하여 태양전지 효율을 높일 수 있는 양면수광형(bifacial) CIGS계 태양전지에 관한 기술이다. 특히, 본 발명은 후면전극의 일부를 투광성 재료로 사용함으로써 양면수광형 CIGS계 태양전지를 제조하는 기술에 관한 것이다.The present invention relates to a CIGS solar cell technology, and more particularly, to a bifacial CIGS solar cell capable of increasing solar cell efficiency by being able to receive not only a front electrode but also a rear electrode. In particular, the present invention relates to a technique for manufacturing a double-side light receiving type CIGS-based solar cell by using a part of the rear electrode as a translucent material.

주기율표의 IB족(Cu, Ag, Au), ⅢA족(B, Al, Ga, In, Ti) 및 VIA족(O, S, Se, Te, Po) 원소를 일부 포함하는 IB-ⅢA-VIA족 화합물 반도체는 박막 태양전지 구조체를 위한 우수한 광흡수 p형 반도체이다. 특히, 상기 p형 반도체는 In과 Ga의 동시 사용 여부, Se과 S의 동시 사용 여부에 따라 CIS, CIGS, CIGSS[Cu(In1-yGay)(Se1-zSz)2, 여기서, 0≤y, z≤1] 등으로 구분하며, 본 발명에서는 설명의 편의상 상기 다양한 p형 반도체로 이루어진 박막(필름)을 통칭하여 "CIGS계 박막"이라 호칭하며, 상기 CIGS계 박막을 p형 반도체로 적용한 태양전지를 "CIGS계 태양전지"라고 호칭한다. 이하에서는 설명의 편의상 CIS, CIGS, CIGSS 등에서 대표적인 p형 반도체인 CIGS를 예로 하여 설명하기로 한다.An IB-IIIA-VIA group including a part of the IB group (Cu, Ag, Au), IIIA group (B, Al, Ga, In, Ti) and VIA group (O, S, Se, Te, Po) Compound semiconductors are excellent light absorption p-type semiconductors for thin film solar cell structures. In particular, the p-type semiconductor may be formed of CIS, CIGS, CIGSS [Cu (In 1-y Ga y ) (Se 1-z S z ) 2 , where Se and S are used simultaneously, , 0? Y, z? 1]. In the present invention, the thin films (films) made of the various p-type semiconductors are collectively referred to as "CIGS thin films" A solar cell applied as a semiconductor is called a "CIGS solar cell". Hereinafter, for convenience of explanation, CIGS, CIGS, CIGSS, etc. will be described as a typical p-type semiconductor CIGS.

Cu(InGa)Se2(CIGS)계 화합물 반도체를 이용한 박막태양전지는 높은 광흡수계수, 최적의 에너지 밴드갭(1.2~1.4eV) 및 여러 뛰어난 물성을 바탕으로, 최근 최고 셀 효율이 22.7%(ZSW, 2016)를 기록하며 상업화에 박차를 가하고 있다. CIGS계 태양전지는 일반적으로 유리/Mo/CIGS/CdS(buffer)/i-ZnO/ZnO:Al의 적층구조로서, 금속 몰리브덴(Mo)이 후면전극(back contact electrode)으로 널리 사용되고 있다.Thin film solar cells using Cu (InGa) Se 2 (CIGS) compound semiconductors have recently achieved a maximum cell efficiency of 22.7% (based on their high light absorption coefficient, optimum energy band gap (1.2 ~ 1.4eV) ZSW, 2016) and is accelerating commercialization. CIGS solar cells generally have a stacked structure of glass / Mo / CIGS / CdS (buffer) / i-ZnO / ZnO: Al and metal molybdenum (Mo) is widely used as a back contact electrode.

현재 실리콘 태양전지를 비롯한 다양한 태양전지/모듈 분야에서 태양빛을 전지의 양면(윗면과 아랫면)에서 동시에 흡수할 수 있는 "양면수광형(bifacial) 태양전지"에 대한 연구개발이 뜨거운 관심을 받고 있는데, CIGS계 태양전지/모듈분야에서도 양면수광을 실현하기 위해서는 불투명한 Mo 후면전극을 투명한 소재로 대체하여야 한다. Currently, research and development on "bifacial solar cells" that can simultaneously absorb sunlight from both sides (top and bottom) of a cell in a variety of solar cell / module fields including silicon solar cell is receiving a hot interest , And CIGS-based solar cells / modules, transparent opaque Mo back electrodes should be replaced with transparent materials.

관련 특허로서 특허등록 제10-1208272호는 기판 양면에 독립적으로 광발전층이 형성되게 함으로써 구현되는 양면 구조를 가지는 CIGS계 태양전지에 관한 기술을 공개하고 있으나, 상기 특허는 광발전층, 즉, CIGS계 박막이 2개인 구조로서, 본 발명이 추구하는 하나의 CIGS계 박막의 전면전극과 후면전극의 양면으로 수광되는 완전한 양면수광형 구조의 태양전지 기술은 아니다.Patent No. 10-1208272 discloses a technology related to a CIGS solar cell having a double-sided structure realized by independently forming a photovoltaic layer on both sides of a substrate. However, the patent discloses a photovoltaic layer, that is, The present invention is not a solar cell technology of a complete double-sided light receiving type structure which is received on both sides of a front electrode and a rear electrode of one CIGS thin film pursued by the present invention.

특허등록 제10-1208272호Patent Registration No. 10-1208272

본 발명의 목적은 CIGS계 박막의 양면으로 외부의 태양광이 수광되도록 하는 양면수광형 CIGS계 태양전지를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a double-side light receiving CIGS-based solar cell that allows external sunlight to be received on both sides of a CIGS thin film.

특히, 본 발명의 목적은 CIGS계 태양전지의 불투명한 금속 Mo 후면전극 일부를 투명하면서도 전도성이 좋은 그래핀으로 대체하여, 빛이 윗면(front side)과 아랫면(back side)에서 동시에 들어올 수 있는 양면(bifacial) 수광형 CIGS계 태양전지를 제공하는 것이다.In particular, it is an object of the present invention to provide a method of fabricating a CIGS solar cell by replacing a part of the opaque metal Mo back electrode of a CIGS type solar cell with a transparent and highly conductive graphene so that light can be incident on the front side and the back side simultaneously and a bifacial light-receiving CIGS-based solar cell.

본 발명은 유리기판, 후면전극, CIGS계 박막 및 전면전극을 포함하는 CIGS계 태양전지 셀에 있어서, 상기 후면전극은 그래핀층 위에 Mo이 패턴화된 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀을 제공한다.The present invention relates to a CIGS solar cell including a glass substrate, a rear electrode, a CIGS thin film, and a front electrode, wherein the rear electrode has Mo patterned on a graphene layer, .

특히, 상기 CIGS계 박막은 Cu(In1-yGay)(Se1-zSz)2(여기서, 0≤y, z≤1)로 표현되는 어느 하나일 수 있다.In particular, the CIGS-based thin film may be any one expressed by Cu (In 1-y Ga y ) (Se 1-z S z ) 2 (where 0 ≦ y, z ≦ 1).

특히, 셀의 분할 시의 기계적인 스크라이빙이 행해지는 부분에 Mo이 위치하도록 상기 Mo을 패턴화할 수 있다.Particularly, the Mo can be patterned such that Mo is located at a portion where mechanical scribing is performed at the time of cell division.

또한, 본 발명은 상기의 양면수광형 CIGS계 태양전지 셀의 제조방법에 있어서, 후면전극은, 유리기판에 그래핀층을 형성하는 단계; 및 상기 그래핀층 위에 Mo층을 일정한 패턴으로 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀의 제조방법을 제공한다.In addition, the present invention provides a method of manufacturing a double-side light-receiving CIGS solar cell, the method comprising the steps of: forming a graphene layer on a glass substrate; And forming a Mo layer on the graphene layer in a predetermined pattern. The present invention also provides a method of manufacturing a double-side light receiving CIGS solar cell.

특히, 상기 유리기판에 그래핀층을 형성하는 단계는, Cu 호일 위에 형성된 그래핀 위에 PMMA 필름을 코팅하는 단계; 상기 Cu 호일을 제거하는 단계; 상기 Cu 호일이 제거된 그래핀/PMMA를 유리기판 위에 적층하는 단계; 상기 유리기판/그래핀/PMMA를 고정하는 단계; 및 용매를 사용하여 PMMA를 제거하는 단계를 포함하여 이루어질 수 있다. In particular, the step of forming a graphene layer on the glass substrate includes: coating a PMMA film on the graphene formed on the Cu foil; Removing the Cu foil; Stacking the graphene / PMMA on which the Cu foil is removed on a glass substrate; Fixing the glass substrate / graphene / PMMA; And removing the PMMA using a solvent.

특히, 상기 PMMA를 제거하기 위한 용매는 아세톤일 수 있다.In particular, the solvent for removing the PMMA may be acetone.

특히, 셀의 분할을 위한 기계적인 스크라이빙이 행해지는 위치에 Mo이 형성되도록 Mo을 패턴화할 수 있다.In particular, Mo can be patterned such that Mo is formed at a position where mechanical scribing is performed for cell division.

본 발명에서는 Mo의 전도성과 그래핀층의 투광성을 함께 이용하여 후면전극으로 사용함으로써, 양면수광형 CIGS계 태양전지의 제조가 가능하다. 특히, CIGS계 박막을 2개층 사용하는 종래의 양면수광형 CIGS계 태양전지(예를 들어, 특허등록 제10-1208272호)와는 달리 1개의 CIGS계 태양전지를 사용하여 양면수광형으로 제조할 수 있다.In the present invention, it is possible to manufacture a double-side light receiving type CIGS-based solar cell by using both the conductivity of Mo and the light transmittance of the graphene layer as a back electrode. In particular, unlike conventional double-side light receiving type CIGS solar cells (for example, patent registration No. 10-1208272) using two layers of CIGS thin films, a single CIGS solar cell can be used to manufacture a double- have.

특히, 본 발명의 양면수광형 CIGS계 태양전지의 경우 Mo이 패턴화되지 않은 부분으로 투과된 빛이 난반사되어 Mo이 패턴화된 부분의 CIGS계 박막으로 흡수되므로 Mo이 패턴화된 부분에서도 광전변환효율이 종래 기술에 비해 높아질 수 있다.In particular, in the case of the double-side light receiving type CIGS-based solar cell of the present invention, since the Mo transmitted through the non-patterned portion is irregularly reflected and Mo is absorbed into the CIGS thin film at the patterned portion, The efficiency can be higher than that of the prior art.

또한, 본 발명의 양면수광형 CIGS계 태양전지의 경우, 셀의 분할 시 사용되는 기계적인 스크라이빙 부분에 Mo이 패턴화되도록 설계함으로써, 기계적인 스크라이빙 시 그래핀층의 손상을 줄일 수 있다.In addition, in the case of the double-side light receiving type CIGS solar cell of the present invention, the damage to the graphene layer during mechanical scribing can be reduced by designing the Mo to be patterned in the mechanical scribing portion used for cell division .

도 1 및 2는 그래핀 적층수(1, 2, 4개층)에 따른 면저항(Sheet resistance) 및 투명도(transmittance) 실험 결과이다.
도 3은 종래의 Mo 후면전극을 사용하는 CIGS계 태양전지에서의 Mo 후면전극으로 빛이 투과되지 않고 반사되는 것을 도식화한 것이며, 도 4는 그래핀을 후면전극으로 사용하는 CIGS계 태양전지에서의 빛이 CIGS계 박막으로 투과되는 것을 도식화한 것이며, 도 5는 본 발명에 따라 제조되는 패턴화된 Mo과 그래핀을 후면전극으로 동시에 갖는 CIGS계 태양전지에서의 빛의 투과 및 반사를 도식화한 것이다.
도 6 및 7은 각각 그래핀층이 형성된 유리기판 위에 SiO2 마스크로 마스킹된 샘플의 사진 및 단면을 도식화한 도면이다.
도 8 내지 10은 다양한 Mo 패턴을 보여주는 본 발명의 양면투과형 CIGS계 태양전지의 실시예들이다.
도 11은 전면측정용 솔라 시뮬레이터의 샘플 스테이지의 실제 사진 및 도식화한 도면이며, 도 12 및 13은 각각 후면측정용 솔라 시뮬레이터의 측면 및 정면 사진이다.
FIGS. 1 and 2 show the results of sheet resistance and transmittance according to the number of graphene layers (1, 2, and 4 layers).
FIG. 3 is a schematic diagram illustrating that a Mo back electrode of a CIGS solar cell using a conventional Mo back electrode reflects light without being transmitted therethrough, and FIG. 4 is a schematic diagram of a CIGS solar cell using graphene as a back electrode FIG. 5 is a graphical representation of transmission and reflection of light in a CIGS-based solar cell having patterned Mo and graphene simultaneously formed as a back electrode according to the present invention .
6 and 7 are a photograph and a cross-sectional view of a sample masked with a SiO 2 mask on a glass substrate on which a graphene layer is formed, respectively.
FIGS. 8 to 10 show embodiments of the double-side transmission type CIGS-based solar cell of the present invention showing various Mo patterns.
FIG. 11 is an actual photograph and a schematic view of a sample stage of a frontal measurement solar simulator, and FIGS. 12 and 13 are side and frontal views, respectively, of a solar simulator for backside measurement.

본 발명에서는 CIGS계 태양전지의 불투명한 금속 Mo 후면전극 일부를 투명하면서도 전도성이 좋은 그래핀으로 대체하여, 빛이 윗면(front side)과 아랫면(back side)에서 모두 들어올 수 있는 양면(bifacial)수광형 CIGS계 태양전지를 제공한다. In the present invention, a part of the opaque metal Mo back electrode of a CIGS solar cell is replaced with a transparent and conductive graphene, and a bifacial light (light) that can come in from both the front side and the back side Type CIGS solar cell.

전술한 바와 같이 "CIGS계 태양전지" 중 CIGS를 예로 하여 설명하기로 하나, 본 발명은 CIS, CIGSS 등도 모두 p형 반도체층으로서 사용 가능하다.As described above, CIGS in the "CIGS solar cell" will be described as an example. However, the present invention can be used as a p-type semiconductor layer for both CIS and CIGSS.

그래핀은 두께가 약 0.3nm로 매우 얇으면서도 물리적, 화학적인 안정성이 높다. 기계적인 강도는 강철보다 200배 이상 강하고, 구리보다 100배 많은 전류를 흘려보내며 실리콘보다 전자를 100배 이상 빠르게 이동시킬 수 있다. 또, 신축성이 좋아서 늘리거나 접어도 그 성질을 잃지 않고, 매우 높은 투과성까지 가지고 있어 마법의 소재로 불린다. 태양전지에서 특히 주목되는 그래핀의 특성은 전도성, 신축성 및 투과성이다. 전도성은 홀을 포집하고, 이동시켜야 하는 후면전극에서 최우선으로 고려해야 할 특성 중의 하나로 그래핀의 높은 전도성은 태양전지의 전극으로서 그래핀을 사용 가능하게 한다. 또한, 그래핀의 높은 투과성은 양면(Bifacial) 태양전지의 제조를 가능하게 한다. 태양전지에서 발생하는 전류는 흡수되는 태양광의 양에 비례하기 때문에 광흡수를 극대화하는 연구는 태양전지의 효율을 높이는 가장 확실한 방법 중 하나이다. Graphene is very thin, about 0.3 nm thick, and has high physical and chemical stability. Mechanical strength is 200 times stronger than steel, 100 times more current than copper and 100 times more electrons than silicon. In addition, because it is stretchable, it does not lose its property even if stretched or folded, and it has very high permeability and is called magical material. The characteristics of graphene, which are particularly noteworthy in solar cells, are conductive, elastic and permeable. Conductivity is one of the top priorities to be taken into account in the back electrode, which needs to collect and move the holes. The high conductivity of the graphene makes it possible to use graphene as the electrode of the solar cell. In addition, the high permeability of graphene makes it possible to produce bifacial solar cells. Since the current generated from the solar cell is proportional to the amount of sunlight absorbed, research to maximize the absorption of light is one of the most reliable methods for increasing the efficiency of the solar cell.

도 1 및 2는 그래핀 적층수(1, 2, 4개층)에 따른 면저항(Sheet resistance) 및 투명도(transmittance) 실험 결과이다(유희산, 영남대학교 석사학위논문, 2016년 2월). 도 1 및 2에서 보듯이, 유리/그래핀의 구조에서 그래핀의 적층수가 증가할수록 면저항은 감소하지만, 투명도 또한 감소하게 된다. 즉, 위와 같은 이유로 인하여 그래핀으로 Mo 후면전극을 완전히 대체할 수 없다는 점에 착안하여 본 발명은 Mo와 그래핀을 동시에 후면전극으로 사용하는 기술을 개발하게 되었다. 그래핀의 전도성이 Mo에 비해 충분히 높지 않으며, 본 연구실의 실험결과 Mo와 동등한 수준의 면저항(sheet resistance: ~ 0.792 Ω/□)을 확보하기 위해서는 약 14개층의 그래핀을 적층하여야 하는데, 기술적으로 쉽지 않을 뿐만 아니라, 투명성도 많이 저하된다. 특히, 소프트한 그래핀 후면전극의 경우 기계적 스크라이빙(mechanical scribing)에 의해 각 셀(cell)들을 분리할 때에, 그래핀층이 손상되기 쉬운데, 본 발명과 같이 Mo 패턴을 이용하면 선택적으로 셀 분리 경계부분이 Mo 층위에 오도록 의도적으로 설계함으로써, Mo 부분에서 기계적 스크라이빙을 하도록 설계할 수 있다. Figs. 1 and 2 show the results of sheet resistance and transmittance according to the number of graphene stacks (1, 2, and 4 layers) (Yu Hsin, Master's Thesis, Youngnam University, February 2016). As shown in FIGS. 1 and 2, as the number of graphene layers increases in the glass / graphene structure, the sheet resistance decreases, but transparency also decreases. In other words, due to the fact that the Mo back electrode can not be completely replaced with graphene due to the above reason, the present invention has developed a technique of using Mo and graphene simultaneously as a back electrode. Conductivity of graphene is not high enough compared with that of Mo. As a result of our laboratory experiments, it is necessary to laminate about 14 layers of graphene in order to obtain the same sheet resistance (~ 0.792 Ω / □) as Mo, Not only is not easy, but transparency is greatly reduced. In particular, in the case of a soft graphene back electrode, when the cells are separated by mechanical scribing, the graphene layer is liable to be damaged. By using the Mo pattern as in the present invention, By intentionally designing the boundary portion to be on the Mo layer, it can be designed to perform mechanical scribing in the Mo portion.

도 3은 종래 Mo 후면전극을 사용하는 CIGS계 태양전지에서의 Mo 후면전극으로 빛이 투과되지 않고 반사되는 것을 도식화한 것이며, 도 4는 그래핀을 후면전극으로 사용하는 CIGS계 태양전지에서의 빛이 CIGS계 박막으로 투과되는 것을 도식화한 것이다. 한편, 도 5는 본 발명에 따라 제조되는 Mo과 그래핀 후면전극을 갖는 CIGS계 태양전지를 도식화한 것이다.FIG. 3 is a schematic diagram illustrating that a Mo back electrode of a CIGS solar cell using a Mo rear electrode according to the related art is reflected without transmitting light, and FIG. 4 is a graph showing a light intensity in a CIGS solar cell using graphene as a back electrode Is transmitted through the CIGS thin film. Meanwhile, FIG. 5 illustrates a CIGS-based solar cell having Mo and a graphene back electrode manufactured according to the present invention.

도 3과 같이 Mo 후면전극은 전도성은 우수하나 빛 투과성이 부족하고, 도 4와 같이 그래핀 후면전극은 빛 투과성은 우수하나 전도성이 Mo에 비해 낮은 문제점이 있으므로, 본 발명에서는 도 5와 같이 Mo과 그래핀의 양 물질의 장점을 이용하기 위하여 그래핀층과, 상기 그래핀층 위에 패턴화된 Mo 전극층을 구비함으로써, 빛투과성과 전도성을 모두 만족하는 후면전극을 제안하게 되었다.As shown in FIG. 3, the Mo back electrode has excellent conductivity but lacks light transparency. As shown in FIG. 4, since the graphene back electrode has excellent light transmittance but has a low conductivity compared to Mo, A graphene layer and a Mo electrode layer patterned on the graphene layer are provided so as to utilize the advantages of both materials, and thus a rear electrode satisfying both light transmittance and conductivity has been proposed.

즉, 본 발명에서는 후면전극인 Mo의 일부를 투과성 및 전도성이 우수한 "그래핀"으로 대체함으로써, Mo 후면전극 방향에서도 외부의 빛이 CIGS계 박막으로 수광되도록 하는 것을 특징으로 한다. 본 발명에서는 그래핀층을 유리기판에 형성한 후, 상기 그래핀층 위에 Mo이 일정한 패턴으로 형성되도록 함으로써, 아랫면(back side)에서 빛이 유기기판 및 그래핀층을 투과하여 Mo이 패턴화되지 않은 부분을 통해 CIGS계 박막에 흡수되도록 한다. 상기 Mo의 패턴화는 그래핀층을 Mo이 모두 덮지 않는 형상이면, Mo 패턴의 구체적인 형상에 본 발명의 권리범위가 제한되지 않는다. That is, in the present invention, a part of Mo as the rear electrode is replaced with "graphene" having excellent permeability and conductivity, so that external light is received by the CIGS thin film even in the direction of the Mo back electrode. In the present invention, after the graphene layer is formed on the glass substrate, Mo is formed on the graphene layer in a predetermined pattern, so that light is transmitted through the organic substrate and the graphene layer on the back side, To be absorbed into the CIGS thin film. If the patterning of Mo is such that the graphene layer does not cover all of Mo, the scope of right of the present invention is not limited to the specific shape of the Mo pattern.

이하에서는 실험을 통하여 본 발명에 대하여 보다 자세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail through experiments.

유리/그래핀전극층 형성 방법Glass / Graphene electrode layer formation method

이하 실험에서 유리기판 위에 증착되는 그래핀은 RT-CVD법을 통해 Cu 호일(foil) 위에 단일층으로 결정성장한 그래핀을 구매하여 사용하였다. 그래핀 위에 PMMA 필름을 코팅한 후, 과황산암모늄(Ammonium persulfate)에서 Cu 호일을 녹여 제거한다. 이후 PMMA 필름이 코팅된 그래핀을 DI(DeIonized Water) 배스로 옮겨 세척하고, 기판을 DI 안에서 밖으로 떠올려 PMMA/그래핀/기판 순의 형태로 전사하였다. 이를 진공 오븐에서 가열하여 단단히 고정하고, 마지막으로 아세톤에 넣어 PMMA를 제거하는 방법으로 그래핀을 유리 기판 위에 증착시켰다. In the following experiments, graphene deposited on a glass substrate was prepared by RT-CVD and graphene grains grown on a single layer of foil were used. After coating the PMMA film on the graphene, remove the Cu foil by dissolving it in Ammonium persulfate. Then, the graphene coated with PMMA film was transferred to a DI (Deionized Water) bath, and the substrate was transferred out of DI and transferred in the form of PMMA / graphene / substrate. This was heated and fixed in a vacuum oven, and finally graphene was deposited on the glass substrate by removing the PMMA by placing it in acetone.

유리/그래핀층/패턴화된 Mo 전극 형성 방법Glass / graphene layer / patterned Mo electrode formation method

도 6 및 7은 각각 그래핀층이 형성된 유리기판 위에 SiO2 마스크로 마스킹한 샘플의 사진 및 단면을 도식화한 도면이다.6 and 7 are respectively a photograph and a cross-sectional view of a sample masked with a SiO 2 mask on a glass substrate on which a graphene layer is formed.

이때 SiO2를 사용하는 이유는 그래핀 표면에 손상을 최소화하기 위해서이다. 마스크 부착 시 고려해야 할 점은 기계적인 스크라이빙 부분을 고려하여 스크라이빙할 부분에 Mo가 증착되도록 마스크를 부착하는 것이 바람직하다.The reason for using SiO 2 is to minimize damage to the graphene surface. In consideration of the mechanical scribing part, it is preferable to attach the mask so that Mo is deposited on the part to be scribed.

도 8 내지 10은 다양한 형태의 Mo 패턴을 보여주는 도면으로서, 각 도면에서 상부는 평면도이며, 하부는 단면도이다. 도 8 내지 10과 같이 본 발명에서는 다양한 Mo 패턴화가 가능하다.8 to 10 are diagrams showing various types of Mo patterns, in which the upper part is a plan view and the lower part is a sectional view. 8 to 10, various Mo patterns can be formed in the present invention.

도 8 내지 도 10의 패턴 중 이하 실험에서는 도 10과 같이 제조된 CIGS계 태양전지에 대하여 셀 성능을 평가하였다. 후면에서 들어오는 빛에 대한 흡수 정도를 확인하기 위해, 비교예의 유리/Mo/CIGS 셀과 본 발명의 유리/그래핀/패턴화된 Mo/CIGS 셀에서 cell(2)와 cell(4)에 해당하는 위치 셀의 단락전류밀도(short-circuit current density)를 비교하였다. 이를 위해 솔라 시뮬레이터의 샘플 스테이지를 도 11 내지 도 13과 같이 디자인하였다. 도 11은 전면측정용 솔라 시뮬레이터의 샘플 스테이지의 실제 사진 및 도식화한 도면이며, 도 12 및 13은 후면측정용 솔라 시뮬레이터의 측면 및 정면 사진이다.Among the patterns shown in FIGS. 8 to 10, the cell performance of the CIGS-based solar cell fabricated as shown in FIG. 10 was evaluated in the following experiments. (2) and cell (4) in the glass / Mo / CIGS cell of the comparative example and the glass / graphene / patterned Mo / CIGS cell of the present invention in order to confirm the degree of absorption of the incoming light from the back The short-circuit current density of the location cell was compared. For this purpose, the sample stage of the solar simulator was designed as shown in FIGS. FIG. 11 is an actual photograph and a schematic view of a sample stage of the frontal measurement solar simulator, and FIGS. 12 and 13 are side and frontal views of the solar simulator for rear measurement.

Jsc (mA/cm2) for reflected light
Jsc (mA / cm 2 ) for reflected light
Cell #/structureCell # / structure Glass/Mo/CIGS
(비교예)
Glass / Mo / CIGS
(Comparative Example)
Glass/graphene/patterned-Mo/CIGS
(실시예)
Glass / graphene / patterned-Mo / CIGS
(Example)
Cell(2)Cell (2) 0.0280.028 0.181
0.181
Cell(4)Cell (4) 0.0230.023 0.299
0.299

Cell(4) 영역의 경우, 비교예의 후면으로 빛이 투과되지 않는 glass/Mo/CIGS의 경우 0.023 mA/cm2 단락전류밀도를 보였으나, 본 발명의 유리/그래핀/패턴화된 Mo에서 Mo로 덮이지 않은 cell(4) 영역의 경우에는 0.299 mA/cm2로 10배 이상의 단락전류밀도 향상을 보였다.In the case of the Cell (4) region, a short circuit current density of 0.023 mA / cm 2 was observed for glass / Mo / CIGS which does not transmit light to the backside of the comparative example. (0.29 mA / cm 2 ) in the case of the cell (4) region which is not covered with the gate electrode.

Cell(2) 영역의 경우, 비교예의 후면으로 빛이 투과되지 않는 유리/Mo/CIGS의 경우 0.028 mA/cm2 단락전류밀도를 보였으나, 본 발명의 유리/그래핀/패턴화된 Mo에서 Mo로 덮인 cell(2) 영역의 경우에 0.181 mA/cm2의 양호한 단락전류밀도를 보였는데, 이는 본 발명의 샘플의 경우에 Mo의 두께가 상대적으로 작았고, 주변에 흡수되는 빛의 난반사 등에 의해 일부 빛이 추가로 흡수되어 단락전류밀도가 높게 측정된 것으로 추측된다.In the case of the Cell (2) region, a short circuit current density of 0.028 mA / cm 2 was observed in the case of glass / Mo / CIGS which does not transmit light to the backside of the comparative example. Cm < 2 > in the case of the cell (2) region covered with the lower electrode (2), because the thickness of Mo in the case of the sample of the present invention was relatively small, It is assumed that light is further absorbed and the short circuit current density is measured to be high.

한편, 본 발명의 유리/그래핀/패턴화된 Mo/CIGS 샘플 내에서 cell(2)와 cell(4)를 비교해 보면, Mo가 덮여있지 않은 cell(4)의 경우가 약 60% 정도 더 높은 단락전류밀도를 보이는 것으로 보아, 후면으로 빛이 성공적으로 흡수되는 것으로 확인되었다.On the other hand, when comparing the cell (2) and the cell (4) in the glass / graphene / patterned Mo / CIGS sample of the present invention, the cell (4) The short circuit current density shows that the backlight successfully absorbs the light.

Claims (7)

유리기판, 후면전극, CIGS계 박막 및 전면전극을 포함하는 CIGS계 태양전지 셀에 있어서,
상기 후면전극은 그래핀층 위에 Mo이 패턴화되어 있으며,
상기 후면전극은 Mo가 패턴화되지 않은 그래핀층 부분으로 태양광이 입사되는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀.
A CIGS solar cell comprising a glass substrate, a back electrode, a CIGS thin film and a front electrode,
The back electrode has patterned Mo on the graphene layer,
Wherein the back electrode receives sunlight into a graphene layer portion where Mo is not patterned.
제1항에서, 상기 CIGS계 박막은 Cu(In1-yGay)(Se1-zSz)2(여기서, 0≤y, z≤1)로 표현되는 어느 하나인 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀.
The method according to claim 1, wherein the CIGS thin film is any one expressed by Cu (In 1-y Ga y ) (Se 1-z S z ) 2 (where 0? Y , z ? 1) Light receiving type CIGS solar cell.
제1항에서, 상기 Mo의 패턴은 기계적인 스크라이빙을 통해 셀이 분할되는 부분에 위치하도록 패턴화되는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀.
The double-sided light receiving CIGS solar cell according to claim 1, wherein the pattern of Mo is patterned so as to be located at a portion where cells are divided through mechanical scribing.
유리기판, 후면전극, CIGS계 박막 및 전면전극을 포함하는 CIGS계 태양전지 셀의 제조방법에 있어서,
상기 후면전극은,
상기 유리기판에 그래핀층을 형성하는 단계; 및
상기 그래핀층 위에 Mo층을 일정한 패턴으로 형성하는 단계를 포함하여 이루어지되,
상기 후면전극은 Mo가 패턴화되지 않은 그래핀층 부분으로 태양광이 입사되는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀의 제조방법.
A method of manufacturing a CIGS solar cell including a glass substrate, a rear electrode, a CIGS thin film, and a front electrode,
The back-
Forming a graphene layer on the glass substrate; And
And forming a Mo layer on the graphene layer in a predetermined pattern,
Wherein the rear electrode has sunlight incident on a graphene layer portion where Mo is not patterned.
제4항에서, 상기 유리기판에 그래핀층을 형성하는 단계는:
Cu 호일 위에 형성된 그래핀 위에 PMMA 필름을 코팅하는 단계;
상기 Cu 호일을 제거하는 단계;
상기 Cu 호일이 제거된 그래핀/PMMA를 유리기판 위에 적층하는 단계;
상기 유리기판/그래핀/PMMA를 고정하는 단계; 및
용매를 사용하여 PMMA를 제거하는 단계를 포함하여 이루어지는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀의 제조방법.
5. The method of claim 4, wherein forming a graphene layer on the glass substrate comprises:
Coating a PMMA film on the graphene formed on the Cu foil;
Removing the Cu foil;
Stacking the graphene / PMMA on which the Cu foil is removed on a glass substrate;
Fixing the glass substrate / graphene / PMMA; And
And removing the PMMA using a solvent. 2. The method for manufacturing a double-side light receiving type CIGS solar cell according to claim 1,
제5항에서, 상기 PMMA를 제거하기 위한 용매는 아세톤인 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀의 제조방법.
The method of claim 5, wherein the solvent for removing the PMMA is acetone.
제4항에서, 상기 Mo의 패턴은 셀의 분할 시의 기계적인 스크라이빙이 행해지는 위치에 형성되도록 Mo을 패턴화하는 것을 특징으로 하는 양면수광형 CIGS계 태양전지 셀의 제조방법.The method of manufacturing a double-side light receiving type CIGS solar cell according to claim 4, wherein the pattern of Mo is patterned so that Mo is formed at a position where mechanical scribing is performed at the time of cell division.
KR1020170010421A 2017-01-23 2017-01-23 Bifacial CIGS type solar cells and the manufacturing method thereof KR101883951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170010421A KR101883951B1 (en) 2017-01-23 2017-01-23 Bifacial CIGS type solar cells and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170010421A KR101883951B1 (en) 2017-01-23 2017-01-23 Bifacial CIGS type solar cells and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101883951B1 true KR101883951B1 (en) 2018-07-31

Family

ID=63078042

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170010421A KR101883951B1 (en) 2017-01-23 2017-01-23 Bifacial CIGS type solar cells and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101883951B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230030330A (en) 2021-08-25 2023-03-06 한밭대학교 산학협력단 Lateral photocurrent method for directly measuring the sheet resistance of cds on cu(in, ga)se2 devices under device operating conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174670B1 (en) * 2011-05-13 2012-08-17 한국화학연구원 Preparation of patterned graphene applicable to graphene-based device
KR101208272B1 (en) 2011-02-24 2012-12-10 한양대학교 산학협력단 Solar Cell of having Photovoltaic Structures on Both Sides of Substrate and Method of forming the same
KR20140092262A (en) * 2013-01-15 2014-07-23 도쿄엘렉트론가부시키가이샤 Graphene patterning method and patterning member
US20150060768A1 (en) * 2013-08-13 2015-03-05 The Board Of Regents Of The University Of Texas System Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
KR101688401B1 (en) * 2014-10-31 2016-12-22 한국과학기술연구원 Method and module structure for manufacturing thin film solar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101208272B1 (en) 2011-02-24 2012-12-10 한양대학교 산학협력단 Solar Cell of having Photovoltaic Structures on Both Sides of Substrate and Method of forming the same
KR101174670B1 (en) * 2011-05-13 2012-08-17 한국화학연구원 Preparation of patterned graphene applicable to graphene-based device
KR20140092262A (en) * 2013-01-15 2014-07-23 도쿄엘렉트론가부시키가이샤 Graphene patterning method and patterning member
US20150060768A1 (en) * 2013-08-13 2015-03-05 The Board Of Regents Of The University Of Texas System Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
KR101688401B1 (en) * 2014-10-31 2016-12-22 한국과학기술연구원 Method and module structure for manufacturing thin film solar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230030330A (en) 2021-08-25 2023-03-06 한밭대학교 산학협력단 Lateral photocurrent method for directly measuring the sheet resistance of cds on cu(in, ga)se2 devices under device operating conditions

Similar Documents

Publication Publication Date Title
US20160284882A1 (en) Solar Cell
KR20120063324A (en) Bifacial solar cell
KR20110035715A (en) Solar cell and method of fabircating the same
KR20110001305A (en) Solar cell and method of fabricating the same
KR20100109307A (en) Solar cell and method of fabricating the same
KR101034150B1 (en) Solar cell and method of fabircating the same
KR101592576B1 (en) Solar cell and method of fabricating the same
KR101848853B1 (en) Semi-transparent CIGS solar cells and method of manufacture the same and BIPV module comprising the same
KR20100138299A (en) Solar cell and method of fabricating the same
KR100809427B1 (en) Photoelectric conversion device and method for manufacturing thereof
US20170162731A1 (en) Photovoltaic module
KR101883951B1 (en) Bifacial CIGS type solar cells and the manufacturing method thereof
KR101382898B1 (en) See through type solar cell and fabricating method
KR101716149B1 (en) Multijunction solar cell and manufacturing method of the same
US20140083486A1 (en) Solar cell and method for manufacturing same
JP5624153B2 (en) Solar cell and manufacturing method thereof
KR101474487B1 (en) Thin film solar cell and Method of fabricating the same
KR20110001795A (en) Solar cell and method of fabricating the same
KR101327126B1 (en) Solar cell and solar cell module unsing the same
KR101028310B1 (en) Solar cell and method of fabricating the same
KR20100109320A (en) Solar cell and method of fabricating the same
KR101306529B1 (en) Solar cell and method of fabricating the same
KR101455832B1 (en) Thin film solar cell and Method of fabricating the same
KR101338782B1 (en) Solar cell and method of fabricating the same
KR101081248B1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant