KR101881541B1 - Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration - Google Patents

Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration Download PDF

Info

Publication number
KR101881541B1
KR101881541B1 KR1020160094364A KR20160094364A KR101881541B1 KR 101881541 B1 KR101881541 B1 KR 101881541B1 KR 1020160094364 A KR1020160094364 A KR 1020160094364A KR 20160094364 A KR20160094364 A KR 20160094364A KR 101881541 B1 KR101881541 B1 KR 101881541B1
Authority
KR
South Korea
Prior art keywords
plla
hap
biodegradable polymer
functional group
hydroxyapatite
Prior art date
Application number
KR1020160094364A
Other languages
Korean (ko)
Other versions
KR20180011668A (en
Inventor
전흥재
양대혁
윤영진
Original Assignee
가톨릭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교산학협력단 filed Critical 가톨릭대학교산학협력단
Priority to KR1020160094364A priority Critical patent/KR101881541B1/en
Publication of KR20180011668A publication Critical patent/KR20180011668A/en
Application granted granted Critical
Publication of KR101881541B1 publication Critical patent/KR101881541B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3695Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the function or physical properties of the final product, where no specific conditions are defined to achieve this
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면의 관능기를 유도하는 단계; b) 상기 관능기가 유도된 PLLA 표면에 하이드록시아파타이트(Hydroxyapatite, HAp)를 결합하는 단계; 및 c) 상기 HAp가 결합된 PLLA 표면에 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 결합하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법에 관한 것이다.The present invention provides a method for preparing a polylactic acid (PLLA) comprising the steps of: a) inducing a functional group on the surface of poly L-lactic acid (PLLA); b) binding hydroxyapatite (HAp) to the functional group-induced PLLA surface; And c) binding bone morphogenetic protein 2 (BMP-2) to the surface of the PLLA conjugated with HAp.

Description

골형성 또는 골 유착능 향상을 위한 생분해성 고분자의 표면처리 방법{Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration}TECHNICAL FIELD The present invention relates to a biodegradable polymer for improving osteogenesis or osseointegration, and more particularly, to a biodegradable polymer for osteogenesis or osseointegration,

본 발명은 골 형성 및 골 유착능 향상을 위한 생분해성 고분자의 표면처리 방법에 관한 것으로서, 더욱 상세하게는 a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면의 관능기를 유도하는 단계; b) 상기 관능기가 유도된 PLLA 표면에 하이드록시아파타이트(Hydroxyapatite, HAp)를 결합하는 단계; 및 c) 상기 HAp가 결합된 PLLA 표면에 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 결합하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법을 제공하는 것이다. The present invention relates to a method for surface treatment of biodegradable polymers for enhancing bone formation and osseointegration, and more particularly, to a method for surface treatment of biodegradable polymers, which comprises the steps of: a) inducing functional groups on the surface of poly L-lactic acid (PLLA); b) binding hydroxyapatite (HAp) to the functional group-induced PLLA surface; And c) binding bone morphogenetic protein 2 (BMP-2) to the surface of the PLLA to which HAp is bound. The present invention also provides a method for treating a biodegradable polymer.

메디컬 임플란트의 대표적 재료는 우수한 기계적 성질 및 가공성을 가지고 있는 금속재료이다. 그러나 금속의 우수한 성질에도 불구하고, 금속성 임플란트는 응력차폐현성(stress shielding), 이미지 왜곡(image degradation), 임플란트 이동(implant migration) 등의 몇가지 문제점을 가지고 있다. 뿐만 아니라, 치료 후 재수술을 통해 임플란트를 제거해야 하는 경우, 시술부의 주변조직에 신경 및 혈관의 분포가 많거나, 많은 연부조직의 손상이 예상될 대의 재수술은 환자에게 있어서 큰 부담이 되고 있다. Representative materials of medical implants are metal materials with excellent mechanical properties and processability. However, despite the excellent properties of metals, metallic implants have some problems such as stress shielding, image degradation, and implant migration. In addition, if the implant needs to be removed through reoperation after the treatment, reoperation for a large amount of nerve and blood vessels in the surrounding tissues of the treatment unit or a large number of soft tissue injuries is a great burden on the patient.

이러한 금속성 임플란트의 단점을 극복하기 위하여, 생분해성 임플란트의 연구개발이 제기되었다. 이러한 생체분해성 재료의 의학적 적용은 1960년대 중반부터 폴리유산(polylactic acids, PLA), 폴리글리콜산(polyglycolic acid, PGA) 또는 이들의 공중합체(copolymer)인 PGLA 등의 고분자를 위주로 이미 연구되기 시작하였다(KR 10-1568146). 그러나 임플란트의 표면개질의 문제점 때문에 고가의 임플란트 표면에 하이드록시아파타이트 코팅을 이용하여 임상적으로 생체적합성을 개선해 오고 있으며(Kang et al., Characterization of hydroxyapatite containing a titania layer formed by anodization coupled with blasting. Acta Odontol Scand 72: 989-998, 2014.), 지금도 국내외에서 연구를 계속하고 있지만 사용된 임플란트 표면에서 하이드로아파타이트의 박리현상으로 그 수명이 크게 감소되는 문제점이 제기되고 있다. In order to overcome the disadvantages of such metallic implants, research and development of biodegradable implants has been proposed. Medical applications of these biodegradable materials have been studied since the mid-1960s mainly on polymers such as polylactic acids (PLA), polyglycolic acid (PGA), or copolymers thereof, such as PGLA (KR 10-1568146). However, due to the problem of surface modification of implants, the use of hydroxyapatite coating on the surface of expensive implants has been clinically improving the biocompatibility (Kang et al., Characterization of hydroxyapatite containing a titania layer formed by anodization coupled with blasting. Acta Odontol Scand 72: 989-998, 2014). However, there is still a problem in that the lifetime of hydroapatite is greatly reduced due to peeling of hydroapatite from the surface of the used implant.

이에 본 발명자들은 금속성 임플란트의 단점을 극복하고 생분해성 고분자의 표면을 개질시킴으로써 골형성 및 골 유착능이 향상된 생분해성 고분자의 표면 처리 방법을 밝혀내고자 노력하였다. 그 결과, 폴리-L 락트산 표면에 하이드록시아파타이트 및 골유도인자를 결합하는 방법을 규명하였다.Accordingly, the present inventors have sought to overcome the shortcomings of metallic implants and to find out a surface treatment method of biodegradable polymers having improved bone formation and osseointegration ability by modifying the surface of biodegradable polymers. As a result, a method of binding hydroxyapatite and a bone inducing factor to the surface of poly-L-lactic acid was identified.

따라서, 본 발명의 목적은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면의 관능기를 유도하는 단계; b) 상기 관능기가 유도된 PLLA 표면에 하이드록시아파타이트(Hydroxyapatite, HAp)를 결합하는 단계; 및 c) 상기 HAp가 결합된 PLLA 표면에 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 결합하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법을 제공하는 것이다. DISCLOSURE OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for preparing polylactic acid (PLLA), which comprises the steps of: a) inducing a functional group on the surface of poly L-lactic acid (PLLA); b) binding hydroxyapatite (HAp) to the functional group-induced PLLA surface; And c) binding bone morphogenetic protein 2 (BMP-2) to the surface of the PLLA to which HAp is bound. The present invention also provides a method for treating a biodegradable polymer.

본 발명의 또 다른 목적은 관능기가 유도된 폴리 L-락트산(Poly L-lactic acid, PLLA); 상기 PLLA 표면에 결합된 하이드록시아파타이트(Hydroxyapatite, HAp); 상기 HAp가 결합된 PLLA 표면에 결합된 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 포함하여 표면처리된 생분해성 고분자를 제공하는 것이다.
Another object of the present invention is to provide a poly-L-lactic acid (PLLA) derived functional group; Hydroxyapatite (HAp) bound to the PLLA surface; And a bone morphogenetic protein (BMP-2) bound to the PLLA surface to which the HAp is bound.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

따라서, 본 발명은 a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면의 관능기를 유도하는 단계; b) 상기 관능기가 유도된 PLLA 표면에 하이드록시아파타이트(Hydroxyapatite, HAp)를 결합하는 단계; 및 c) 상기 HAp가 결합된 PLLA 표면에 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 결합하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법을 제공한다.Accordingly, the present invention provides a method for producing a poly (L-lactic acid), comprising: a) inducing a functional group on the surface of poly L-lactic acid (PLLA); b) binding hydroxyapatite (HAp) to the functional group-induced PLLA surface; And c) binding bone morphogenetic protein 2 (BMP-2) to the surface of the PLLA to which the HAp is bound. The present invention also provides a method for treating a biodegradable polymer.

상기 본 발명의 바람직한 일실시예에 따르면, 상기 a) 단계에서 관능기의 유도는 0.01 내지 70 mTorr의 압력에서 5 내지 60초간 플라즈마 처리를 통해 수행되는 것일 수 있다.According to a preferred embodiment of the present invention, the induction of the functional group in the step a) may be performed by plasma treatment at a pressure of 0.01 to 70 mTorr for 5 to 60 seconds.

상기 본 발명의 바람직한 다른 일실시예에 따르면, 상기 a) 단계의 관능기는 하이드록시(hydroxyl)기 또는 카복시(carboxyl)기인 것일 수 있다.According to another preferred embodiment of the present invention, the functional group of step (a) may be a hydroxyl group or a carboxyl group.

상기 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 b) 단계의 하이드록시아파타이트는 도파민(dopamine)과 1 : 1 내지 1 : 10(중량)으로 혼합한 것일 수 있다.According to another preferred embodiment of the present invention, the hydroxyapatite in step b) may be mixed with dopamine in a weight ratio of 1: 1 to 1:10.

상기 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 b) 단계에서 결합은 상기 PLLA 표면의 관능기와 상기 HAp가 펩티드(peptide) 결합하는 것일 수 있다.According to another preferred embodiment of the present invention, in the step b), the functional group of the PLLA surface and the HAp may be peptide-bonded.

상기 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 c) 단계에서 BMP-2의 결합은 헤파린을 통해 수행되는 것일 수 있다.According to another preferred embodiment of the present invention, the binding of BMP-2 in step c) may be performed through heparin.

또한, 본 발명은 관능기가 유도된 폴리 L-락트산(Poly L-lactic acid, PLLA); 상기 PLLA 표면에 결합된 골유도인자(Bone Morphogenetic protein 2, BMP-2); 상기 HAp가 결합된 PLLA 표면에 결합된 BMP-2를 포함하여 표면처리 된 생분해성 고분자를 제공한다.The present invention also relates to a poly-L-lactic acid (PLLA) derived from a functional group; Bone Morphogenetic protein 2 (BMP-2) bound to the PLLA surface; And a surface-treated biodegradable polymer comprising BMP-2 bound to the surface of PLLA to which HAp is bound.

상기 본 발명의 바람직한 일실시예에 따르면, 상기 생분해성 고분자는 골 형성 활성이 0.05 내지 0.25M/분 인 것일 수 있다.According to a preferred embodiment of the present invention, the biodegradable polymer may have an osteogenic activity of 0.05 to 0.25 M / min.

상기 본 발명의 바람직한 다른 일실시예에 따르면, 상기 생분해성 고분자는 골광화가 0.05 내지 0.30의 광학밀도(optical density, O.D)값을 가지는 것일 수 있다.According to another preferred embodiment of the present invention, the biodegradable polymer may have an optical density (O.D.) value of 0.05 to 0.30.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명은 관능기가 유도된 폴리 L-락트산 표면에 하이드록시아파타이트를 결합한 후 골유도인자를 결합하는 단계를 포함하는 생분해성 고분자의 표면처리 방법을 제공함으로써 경조직 고정시 골 형성 및 골 유착능이 향상된 표면처리된 생분해성 고분자를 제공함으로써 임플란트로 활용될 수있다.DISCLOSURE OF THE INVENTION The present invention has been conceived to solve the problems as described above. The present invention relates to a biodegradable polymer surface treatment comprising binding a hydroxyapatite to a poly-L-lactic acid surface on which a functional group is derived, The present invention can be utilized as an implant by providing a surface-treated biodegradable polymer improved in bone formation and osseointegration at the time of hard tissue fixation.

도 1은 본 발명의 생분해성 고분자의 표면처리 방법을 나타낸 모식도이다.
도 2은 실시예 1 및 비교예 1 내지 비교예 3의 세포 증식 결과를 나타낸 그래프이다.
도 3는 실시예 1 및 비교예 1 내지 비교예 3의 골형성촉진에 관여하는 ALP(Alkaline phosphatase) 활성 측정 결과를 나타낸 그래프이다.
도 4은 실시예 1 및 비교예 1 내지 비교예 3의 골 광화(bone mineralization) 평가 결과를 나타낸 그래프이다.
도 5는 실시예 1 및 비교예 1 내지 비교예 3의 ARS(Alizarin red S) 염색 결과를 나타낸 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a surface treatment method of a biodegradable polymer of the present invention. FIG.
2 is a graph showing cell proliferation results of Example 1 and Comparative Examples 1 to 3. FIG.
3 is a graph showing the results of measurement of ALP (Alkaline phosphatase) activity involved in bone formation promotion of Example 1 and Comparative Examples 1 to 3. FIG.
4 is a graph showing bone mineralization evaluation results of Example 1 and Comparative Examples 1 to 3. FIG.
5 shows results of ARS (Alizarin red S) staining of Example 1 and Comparative Examples 1 to 3. FIG.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

상술한 바와 같이, 종래 생분해성 고분자의 표면개질의 문제점으로 인해 하이드록시아파타이트 단순 코팅을 이용하여 임상적으로 생체적합성을 개선해 오고 있으나, 경조직 고정시 골 형성 및 골 유착능이 향상된 생분해성 고분자 임플란트가 개발되지 않아 이에 대한 표면처리방법의 개발이 시급한 실정이다. As described above, since the conventional biodegradable polymer has a problem of surface modification, it has been clinically improved in biocompatibility using a simple coating of hydroxyapatite. However, a biodegradable polymer implant having improved bone formation and osseointegration at the time of hard tissue fixation has been developed And it is urgently required to develop a surface treatment method therefor.

본 발명은 생분해성 고분자인 폴리 L-락트산(Poly L-lactic acid, PLLA)의 표면을 개질하는 방법을 제공함으로써 상술한 문제의 해결을 모색하였다. 이를 통해 경조직 고정시 골 형성 및 골 유착능이 향상된 표면이 개질된 생분해성 고분자를 제공한다. The present invention solves the above-mentioned problems by providing a method of modifying the surface of a biodegradable polymer, poly L-lactic acid (PLLA). Thereby providing a surface-modified biodegradable polymer improved in bone formation and osseointegration at the time of hard tissue fixation.

본 발명에서 용어 "표면개질"은 입자 표면의 화학구조와 물리적 구조를 바꾸는 것으로서, 본 발명에서는 생분해성 고분자인 폴리 L-락트산의 표면에 관능기가 유도됨으로써 구조적 변화가 생기는 것을 의미한다. The term "surface modification" in the present invention means a change in the chemical structure and physical structure of the particle surface. In the present invention, a structural change is caused by introducing a functional group onto the surface of the biodegradable polymer, poly L-lactic acid.

본 발명에서 용어 "폴리 L-락트산"은 옥수수 녹말, 타피오카 뿌리 등과 같은 재생가능한 원료로부터 유래된 생분해성 열가소성 지방족 폴리에스터를 의미한다.The term "poly-L-lactic acid" in the present invention means a biodegradable thermoplastic aliphatic polyester derived from renewable raw materials such as corn starch, tapioca roots and the like.

본 발명에서 용어 "하이드록시아파타이트"는 몸 안에 있는 치아와 뼈에서 발견되는 물질로서 절단된 뼈를 대신하기 위한 필러나 인공 임플란트 쪽으로 뼈의 내성장(ingrowth)를 촉진하기 위한 코팅제로 흔히 사용되며, 아민기를 포함하는 것을 특징으로 할 수 있다. The term "hydroxyapatite " in the present invention is a substance found in teeth and bones in the body, and is often used as a filler for replacing a cut bone or as a coating agent for promoting ingrowth of bone toward an artificial implant, And an amine group.

본 발명에서 용어 "골유도인자"는 뼈형성단백질로 혼용되어 사용가능하며, 뼈형성에 직접적으로 관여하는 단백질을 의미한다. The term "bone-inducing factor" in the present invention means a protein that can be used in combination with an osteogenic protein and directly involved in bone formation.

본 발명은 a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면의 관능기를 유도하는 단계; b) 상기 관능기가 유도된 PLLA 표면에 하이드록시아파타이트(Hydroxyapatite, HAp)를 결합하는 단계; 및 c) 상기 HAp가 결합된 PLLA 표면에 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 결합하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법을 제공한다.The present invention provides a method for preparing a polylactic acid (PLLA) comprising the steps of: a) inducing a functional group on the surface of poly L-lactic acid (PLLA); b) binding hydroxyapatite (HAp) to the functional group-induced PLLA surface; And c) binding bone morphogenetic protein 2 (BMP-2) to the surface of the PLLA to which the HAp is bound. The present invention also provides a method for treating a biodegradable polymer.

상기 a) 단계에서 관능기의 유도는 하이드로아파타이트 부착을 위한 것으로 RF 플라즈마 발전기 챔버(generator chamber)안에서 0.01 내지 70 mTorr의 압력에서 5 내지 60 초간 처리될 수 있으며, 바람직하게는 1 내지 60 mTorr의 압력에서 10 내지 50 초간 처리되는 것이 적합하나, 이에 제한되는 것은 아니다. The derivation of the functional group in step a) may be performed for 5 to 60 seconds at a pressure of 0.01 to 70 mTorr in a RF generator chamber for hydroapatite attachment, preferably at a pressure of 1 to 60 mTorr The treatment is preferably performed for 10 to 50 seconds, but is not limited thereto.

본 발명의 플라즈마 처리는 저 압력으로 플라즈마 처리하는 방법으로서, 진공 상태에서 플라즈마를 처리하는 방식이므로, 상기 압력을 초과하는 경우 플라즈마에 의해 유도되는 작용기의 비율이 주변의 산소에 의해서 제한될 수 있고, 오존 생성의 위험이 있으며, 열 발생의 문제로 인해 열에 민감한 PLLA 등의 플라스틱 재료의 물성 변화를 유도할 수 있다는 문제점이 있다. 또한, 처리 시간이 상기 시간 미만 또는 초과하는 경우 PLLA 표면의 단위면적당 유도되는 카복시기의 비율이 감소하는 문제점이 있다.The plasma treatment of the present invention is a method of plasma treatment at a low pressure. Since the plasma treatment is performed in a vacuum state, when the pressure is exceeded, the ratio of the functional group induced by the plasma can be limited by the surrounding oxygen, There is a risk of generation of ozone, and there is a problem that it is possible to induce a change in physical properties of a plastic material such as PLLA which is sensitive to heat due to the problem of heat generation. Further, when the treatment time is less than or more than the above-mentioned time, there is a problem that the ratio of the carboxy group induced per unit area of the PLLA surface is decreased.

상기 a) 단계에서 PLLA 표면에 유도된 관능기는 하이드록시(hydroxyl)기 또는 카복시(carboxyl)로서, 상기 관능기가 카복시기 인 경우 HAp의 아민(mine)기와 축합반응을 통해 펩티드 결합을 하는 것일 수 있다. The functional group induced on the PLLA surface in step a) may be a hydroxyl group or a carboxyl group, and when the functional group is a carboxy group, a peptide bond may be formed through condensation reaction with an amine group of HAp .

상기 b) 단계의 하이드록시아파타이트는 도파민(dopamine)과 1 : 1 내지 1 : 10 (중량)로 혼합한 것일 수 있고, 바람직하게는 1 : 5 내지 1 : 7(중량)로 혼합하는 것일 수 있으며, 가장 바람직하게는 1 : 1(중량)로 혼합한 것이 적합하나, 이에 제한되는 것은 아니다. 본 발명의 실시예1-2에서 HAp 및 도파민은 각각 1:1의 중량으로 혼합하였으며, 이 때 도파민은 표면개질 된 PLLA의 카복시기와 HAp를 접착하는 역할을 하므로 도파민의 비율이 HAp의 비율보다 높은 것이 적합하다.The hydroxyapatite in step b) may be mixed with dopamine in a weight ratio of 1: 1 to 1:10, preferably 1: 5 to 1: 7 (weight) , And most preferably 1: 1 (weight), but is not limited thereto. In Example 1-2 of the present invention, HAp and dopamine were mixed at a weight ratio of 1: 1, respectively. In this case, dopamine plays a role of bonding HAp with the carboxy group of the surface-modified PLLA so that the proportion of dopamine is higher than that of HAp Is suitable.

상기 b) 단계에서의 결합은 상기 PLLA 표면의 관능기와 상기 HAp가 펩티드 결합하는 것일 수 있다. The binding in the step b) may be such that the functional group of the PLLA surface and the HAp are peptide-bonded.

상기 c) 단계에서 BMP-2의 결합은 헤파린을 통해 수행되는 것일 수 있다.
In step c), the binding of BMP-2 may be performed through heparin.

또한, 본 발명은 관능기가 유도된 폴리 L-락트산(Poly L-lactic acid, PLLA); 상기 PLLA 표면에 결합된 하이드록시아파타이트(Hydroxyapatite, HAp); 상기 HAp가 결합된 PLLA 표면에 결합된 골유도인자(Bone Morphogenetic protein 2, BMP-2)를 포함하여 표면처리 된 생분해성 고분자를 제공한다.The present invention also relates to a poly-L-lactic acid (PLLA) derived from a functional group; Hydroxyapatite (HAp) bound to the PLLA surface; And a bone morphogenetic protein (BMP-2) bound to the PLLA surface to which the HAp is bound, to provide a biodegradable polymer surface-treated.

상기 표면처리 된 생분해성 고분자는 골 분화 활성이 0.05 내지 0.25M/분 인 것일 수 있다.The surface-treated biodegradable polymer may have an osteogenic activity of 0.05 to 0.25 M / min.

또한, 상기 표면처리 된 생분해성 고분자는 골광화가 0.05 내지 0.30의 광학밀도(optical density, O.D)값을 가지는 것일 수 있다.
In addition, the surface-treated biodegradable polymer may have an optical density (OD) value of 0.05 to 0.30.

이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are intended to further illustrate the present invention, and the scope of the present invention is not limited to these examples.

실시예Example 1.  One. 표면처리된Surface-treated 생분해성 고분자,  Biodegradable polymers, PLLA의PLLA's 제조 Produce

실시예Example 1-1.  1-1. 관능기가Functional group 유도된  Induced PLLAPLLA 제조 Produce

지름 14.0mm, 두께 1.0mm로 24 well cell culture plate (24 well plate)에 맞게 가공하여 In vitro용 PLLA견본 (disc)을 제작하고, 길이 5.0mm, 두께 2.0mm를 사용하여 In vivo용 PLLA 견본 (screw)을 제작하였다. 이후, PLLA 표면의 관능기를 유도하기 위하여 RF plasma generator chamber 안에서 압력 50 mTorr, 20 watt 전력으로 20 초간 반응시키고 chamber에서 꺼낸 직 후 대기중에 10분간 노출시켰다. 그 결과, PLLA disc표면에 hydroxyl기와 carboxyl기가 유도되었다.
PLLA specimens for in vitro use were fabricated on a 24-well plate (24-well plate) with a diameter of 14.0 mm and a thickness of 1.0 mm. PLLA specimens for in vivo (5.0 mm in length and 2.0 mm in thickness) screw. Then, to induce the functional groups of PLLA surface, the reaction was performed for 20 seconds at a pressure of 50 mTorr and 20 watt in an RF plasma generator chamber, and exposed to the atmosphere for 10 minutes immediately after removing from the chamber. As a result, hydroxyl group and carboxyl group were induced on the PLLA disc surface.

실시예Example 1-2.  1-2. 하이드록시아파타이트Hydroxyapatite (( HydroxyapatiteHydroxyapatite , , HApHAp )가 )end 결합된Combined PLLAPLLA 제조 Produce

실시예 1-1의 관능기가 유도된 PLLA 표면에 HAp를 결합하기 위하여, HAp를 도파민(dopamine, DA)로 코팅하였다. 10 mM, pH 8.5 tris buffer에 DA를 상온에서 녹여 2mg/mL를 준비하였다. HAp를 0.02% polyacrylic acid (PAA)에 상온에서 녹였고, 두 용액을 섞은 뒤 동결건조 함으로써, HAp가 도파민에 의해 코팅된 dopamine/hydroxyapatite (DA/HAp) 파우더를 제조하였다. 이 때, HAp와 도파민은 1:1의 중량비로 혼합하였다. HAp was coated with dopamine (DA) to bind HAp to the functional group-induced PLLA surface of Example 1-1. 10 mM tris buffer, pH 8.5 and 2 mg / mL were prepared by dissolving DA at room temperature. HAp was dissolved in 0.02% polyacrylic acid (PAA) at room temperature. The dopamine / hydroxyapatite (DA / HAp) powders coated with HAp were prepared by mixing the two solutions and lyophilization. At this time, HAp and dopamine were mixed at a weight ratio of 1: 1.

멸균한 물 25mL로 DMT-MM 50mg을 녹였고 이 수용액과 표면개질된 PLLA disc 10개를 상온에서 1시간 반응시켰다. 그 다음 DA/HAp를 첨가하여 상온에서 24시간 반응시켜 DA/HAp를 제작하였다. -80?C, 5 mTorr 조건에서 24시간 동결건조한 뒤 54?C, 3시간 동안 EO gas로 멸균하여 상온에서 보관하였다. 그 결과, 표면개질을 통하여 PLLA표면에 생성된 carboxyl기와 DA/HAp의 amine기의 축합반응을 통해 HAp가 결합되었음을 확인할 수 있었다. 본 실시예에서도 실시예 2와 마찬가지로 축합제로서 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride n-Hydrate (DMT-MM)을 사용하였다.
50 mg of DMT-MM was dissolved in 25 mL of sterilized water, and the aqueous solution and 10 surface-modified PLLA discs were reacted at room temperature for 1 hour. Then, DA / HAp was added and reacted at room temperature for 24 hours to prepare DA / HAp. After lyophilization for 24 hours at -80 ° C and 5 mTorr, the cells were sterilized by EO gas at 54 ° C for 3 hours and stored at room temperature. As a result, it was confirmed that HAp was bound through the condensation reaction between the carboxyl group formed on the PLLA surface and the amine group of DA / HAp through surface modification. 4- (4,6-Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium Chloride n-Hydrate (DMT-MM) was also used as a condensing agent in this Example.

실시예Example 1-3.  1-3. HAp가HAp 결합된Combined PLLAPLLA 표면에  On the surface 골유도인자Bone factor (( BoneBone MorphogeneticMorphogenetic proteinprotein 2, BMP- 2, BMP- 2)를2) 결합된Combined PLLAPLLA 제조 Produce

실시예 1-2의 HAp가 결합된 PLLA 표면에 BMP-2를 결합하기 위하여, 실시예 1-2의 방법으로 준비한 PLLA/HAp disc 10개를 멸균된 물 25mL에 DMT-MM 50mg을 녹인 수용액과 상온에서 1시간 반응시켰다. Hep을 첨가하여 4?C에서 24시간 반응시킨 뒤 DPBS로 3번 씻었다. BMP-2 50ng을 DPBS 25mL에 녹인 이 용액을 첨가하여 4?C에서 24시간 반응시켰다. -80?C, 5 mTorr 조건에서 24시간 동결건조한 뒤 -20?C에서 보관하였다.
In order to bind BMP-2 to the HAp-bound PLLA surface of Example 1-2, 10 PLLA / HAp discs prepared by the method of Example 1-2 were dissolved in 25 ml of sterilized water and 50 ml of DMT- The reaction was allowed to proceed at room temperature for 1 hour. Hep was added, reacted at 4 ° C for 24 hours, and washed three times with DPBS. 50 ng of BMP-2 was dissolved in 25 ml of DPBS, and the mixture was reacted at 4 ° C for 24 hours. -80 ° C, 5 mTorr, and stored at -20 ° C for 24 hours.

비교예Comparative Example 1. One.

표면개질 하지 않은, 지름 14.0mm, 두께 1.0mm로 24 well cell culture plate (24 well plate)에 맞게 가공한 In vitro용 PLLA견본 (disc) 및 길이 5.0mm, 두께 2.0mm를 사용한 In vivo용 PLLA 견본 (screw)을 제작하였다.
In vitro plLA specimens (14.0 mm in diameter, 1.0 mm in thickness) were prepared for 24-well culture plates (24 well plates) and PLLA swatches (5.0 mm in length and 2.0 mm in thickness) a screw was prepared.

비교예Comparative Example 2.  2. 골유도인자Bone factor (( BoneBone MorphogeneticMorphogenetic proteinprotein 2, BMP- 2, BMP- 2)가2) 결합된Combined PLLAPLLA 제조 Produce

실시예 1-1의 관능기가 유도된 PLLA 표면에 BMP-2가 결합된 PLLA/BMP-2를 제작하기 위하여, PLLA disc 표면에 유도된 carboxyl기와 ethylenediamine (ED)의 amine기를 결합시켰다. 이 때, 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride n-Hydrate (DMT-MM)을 축합제로 사용하였다. DMT-MM 50mg 을 멸균된 물 (DW) 25 mL 녹인 뒤 PLLA disc 10개와 1시간 동안 상온에서 반응시킨 뒤 EA 1mL을 DW 25mL에 녹인 뒤 24시간 반응시켰다. -80?C, 5 mTorr 조건에서 24시간 동결건조 하고 54?C, 3시간 동안 ethylene oxide (EO) gas로 멸균하였다. DMT-MM 50mg 을 멸균된 물 (DW) 25 mL 녹인 뒤 1시간 상온에서 반응시킨 뒤 Heparin (Hep) 50mg을 넣고 4?C 에서 24시간 반응시켰다. BMP-2 50ng을 Dulbecco?s phosphate buffered saline pH7.4 (DPBS) 100?L에 녹인 용액을 첨가하여 24시간 동안 반응시켰다. -80?C, 5 mTorr 조건에서 24시간 동결건조한 뒤 -20?C에서 보관하였다.
In order to prepare PLLA / BMP-2 having BMP-2 bound to the functional group-induced PLLA surface of Example 1-1, carboxyl group induced on the surface of PLLA disc and amine group of ethylenediamine (ED) were bound. At this time, 4- (4,6-Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium Chloride n-Hydrate (DMT-MM) was used as a condensing agent. After dissolving 50 mL of DMT-MM in 25 mL of sterilized water (DW), 10 PLLA discs were reacted at room temperature for 1 hour. 1 mL of EA was dissolved in 25 mL of DW and reacted for 24 hours. The cells were lyophilized for 24 hours at -80 ° C and 5 mTorr and sterilized with ethylene oxide (EO) gas at 54 ° C for 3 hours. 50 mg of DMT-MM was dissolved in 25 mL of sterilized water (DW), and reacted at room temperature for 1 hour. Then, 50 mg of Heparin (Hep) was added and reacted at 4 ° C for 24 hours. 50 ng of BMP-2 was dissolved in 100 μl of Dulbecco's phosphate buffered saline (DPBS) (pH 7.4) and reacted for 24 hours. -80 ° C, 5 mTorr, and stored at -20 ° C for 24 hours.

비교예Comparative Example 3. 3.

실시예 1-2와 동일한 방법으로 하이드록시아파타이트(Hydroxyapatite, HAp)가 결합된 PLLA 제조하였다.
Hydroxyapatite (HAp) -coupled PLLA was prepared in the same manner as in Example 1-2.

실험예Experimental Example

MG-63 cell line을 24 well plate에서 37 ?C, 5% CO2 조건에서 배양하였다. 세포는 5x103 cells/well 만큼 사용하였다. 배양액은 Dulbecco's modified eagle medium (DMEM)에 10% fetal bovine serum (FBS)와 1% penicillin?streptomycin 보충하여 사용하였다. 배양액은 3일마다 갈아주었다. 하기 실험예 1 내지 3에 모두 동일하게 적용된다.
The MG-63 cell line was cultured in a 24-well plate at 37 ° C and 5% CO 2. Cells were used at 5 × 10 3 cells / well. The culture medium was supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin in Dulbecco's modified eagle medium (DMEM). The culture medium was changed every 3 days. The same applies to all of the following Experimental Examples 1 to 3.

실험예Experimental Example 1. 세포 분화 측정을 통한 세포적합성 평가 1. Evaluation of Cell Suitability by Cell Differentiation Measurement

실시예 1 및 비교예 1 내지 3의 독성을 확인하기 위하여, 실시예 1 및 비교예 1 내지 3의 disc에 MG-63 cell을 seeding하였다. 1일차, 3일차, 7일차에서 cell counting kit 8 (CCK-8)을 이용하여 세포의 증식을 확인하였다. 각 well에 CCK-8을 100?L 적하 하였고, 37 ?C, 5% CO2 조건에서 1시간 배양하였다. 배양액 100 ?L씩 추출 하여 microplate로 옮긴 뒤 ELISA기기에서 450nm로 측정하였다. 실험은 3회 반복하였다.In order to confirm the toxicity of Example 1 and Comparative Examples 1 to 3, MG-63 cells were seeded in the discs of Example 1 and Comparative Examples 1 to 3. Cell proliferation was confirmed using cell counting kit 8 (CCK-8) at day 1, day 3, and day 7. CCK-8 was added dropwise to each well and cultured at 37 ° C and 5% CO 2 for 1 hour. The culture broth was transferred to a microplate at 100 nm intervals and measured at 450 nm in an ELISA instrument. The experiment was repeated 3 times.

도 2에 나타난 바와 같이, 1일차 및 3일차에서는 실시예 2 내지 4 및 비교예 1의 disc 내의 세포 증식 결과에 유의적 차이가 없었으나, 7일차의 경우 실시예 4의 disc 내의 세포 증식 결과가 비교예 1에 비해 약 2배 이상 증가하였고, 실시예 2 및 실시예 3과 비교하여 각각 0.1 이상 증가함을 확인할 수 있었다.
As shown in Fig. 2, there was no significant difference in the cell proliferation results in the discs of Examples 2 to 4 and Comparative Example 1 at the 1st day and 3rd day, but the cell proliferation results in the disc of Example 4 at the 7th day It was confirmed that it increased about twice as much as that of Comparative Example 1, and increased by 0.1 or more as compared with Examples 2 and 3, respectively.

실험예Experimental Example 2.  2. AlkalineAlkaline phosphatase포스화제 ( ( ALPALP ) ) activityactivity 측정을 통한 골 분화 평가 Assessment of bone differentiation by measurement

실시예 1 및 비교예 1 내지 3의 ALP activity를 측정하기 위해 실시예 1 및 비교예 1 내지 3의 disc 위에서 MG-63 cell을 배양하였다. 7일, 14일, 21일차 에서 ALP assay kit를 사용하여 ALP activity를 측정하였다. ALP는 골 형성의 중기 인자로서 7일 내지 14일에서 많이 발현된다. To measure the ALP activity of Example 1 and Comparative Examples 1 to 3, MG-63 cells were cultured on the discs of Example 1 and Comparative Examples 1 to 3. ALP activity was measured using the ALP assay kit on days 7, 14, and 21. ALP is a major mediator of osteogenesis and is highly expressed from 7 to 14 days.

도 3에 나타난 바와 같이, 7일차의 경우 실시예 1과 비교예 1의 결과에 유의적 차이가 없었고, 21일차의 경우 비교예 1이 실시예 1 및 비교예 2,3에 비해 ALP 활성이 뛰어난 것으로 나타났으나, 14일차의 경우 실시예 1의 결과가 비교예 1에 비해 약 2배 이상, 비교예 2 및 비교예 3에 비해 약 0.05 내지 0.1 증가하였음을 확인할 수 있었다. 이를 통해 HAp 및 BMP-2로 표면처리 된 생분해성 고분자의 골 형성능이 14일차에서 가장 뛰어남을 확인할 수 있었다.
As shown in FIG. 3, there was no significant difference between the results of Example 1 and Comparative Example 1 in the case of Day 7, and in Comparative Example 1 in case of Day 21, The results of Example 1 were about twice as much as those of Comparative Example 1 and about 0.05 to 0.1 as compared to Comparative Example 2 and Comparative Example 3 in the case of the 14th day. The results showed that the biodegradable polymer surface-treated with HAp and BMP-2 showed the best bone formation ability at 14 days.

실험예Experimental Example 3.  3. CalciumCalcium depositiondeposition assay를assay 통한  through bonebone mineralizationmineralization 평가 evaluation

실시예 1 및 비교예 1 내지 3의 Calcium deposition assay를 통한 bone mineralization 평가하기 위하여 7일, 14일, 21일 동안 키운 세포를 사용하였다. 세포는 Ca2+, Mg2+가 없는 DPBS로 3번 세척하였다. 4% 포르말린 1mL/well로 20분간 세포를 고정한 뒤 멸균한 DW 1mL/well로 3번 씻어내고 2분간 말렸다. 40mM alizarin red S (ARS) solution 을 500 ?L/well 씩 적하 한 뒤 45분간 차광하여 상온에서 염색하였다. 그 후, DW 1mL/well로 3분간 세척, 5회 반복 하였다. 세척이 끝난 뒤 세포를 관찰 하였으며, 정량을 위해 DBPS에 Cetylpyridinium chloride 를 녹여10 w/v % 만든 용액 (10% CPC buffer)을 사용하였다. 10% CPC buffer를 1mL/well 처리하고 1시간 반응 시킨 뒤 100 ?L씩 추출 하여 microplate로 옮기고 ELISA기기에서 550nm로 측정하였다.To evaluate bone mineralization through the calcium deposition assay of Example 1 and Comparative Examples 1 to 3, cultured cells were used for 7 days, 14 days and 21 days. Cells were washed 3 times with DPBS without Ca2 +, Mg2 +. Cells were fixed with 4% formalin 1 mL / well for 20 minutes, washed 3 times with sterile DW 1 mL / well, and dried for 2 minutes. 40 mM alizarin red S (ARS) solution was added dropwise at 500? L / well and shaded for 45 minutes at room temperature. Thereafter, the cells were washed with DW 1 mL / well for 3 minutes and repeated 5 times. After washing, the cells were observed. Cetylpyridinium chloride was dissolved in DBPS for quantification and 10 w / v% solution (10% CPC buffer) was used. 10% CPC buffer was added at 1 mL / well and reacted for 1 hour. Then, the cells were transferred to a microplate at 100? L and measured at 550 nm in an ELISA instrument.

도 4에 나타난 바와 같이, 세포 배양 시간이 증가함에 따라 비교예 1 내지 3에 비해 표면처리 된 실시예 1의 칼슘 형상의 양이 증가하였음을 확인할 수 있었다. 특히, 14일차의 경우 실시예 1이 비교예 1에 비해 2배 이상 칼슘 형상의 양이 증가하였음을 확인할 수 있었다. 또한 도 5는 실시예 1 및 비교예 1 내지 3에서 염색 결과를 통해 세포의 칼슘 양을 육안으로 확인할 수 있는 것으로, 세포 배양 시간이 증가함에 따라 실시예 1 및 비교예 1 내지 3의 disc에서 염색된 면적이 넓어지는 것을 확인할 수 있었다. 특히, 실시예 1의 경우 모든 경우에 있어서 비교예 1 내지 3에 비해 염색된 면적이 넓은 것을 확인할 수 있었다. As shown in FIG. 4, it was confirmed that as the cell culture time increased, the amount of the calcium form of the surface-treated Example 1 was increased as compared with Comparative Examples 1 to 3. Particularly, it was confirmed that the amount of calcium form of Example 1 increased more than twice that of Comparative Example 1 in the case of the 14th day. FIG. 5 shows that the calcium amount of the cells can be visually confirmed through the results of staining in Example 1 and Comparative Examples 1 to 3. As the cell culture time was increased, the discs of Example 1 and Comparative Examples 1 to 3 were stained It was confirmed that the area occupied was widened. In particular, in Example 1, it was confirmed that the dyed area was wider than in Comparative Examples 1 to 3 in all cases.

도 4 및 도 5의 결과를 통해 HAp 및 BMP-2로 표면처리 된 생분해성 고분자는 골 강화의 효과가 있음을 알 수 있다.
4 and 5, it can be seen that the biodegradable polymer surface-treated with HAp and BMP-2 has the effect of strengthening the bones.

Claims (9)

a) 폴리 L-락트산(Poly L-lactic acid, PLLA) 표면에 관능기를 유도하는 단계;
b) 하이드록시아파타이트(Hydroxyapatite, HAp)와 도파민(Dopamine, DA)을 혼합하여 하이드록시아파타이트를 도파민으로 코팅하는 단계;
c) 상기 관능기가 유도된 PLLA 표면에 도파민에 의해 코팅된 하이드록시아파타이트(dopamine/hydroxyapatite, DA/HAp)를 결합하는 단계;
d) 상기 DA/HAp가 결합된 PLLA 표면을 헤파린 수용액과 반응시켜 PLLA 표면에 헤파린(Heparin, Hep)을 도입하는 단계; 및
e) 상기 헤파린이 도입된 PLLA 표면을 골유도인자(Bone Morphogenetic protein 2, BMP-2)가 용해되어 있는 수용액에 담궈 헤파린과 BMP-2의 결합을 유도하는 단계;를 포함하는 생분해성 고분자의 표면처리 방법.
a) inducing a functional group on the surface of poly L-lactic acid (PLLA);
b) coating hydroxyapatite with dopamine by mixing hydroxyapatite (HAp) and dopamine (DA);
c) coupling dopamine / hydroxyapatite (DA / HAp) coated with dopamine to the functional group-induced PLLA surface;
d) introducing heparin (Hep) into the PLLA surface by reacting the surface of the PLLA conjugated with DA / HAp with an aqueous solution of heparin; And
e) immersing the heparin-introduced PLLA surface in an aqueous solution having Bone Morphogenetic protein 2 (BMP-2) dissolved therein to induce binding of heparin to BMP-2; Processing method.
제1항에 있어서, 상기 a) 단계에서 관능기의 유도는 0.01 내지 70 mTorr의 압력에서 5 내지 60초간 플라즈마 처리를 통해 수행되는 것을 특징으로 하는 생분해성 고분자의 표면처리 방법.
The method according to claim 1, wherein the induction of the functional group in step (a) is carried out by plasma treatment at a pressure of 0.01 to 70 mTorr for 5 to 60 seconds.
제1항에 있어서, 상기 a) 단계의 관능기는 하이드록시(hydroxyl)기 또는 카복시(carboxyl)기인 것을 특징으로 하는 생분해성 고분자의 표면처리 방법.
The method according to claim 1, wherein the functional group in step a) is a hydroxyl group or a carboxyl group.
삭제delete 제1항에 있어서, 상기 c) 단계에서 결합은 상기 PLLA 표면의 관능기와 상기 HAp가 펩티드(peptide) 결합하는 것을 특징으로 하는 생분해성 고분자의 표면처리 방법.
The method according to claim 1, wherein in step (c), the functional group of the PLLA surface and the HAp are peptide-bonded.
삭제delete 제1항의 방법에 의해 표면 처리된 생분해성 고분자.
A biodegradable polymer surface-treated by the method of claim 1.
제7항에 있어서, 상기 생분해성 고분자는 골 형성 활성이 0.05 내지 0.25M/분 인 것을 특징으로 하는 표면처리 된 생분해성 고분자
The biodegradable polymer according to claim 7, wherein the biodegradable polymer has an osteogenic activity of 0.05 to 0.25 M / min.
제7항에 있어서 상기 생분해성 고분자는 골광화가 0.05 내지 0.30의 광학밀도(optical density, O.D)값을 가지는 것을 특징으로 하는 표면처리 된 생분해성 고분자.


The surface-treated biodegradable polymer according to claim 7, wherein the biodegradable polymer has an optical density (OD) value of 0.05 to 0.30.


KR1020160094364A 2016-07-25 2016-07-25 Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration KR101881541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160094364A KR101881541B1 (en) 2016-07-25 2016-07-25 Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160094364A KR101881541B1 (en) 2016-07-25 2016-07-25 Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration

Publications (2)

Publication Number Publication Date
KR20180011668A KR20180011668A (en) 2018-02-02
KR101881541B1 true KR101881541B1 (en) 2018-07-24

Family

ID=61223293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160094364A KR101881541B1 (en) 2016-07-25 2016-07-25 Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration

Country Status (1)

Country Link
KR (1) KR101881541B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319010A (en) * 1999-05-06 2000-11-21 Agency Of Ind Science & Technol Hydroxy apatite composite material and its production
KR100378109B1 (en) 2000-10-24 2003-03-29 주식회사 메디프렉스 Hydrophobic multicomponant heparin conjugates, a preparing method and a use thereof
KR100529209B1 (en) 2002-08-28 2005-11-17 한국과학기술연구원 A preparation method of biodegradable porous polymer scaffolds having improved cell compatibility
KR101260507B1 (en) * 2011-06-07 2013-05-02 광주과학기술원 Bone-regenerative, Biodegradable Pocket for Bone Chip Graft
KR101388567B1 (en) 2011-02-11 2014-04-23 서울대학교산학협력단 Surface-modified scaffold having improved bone regeneration ability and preparation thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102380005B1 (en) * 2014-12-09 2022-03-29 고려대학교 산학협력단 Osteoinductive Molecules-eluting Scaffold and Method for Preparing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319010A (en) * 1999-05-06 2000-11-21 Agency Of Ind Science & Technol Hydroxy apatite composite material and its production
KR100378109B1 (en) 2000-10-24 2003-03-29 주식회사 메디프렉스 Hydrophobic multicomponant heparin conjugates, a preparing method and a use thereof
KR100529209B1 (en) 2002-08-28 2005-11-17 한국과학기술연구원 A preparation method of biodegradable porous polymer scaffolds having improved cell compatibility
KR101388567B1 (en) 2011-02-11 2014-04-23 서울대학교산학협력단 Surface-modified scaffold having improved bone regeneration ability and preparation thereof
KR101260507B1 (en) * 2011-06-07 2013-05-02 광주과학기술원 Bone-regenerative, Biodegradable Pocket for Bone Chip Graft

Also Published As

Publication number Publication date
KR20180011668A (en) 2018-02-02

Similar Documents

Publication Publication Date Title
Raphel et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants
Chen et al. Surface biofunctionalization by covalent co-immobilization of oligopeptides
Shi et al. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration
Chen et al. Umbilical cord stem cells released from alginate–fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration
Xie et al. Programmed surface on poly (aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially
Higashi et al. Polymer-hydroxyapatite composites for biodegradable bone fillers
Xu et al. A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants
Thein-Han et al. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering
Lieb et al. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides
JP6343674B2 (en) Bioelastomer and its use
US8101198B2 (en) Osteogenic enhancer composition
Fernandez-Garcia et al. Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications
Hu et al. A microporous surface containing Si3N4/Ta microparticles of PEKK exhibits both antibacterial and osteogenic activity for inducing cellular response and improving osseointegration
Broggini et al. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐and heparin (KRSR)‐binding peptides
Wu et al. Reinforcement of a new calcium phosphate cement with RGD‐chitosan‐fiber
Peng et al. Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections
Alagoz et al. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering
Lee et al. Silicon nitride, a bioceramic for bone tissue engineering: A reinforced cryogel system with antibiofilm and osteogenic effects
Lovati et al. Peptide-enriched silk fibroin sponge and trabecular titanium composites to enhance bone ingrowth of prosthetic implants in an ovine model of bone gaps
CN114558170A (en) Growth factor-containing skull repairing polyether-ether-ketone material and preparation method thereof
Xie et al. Biocompatibility and safety evaluation of a silk fibroin-doped calcium polyphosphate scaffold copolymer in vitro and in vivo
KR101881541B1 (en) Surface treatment method of biodegradable polymer for improvement of osteogenesis or osseointegration
Kwak et al. In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ɛ-caprolactone: Effect of bio-functionalization for bone tissue engineering
Choy et al. Bioactive coatings
KR20180137508A (en) Dental prostheses and parts thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant