KR101874706B1 - Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface - Google Patents

Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface Download PDF

Info

Publication number
KR101874706B1
KR101874706B1 KR1020160153234A KR20160153234A KR101874706B1 KR 101874706 B1 KR101874706 B1 KR 101874706B1 KR 1020160153234 A KR1020160153234 A KR 1020160153234A KR 20160153234 A KR20160153234 A KR 20160153234A KR 101874706 B1 KR101874706 B1 KR 101874706B1
Authority
KR
South Korea
Prior art keywords
pan
based fiber
toxic
fiber mat
vapor deposition
Prior art date
Application number
KR1020160153234A
Other languages
Korean (ko)
Other versions
KR20180055403A (en
Inventor
정현숙
이경진
이범재
이재민
최지현
김소희
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160153234A priority Critical patent/KR101874706B1/en
Publication of KR20180055403A publication Critical patent/KR20180055403A/en
Application granted granted Critical
Publication of KR101874706B1 publication Critical patent/KR101874706B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

이 출원은 PAN계 섬유 매트의 제조 단계,
제조된 PAN계 섬유 매트의 표면에 organophospate 결합이 존재하는 독성물질의 분해를 위해 아민관능기를 화학기상증착으로 표면 처리하는 관능화 단계,
관능화된 PAN계 섬유 매트의 독성분해능력을 확인하는 단계를 포함하는 신경가스물질 자가독성분해를 위한 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법에 관한 것이다.
This application discloses a process for producing a PAN-based fiber mat,
A functionalization step of surface-treating amine functional groups by chemical vapor deposition for decomposition of toxic substances having organophosphate bonds on the surface of the produced PAN-based fiber mat,
To a process for preparing a toxic material degradable material by amination chemical vapor deposition of a PAN-based fiber surface for autotoxic degradation of nerve gas material, comprising the step of confirming the toxic decomposing ability of the functionalized PAN-based fiber mat.

Figure R1020160153234
Figure R1020160153234

Description

PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법{Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface}Technical Field [0001] The present invention relates to a method for manufacturing a toxic material capable of decomposing a PAN-based fiber surface by amination chemical vapor deposition,

본 발명은 PAN계 섬유표면의 아민화 화학기상증착(Chemical Vapor Deposition) 방식을 이용하여 섬유 표면에 관능화(funtionalized)하여 독성물질분해가 가능한 반응성물질 제조에 관한 것이다.The present invention relates to the production of reactive materials capable of decomposing toxic substances by functionalizing the surface of PAN fibers by using an aminated chemical vapor deposition system.

다관능화(multi funtionalized) 섬유를 제조하기 위한 방식으로는 하향식(top down 방식)과 상향식(bottom up방식)의 2가지 방식이 있다. 하향식은 vapor deposition, dip coating, electrodeposition 등 물질에 대해 추가적으로 수행되는 절차이고 상향식은 modified 전기방사, melt extrusion 방식 등을 이용한 기본물질로부터 진행되는 방식이다.There are two types of methods for manufacturing multi-functionalized fibers, top down method and bottom up method. The top-down method is an additional procedure for materials such as vapor deposition, dip coating, and electrodeposition. The bottom-up method is a method based on a base material using modified electrospinning or melt extrusion.

하향식(top down 방식)은 간단한 추가 수정(modification)을 통해 다관능화 섬유를 쉽게 만들 수 있다. 즉, 하향식을 위한 방법들 중 전기방사는 수십 나노에서 마이크로 단위의 지름을 갖는 fiber template를 빠르고 저렴하게 제조할 수 있다는 장점이 있다. 이 방식으로 얻어진 섬유는 같은 비표면적을 갖는 물질과 비교하였을 때 비교적 낮은 무게를 갖게 된다. 높은 비표면적과 기공도(porosity)를 갖는 섬유는 관능화가 진행되면 반응성이 높은 물질로 사용할 수 있다. 이때 관능화하는 방식으로는 화학기상증착 (chemical vapor deposition)을 고려할 수 있다. The top down method makes it easy to make multifunctional fibers through simple additional modifications. That is, electrospinning among the methods for the top-down method has an advantage that a fiber template having a diameter of several tens of nanometers to several nanometers can be manufactured quickly and inexpensively. The fibers obtained in this way have a relatively low weight when compared to materials having the same specific surface area. The fiber with high specific surface area and porosity can be used as a highly reactive material as the functionalization progresses. In this case, chemical vapor deposition may be considered as a method of functionalization.

화학 기상 증착 방법은 준비되어진 템플릿 표면위에 쉽고 간단하게 관능화 할 수 있는 제조 방식중 하나이다. 전기방사된 섬유는 의류소재로서의 응용가능성과 동시에 섬유표면으로의 작은 반응물들의 높은 접근성을 기대할 수 있으며 더 나아가 아민으로 관능화된 섬유의 경우 친핵성반응이 가능한 반응성물질로 organophosphate계 독성물질의 분해를 가능하도록 만들어 준다. 화학기상증착방식을 통해 amidoxime기를 갖는 높은 비표면적의 섬유매트는 낮은 비표면적을 갖는 template보다 organophosphate에 대한 더 높은 분해능을 가지므로 다방면의 분야에서 이용할 수 있을 것이다.The chemical vapor deposition method is one of the manufacturing methods that can be easily and simply functionalized on the prepared template surface. The electrospun fiber can be applied as a garment material and at the same time a high accessibility of small reactants to the fiber surface can be expected. Further, in the case of a fiber functionalized with an amine, a reactive substance capable of a nucleophilic reaction can decompose organophosphate toxic substances It makes it possible. The high specific surface area fiber mat with amidoxime group through chemical vapor deposition method can be used in various fields because it has higher resolution for organophosphate than template with low specific surface area.

한국특허 KR 10-0402430(Korean Patent KR 10-0402430

본 발명은 PAN계 섬유표면의 아민화 화학기상증착(Chemical Vapor Deposition) 방식을 이용하여 섬유 표면에 관능화(funtionalized)하여 독성물질분해가 가능한 반응성물질 제조방법을 제시하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a reactive material capable of decomposing a toxic substance by functionalizing the surface of a PAN-based fiber by means of an aminated chemical vapor deposition (CVD) method.

상기 과제를 해결하기 위한 본 발명의 PAN계 섬유표면의 아민화 화학기상증착방법은 PAN계 섬유 매트의 제조 단계; 제조된 PAN계 섬유 매트의 표면에 organophospate 결합이 존재하는 독성물질의 분해를 위해 화학기상증착 방법을 통해 PAN계 섬유 매트에 아민을 표면 처리하는 관능화 단계;를 포함한다.In order to accomplish the above object, the present invention provides a method of depositing a PAN-based fiber mat on a surface of a PAN-based fiber mat, And a functionalization step of surface-treating the amine on the PAN-based fiber mat by a chemical vapor deposition method for decomposing a toxic substance in which the organophosphate bond is present on the surface of the produced PAN-based fiber mat.

관능화된 PAN계 섬유 매트의 독성분해능력을 확인하는 단계로 이루어지며, 아민은 ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), ethanolamine (EtA) 중 한 개 이상이 사용될 수 있다.(EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and ethanolamine (EtA) can be used as the amine.

또한, PAN계 섬유 매트는 분자량이 150,000 g/mol polyacrylonitrile (PAN)를 용매인 N,N-dimethylformamide에 10wt% 농도로 용해시킨 용액으로부터 제조될 수 있다.Also, the PAN-based fiber mat may be prepared from a solution in which a molecular weight of 150,000 g / mol polyacrylonitrile (PAN) is dissolved in a solvent, N, N-dimethylformamide, at a concentration of 10 wt%.

또한, PAN계 섬유 매트는 상기 용액을 전기방사를 통해 제조될 수 있다.In addition, a PAN-based fiber mat may be prepared by electrospinning the solution.

또한, 관능화 단계는 상기 PAN계 섬유매트 중 소정의 양에 상기 아민관능기를 용기에 함께 담아 밀봉 한 뒤, 진공을 형성한 뒤, 상기 화학기상증착을 적용할 수 있다.In the functionalization step, the amine functional group may be sealed together with a predetermined amount of the PAN-based fiber mat in a container, followed by forming a vacuum, followed by the chemical vapor deposition.

또한, 독성분해능력을 확인하는 단계는 신경가스와 상기 PAN계 섬유 매트를 균일하게 접촉한 채, 건조가열한 뒤 31P NMR을 통해 분해능력을 분석할 수 있다.In addition, the step of confirming the toxic decomposition ability can be performed by 31 P NMR after decomposing the nerve gas and the PAN-based fiber mats in a uniform contact with each other, drying and heating.

본 발명을 통해 쉽고 편리한 화학기상증착(Chemical Vapor Deposition)을 이용하여 섬유 표면을 아민기로 관능화하여 화학무기 등 organic phosphate계 독성물질을 분해할 수 있는 반응성 물질을 제조할 수 있다. Through the present invention, it is possible to produce a reactive material capable of decomposing an organic phosphate toxic substance such as a chemical inorganic substance by functionalizing the surface of the fiber with an amine group by using chemical vapor deposition (chemical vapor deposition).

도 1은 PAN 나노섬유를 제조하고 이에 독성분해를 위해 아민처리를 하여 반응성물질을 제조하는 방식에 대한 도식이다.
도 2a~2d는 유사신경가스인 DFP의 분해 매커니즘과 분해능력을 확인하기 위해 120도에서 EDA 처리한 PAN 섬유에 DFP를 반응시킨 후 시간별 분석한 31P NMR 결과이다.
도 3a~3d은 EtA와 EDA 처리한 PAN 섬유에 대한 도식과 Fourier transform infrared (FTIR), C1s X-ray photon spectroscopy (XPS), 31P NMR 분석결과이다.
1 is a schematic diagram of a method for producing a reactive material by preparing PAN nanofibers and performing amine treatment for toxic decomposition thereof.
FIGS. 2a to 2d show 31 P NMR spectra obtained by analyzing DFP after reacting DFP with PAN fiber treated with EDA at 120 ° C. to confirm decomposition mechanism and decomposition ability of DFP, which is a similar nerve gas.
Figures 3a-3d show schematics for PAN fibers treated with EtA and EDA, Fourier transform infrared (FTIR), C 1s X-ray photon spectroscopy (XPS) and 31 P NMR analysis.

본 발명은 polyacrylonitrile (PAN)을 전기방사하고 그 표면에 화학기상증착(Chemical Vapor Deposition) 공법을 통해, 아민으로 관능화하여 신경가스를 분해 할 수 있는 자가독성분해섬유를 제조하는 것이다. 도1은 그 준비단계를 나타낸다. The present invention relates to the production of self-toxic decomposition fibers capable of decomposing nerve gas by functionalizing with polyacrylonitrile (PAN) by electrospinning and chemical vapor deposition (chemical vapor deposition) on the surface thereof. Figure 1 shows the preparation step.

전기방사를 위한 방사용액으로는 PAN을 DMF에 용해시킨 PAN 용액(PAN solution)을 사용한다. 전기방사를 통해 매트를 제조한 다음 PAN 섬유매트에 다양한 아민 ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), ethanolamine (EtA) 을 온도 80도에서 140도에서 기상으로 처리한다. 관능화가 끝난 PAN 섬유는 아민기로 인해 노란색으로 바뀌게 되고, PAN 섬유 상의 cyano기는 다양한 그룹, 예를 들면 아민, 이민, Schiffbase group 등으로 바뀐다. 이러한 관능기는 친핵성 물질로 가수분해를 통해 organophosphate계 신경가스의 organic phosphate bond를 분해할 수 있다.For the spinning solution for electrospinning, PAN solution in which PAN is dissolved in DMF is used. A variety of amines such as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and ethanolamine (EtA) are vaporized at a temperature of 80 ° C to 140 ° C. After the functionalization, the PAN fibers are changed to yellow due to amine groups, and the cyano groups on the PAN fibers are changed into various groups such as amines, imines and Schiffbase groups. These functional groups can decompose organic phosphate bonds of organophosphate neurons through hydrolysis with nucleophiles.

이때 사용되는 PAN용액의 농도는 10wt%이며, 전기방사하여 얻은 PAN섬유는 800 ㎚ ~ 1 ㎛지름을 갖는다. 화학기상증착 공법으로 1시간동안 기상의 아민으로 표면 처리하여 관능화한다. 이때, 반응시간이 3시간 이상으로 길어지게 되면, 섬유의 기공 막힘 현상이 일어나 바람직하지 않다. 이러한 아민 처리된 PAN 섬유는 추가적인 진공건조과정을 통해 본래의 형태를 가질 수 있다. 이때 실험한 아민 종류 중 Ethylenediamine (EDA) 이 같은 기상처리 온도에서 가장 높은 반응을 함을 확인하였다.The concentration of the PAN solution used is 10 wt%, and the PAN fiber obtained by electrospinning has a diameter of 800 nm to 1 탆. The surface is treated with a gas phase amine for 1 hour by the chemical vapor deposition method to make it functional. At this time, if the reaction time becomes longer than 3 hours, the pores of the fibers may be clogged, which is not preferable. These amine treated PAN fibers may have their native form through an additional vacuum drying process. Ethylenediamine (EDA) among the amine species tested showed the highest reaction at the same temperature.

준비된 관능화된 PAN 섬유 매트의 반응성은 유사신경가스물질인 Diisopropyl fluorophosphates (DFP)로 확인하였다. 도 2a는 DFP의 organic phosphate 결합의 분해실험으로서 바이알에서 실험되었으며, DFP와 가수분해에 사용되는 물을 아민 처리된 섬유위에 첨가하며 실험하는 과정이다. 분해실험의 결과는 도 2b와 같이 31P NMR로 확인이 가능하다.The reactivity of the prepared functionalized PAN fiber mats was confirmed by a similar neuronal gaseous substance, Diisopropyl fluorophosphates (DFP). FIG. 2a shows the experiment of decomposing organic phosphate bond of DFP and experimenting with addition of DFP and water used for hydrolysis on amine treated fiber. The result of the decomposition experiment can be confirmed by 31 P NMR as shown in FIG. 2B.

DFP 분해능력은 도 2c에서와 같이 120도에서 처리된 EDA PAN섬유가 가장 좋은 효과를 보인다. 높은 반응온도일수록 분해능력이 향상되는 경향을 보이나, 가장 높은 반응온도인 140도에서 처리된 섬유는 120도에서보다 더 낮은 능력을 나타낸다.As shown in FIG. 2C, the DFP decomposition ability of EDA PAN fiber treated at 120 ° C shows the best effect. The higher the reaction temperature, the better the decomposition ability. However, the fiber treated at 140 ° C, which is the highest reaction temperature, shows lower ability than that at 120 ° C.

도 2d는 아민의 종류에 따른 DFP 분해능실험의 결과를 나타낸 것이며 이를 통해 EDA로 처리된 PAN 섬유가 가장 좋은 분해능을 나타내는 것을 확인할 수 있다. 가장 독성분해능이 높은 온도 120도에서 EDA로 처리한 PAN 섬유의 31P NMR의 결과는 도 2b에 도시되어 있다. 결과적으로 실험에 사용한 다양한 아민기 중 guanidine이 신경가스물질인 DFP의 P-F 결합의 분해에 가장 좋은 효과를 보임이 확인된다. FIG. 2d shows the results of the DFP resolution experiment according to the type of amine, and it can be confirmed that the PAN fiber treated with EDA exhibits the best resolution. The 31 P NMR results of PAN fibers treated with EDA at 120 ° C, the most toxic resolution, are shown in FIG. 2b. As a result, it was confirmed that guanidine was most effective in the decomposition of PF bond of DFP, which is a nerve gas substance, among the various amine groups used in the experiment.

또한 친핵성기인 하이드록시기가 DFP의 분해에 도움을 줄 것이라고 예상되며, 간편한 화학기상증착(CVD) 방식을 이용하여 Ethylenediamine (EDA)와 Ethanol amine (EtA)을 PAN 섬유 표면처리에 이용할 수도 있다. 도 3a와 같이 PAN의 cyano기는 아민, 이민, schiffbase, 구아니딘, 그리고 하이드록시기로 변한다. 각각의 부피조절을 통해 EtA와 EDA를 PAN에 적용시켰으며 그 결과 도 3d의 그래프와 같이 5:5 부피비의 EtA와 EDA로 처리된 PAN은 EDA로만 처리된 PAN보다 더욱 효과적으로 분해됨이 확인된다. 도 3b는 EtA와 EDA가 5:5의 부비피로 처리된 PAN 섬유의 FTIR의 그래프이며, 이의 예상되는 관능기를 확인하기 위해 C1sXPS분석을 하였으며 그 결과가 도 3c에 나타나있다.Hydroxyl groups, which are nucleophilic groups, are expected to help decompose DFP. Ethylenediamine (EDA) and Ethanol amine (EtA) can also be used for PAN fiber surface treatment by simple chemical vapor deposition (CVD) As shown in Figure 3a, cyano groups of PAN are changed to amines, imines, schiff bases, guanidines, and hydroxyl groups. EtA and EDA were applied to the PAN through each volume control. As a result, it was confirmed that the PAN treated with 5: 5 volume ratio EtA and EDA at a volume ratio of 5: 5 was more effectively degraded than the PAN treated with EDA alone. FIG. 3B is a graph of the FTIR of PAN fibers treated with 5: 5 of EtA and EDA, and C 1s XPS analysis was performed to identify the expected functional groups. The results are shown in FIG. 3c.

이 발명의 구체적인 실시예를 살펴보면, 먼저, PAN 섬유매트의 제조를 위해서 분자량이 150,000 g/mol polyacrylonitrile (PAN)를 용매인 N,N-dimethylformamide에 10wt% 농도로 용해시킨 용액을 준비한다. In order to prepare a PAN fiber mat, a solution in which a molecular weight of 150,000 g / mol polyacrylonitrile (PAN) is dissolved in N, N-dimethylformamide as a solvent at a concentration of 10 wt% is prepared.

이후, 상기 용액을 1ml 실린지에 옮겨 담고 18 gauge needle을 연결하여 전기방사를 수행한다. 이때, 집전체는 알루미늄 호일을 이용하며, 니들과 집전체의 거리는 대략 20cm로 유지한다. 실린지펌프의 펌핑속도와 power supply의 전압은 각각 1.0 ml/hr와 18kv 로 설정하면 전기 방사된 PAN 섬유매트가 얻어진다.Thereafter, the solution is transferred to a 1 ml syringe and an electrospinning is performed by connecting an 18 gauge needle. At this time, aluminum foil is used as the collector, and the distance between the needle and the collector is maintained at about 20 cm. When the pumping speed of the syringe pump and the voltage of the power supply are set to 1.0 ml / hr and 18 kv respectively, an electrospun PAN fiber mat is obtained.

이후, 화학기상증착방법을 통해 PAN 섬유매트에 아민으로 관능화하는 단계에는 ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), ethanolamine (EtA) 가 사용된다. 즉, 전기방사된 PAN 섬유 1 g을 50 ml 용기에 준비된 아민과 함께 담아 밀봉하고, 이때, 용기는 10-2 torr의 진공상태이다. 첨가된 아민의 양은 EDA는 0.1 ml, DETA는 0.17 ml, TETA는 0.24 ml로 충분히 아민관능화가 이루어질 수 있도록 정량 주사한다. Ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and ethanolamine (EtA) are then used to functionalize the PAN fiber mat as an amine through chemical vapor deposition. That is, 1 g of electrospun PAN fiber is sealed in a 50 ml container with the prepared amine, at which time the vessel is in a vacuum of 10 -2 torr. Amounts of amine added are 0.1 ml for EDA, 0.17 ml for DETA and 0.24 ml for TETA.

이후, 각 반응온도로 설정된 히팅 오븐에서 반응용기의 기상반응이 이루어지도록 1시간을 관찰하면, 반응온도 80도, 100도, 120도, 140도에서 이루어지며, 반응이 끝난 관능화된 섬유는 미반응 기체를 제거하기 위해 진공건조를 진행한다.Then, the reaction was carried out at 80 ° C., 100 ° C., 120 ° C. and 140 ° C. for 1 hour so that the vapor phase reaction of the reaction vessel was performed in the heating oven set at each reaction temperature. Vacuum drying is performed to remove the reaction gas.

이후, 관능화된 섬유의 독성가스 분해 능력은 글러브 박스 (Glas Col. USA)에서의 실험을 통해 확인된다. EDA, DETA, TETA 및 EtA를 처리한 각 샘플, 반응온도조절 (0도, 100도, 120도, 140도) 및 EtA와 EDA 비율조절을 통하여 얻은 섬유매트 5 mg을 탈이온수 (초순수) 25ul 및 신경가스 물질인 diisopropyl fluorophosphates (DFP) 0.5ul와 함께 동봉한다.The ability of the functionalized fibers to degrade toxic gases is then confirmed through experiments in a glove box (Glas Col. USA). Each of the samples treated with EDA, DETA, TETA and EtA, 5 mg of the fiber mat obtained by adjusting the reaction temperature (0 degree, 100 degree, 120 degree, 140 degree) and the ratio of EtA and EDA was dissolved in 25 ul of deionized water Enclose with 0.5ul of diisopropyl fluorophosphates (DFP), a nerve gas substance.

각 물질들이 균일하게 접촉하도록 상기 관능화된 PAN계 섬유 매트를 5분 동안 60도 건조오븐에서 보관한 뒤, 이 건조가열하여 준비된 관능화된 PAN계 섬유 매트와 신경가스 물질인 DFP mist를 접촉하여 최대한 반응이 잘 일어나도록 한다. 분해능력 뿐만 아니라 시간별로 분해속도를 확인하기 위해 0분, 30분, 2시간, 6시간, 24시간 후에 샘플을 꺼내어 분해능력은 31P NMR을 통해 분석될 수 있고, 이를 위해 deuterium oxide 0.2 ml 와 물 0.8 ml이 샘플과 함께 교반된다. 또한, 중수소로 치환된 acetone에 용해된 triphenyl phosphate를 external reference (0ppm)가 기준물질로 사용되어진다. The functionalized PAN-based fiber mats were stored in a 60 degree dry oven for 5 minutes to ensure uniform contact of each material, contacted with a functionalized PAN-based fiber mat prepared by this dry heating and a nerve gas material DFP mist Make sure the reaction is as good as possible. In order to confirm the decomposition ability as well as the decomposition rate by time, the sample was taken out after 0 min, 30 min, 2 hr, 6 hr and 24 hr and the decomposition ability could be analyzed by 31 P NMR. For this, 0.2 ml of deuterium oxide 0.8 ml of water is stirred together with the sample. In addition, external reference (0 ppm) of triphenyl phosphate dissolved in deuterated acetone is used as a reference material.

Claims (9)

PAN계 섬유 매트의 제조 단계;
상기 제조된 PAN계 섬유 매트의 표면에 organophospate 결합이 존재하는 독성물질의 분해를 위해 화학기상증착 방법을 통해 PAN계 섬유 매트에 아민을 표면 처리하는 관능화 단계; 및
상기 관능화된 PAN계 섬유 매트의 독성분해능력을 확인하는 단계;
를 포함하는 신경가스물질 자가독성분해를 위한 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
A step of producing a PAN-based fiber mat;
A functionalization step of surface-treating an amine on a PAN-based fiber mat through a chemical vapor deposition method for decomposing a toxic substance in which organophosphate bonds are present on the surface of the PAN-based fiber mat; And
Confirming the toxic decomposition ability of the functionalized PAN-based fiber mat;
A method for producing a toxic substance degradable material by amination chemical vapor deposition of a PAN-based fiber surface for autotoxic degradation.
제1항에 있어서,
상기 PAN계 섬유 매트는 분자량이 150,000 g/mol polyacrylonitrile (PAN)를 용매인 N,N-dimethylformamide에 10wt% 농도로 용해시킨 용액으로부터 제조되는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
Wherein the PAN-based fiber mat is prepared from a solution in which a molecular weight of 150,000 g / mol polyacrylonitrile (PAN) is dissolved in N, N-dimethylformamide as a solvent at a concentration of 10 wt% A method for producing a toxic substance decomposable substance.
제2항에 있어서,
상기 PAN계 섬유 매트는 상기 용액을 전기방사를 통해 제조되는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
3. The method of claim 2,
Wherein said PAN-based fiber mat is prepared by electrospinning said solution. ≪ Desc / Clms Page number 19 >
제1항에 있어서,
상기 관능화 단계는 상기 PAN계 섬유매트 중 소정의 양에 상기 아민을 용기에 함께 담아 밀봉 한 뒤, 진공을 형성한 뒤, 상기 화학기상증착 방법을 적용하는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
Wherein the functionalizing step includes sealing the PAN-based fiber mat with a predetermined amount of the amine in a container, forming a vacuum, and applying the chemical vapor deposition method. (METHOD FOR MANUFACTURING TOXICALLY RESOLUTIONABLE MATERIALS BY FINE CHEMICAL VASE DEPOSITION)
제4항에 있어서,
상기 아민은 ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), ethanolamine (EtA) 중 한 개 이상이 사용되는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
5. The method of claim 4,
Wherein the amine is selected from the group consisting of ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), ethanolamine (EtA) Gt;
제1항에 있어서,
상기 관능화 단계의 반응조건은 온도 80도에서 140도이고, 반응시간이 1시간에서 3시간 미만인 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
Wherein the functionalization step is performed at a temperature of 80 to 140 ° C. and a reaction time is less than 1 hour to less than 3 hours. The method for producing a toxic substance decomposable substance by amination chemical vapor deposition on a PAN-based fiber surface.
제1항에 있어서,
상기 독성분해능력을 확인하는 단계는 균일하게 접촉하도록 상기 관능화된 PAN계 섬유 매트를 건조오븐에서 보관한 뒤, 신경가스 물질인 DFP mist와 접촉하는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
Wherein the step of identifying the toxic degradation capability comprises contacting the functionalized PAN-based fiber mat in a dry oven with uniform contact with a nerve gassing material, DFP mist, (METHOD FOR MANUFACTURING TOXICALLY DECOMPOSITION MATERIAL BY VAPOR VARIATION)
제1항에 있어서,
상기 독성분해능력을 확인하는 단계는 deuterium oxide 0.2 ml 와 물 0.8 ml을 신경가스 물질인 DFP가 접촉된 PAN계 섬유 매트 샘플과 함께 교반되는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
The step of confirming the toxic decomposing ability is carried out by stirring 0.2 ml of deuterium oxide and 0.8 ml of water with a PAN-based fiber mat sample in contact with DFP which is a nerve gaseous material, A method for producing a toxic substance decomposable substance.
제1항에 있어서,
상기 독성분해능력을 확인하는 단계는 중수소로 치환된 acetone에 triphenyl phosphate를 용해하여 external reference(0ppm)인 기준물질로 사용하는 것을 특징으로 하는 PAN계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법.
The method according to claim 1,
The step of confirming the toxic decomposition ability is a step of dissolving triphenyl phosphate in acetone substituted with deuterium and using it as a reference substance of external reference (0 ppm). The toxic substance decomposition by amination chemical vapor deposition on the surface of PAN fiber ≪ / RTI >
KR1020160153234A 2016-11-17 2016-11-17 Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface KR101874706B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160153234A KR101874706B1 (en) 2016-11-17 2016-11-17 Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160153234A KR101874706B1 (en) 2016-11-17 2016-11-17 Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface

Publications (2)

Publication Number Publication Date
KR20180055403A KR20180055403A (en) 2018-05-25
KR101874706B1 true KR101874706B1 (en) 2018-07-04

Family

ID=62299244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160153234A KR101874706B1 (en) 2016-11-17 2016-11-17 Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface

Country Status (1)

Country Link
KR (1) KR101874706B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027368A1 (en) 1999-10-08 2001-04-19 The University Of Akron Insoluble nanofibers of linear poly(ethylenimine) and uses therefor
JP2007040934A (en) 2005-08-05 2007-02-15 Riken Keiki Co Ltd Agent for detecting organic-phosphorus-based nerve gas
KR101148665B1 (en) 2009-12-24 2012-05-25 서울대학교산학협력단 Fabracation of lipase immobilized functional polymer nanotube/AAO membrane
CN103132332A (en) 2013-02-19 2013-06-05 邯郸派瑞电器有限公司 Fibrous material with formaldehyde removal function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027368A1 (en) 1999-10-08 2001-04-19 The University Of Akron Insoluble nanofibers of linear poly(ethylenimine) and uses therefor
JP2007040934A (en) 2005-08-05 2007-02-15 Riken Keiki Co Ltd Agent for detecting organic-phosphorus-based nerve gas
KR101148665B1 (en) 2009-12-24 2012-05-25 서울대학교산학협력단 Fabracation of lipase immobilized functional polymer nanotube/AAO membrane
CN103132332A (en) 2013-02-19 2013-06-05 邯郸派瑞电器有限公司 Fibrous material with formaldehyde removal function

Also Published As

Publication number Publication date
KR20180055403A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
US9782746B2 (en) Polymeric ionic liquids, methods of making and methods of use thereof
CN104190265A (en) Low-pressure high-flux chlorine-containing polymer nanofiltration membrane with stable separation layer and preparation method thereof
CN101691426B (en) Method of preparing three-dimensionally ordered macroporous chelate resin with hydrophilic-structure framework
CN110302381B (en) Mesoporous silica nanosphere with carborane modified on surface and preparation method thereof
WO2009070574A2 (en) Methods for modification of polymers, fibers and textile media
CN112593403B (en) Preparation method of polyacrylonitrile-based strong base ion exchange fiber
EP0094060B1 (en) Process for the manufacture of membranes on the basis of heteropolycondensates of silicic acid, membranes so produced and their use
CN105544093A (en) Preparation method and application of functional AOPAN-RC composite nanofiber film
CN102051811A (en) Method for preparing polyphenylene sulfide-based strong basic ion exchange fibers
Lee et al. Preparation of non-woven nanofiber webs for detoxification of nerve gases
CN104327298B (en) A kind of method that nano-honeycomb shape film is prepared based on spirogram
Lin et al. Effect of solvent on surface wettability of electrospun polyphosphazene nanofibers
CN108611691A (en) A kind of method that method of electrostatic spinning prepares modified polyacrylonitrile ion-exchange fibre
KR101874706B1 (en) Manufacturing Method of Materials for Decomposition of Toxic Materials by Aminized CVD on Pan-based Fibre Surface
CN102153769B (en) Preparation method of super-hydrophobic polymethylmethacrylate film
Zhang et al. Nondestructive grafting of ZnO on the surface of aramid fibers followed by silane grafting to improve its interfacial adhesion property with rubber
CN113842783B (en) Acid-resistant high-flux polyarylether composite nanofiltration membrane, and preparation method and application thereof
KR101987667B1 (en) Membrane for metal ion adsorption, method for manufacturing thereof and application thereof
Ma et al. Water‐compatible imprinted polymers based on CS@ SiO2 particles for selective recognition of naringin
CN104950034B (en) Open tubular capillary column with nano-crystalline cellulose derivative modified surface and application of open tubular capillary column with nano-crystalline cellulose derivative modified surface
CN102677464A (en) Method for preparing functionalization carbon nanofiber and method for preparing functionalization carbon nanofiber film
CN106167705A (en) A kind of preparation method and applications of fluorescence mesoporous silicon material
Yu et al. Easily recycled porous microparticles prepared via electrohydrodynamic atomization for selective uranium extraction with high capacity
CN103586007B (en) Metal ion carbonized adsorption material and preparation method thereof
Gao et al. Polydopamine induced wettability switching of cellulose nanofibers/n-dodecanethiol composite aerogels

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant