KR101876775B1 - Drought and Osmotic Stress Registant Gene and Transformant Using the Same - Google Patents

Drought and Osmotic Stress Registant Gene and Transformant Using the Same Download PDF

Info

Publication number
KR101876775B1
KR101876775B1 KR1020160137899A KR20160137899A KR101876775B1 KR 101876775 B1 KR101876775 B1 KR 101876775B1 KR 1020160137899 A KR1020160137899 A KR 1020160137899A KR 20160137899 A KR20160137899 A KR 20160137899A KR 101876775 B1 KR101876775 B1 KR 101876775B1
Authority
KR
South Korea
Prior art keywords
gene
osmotic stress
ptdrg2
stress
dry
Prior art date
Application number
KR1020160137899A
Other languages
Korean (ko)
Other versions
KR20180044152A (en
Inventor
최동욱
임성오
정현신
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to KR1020160137899A priority Critical patent/KR101876775B1/en
Publication of KR20180044152A publication Critical patent/KR20180044152A/en
Application granted granted Critical
Publication of KR101876775B1 publication Critical patent/KR101876775B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 김 속에서 유래하는, 서열번호 1의 염기서열과 소정의 상동성을 보이는 건조 및 삼투 스트레스 저항성 유전자 및 이를 이용하여 제조한 건조 및 삼투 스트레스 저항성을 갖는 형질전환체에 관한 것이다.
이러한 본 발명에 의한 유전자는 건조 또는 삼투 스트레스에 의해 유도되는 유전자로서, 조류 또는 녹색 식물에서 발현되도록 함으로써 조류 또는 식물의 건조 및 삼투 스트레스 저항성을 증가시킬 수 있는 효과가 있다.
The present invention relates to a dry and osmotic stress resistance gene having a predetermined homology with the nucleotide sequence of SEQ ID NO: 1 derived from Kimchi and a transformant having a dry and osmotic stress resistance using the same.
The gene according to the present invention is a gene induced by dry or osmotic stress, and is expressed in a bird or a green plant, thereby increasing the resistance to dryness and osmotic stress of a bird or a plant.

Description

김 유래 건조 및 삼투 스트레스 저항성 유전자 및 이를 이용한 형질전환체{Drought and Osmotic Stress Registant Gene and Transformant Using the Same}{Drought and Osmotic Stress Registant Gene and Transformant Using the Same}

본 발명은 김 속에서 유래하는, 건조 및 삼투 스트레스에 저항성을 갖는 유전자 및 이를 이용하여 제조한 건조 및 삼투 스트레스 저항성을 갖는 형질전환체에 관한 것이다.The present invention relates to a gene having resistance to dry and osmotic stress derived from Kimchi and a transformant having dry and osmotic stress resistance using the same.

김(Pyropia tenera (Bangiales, Rhodophyta))은 한국, 일본, 중국에서 재배되는 상업적으로 가치 있는 중요한 해양 홍조류 중 하나이다. P. tenera는 썰물 동안 공기에 노출되어 80~95% 수분이 손실되었다가(Blouin et al. 2011) 밀물 때 수분이 보충되는 등 반복적이고 극단적인 스트레스 환경 조건에 노출되어 있다. 따라서 P. tenera은 탈수 스트레스 조건 하에서 생존을 위해 다양한 전략과 메커니즘을 보유하고 있을 것이라 예상할 수 있다.Kim ( Pyropia tenera (Bangiales, Rhodophyta)) is one of commercially important marine red algae cultivated in Korea, Japan and China. P. tenera is exposed to repeated and extreme stressful environmental conditions such as 80 to 95% water loss during blast (Blouin et al. 2011) and water replenishment during tide. Therefore, P. tenera can be expected to have various strategies and mechanisms for survival under dehydration stress conditions.

지금까지 건조 및 삼투 스트레스 내성 유전자에 대한 연구는 육상식물을 중심으로 진행되어 왔다. 계통분류학적 연구는 홍조류가 매우 오래전에 녹색식물과 계통적으로 분지되었음을 보여준다. 따라서 육상식물에서 나타나는 건조와 삼투 스트레스 기작과 공통된 기작 외에 홍조식물 특이적 기작이 존재할 것으로 추측된다.So far, studies on dry and osmotic stress tolerance genes have been conducted mainly on land plants. Phylogenetic studies show that red algae have been systematically branched into green plants very long ago. Therefore, it is presumed that there is a flora-specific mechanism in addition to a mechanism common to the dry and osmotic stress mechanisms appearing in the land plants.

그러나 분자 수준에서 조간대에 서식하는 홍조류의 탈수 내성 메커니즘에 대해서는 거의 알려지지 않았으며, 이와 관련된 최근 연구는 반응성 산소종(ROS)의 역할에 초점을 맞추고 있다(Burritt et al. 2002; Contreras-Porcia et al. 2011; Kumar et al. 2011). ROS는 산화 스트레스를 방어하는 산화된 다불포화 지방산을 생성할 수 있어서, 신호와 스트레스 반응에서 다각적인 역할을 하는 것으로 알려져 있다(Foyer and Noctor 2005). 탄수화물 및 다당류 역시 삼투 및 수분 손실 스트레스환경에서 세포막과 단백질의 보호에 관여한다(Ghasempour et al. 1998; Tamaru et al. 2005). 특히, 광합성 탄수화물인 floridosides는 Pyropia에서 탈수 스트레스 환경에서 세포를 보호하기 위해 축적된다(Reed et al. 1980; Qian et al. 2015). 그러나 이들 이외에 홍조류에서 탈수 스트레스에 관여하는 스트레스 신호 전달경로와 하류 유전자에 대해서는 거의 알려져 있지 않다. However, little is known about the mechanism of dehydration resistance of red algae in the intertidal zone at the molecular level, and recent work on this has focused on the role of reactive oxygen species (Burritt et al., 2002; Contreras-Porcia et al 2011; Kumar et al., 2011). ROS is known to play a multifaceted role in signal and stress responses because it can produce oxidized polyunsaturated fatty acids that protect against oxidative stress (Foyer and Noctor 2005). Carbohydrates and polysaccharides also participate in the protection of cell membranes and proteins in osmotic and water-loss stress environments (Ghasempour et al. 1998; Tamaru et al. 2005). In particular, photosynthetic carbohydrates, floridosides, accumulate to protect cells in dehydrated stress environments in Pyropia (Reed et al., 1980; Qian et al. However, little is known about the stress signaling pathways and downstream genes involved in dehydration stress in red algae.

한편, 최근 미세조류를 이용한 바이오디젤 원료의 생산이나 해양 미세조류의 대량배양에 의한 대기 중 이산화탄소의 고정 및 수산양식용 어류의 식물 먹이 개발 등에 관한 연구가 많이 이루어지고 있다. 이들 연구에서 선별된 유효 미세조류들이 배지의 농도에 폭넓은 적응력을 가지는가 여부가 산업적 실용성 결정에 중요한 요인이 된다. Recently, there have been many studies on the production of biodiesel feeds using microalgae, the fixation of atmospheric carbon dioxide by mass culture of marine microalgae, and the development of plant food for fish culture aquaculture. Whether the selected microalgae have broad adaptability to the concentration of the media in these studies is an important factor in the determination of industrial practicality.

육상 작물에서 건조 스트레스는 온도 스트레스와 함께 작물의 생장 및 생산량을 제한하는 가장 중요한 비생물적(abiotic) 환경 스트레스인 것으로 알려져 있다. 예를 들면, 이러한 비생물적 환경 스트레스는 가능한 작물 생산량의 반 이상의 손실을 초래하는 것으로 확인되고 있다. Dry stress in terrestrial crops is known to be the most important abiotic environmental stress limiting temperature stress and crop growth and production. For example, these abiotic environmental stresses have been found to result in a loss of more than half of possible crop production.

Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trend in Plant Sci 16:29-37Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trend in Plant Sci 16: 29-37 Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215:829-838Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215: 829-838 Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62:1815-1829Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62: 1815-1829 Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194-201Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72: 194-201 Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056-1071Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28: 1056-1071 Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses. Plant Growth Regul 24:185-191Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, especially grasses. Plant Growth Regul 24: 185-191 Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327-7333Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71: 7327-7333 Reed RH, Collins JC, Russell G (1980) The effects of salinity upon galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth). C. Ag. J Exp Bot 31:1539-1554Reed RH, Collins JC, Russell G (1980) The effects of salinity on galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth). C. Ag. J Exp Bot 31: 1539-1554 Qian F, Luo Q, Yang R, Zhu Z, Chen H, Yan X (2015) The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. J Appl Phycol 27:621-632 Qian F, Luo Q, Yang R, Zhu Z, Chen H, Yan X (2015) The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. J Appl Phycol 27: 621-632 Hwang MS, Kim SM, Ha DS, Baek JM, Kim HS, Choi HG (2005) DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 20:183-196Hwang MS, Kim SM, Ha DS, Baek JM, Kim HS, Choi HG (2005) DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 20: 183-196 McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of Phycological methods. Cambridge Univ Press, New York, pp 25-51McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of Phycological methods. Cambridge Univ Press, New York, pp 25-51 Im S, Choi S, Hwang MS, Park EJ, Jeong WJ, Choi DW (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Applied Phycology 27:1343-1353Im S, Choi S, Hwang MS, Park EJ, Jeong WJ, Choi DW (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Applied Phycology 27: 1343-1353

본 발명은 미세조류 또는 육상 작물과 같은 식물에 삼투압 스트레스, 탈수 스트레스 등과 같은 환경적 스트레스에 대한 저항성 유전자를 발굴하고 이를 미세조류 또는 육상 작물에 적용하는 것을 목적으로 한다. The present invention aims to find a resistance gene against environmental stresses such as osmotic stress, dehydration stress and the like on a plant such as a microalgae or a terrestrial crop and apply it to microalgae or land crops.

전술한 목적을 달성하기 위한 본 발명은 서열번호 1의 염기서열을 포함하는 건조 및 삼투 스트레스 저항성 유전자인 것을 특징으로 한다. 나아가 본 발명은 서열번호 1과 80% 이상, 바람직하게는 90% 이상, 더욱 바람직하게는 95% 이상의 상동성을 가지는 서열일 수 있다.In order to achieve the above object, the present invention is characterized in that it is a dry and osmotic stress resistance gene comprising the nucleotide sequence of SEQ ID NO: 1. Further, the present invention may be a sequence having a homology of at least 80%, preferably at least 90%, more preferably at least 95% with SEQ ID NO: 1.

상기 유전자는 김 속 (Pyropia)으로부터 분리될 수 있다.The gene can be isolated from the genus Pyropia .

본 발명자는 대조구 및 탈수 조건에서 P. tenera의 엽상체로부터 전사체 서열을 생성하고, 이를 비교함으로써 탈수 스트레스에 대응하는 다수의 유전자를 확인하고 그 중 서열 1에 대응되는 유전자(도 1)를 PtDRG2라 명명하였다.The present inventors have identified a number of genes corresponding to dehydration stress by generating transcript sequences from the thallus of P. tenera under the control and dehydration conditions, and identified the genes corresponding to the sequence 1 (Fig. 1) as PtDRG2 Respectively.

또한 본 발명은 상기 유전자를 포함하는 건조 및 삼투 스트레스 저항성 형질전환벡터 및 이 형질전환벡터가 도입된 건조 및 삼투 스트레스 저항성 형질전환체에 관한 것이다. The present invention also relates to a dry and osmotic stress-resistant transformation vector comprising the gene and a dry and osmotic stress-resistant transformant into which the transformation vector is introduced.

상기 형질전환벡터는 본 발명의 유전자의 발현을 확인하거나 형질전환체를 선별할 수 있는 선별 마커를 추가로 포함할 수 있다. 선별 마커로는 카나마이신, 히그로마이신, 젠타마이신 및 블레오마이신 등의 항생제에 대하여 내성을 나타내는 유전자, 또는 GUS(β-glucuronidase), CAT(chloramphenicol acetyltransferase), 루시퍼라제(luciferase) 또는 GFP(green fluorescent protein) 등을 암호화하는 유전자가 있으나 이에 한정되지 않는다. The transformation vector may further include a selection marker capable of confirming the expression of the gene of the present invention or selecting a transformant. Examples of the selection marker include genes showing resistance to antibiotics such as kanamycin, hygromycin, gentamycin and bleomycin or genes expressing GUS (β-glucuronidase), CAT (chloramphenicol acetyltransferase), luciferase or GFP ), And the like, but is not limited thereto.

본 발명에서 상기 형질전환벡터는 예를 들면, pCr112 vector와 같이 조류에서 발현되는 벡터이고, 형질전환체는 조류일 수 있다. 하기 실시예에서는 pCr112 vector에 상기 유전자를 클로닝하고 이를 클라미도모나스에 도입하여 건조 및 삼투 스트레스 저항성 형질전환체를 획득하였다.In the present invention, the transformed vector may be a vector expressed in an alga such as, for example, a pCr112 vector, and the transformant may be a bird. In the following example, the gene was cloned into pCr112 vector and introduced into Clamidomonas to obtain a dry and osmotic stress resistant transformant.

또한 본 발명은, 상기 유전자에 의해 암호화된 건조 및 삼투 스트레스 저항성 단백질 및 이 단백질을 조류 또는 식물체의 건조 또는 삼투 스트레스 저항성 증진의 용도로 사용하는 방법에 관한 것이다.The present invention also relates to a dry and osmotic stress resistant protein encoded by the gene and a method of using the protein for the purpose of enhancing dryness or osmotic stress resistance of birds or plants.

이상과 같이 김으로부터 분리한 본 발명에 의한 유전자는 건조 또는 삼투 스트레스에 의해 유도되는 유전자로서, 조류 또는 녹색 식물에서 발현되도록 함으로써 조류 또는 식물의 건조 및 삼투 스트레스 저항성을 증가시킬 수 있는 효과가 있다.As described above, the gene according to the present invention isolated from laver is a gene induced by dry or osmotic stress, and can be expressed in algae or green plants, thereby enhancing the drying and osmotic stress resistance of algae or plants.

도 1 및 2는 각각 본 발명에 의한 유전자 PtDRG2의 염기서열 및 이것이 암호화하는 단백질의 아미노산서열.
도 3은 본 발명에 의한 유전자 PtDRG2가 암호화하는 단백질과 Pyropia 종의 유사 단백질과의 아미노산서열 비교도.
도 4 및 5는 각각 본 발명에 의한 PtDRG2가 탈수 스트레스에서 발현이 증가되며, 엽록체 단백질을 암호화하고 있음을 보여주는 도표와 사진.
도 6은 본 발명의 실시예에서 PtDRG2가 pCr112 vector에 도입된 영역의 개념도.
도 7은 본 발명에 의한 PtDRG2가 클라미도모나스 세포에 도입되었음을 보여주는 PCR 결과물의 전기영동 결과 사진.
도 8은 본 발명에 의한 PtDRG2로 형질전환된 클라미도모나스 세포가 염 또는 만니톨에 내성을 보여주는 실험 결과 사진.
1 and 2 are respectively the nucleotide sequence of the gene PtDRG2 according to the present invention and the amino acid sequence of the protein encoded thereby .
Fig. 3 is an amino acid sequence comparison between a protein encoded by the gene PtDRG2 according to the present invention and a similar protein of Pyropia species. Fig.
FIGS. 4 and 5 are graphs and photographs showing that PtDRG2 according to the present invention increases expression in dehydration stress and encodes chloroplast proteins. FIG.
6 is a conceptual diagram of a region in which PtDRG2 is introduced into a pCr112 vector in an embodiment of the present invention.
FIG. 7 is a photograph of the electrophoresis result of the PCR product showing that PtDRG2 according to the present invention was introduced into Clamidomonas cells.
FIG. 8 is a photograph showing the result of an experiment in which a plastid transformed with PtDRG2 according to the present invention shows resistance to a salt or mannitol.

이하 첨부된 도면과 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 도면과 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and embodiments. However, the drawings and the embodiments are only illustrative of the contents and scope of the technical idea of the present invention, and the technical scope of the present invention is not limited or changed. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention based on these examples.

본 발명은, P. tenera으로부터 신규한 탈수 반응 단백질을 인코딩하는 유전자 PtDRG2를 식별하고 이를 분석한 결과 얻어진 것이다.The present invention was obtained as a result of identifying and analyzing the gene PtDRG2 encoding a novel dehydration reaction protein from P. tenera .

P. tenera에서 탈수 내성에 관여하는 새로운 유전자를 식별하기 위해, 대조구와 건조 스트레스 처리한 엽상체로부터 대량의 전사체 서열을 얻고, 대조구와 건조 스트레스 처리 transcriptome(전사체)의 비교를 통해 DEGs(differentially expressed genes)를 선별하고, 탈수 반응 유전자(PtDRGs)라 명명하였다. 선택된 PtDRGs 가운데, 159 아미노산의 폴리펩티드(서열번호 2, 도 2)를 암호화하는 PtDRG2(도 1)를 클로닝하고, 이의 생리적 기능을 연구하였다. PtDRG2가 공공 데이터베이스에 알려진 단백질과 서열 상동성을 보여주지 않았지만, 그 상동체가 P. yezoensisP. seriata의 로컬 전사체 데이터베이스에서 검출되었다(도 3). 이러한 결과는 PtDRG2Pyropia 특이적이거나, 그의 녹색 식물에서의 상동체가 낮은 서열 상동성일 수 있음을 시사한다. PtDRG2는 새로운 엽록체 단백질을 인코딩하는 것으로 밝혀졌고, 탈수 스트레스에서 발현이 증가되었다(도 4 및 5 참고). 따라서 PtDRG2은 탈수와 같은 비생물적 스트레스에 대한 내성 메커니즘에 관여할 것으로 추측되었다. In order to identify new genes involved in dehydration resistance in P. tenera , a large number of transcript sequences were obtained from the control and dry stressed thalli, and compared with the control and dry stress-treated transcriptome (DEGs) genes were selected and named dehydration-reacting genes ( PtDRGs ). Of the selected PtDRGs , PtDRG2 (FIG. 1) encoding a polypeptide of 159 amino acids (SEQ ID NO: 2, FIG. 2) was cloned and its physiological function was studied. Although PtDRG2 did not show sequence homology with proteins known in public databases, its homologues were detected in a local transcript database of P. yezoensis and P. seriata (Fig. 3). These results suggest that PtDRG2 may be pyropia - specific or its homologues in green plants may be low. PtDRG2 was found to encode a new chloroplast protein and increased expression in dehydration stress (see Figures 4 and 5). Therefore, PtDRG2 is thought to be involved in resistance mechanism against abiotic stress such as dehydration.

PtDRG2의 생리 기능을 확인하기 위해, 이것을 클라미도모나스로 도입하고 이 형질전환 세포의 비생물적 스트레스에 대한 내성을 분석하였다. PtDRG2 유전자 과발현 형질전환 클라미도모나스는 높은 염 또는 만니톨을 포함하는 한천 배지에서 빈 벡터를 가지는 대조구 세포보다 더 잘 자랐다 (도 8). 이러한 결과는 PtDRG2 유전자가 작은 새로운 엽록체 단백질을 암호화하며, 클라미도모나스의 만니톨 및 염 스트레스에 의한 삼투압 스트레스 내성 메카니즘에 기여함을 증명한다. To confirm the physiological function of PtDRG2 , this was introduced into Clamidomonas and the tolerance to abiotic stress of the transfected cells was analyzed. The PtDRG2 gene transgenic clomidomonas grew better than control cells with empty vectors in agar medium containing high salt or mannitol (Fig. 8). These results demonstrate that the PtDRG2 gene encodes a small new chloroplast protein and contributes to the osmotic stress tolerance mechanism by the mannitol and salt stress of the clamidomonas.

[실시예][Example]

(1) 김 전사체 생성 및 탈수 반응 DEG 분석(1) Degranulation and dehydration reaction

본 연구에 사용된 Pyropia tenera (Kjellman, LB)는 국립수산과학원 해조류연구센터에서 입수하였다(Hwang et al. 2005). 탈수 스트레스는 임 등(2015)에 의해 기술 방법으로 유도하고 엽상체는 액체 질소로 동결되고 RNA를 추출할 때까지 -80℃에서 보관되었다. Pyropia tenera (Kjellman, LB) used in this study was obtained from the seaweed research center of the National Fisheries Research and Development Institute (Hwang et al. 2005). Dehydration stress was induced by the method of Lim et al. (2015), and the thalli were frozen in liquid nitrogen and stored at -80 ° C until RNA extraction.

김 대조구 및 탈수 처리 엽상체로부터 전사체 생성은 G&C 바이오(대전, 한국)에서 GS-FLX 454 플랫폼을 사용하여 결정하였다. 간단히 설명하면, GS-FLX 454 시퀀싱을 위한 cDNA 라이브러리는 cDNA 합성 키트(로슈, 스위스)를 사용하여 만들었다. cDNA 합성을 위해서는 약 1 μg의 poly(A)+ RNA가 이용되었다. 어댑터-연결 cDNA는 비드에 결합시키고, 에멀전 PCR에 의해 증폭되고, GS-FLX 454 플랫폼을 이용하여 염기서열을 생성하였다. 생성된 전사체 reads 중 매우 짧거(<50 BP)나 신뢰도가 낮은 reads는 제거하고 Genomics Workbench 7.5.1 (CLC bio, Germany) 프로그램을 사용하여 De novo 어셈블리 하였다. Generation of transcripts from the control and dehydrated thalli were determined using the GS-FLX 454 platform in G & C Bio (Daejeon, Korea). Briefly, the cDNA library for GS-FLX 454 sequencing was generated using a cDNA synthesis kit (Roche, Switzerland). About 1 μg of poly (A) + RNA was used for cDNA synthesis. Adapter-linked cDNA was coupled to beads, amplified by emulsion PCR, and generated a nucleotide sequence using the GS-FLX 454 platform. Very short (<50 BP) or low-confidence reads among the generated transcript reads were removed and De novo assembled using the Genomics Workbench 7.5.1 (CLC bio, Germany) program.

De novo 어셈블리를 통해 얻은 13,170개 콘티그들은 RPKM 값을 기준으로 대조구에 비해 탈수 스트레스 처리 엽상체에서 2배 이상 변화를 보여주는 콘티그들을 탈수 반응 DEGs로 판단하였다. 총 1,160 콘티그가 탈수에 반응하는 DEG로 판단되었다. The 13,170 cones obtained from de novo assemblies were judged to be dehydration reaction DEGs based on RPKM values, showing contiguous changes of more than 2 times in dehydrated stressed fronds compared to the control. A total of 1,160 conti was judged to be DEG reacting to dehydration.

대조구 및 탈수 스트레스 처리한 김 엽상체에서 선별된 16개의 탈수 반응 DEGs를 선별하고 김에서 이들의 발현 수준을 qRT-PCR를 이용해 실험적으로 조사하였다. 선택된 DEGs의 상대적 발현 수준의 비교는 모든 유전자의 발현이 탈수 스트레스 후에 두 배 이상 증가됨을 보여주였다. 따라서, 서열 reads에 의해 선택된 유전자의 87.5 %가 qRT-PCR로 확인되었다.Sixteen dehydrated DEGs selected from control and dehydrated stressed livers were selected and their expression levels were investigated experimentally using qRT-PCR. A comparison of the relative expression levels of selected DEGs showed that expression of all genes increased more than twice after dehydration stress. Thus, 87.5% of the genes selected by sequence reads were confirmed by qRT-PCR.

(2) (2) PtDRG2PtDRG2 유전자의 클로닝 Cloning of genes

qRT-PCR 결과 탈수 스트레스에 의해 발현이 증가됨이 확인된 DEG 중에서 알려진 단백질과 전혀 서열 상동성이 없고 폴리펩티드에 대한 오픈 리딩 프레임을 포함하는 contig들을 탈수 반응 유전자로 선별하고 PtDRGs로 명명하였다. 오픈 리딩 프레임은 Sequencher software(GeneCode Corporation, Ann Arbor, MI, USA)로 검색되었고, 전체 ORF에 대한 cDNA는 PCR 증폭되었다(도 1). PCR 산물은 pGEM T-easy vector(Promega, USA)에 클로닝되었고, 서열이 결정되었다. 선택된 유전자의 추정 분자량 및 pI 값은 ProtParam (http://web.expasy.org/compute_pi/)를 이용하여 추정하였다. As a result of qRT-PCR, the contigs containing no open reading frame sequence with known proteins in the identified DEGs which were found to be increased by dehydration stress, and contigs containing the open reading frame for the polypeptide were selected as dehydration reaction genes and named as PtDRGs . The open reading frame was searched with Sequencher software (GeneCode Corporation, Ann Arbor, Mich., USA) and the cDNA for the entire ORF was PCR amplified (Figure 1). The PCR product was cloned into pGEM T-easy vector (Promega, USA) and sequenced. The estimated molecular weights and pI values of the selected genes were estimated using ProtParam (http://web.expasy.org/compute_pi/).

본 발명에서는 선별된 PtDRGs 유전자 중 PtDRG2 cDNA가 159 아미노산으로 구성된 17.54 kDa의 분자량 및 pI 5.20인 폴리펩티드(서열번호 2)를 암호화하는 것을 확인하였다(도 2). 알라닌 (1.3 mol %)은 PtDRG2 폴리펩티드에서 가장 풍부하였다. 또한 아시아에서 양식되는 PyropiaP. yezoensisP. seriata에서도 PtDRG2 ortholog를 확인하였다(도 3). PtDRG2는 하나의 아미노산을 제외하고는 P. yezoensisPyDRG2와 동일하였다. 그러나 P. seriataPsDRG2(도 3)와는 88.4 % 아미노산 서열 동일성을 보였다 (도 3).In the present invention, it was confirmed that among the selected PtDRGs genes, the PtDRG2 cDNA encodes a polypeptide having a molecular weight of 17.54 kDa consisting of 159 amino acids and a pI of 5.20 (SEQ ID NO: 2) (FIG. 2). Alanine (1.3 mol%) was the most abundant in the PtDRG2 polypeptide. In addition, the Pyropia species P. yezoensis and P. seriata cultured in Asia PtDRG2 ortholog (Fig. 3). PtDRG2 was identical to PyDRG2 of P. yezoensis except for one amino acid. However, it showed 88.4% amino acid sequence identity with PsDRG2 (Fig. 3) of P. seriata (Fig. 3).

(3) (3) PtDRG2 PtDRG2 유전자 발현 분석Gene expression analysis

PtDRG2의 유전자 발현 양상을 확인하기 위해 대조구 및 다양한 스트레스 처리된 조직으로부터 전체 RNA를 분리하여 qRT-PCR에 사용하였다. 탈수 스트레스는 앞서 설명한 방법으로 4시간 처리하였고, 만니톨 및 H2O2 처리를 위해, 배우체의 엽상체는 0.5 M 만니톨 또는 20 mM의 H2O2를 포함하는 배지에서 8시간 동안 배양되었다. 임 등 (2015)에 의해 기술된 바와 같이, 열과 동결 스트레스는 20℃와 4℃에서 4시간 동안 유도되었다. 추출한 총 RNA에 DNase I 처리 후, 1.6 μg의 총 RNA는 AmfiRivert 역전사효소 (Gendepot, USA)를 이용하여 제조업체의 지침에 따라 40ul 반응부피에서 단일 가닥 cDNA로 역전사 되었다. 선택된 콘티그로부터의 서열 특이적 프라이머 세트는 Primer 3 program 을 사용하여 설계되었다. 액틴 유전자(5'-TCCTGGGCAATGAGATGAGC-3'와 5'-AATCCACACCGAGTACTGCC-3')는 내부 대조구로서 사용되었다. 최 등(2013)의 설명에 따라 qRT-PCR이 수행되었다. qRT-PCR 결과 PtDRG2 유전자는 건조 스트레스 처리 엽상체에서 발현이 약 20배 증가함을 보였으며, 만니톨과 과산화 수소 처리 엽상체에서도 발현이 증가되었다. 그러나 고온이나 결빙 스트레스에는 반응하지 않았다(도 4). 이러한 결과는 PtDRG2 유전자가 건조나 mannitol에 의해 유도되는 삼투 스트레스에 대한 내성기작이 관여함을 보여준다. To confirm the gene expression pattern of PtDRG2 , total RNA was isolated from the control and various stress-treated tissues and used for qRT-PCR. Dehydration stress was treated for 4 hours in the same manner as described above. For treatment with mannitol and H 2 O 2 , gametophytes were cultured in medium containing 0.5 M mannitol or 20 mM H 2 O 2 for 8 hours. Heat and freezing stress were induced at 20 &lt; 0 &gt; C and 4 &lt; 0 &gt; C for 4 hours, as described by Lim et al. (2015). After DNase I treatment, 1.6 μg of total RNA was reverse transcribed with single strand cDNA in a 40 μl reaction volume according to the manufacturer's instructions using AmfiRivert reverse transcriptase (Gendepot, USA). Sequence specific primer sets from selected contigs were designed using the Primer 3 program. Actin genes (5'-TCCTGGGCAATGAGATGAGC-3 'and 5'-AATCCACACCGAGTACTGCC-3') were used as internal controls. QRT-PCR was performed according to the description of Choi et al. (2013). As a result of qRT-PCR, the expression of PtDRG2 gene was increased about 20 times in the thirst -treated thallus, and the expression was also increased in mannitol and hydrogen peroxide treated thrips. However, it did not respond to high temperature or icing stress (Fig. 4). These results show that the resistance mechanism of osmotic stress induced by the PtDRG2 gene induced by drying or mannitol is involved.

(4) (4) PtDRG2PtDRG2 의 세포 내 위치 결정Of cells

PtDRG2의 세포 내 위치의 예측은 PtDRG2이 엽록체와 같은 세포 기관에 위치할 수 있음을 제시하였다. PtDRG2 단백질의 세포내 위치를 결정하기 위해 XbaI 와 BamHI 인식부위를 포함하는 정방향(서열번호 3 : 5'-TCTAGATGGTCAAGTTTTCCAAGACG-3')과 역방향(서열번호 4 : 5'-GGATCCACAACAAGTTTTTGTCACAAA-3') 프라이머를 이용하여 PtDRG2 코딩 영역을 증폭하고, 35S 프로모터와 식물 발현 벡터 326-GFP의 녹색 형광 단백질 (GFP) 유전자 사이에 PtDRG2를 클로닝하였다. 키메라 PtDRG2 - GFP 발현 구축물은 담배(Nicotiana bethamiana) 원형질체로 주입되었고, 이어서 형광 현미경으로 GFP의 발현 및 세포내 위치(변화)를 확인하였다. Prediction of the intracellular location of PtDRG2 suggests that PtDRG2 may be located in a cell organ such as chloroplast. (SEQ ID NO: 3: 5'-TCTAGATGGTCAAGTTTTCCAAGACG-3 ') and reverse direction (SEQ ID NO: 4: 5'-GGATCCACAACAAGTTTTTTGTCACAAA-3') primers containing XbaI and BamHI recognition sites to determine the intracellular position of PtDRG2 protein To amplify the PtDRG2 coding region and to clone Pt DRG2 between the 35S promoter and the green fluorescent protein (GFP) gene of the plant expression vector 326-GFP. The chimeric PtDRG2 - GFP expression construct was injected into Nicotiana bethamiana protoplast, followed by fluorescence microscopy to confirm GFP expression and intracellular location (change).

PtDRG2-GFP 융합 단백질 형광은 주로 엽록체에서 관찰되었다 (도 5). 이러한 결과는 PtDRG2이 작은 엽록체 단백질을 암호화하고 있음을 의미한다. Fluorescence of the PtDRG2-GFP fusion protein was mainly observed in chloroplasts (Fig. 5). These results indicate that PtDRG2 encodes small chloroplast proteins.

(5) (5) PtDRG2PtDRG2 로 형질전환된 클라미도모나스의 제작Production of transformed Clamidomonas

PtDRG2의 생리적 기능을 분석하기 위해 Chlamydomonas reinhardtii 균주 Mut11가 사용되었다. 클라미도모나스 세포는 25℃, 14:10 (명:암) 광주기의 냉형광(50 mmol photon m-2 s- 1)하의 Tris-acetate-phosphate (TAP) 배지에서 100 rpm으로 진탕배양 되었다. NdeIEcoRV 인식부위를 포함하는, 정방향(서열번호 5 : 5'-CATATGGTCAAGTTTTCCAAGACG-3')과 역방향(서열번호 6 : 5'-GATATCTCACAACAAGTTTTTGTCAC-3') 프라이머를 이용하여 PtDRG2 유전자 ORF가 증폭되었고, pCr112 vector의 PsaD 프로모터 아래의 NdeI 및 EcoRV 사이트로 클로닝되었다(도 6). pCr112-PtDRG2 플라스미드는 C. reinhardtii에 도입되었다. 클라미도모나스 형질전환체는 10 mg mL-1 하이그로마이신을 함유하는 TAP 한천 배지에 7-14 일 배양 후 선별되었다. 형질전환 클라미도모나스 세포 라인은 하이그로마이신 내성에 의해 선별되었다. 형질전환 라인에서 PtDRG2의 도입을 확인하기 위해, 하이그로마이신 내성 형질전환 라인에서 게놈 DNA가 추출되었고, PtDRG2 특이 프라이머로 PCR이 수행되었다(도 7). PtDRG2 유전자는 모든 항생제 내성 클라미도모나스에서 검출되었으나, 빈 벡터 (Hyg)로 형질전환된 대조구 세포에서 증폭밴드가 관찰되지 않았다(도 7). 최종적으로 4 형질전환 클라미도모나스 세포주가 선택되었고, 추가적인 비생물적 스트레스 내성 분석에 사용되었다.The Chlamydomonas reinhardtii strain Mut11 was used to analyze the physiological function of PtDRG2. Chlamydomonas cells 25 ℃, 14:10 (name: f) cooling the fluorescent photoperiod - were incubated with shaking at (50 mmol photon m -2 s 1 ) under a Tris-acetate-phosphate (TAP) medium with 100 rpm. The PtDRG2 gene ORF was amplified using the forward (SEQ ID NO: 5: 5'-CATATGGTCAAGTTTTCCAAGACG-3 ') and reverse direction (SEQ ID NO: 6: 5'-GATATCTCACAACAAGTTTTTTTCAC-3') primers containing the NdeI and EcoRV recognition sites and pCr112 vector was cloned into the Nde I and Eco RV sites under the PsaD promoter (Figure 6). The pCr112- PtDRG2 plasmid was introduced into C. reinhardtii . Clamidomonas transformants were selected after culturing for 7-14 days in TAP agar medium containing 10 mg mL -1 hygromycin. The transformed clamidomonas cell line was screened by hygromycin resistance. To confirm the introduction of PtDRG2 in the transformation line, genomic DNA was extracted from a hygromycin resistant transfection line and PCR was performed with a PtDRG2 specific primer (Figure 7). The PtDRG2 gene was detected in all antibiotic-resistant clamidomonas, but no amplification band was observed in the control cells transfected with the empty vector (Hyg) (Fig. 7). Finally, 4 transformed clamidomonas cell lines were selected and used for additional abiotic stress tolerance assays.

(6) 형질전환 클라미도모나스의 비생물적 스트레스 내성 확인(6) Identification of abiotic stress tolerance of transformed clamidomonas

PtDRG2 유전자를 가지는 클라미도모나스 세포가 약 2-4×106 cells/㎖의 농도로 배양되었고, 신선한 TAP 배지에서 101-103배로 희석되었다. 희석된 세포 10 ㎖는 한천평판배지위에 접종되고 25℃, 14:10 (명:암) 광주기의 냉형광(50 mmol photon m-2 s- 1)하의 챔버에서 배양되었다. 삼투압 스트레스 처리를 위해, 세포는 200mM 만니톨을 함유하는 TAP 배지에 접종되었다. 염 처리를 위해, 세포는 80mM NaCl을 함유하는 TAP 배지에 접종되었다. 빈(empty) pCr112 vector (Hyg)를 가지는 C. reinhardtii 균주 Mut11는 대조구로 사용되었다.Clamidomonas cells carrying the PtDRG2 gene were cultured at a concentration of about 2-4 × 10 6 cells / ml and diluted 10 1 -10 3 times in fresh TAP medium. The diluted cells are inoculated 10 ㎖ and 25 ℃ on an agar plate medium, 14:10 (n: f) cooling the fluorescent photoperiod-were cultured in chamber under (50 mmol photon m -2 s 1 ). For osmotic stress treatment, the cells were inoculated into TAP medium containing 200 mM mannitol. For salt treatment, the cells were inoculated into TAP medium containing 80 mM NaCl. The C. reinhardtii strain Mut11 with empty pCr112 vector (Hyg) was used as a control.

형질전환 클라미도모나스 세포는 대조구 세포에 비해 염 또는 만니톨 함유 배지에서 더 높은 성장 속도를 보였으나(도 8). 이러한 결과는 PtDRG2가 형질 전환 클라미도모나스 세포에서 고염과 만니톨에 의해 유도되는 삼투 스트레스에 대한 내성 기작에 관여함을 보여준다. 연구결과 PtDRG2는 지금까지 보고된 어떤 유전자와도 유사성이 없는 새로운 유전자이며, 삼투 및 염 스트레스 내성에 관여함을 증명한다.The transformed clamidomonas cells showed a higher growth rate in the salt or mannitol-containing medium than in the control cells (Fig. 8). These results indicate that PtDRG2 is involved in the resistance mechanism against osmotic stress induced by high salt and mannitol in transformed Clamidomonas cells. Studies show that PtDRG2 is a novel gene that is not similar to any of the genes reported so far and is involved in osmotic and salt stress tolerance.

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Drought and Osmotic Stress Registant Gene and Transformant Using the Same <130> P1016-616 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 802 <212> DNA <213> Pyropia tenera <400> 1 ctgcccgcct cctgcgtcgt catgcccgtc tcgtggcgtt gtacactgcc gtcatcgtcc 60 caactgcatc cgggatttcc ctgttctttc tgctctgcct gccagcgtcg cactgccgaa 120 ggtgtcgcgc cacaaccttg agtgcctcac ccctcccacc ccgccccctt cctcccccct 180 ctgttgcttc cacaccttcc gcccctggga ggcagcatgg tcaagttttc caagacgctg 240 cacgtggccg cctcgaggtc gcgctgcttt gagctcctgc gcgactggtc gcgggcatcc 300 agctgggacc ccgccattgt cgagtcgtcc cggcaggcgg gccagccggc tgatgcgttt 360 ggcgccggga ccaagtggct catcatgttc aagcccagcc ccgacgccaa gcccatgtcg 420 gtggattata cgacgaccaa gttcgaggtg gaggaggcca agagcaccct cgtcttctct 480 ggaaacgcca cctttgtgcg gtccgtggac accctcgagt tgactgatgc ccccgcggcc 540 gacggcaccc cagggacaga cgtgaactac accgccgatg tgcggttgcg ctacctcctc 600 gctccatttt catttactct gcagggcaag atggatgaga tggctgagcc cgccatggag 660 ggtctgcaaa agttttgtga caaaaacttg ttgtgatggg gcggcagcgt gtaggcacag 720 ggaggcgcct gtgtcgtagc atgtacatat agtagatacg tcgtggacgg tccatgtgta 780 aagctgatat gacatgcata gg 802 <210> 2 <211> 159 <212> PRT <213> Pyropia tenera <400> 2 Met Val Lys Phe Ser Lys Thr Leu His Val Ala Ala Ser Arg Ser Arg 1 5 10 15 Cys Phe Glu Leu Leu Arg Asp Trp Ser Arg Ala Ser Ser Trp Asp Pro 20 25 30 Ala Ile Val Glu Ser Ser Arg Gln Ala Gly Gln Pro Ala Asp Ala Phe 35 40 45 Gly Ala Gly Thr Lys Trp Leu Ile Met Phe Lys Pro Ser Pro Asp Ala 50 55 60 Lys Pro Met Ser Val Asp Tyr Thr Thr Thr Lys Phe Glu Val Glu Glu 65 70 75 80 Ala Lys Ser Thr Leu Val Phe Ser Gly Asn Ala Thr Phe Val Arg Ser 85 90 95 Val Asp Thr Leu Glu Leu Thr Asp Ala Pro Ala Ala Asp Gly Thr Pro 100 105 110 Gly Thr Asp Val Asn Tyr Thr Ala Asp Val Arg Leu Arg Tyr Leu Leu 115 120 125 Ala Pro Phe Ser Phe Thr Leu Gln Gly Lys Met Asp Glu Met Ala Glu 130 135 140 Pro Ala Met Glu Gly Leu Gln Lys Phe Cys Asp Lys Asn Leu Leu 145 150 155 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 tctagatggt caagttttcc aagacg 26 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ggatccacaa caagtttttg tcacaaa 27 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 catatggtca agttttccaa gacg 24 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gatatctcac aacaagtttt tgtcac 26 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Drought and Osmotic Stress Registant Gene and Transformant Using          the Same <130> P1016-616 <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 802 <212> DNA <213> Pyropia tenera <400> 1 ctgcccgcct cctgcgtcgt catgcccgtc tcgtggcgtt gtacactgcc gtcatcgtcc 60 caactgcatc cgggatttcc ctgttctttc tgctctgcct gccagcgtcg cactgccgaa 120 ggtgtcgcgc cacaaccttg agtgcctcac ccctcccacc ccgccccctt cctcccccct 180 ctgttgcttc cacaccttcc gcccctggga ggcagcatgg tcaagttttc caagacgctg 240 cacgtggccg cctcgaggtc gcgctgcttt gagctcctgc gcgactggtc gcgggcatcc 300 agctgggacc ccgccattgt cgagtcgtcc cggcaggcgg gccagccggc tgatgcgttt 360 ggcgccggga ccaagtggct catcatgttc aagcccagcc ccgacgccaa gcccatgtcg 420 gtggattata cgacgaccaa gttcgaggtg gaggaggcca agagcaccct cgtcttctct 480 ggaaacgcca cctttgtgcg gtccgtggac accctcgagt tgactgatgc ccccgcggcc 540 gacggcaccc cagggacaga cgtgaactac accgccgatg tgcggttgcg ctacctcctc 600 gctccatttt catttactct gcagggcaag atggatgaga tggctgagcc cgccatggag 660 ggtctgcaaa agttttgtga caaaaacttg ttgtgatggg gcggcagcgt gtaggcacag 720 ggaggcgcct gtgtcgtagc atgtacatat agtagatacg tcgtggacgg tccatgtgta 780 aagctgatat gacatgcata gg 802 <210> 2 <211> 159 <212> PRT <213> Pyropia tenera <400> 2 Met Val Lys Phe Ser Lys Thr Leu His Val Ala Ser Ser Ser Ser Arg   1 5 10 15 Cys Phe Glu Leu Leu Arg Asp Trp Ser Arg Ala Ser Ser Trp Asp Pro              20 25 30 Ala Ile Val Glu Ser Ser Gln Ala Gly Gln Pro Ala Asp Ala Phe          35 40 45 Gly Ala Gly Thr Lys Trp Leu Ile Met Phe Lys Pro Ser Pro Asp Ala      50 55 60 Lys Pro Met Ser Val Asp Tyr Thr Thr Thr Lys Phe Glu Val Glu Glu  65 70 75 80 Ala Lys Ser Thr Leu Val Phe Ser Ser Gly Asn Ala Thr Phe Val Arg Ser                  85 90 95 Val Asp Thr Leu Glu Leu Thr Asp Ala Pro Ala Ala Asp Gly Thr Pro             100 105 110 Gly Thr Asp Val Asn Tyr Thr Ala Asp Val Arg Leu Arg Tyr Leu Leu         115 120 125 Ala Pro Phe Ser Phe Thr Leu Gln Gly Lys Met Asp Glu Met Ala Glu     130 135 140 Pro Ala Met Glu Gly Leu Gln Lys Phe Cys Asp Lys Asn Leu Leu 145 150 155 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 tctagatggt caagttttcc aagacg 26 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ggatccacaa caagtttttg tcacaaa 27 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 catatggtca agttttccaa gacg 24 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 gatatctcac aacaagtttt tgtcac 26

Claims (9)

삭제delete 서열번호 1의 염기서열로 이루어진 건조 및 삼투 스트레스 저항성 유전자.
A dry and osmotic stress resistance gene comprising the nucleotide sequence of SEQ ID NO: 1.
청구항 2에 있어서,
상기 유전자는 김 속(Pyropia) 유래인 건조 및 삼투 스트레스 저항성 유전자.
The method of claim 2,
The gene is a Pyropia- derived dry and osmotic stress resistance gene.
청구항 2 또는 3에 의한 유전자를 포함하는 건조 및 삼투 스트레스 저항성 형질전환벡터.
A dry and osmotic stress-resistant transformation vector comprising a gene according to claim 2 or 3.
청구항 4에 의한 형질전환벡터가 도입된 건조 및 삼투 스트레스 저항성 형질전환체.
A dry and osmotic stress-resistant transformant into which a transformation vector according to claim 4 is introduced.
청구항 5에 있어서,
상기 형질전환체는 조류(algae)인 건조 및 삼투 스트레스 저항성 형질전환체.
The method of claim 5,
The transformant is an algae dry and osmotic stress resistant transformant.
청구항 5에 있어서,
상기 형질전환체는 식물체인 건조 및 삼투 스트레스 저항성 형질전환체.
The method of claim 5,
The transformant is a plant-derived dry and osmotic stress-resistant transformant.
청구항 2에 의한 유전자에 의해 암호화된 건조 및 삼투 스트레스 저항성 단백질.
A dry and osmotic stress resistant protein encoded by a gene according to claim 2.
청구항 8에 의한 단백질을 조류 또는 식물체의 건조 또는 삼투 스트레스 저항성 증진의 용도로 사용하는 방법.
A method according to claim 8, wherein the protein is used for the purpose of improving the drying or osmotic stress resistance of birds or plants.
KR1020160137899A 2016-10-21 2016-10-21 Drought and Osmotic Stress Registant Gene and Transformant Using the Same KR101876775B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160137899A KR101876775B1 (en) 2016-10-21 2016-10-21 Drought and Osmotic Stress Registant Gene and Transformant Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160137899A KR101876775B1 (en) 2016-10-21 2016-10-21 Drought and Osmotic Stress Registant Gene and Transformant Using the Same

Publications (2)

Publication Number Publication Date
KR20180044152A KR20180044152A (en) 2018-05-02
KR101876775B1 true KR101876775B1 (en) 2018-07-10

Family

ID=62183627

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160137899A KR101876775B1 (en) 2016-10-21 2016-10-21 Drought and Osmotic Stress Registant Gene and Transformant Using the Same

Country Status (1)

Country Link
KR (1) KR101876775B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085872A (en) * 2005-01-25 2006-07-28 유진텍주식회사 Novel genes resistant to environmental stress, nucleotide sequences, proteins by the nucleotide sequences, cloning vectors and plant transformants using the vectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085872A (en) * 2005-01-25 2006-07-28 유진텍주식회사 Novel genes resistant to environmental stress, nucleotide sequences, proteins by the nucleotide sequences, cloning vectors and plant transformants using the vectors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J Appl Phycol., 2015, Vol. 27, p. 1343?1353 *
J Appl Phycol., 2015, Vol. 27, p. 1343-1353
Plant Omics journal(POJ), Vol. 8(4), p. 327-334 (2015) *
석사학위논문, 전남대학교 교육대학원 교육학과 생물교육전공, 진유진, 2015.08. *

Also Published As

Publication number Publication date
KR20180044152A (en) 2018-05-02

Similar Documents

Publication Publication Date Title
Yan et al. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato
Zhu et al. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii
Wang et al. Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response
US7795499B2 (en) Generation of plants with improved drought tolerance
AU2017388870A1 (en) High productivity algal mutants having reduced photosynthetic antenna
CN102124110A (en) Transcriptional and post-transcription regulation of transcription factor for drought resistance
Im et al. Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas
Abu-Romman et al. Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley
Shao et al. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses
Li et al. Overexpression of VyDOF8, a Chinese wild grapevine transcription factor gene, enhances drought tolerance in transgenic tobacco
Liu et al. Characterization and expression analysis of a mitochondrial heat-shock protein 70 gene from the Antarctic moss Pohlia nutans
CN100430415C (en) Thinopyrum intermedium ERF-transcription factor and its coding gene and use
KR101876775B1 (en) Drought and Osmotic Stress Registant Gene and Transformant Using the Same
JP4504365B2 (en) Boric acid resistant protein and its gene
KR101950968B1 (en) Drought, Heat and Osmosis Stress Resistant Gene from Pyropia sp. and Transformant Using the Same
Abdin et al. Abiotic stress related genes and their role in conferring resistance in plants
Augustine et al. Mangroves: An underutilized gene pool to combat salinity
Cong et al. Isolation of the P5CS gene from reed canary grass and its expression under salt stress
Jadhav et al. Genetic engineering of crop plants for salinity and drought stress tolerance: Being closer to the field
Paredes-López Molecular biotechnology for plant food production
KR101958957B1 (en) Osmosis and Drought Stress Resistant Gene PtFUT from Pyropia sp. and Transformant Using the Same
CN104611361B (en) OsPSE1Application of gene in regulating plant senescence
Li et al. Quinoa (Chenopodium quinoa) Methionine Sulfoxide Reductase MSRA5. 1 Interacts with Glutathione Synthase 2 to Improve Osmotic Stress Resistance in Arabidopsis Thaliana
Chai et al. Rapid identification of enhanced drought and salt tolerance in Arabidopsis conferred by BnBADH1 gene.
CN107827963A (en) Application of the arabidopsis IDD14 genes in plant drouhgt stress patience is lifted

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant