KR101872637B1 - Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis - Google Patents

Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis Download PDF

Info

Publication number
KR101872637B1
KR101872637B1 KR1020170045492A KR20170045492A KR101872637B1 KR 101872637 B1 KR101872637 B1 KR 101872637B1 KR 1020170045492 A KR1020170045492 A KR 1020170045492A KR 20170045492 A KR20170045492 A KR 20170045492A KR 101872637 B1 KR101872637 B1 KR 101872637B1
Authority
KR
South Korea
Prior art keywords
tuberculosis
treatment
pasakbumin
cells
compound
Prior art date
Application number
KR1020170045492A
Other languages
Korean (ko)
Inventor
김승현
박선주
정유진
이효지
고현정
권보은
Original Assignee
강원대학교산학협력단
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단, 연세대학교 산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020170045492A priority Critical patent/KR101872637B1/en
Application granted granted Critical
Publication of KR101872637B1 publication Critical patent/KR101872637B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/314Foods, ingredients or supplements having a functional effect on health having an effect on lung or respiratory system
    • Y10S514/924

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention is based on the finding that Pasakbumin A extracted from Eurycoma longifolia has few side effects on host cells and has a new use in treatment of tuberculosis. Therefore, the present invention can be utilized as a new natural product-derived anti-tuberculosis therapeutic agent and health functional food having higher stability and lower tolerance than existing anti-tuberculosis therapeutic agents.

Description

Pasakbumin A를 포함하는 결핵 치료용 약제학적 조성물 및 건강 기능성 식품{Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis}[0001] The present invention relates to a pharmaceutical composition for treatment of tuberculosis including Pasakbumin A,

본 발명은 통캇알리 식물에서 추출한 pasakbumin A를 포함하는 결핵 치료 또는 개선용 약제학적 조성물 및 건강기능식품에 관한 것이다.The present invention relates to a pharmaceutical composition for the treatment or amelioration of tuberculosis, which comprises pacartan-derived pacartan, and to a health functional food.

결핵은 Mycobacterium tuberculosis에 의해 주로 폐에서 발병되며, 인류 역사상 높은 사망률을 가지는 만성 감염성 질환 중 하나이다(Elkington and Zumla, 2015). World Health Organization (WHO) 보고에 따르면 전 세계 인구의 1/3이 결핵균에 감염되어 체내에 결핵균을 보유한 잠복 감염 상태이며, 매년 800만명의 새로운 환자가 발생하고, 150만명이 결핵에 의해 사망한다고 보고되고 있다(Zumla et al., 2015). 결핵은 주로 활동성 결핵환자의 기침을 통해 공기 중으로 배출된 결핵균을 흡입했을 때 전염되며, 결핵균에 노출된 대부분의 경우(80-85%)는 활동성 결핵이 나타나기 전까지 아무런 증상이 나타나지 않는 잠복 결핵 상태로 존재하다가, 이 중 5-10%의 환자만이 활동성 결핵으로 악화된다(Getahun et al., 2015).Tuberculosis is a chronic infectious disease with a high mortality rate in human history, mainly caused by Mycobacterium tuberculosis in the lung (Elkington and Zumla, 2015). According to a report from the World Health Organization (WHO), one third of the world's population is infected with tuberculosis and has tuberculous bacillus in the body, resulting in 8 million new cases each year and 1.5 million deaths from tuberculosis (Zumla et al., 2015). Most of the cases (80-85%) exposed to tuberculosis are in the latent tuberculosis state, in which no symptoms occur until active tuberculosis occurs. However, only 5-10% of these patients are exacerbated with active tuberculosis (Getahun et al., 2015).

최근 다제내성 및 광범위 내성 결핵균의 증가와 후천성 면역 결핍증 (acquired immune deficiency syndrome, AIDS)과 같은 면역결핍 환자에서의 동시 감염으로 인하여 새로운 결핵 치료제 개발이 시급한 실정이다(Brigden et al., 2014; Getahun et al., 2010).Recently, the development of new tuberculosis drugs is urgent due to the increase in multidrug-resistant and broad-spectrum TB and the simultaneous infection in immunodeficiency patients such as acquired immune deficiency syndrome (AIDS) (Brigden et al., 2014; Getahun et al al., 2010).

결핵균 감염에 대항하는 생체의 면역력에 대한 연구는 주로 실험동물 모델을 통하여 밝혀진 것으로, 큰포식세포 (macrophage)와 도움 T 세포 [helper T (TH) cell]가 매우 핵심적인 역할을 한다(Knechel, 2009; North and Jung, 2004). 감염된 큰포식세포는 MHC class II 분자를 통하여 결핵균의 항원을 T 세포에 제시하게 되고, 활성화된 결핵균에 특이적인 CD4+ T 세포는 IFN-

Figure 112017034435023-pat00001
의 분비를 통하여 감염된 큰포식세포를 활성화하고 결과적으로 산화 질소 합성 효소 2(nitric oxide synthase 2, NOS2)와 같은 효소의 생산을 촉진한다(Murray and Wynn, 2011; Pieters, 2008). NOS2는 세포 내 아르기닌(arginine)을 분해하여 산화 질소(NO)를 생산하여 감염된 결핵균을 죽이거나, 더 이상 성장하지 못하도록 하며, 이 과정은 결핵균 감염을 제어하는 가장 주된 메커니즘으로 알려져 있다(Yang et al., 2009).Studies on the immunity of the organism against TB infection have been found mainly through experimental animal models, and large macrophages and helper T (TH) cells play an essential role (Knechel, 2009 ; North and Jung, 2004). The large infected macrophage cells present MHC class II molecules to the T-cell antigen of M. tuberculosis, and CD4 + T cells that are specific to the activated M. tuberculosis IFN-
Figure 112017034435023-pat00001
(Murray and Wynn, 2011; Pieters, 2008). In this study, we investigated the effects of nitric oxide synthase 2 (NOS2) NOS2 degrades arginine in the cell to produce nitric oxide (NO), killing the infected M. tuberculosis, or preventing it from growing any longer, and this process is known to be the most important mechanism for controlling M. tuberculosis infection (Yang et al ., 2009).

최근 TGF-β, IL-1β, IL-6, IL-23에 의해 자극받아 분화되는 TH17 세포의 경우 내재 면역계와 TH1 세포의 활성화에 관여하여 항결핵 반응을 증가시킨다고 보고되고 있다(Lyadova and Panteleev, 2015). 대부분의 연구자들은 결핵에 대한 CD4+ T 세포의 역할이나 CD8+ T 세포의 역할에 초점을 맞추어 결핵균 감염 시 이에 대한 면역력이 증가될 것으로 생각하고 있으나, 서로 상반된 연구 결과들이 지속적으로 보고되고 있다.Recently, TH17 cells stimulated by TGF-β, IL-1β, IL-6 and IL-23 have been reported to increase anti-tuberculosis response by participating in the immune system and activation of TH1 cells (Lyadova and Panteleev, 2015). Most researchers have focused on the role of CD4 + T cells in the tuberculosis and the role of CD8 + T cells, suggesting that immunity against TB infection may be increased, but conflicting results have been reported.

결핵 치료제는 결핵 감염 판정을 받은 환자를 치료하기 위한 약제이다. 결핵의 권장되는 치료법은 4종의 치료제[이소니아지드 (isoniazid, IZD), 리팜피신 (rifampicin, RMP), 피라진아미드 (pyrazinamide, PZA), 에탐부톨 (ethambutol, EMB)]를 2개월간 매일 병용 복용 후, 이소니아지드와 리팜피신의 2종의 치료제를 4개월간 복용하는 것이다(Hall et al., 2009).Tuberculosis drugs are drugs for treating patients who have been diagnosed with tuberculosis infection. The recommended treatment for tuberculosis is to use isoniazid (IZD), rifampicin (RMP), pyrazinamide (PZA), ethambutol (EMB) It is to take two treatments of rifampicin for four months (Hall et al., 2009).

1차 항결핵 치료제는 개발된 지 40년이 넘는 오래된 치료제로, 치료 효능이 뛰어나다는 장점을 가지고 있으나, 오랜 시간 사용함에 따라 내성이 발생한다는 단점을 가진다(Zumla et al., 2013). 1차 항결핵 치료제의 종류에는 이소니아지드, 리팜피신, 피라진아미드, 에탐부톨이 있다. 이소니아지드는 결핵균의 세포벽 주 구성요소인 미콜산의 합성을 억제하며, 리팜피신은 Amycolatopsis rifamycinica으로부터 얻어진 반합성 화합물로 결핵균의 DNA-의존 RNA 중합효소의 역할을 방해함으로써 RNA 합성을 억제하여 결핵균을 사멸시킨다. 피라진아미드는 결핵균의 피라진아미다제 (pyrazinamidase)에 의해 활성화되어 결핵균의 성장을 저해하며, 에탐부톨은 활동성 결핵균의 성장을 저해하는 세균 발육 저지 (bacteriostatic) 치료제로 세포벽 구성요소인 아라비노갈락탄의 합성을 억제하여 결핵균의 세포벽 형성을 막는 역할을 한다. The primary anti-tuberculosis drug has been developed for over 40 years and has the advantage of excellent therapeutic efficacy, but it has the drawback of being resistant to long-term use (Zumla et al., 2013). Types of primary anti-TB drugs include isoniazid, rifampicin, pyrazinamide, and ethambutol. Isoniazid inhibits the synthesis of mycolic acid, a major component of the cell wall of Mycobacterium tuberculosis, and rifampicin inhibits the synthesis of Amycolatopsis A semisynthetic compound from rifamycinica inhibits the DNA-dependent RNA polymerase's role in Mycobacterium tuberculosis, inhibiting RNA synthesis and killing Mycobacterium tuberculosis. Pyrazinamide is activated by pyrazinamidase of Mycobacterium tuberculosis and inhibits the growth of Mycobacterium tuberculosis. Emetabolol is a bacteriostatic agent that inhibits the growth of active Mycobacterium tuberculosis. It is a synthesis of arabinogalactan, a cell wall component. And inhibits the formation of cell walls of Mycobacterium tuberculosis.

2차 항결핵 치료제는 다양한 항생제들로 구성되어 있으며, 다제내성 및 광범위 내성 결핵환자를 치료하기 위한 목적으로 처방되는 치료제들이다. 2차 항결핵 치료제의 종류에는 카나마이신, 아미카신, 카프레오마이신, 프로치온아미드, 시프로플로사신, 사이클로세린, 아미노살리실산(PAS) 등이 있으며, 이들 가운데 4-5개를 선정하여 사용한다(Wallis et al., 2016). 2차 항결핵 치료제는 1차 항결핵 치료제와 달리 치료 효능이 약하며, 장기 복용 시 독성에 대한 부작용과 치료 비용이 높다는 문제점을 가진다. 치료기간도 18개월로 환자들에게 경제적, 신체적인 고통을 주며, 다제내성 결핵환자의 경우 2차 항결핵 치료제의 치료 후에 완치율이 50% 내외이다(Prasad et al., 2014).Secondary anti-tuberculosis drugs consist of various antibiotics and are prescribed for the treatment of patients with multidrug-resistant and broad-spectrum tuberculosis. There are two types of anti-tuberculosis treatment drugs: kanamycin, amikacin, capreomycin, prothionamide, ciprofloxacin, cycloserine, and aminosalicylic acid (PAS) (Wallis et al., 2016). Secondary anti-tuberculosis treatment drug has a weak therapeutic effect unlike first-line anti-tuberculosis treatment drug, and has a problem of high toxic side effects and high treatment cost. The duration of treatment is 18 months, which is economically and physically painful for patients. In the case of multidrug-resistant tuberculosis patients, the cure rate after treatment with second-line anti-TB drugs is about 50% (Prasad et al., 2014).

그러나, 결핵은 제3 세계에서만 발병하는 질병으로만 여겨져 오면서, 대부분의 제약기업들이 새로운 치료제 개발에 적극적으로 나서지 않고 있다. 결핵은 초기치료의 성공이 매우 중요한데 치료 기간의 연장이 결핵 치료의 한계로 작용하고 있다(Connolly et al., 2007).However, since tuberculosis is regarded only as a disease that occurs only in the Third World, most pharmaceutical companies are not actively developing new therapies. The success of the initial treatment of tuberculosis is very important, and the extension of treatment period is the limit of treatment for tuberculosis (Connolly et al., 2007).

중증 결핵이거나 다른 질환을 동반한 중증 폐외 결핵인 경우, 약제 내성이 있는 경우, 약제 부작용으로 투여 약제수가 적은 경우, 약제 복용을 충실히 이해하지 않은 경우 등이 치료 기간 연장의 주요 원인이 될 수 있다. 일반적으로 결핵의 치료 기간은 6개월, 다제내성 결핵의 치료 기간은 18-24개월로 다른 질병들에 비하여 비교적 긴 치료 기간을 가지고 있다. 긴 치료기간은 비용, 부작용 등으로 치료 성공률을 높이기 쉽지 않다(D'Ambrosio et al., 2015; Zumla et al., 2012).This may be the main cause of the prolongation of the treatment period, such as severe tuberculosis or severe pulmonary tuberculosis accompanied by other diseases, drug resistance, drug side effects due to adverse drug use, and poor understanding of drug use. In general, the duration of treatment for tuberculosis is 6 months and the duration of treatment for multidrug-resistant tuberculosis is 18-24 months, which is relatively longer than other diseases. The long treatment period is not easy to increase the success rate due to cost, side effects (D'Ambrosio et al., 2015; Zumla et al., 2012).

결핵 치료제는 일반 항생제와는 달리 여러 약제를 병합하여 장기간 복용해야하므로 부작용의 빈도가 높다. 부작용의 정도도 약제를 그대로 지속 사용해도 저절로 소실되는 경미한 부작용에서부터 용혈성 빈혈, 혈소판 감소증, 신부전 등과 같이 환자의 상태 악화와 면역력 약화로 인하여 약제를 중단해야 하는 중증 부작용까지 다양하다.(Gulbay et al., 2006)Unlike general antibiotics, tuberculosis treatments are often accompanied by the need for long-term use of several drugs. The severity of side effects varies from mild side effects that persist even after the drug is used as is, severe side effects such as hemolytic anemia, thrombocytopenia, and renal failure, which require the drug to be discontinued due to deterioration of the patient's condition and weakened immune system (Gulbay et al. , 2006)

이러한 대안으로 천연물 유래 결핵 치료제로서, 디옥시퍼굴라리닌 (Deoxypergularinine)은 백미(Cyninchum atratum) 추출물로 결핵균 생장억제 능력을 확인해본 결과 디옥시굴라리닌에 의해 H37Ra의 성장이 억제됨이 관찰되었다. 이를 통해 다제내성 결핵을 포함한 결핵 치료에 유용하게 이용하기 위한 결핵 치료용 약학조성물로 특허출원 되었다.(Nam et al., 2016)As a natural product derived from treatment of tuberculosis in this alternative, non-deoxy peogul La (Deoxypergularinine) is white rice (Cyninchum atratum extract inhibited the growth of H37Ra by deoxyglucarinin. This is a patent application for a tuberculosis therapeutic composition for use in the treatment of tuberculosis including multidrug-resistant tuberculosis (Nam et al., 2016)

프로토파낙사트리올(Protopanaxatriol)은 인삼 또는 전칠삼과 같은 삼의 추출물로부터 얻어진 프로토파낙사트리올계 조사포닌 유래 아글리콘이 기존 약물에 비하여 다제내성 결핵균, 광범위 내성 결핵균, 이소니아지드 내성 결핵균, 리팜핀 내성 결핵균, 피라진아미드 내성 결핵균, 스트렙토마이신 내성 결핵균의 성장을 2배~4배 감소시킴에 따라 약제감수성 균주에 의한 결핵뿐만 아니라 다제내성 및 광범위 내성 결핵의 치료 및 예방에 우수하게 사용될 것으로 생각되어 특허출원 되었다(Choi et al., 2003).Protopanaxatriol is a prophylactic triol-derived saponin derived from saponins such as ginseng or fennel. Compared to conventional drugs, protopanaxatriol is more effective against multi-drug resistant mycobacteria, broad-resistant mycobacteria, isoniazid-resistant mycobacteria, rifampin- (2) to 4-fold reduction of the growth of streptomycin-resistant Mycobacterium tuberculosis and pyrazinamide-resistant Mycobacterium tuberculosis, it has been applied for patent for the treatment and prevention of multidrug-resistant and broad-spectrum tuberculosis as well as drug- Choi et al., 2003).

환삼덩굴(Humulus japonicus) 추출물은 건조된 환삼덩굴의 메탄올 추출물로 항결핵 활성을 측정해본 결과, 환삼덩굴 추출물은 결핵균 자체에 직접적인 살상효과를 보였고, H37Rv에 감염된 사람의 단핵구 세포주 THP-1에 환삼덩굴 추출물을 처리한 그룹에서 세포 내 결핵균의 성장을 현저히 감소시킴으로써 항결핵 활성을 나타냄을 증명하였다(Hong et al., 2014). 하지만 면역세포에 의한 결핵균의 사멸기전을 밝히지 못했으며, 환삼덩굴 추출물의 어떠한 단일 성분이 항결핵 활성을 나타내는지 규명하지 못하였다. Humulus japonicus extract showed a direct killing effect on M. tuberculosis itself, and the H3RV-infected human monocyte cell line, THP-1, was treated with Hansampigin extract (Hong et al., 2014). These results demonstrate that anti-tuberculosis activity can be reduced by significantly reducing the growth of mycobacteria in cells. However, the mechanism of mycobacterial death by immune cells has not been elucidated, and no single component of Hwangsan japonicus extract has been shown to have antituberculous activity.

아르테수네이트 또는 감마리놀렌산은 다양한 약용식물과 동물에 함유되어 있는 천연물-유래 생리활성 물질로 결핵균의 증식과 생존을 억제하고 결핵균의 성장을 저해하는 항결핵 효과를 나타냄을 확인하였다(Choi, 2017). Artesonate or gamma linolenic acid is a natural product-derived physiologically active substance contained in various medicinal plants and animals. It inhibits the proliferation and survival of Mycobacterium tuberculosis, and has an antituberculous effect that inhibits the growth of Mycobacterium tuberculosis (Choi, 2017) .

그러나, 현재까지 결핵치료제로 뚜렷한 효과를 나타내어 시판 중인 천연물 유래 결핵 치료제는 없는 실정으로, 부작용이 낮고 효과가 우수한 천연물 유래 결핵 치료제의 개발이 요구되고 있다.However, there is no therapeutic agent for tuberculosis originating from natural products due to its remarkable effect as a therapeutic agent for tuberculosis so far. Therefore, development of a tuberculosis treatment agent derived from natural materials with low side effect and high efficacy is required.

통캇알리(Tongkat Ali)는 소태나무과 (Simaroubaceae)에 속하는 다년생 식물로, Eurycoma longifolia, Entomophthora apiculata, Polyathia bullataGoniothalamus species 등 크게 네 가지가 주된 기원 식물로 알려져 있다. 이 중 E. logifolia의 뿌리가 가장 많이 사용되고 있다(Khanijo and Jiraungkoorskul, 2016). 주로 말레이시아의 원시림에 자생하지만 동남아시아 지역에도 분포한다.Tongkat Ali is a perennial plant belonging to the Simaroubaceae family, Eurycoma longifolia , Entomophthora apiculata , Polyathia There have been four major plants such as the main origin bullata and Goniothalamus species. Of these, the root of E. logifolia is the most commonly used (Khanijo and Jiraungkoorskul, 2016). It is native to primeval forests of Malaysia, but is distributed in Southeast Asia.

통캇알리는 베트남의 전통 의학에서 말라리아 치료제로 사용되고, 일부 연구들에서 chloroquine에 저항성을 가지는 Plasmodium falciparum의 성장을 저해할 수 있는 통캇알리의 추출물들을 발견했고, 이들의 효과를 증명한 바 있다(Nguyen-Pouplin et al., 2007).Tongkat Ali has been used as a malaria treatment in traditional Vietnamese medicine, and in some studies, Tongkat Ali extracts have been found that can inhibit the growth of Plasmodium falciparum , which is resistant to chloroquine (Nguyen-Pouplin et al., 2007).

톡소플라스마증을 유발하는 기생충인 Toxoplasma gondi에 통캇알리가 항기생충 활성을 갖는다는 논문이 발표되었다(Kavitha et al., 2012). Toxoplasma gondi , a parasite inducing toxoplasmosis, has been reported to have anti-parasitic activity in tongkat ali (Kavitha et al., 2012).

통캇알리의 잎과 줄기의 추출물들은 Escherichia coli, Salmonella typhi, Staphylococcus aureus 등에 대한 항박테리아 활성을 갖는다고 보고된 바 있으나, 뿌리 추출물들이 전통 의학 치료제로 사용되고 항박테리아 활성을 나타낸다는 보고는 없었다(Farouk and Benafri, 2007).The extracts of leaf and stem of Tongkat Ali have been reported to have antibacterial activity against Escherichia coli , Salmonella typhi , Staphylococcus aureus, etc. However, there has been no report that root extracts are used as traditional medicine and have antibacterial activity (Farouk and Benafri, 2007).

통캇알리의 잎, 줄기, 뿌리 추출물들이 난소암, 전립선암, 편평상피암, 횡문근육종, 유방암 세포 등에서 심각한 독성을 일으킨다는 결과가 보고됨에 따라 항암 활성을 갖고 있다고 여겨지고 있다(Nurhanan et al., 2005).Tongkat Ali's leaf, stem and root extracts have been reported to have serious anticancer activity as reported to cause severe toxicity in ovarian cancer, prostate cancer, squamous cell carcinoma, rhabdomyosarcoma, and breast cancer cells (Nurhanan et al., 2005) .

통캇알리의 뿌리는 차나, 커피 등으로 유통되고 있으나, 정확한 성분이나 효과, 효능 및 독성 평가가 이루어지지 않은 실정이다.Tongkat Ali's roots are distributed in tea, coffee, etc. However, accurate components, effects, efficacy and toxicity are not evaluated.

항결핵 치료가 도입된 이래 항결핵 치료제의 약제 내성 문제는 줄곧 효과적인 항결핵 치료의 대표적인 문제점으로 여겨져 왔으며, 이와 함께 항결핵 치료제의 장기간 복용에 따른 다양한 부작용이 발생하고, 오랜 치료기간은 환자로 하여금 완치에 대한 심리적 불안감을 초래한다.Since the introduction of anti-tuberculosis treatment, the problem of drug resistance of anti-tuberculosis drugs has been regarded as a typical problem of effective anti-tuberculosis therapy continuously, and various side effects due to long-term use of anti-tuberculosis treatment are caused, It causes psychological anxiety about cure.

따라서 본 발명은 기존의 항결핵 치료제에 대한 단점을 보완하기 위하여, 숙주에 부작용이 적은 천연물 유래 단일 물질을 선정하여, 결핵균 감염시 결핵균의 성장 및 생존을 억제하는 숙주세포의 활성을 증가시킬 수 있는 세포 내 메커니즘에 기초한 새로운 결핵 치료 방법을 제공한다. Therefore, in order to overcome the disadvantages of existing anti-tuberculosis drugs, the present invention provides a method of selecting a single substance derived from a natural substance having a low side effect on a host, thereby increasing the activity of host cells inhibiting the growth and survival of Mycobacterium tuberculosis And provides a new method of treating tuberculosis based on an intracellular mechanism.

또한, 본 발명은 기존의 항결핵 치료제 보다 안전성 높고 결핵균에 내성을 생성하지 못하게 하는 새로운 결핵 치료제 및 건강기능식품으로의 개발 가능성과 기술을 제공한다.In addition, the present invention provides new tuberculosis therapeutic agents and health functional foods which are more safe than conventional antituberculosis agents and can not produce tolerance to Mycobacterium tuberculosis.

현재 결핵 치료제나 백신 개발을 위하여 면역반응의 조절 및 발현 조절에 치중되어 있으며, 세포 내 항결핵 기전 활성화를 통한 질환의 예방 및 치료를 하려는 시도들은 미미한 실정이다. Currently, it is focused on the control and regulation of the immune response for the development of tuberculosis drugs and vaccines, and attempts to prevent and treat diseases through the activation of anti-tuberculosis mechanisms in cells are insufficient.

이에 대하여, 본 발명은 표준 결핵균주 H37Rv 감염시 화합물 10(pasakbumin A, 5F)처리에 따라 큰포식세포를 활성화시키는 것을 특징으로 한다.In contrast, the present invention is characterized in that large proximal cells are activated by treatment with compound 10 (pasakbumin A, 5F) upon infection with standard H37Rv strain of Mycobacterium tuberculosis.

본 발명자들은 통캇알리에서 추출한 화합물 10(pasakbumin A, 5F)이 숙주세포에 독성이 없으면서 결핵균에 감염된 큰포식세포의 면역 활성화로 인하여 생성되는 TNF-α 및 산화 질소의 생성을 촉진하는 기전을 규명함으로써, 이를 이용한 결핵 치료제 또는 건강기능식품을 제공하고자 한다.The present inventors investigated the mechanism of promoting the production of TNF-α and nitric oxide produced by immune activation of macrophage cells infected with Mycobacterium tuberculosis, while the compound 10 (pasakbumin A, 5F) extracted from Tongkat Ali had no toxicity to host cells , A therapeutic agent for tuberculosis using the same, or a health functional food.

본 발명은 통캇알리 추출물을 유효성분으로 하는 결핵 치료용 또는 예방용 약제학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for treating or preventing tuberculosis comprising Tongkat Ali extract as an active ingredient.

본 발명에 따른 추출물은 조추출물 또는 조추출물의 용매 추출 분획물을 의미하는 것으로, 이들은 용액(유동엑스), 농축물(연조엑스) 또는 건조 분말 상태일 수 있으며, 이에 제한되지 않는다.The extract according to the present invention means a solvent extract fraction of crude extract or crude extract, which may be in the form of a solution (flow X), a concentrate (soft X) or a dry powder state, but is not limited thereto.

본 발명은 하기 화학식 I의 pasakbumin A를 유효성분으로 포함하는 결핵 치료용 또는 예방용 약제학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for the treatment or prevention of tuberculosis comprising pacquamune A of the formula (I) as an active ingredient.

Figure 112017034435023-pat00002
Figure 112017034435023-pat00002

[화학식 I]      (I)

본 발명은 통캇알리에서 추출한 pasakbumin A가 항결핵 작용을 갖는다는 새로운 용도에 관한 것이다.The present invention relates to a new use of pacartin alfa for the treatment of paclitaxel.

본 발명의 pasakbumin A는 물, 저급알코올 또는 이들의 혼합용매로부터 추출될 수 있으나, 이에 제한되지 않는다. 바람직하게는, 본 발명의 pasakbumin A는 메탄올로 추출될 수 있다.Pasakbumin A of the present invention can be extracted from water, a lower alcohol or a mixed solvent thereof, but is not limited thereto. Preferably, the pasakbumin A of the present invention can be extracted with methanol.

본 발명에 사용된 추출 방법은 통상적으로 사용되는 모든 방법을 사용할 수 있으며, 예컨대, 침지(냉침 또는 온침), 열수추출, 초음파 추출 또는 환류 냉각 추출법을 사용할 수 있으나, 이에 한정되는 것은 아니다.As the extraction method used in the present invention, any of conventionally used methods can be used. For example, immersion (cold or warm), hot water extraction, ultrasonic extraction or reflux cooling extraction may be used, but the present invention is not limited thereto.

본 발명의 약제학적 조성물은 시판중인 다른 항결핵 치료제를 추가로 포함할 수 있다.The pharmaceutical composition of the present invention may further comprise other antituberculosis drugs on the market.

본 발명은 통캇알리 추출물과 식품첨가제를 포함하는 결핵의 치료용 또는 예방용 기능성 식품을 포함한다.The present invention includes functional foods for the treatment or prevention of tuberculosis including Tongkat Ali extract and food additives.

또한, 본 발명은 pasakbumin A와 식품첨가제를 포함하는 결핵의 치료 또는 예방용 기능성 식품을 포함한다.In addition, the present invention includes functional food for the treatment or prevention of tuberculosis including pacquammin A and food additives.

본 발명의 "기능성 식품"은 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 의미한다. 본 발명의 기능성 식품은 그 제형에 있어서 특별히 한정되는 바는 없으며, 통상적인 의미에서의 건강식품을 모두 포함한다."Functional food" of the present invention means food prepared and processed using a raw material or ingredient having useful functionality in the human body. The functional food of the present invention is not particularly limited in its formulation, and includes all health foods in a conventional sense.

본 발명자들은 표준 결핵균 H37Rv에 감염된 큰포식세포에서 화합물 10(pasakbumin A, 5F)이 ERK1/2와 NF-κB 신호전달 경로를 통해 염증성 사이토카인과 산화질소의 생성을 증가시키는 메커니즘을 최초로 밝힘으로써, 이러한 메커니즘에 기초하여 숙주세포에 부작용이 적고 결핵균 생존을 조절할 수 있는 항결핵 치료제 및 건강기능식품을 제공하고자 한다.By first disclosing the mechanism by which compound 10 (pasakbumin A, 5F) increases the production of inflammatory cytokines and nitric oxide via the ERK1 / 2 and NF-κB signaling pathways in macrophage cells infected with the standard Mycobacterium tuberculosis H37Rv, Based on this mechanism, it is intended to provide an antituberculosis therapeutic agent and a health functional food which can suppress side effects on host cells and control the survival of Mycobacterium tuberculosis.

본 발명의 항결핵 활성 물질은 숙주세포에 안전하며 이는 세포 독성테스트로 확인되었다.The anti-tuberculosis active substance of the present invention is safe for host cells and confirmed by cytotoxicity test.

기존의 항결핵 치료제와 병용 처리함에 따라 나타나는 상승 효능은 보다 효과적이고 획기적인 결핵 치료제로 사용될 수 있다.The rising efficacy of the combination therapy with conventional anti-TB drugs can be used as a more effective and innovative TB drug.

도 1은 표준 결핵균 H37Rv에 감염된 큰포식세포에서 화합물 10(pasakbumin A, 5F)의 면역 활성 능력을 비교한 실험을 나타낸다.
도 2는 큰포식세포주에서 화합물 10(pasakbumin A 5F)의 항결핵 활성 기전을 규명한 실험을 나타낸다.
Figure 1 shows an experiment comparing the immunoactivity of compound 10 (pasakbumin A, 5F) in macrophage cells infected with the standard Mycobacterium tuberculosis H37Rv.
Fig. 2 shows an experiment for identifying the antitubercular activity of Compound 10 (pasakbumin A 5F) in a large predominant cell line.

통캇알리에서 화합물 10(pasakbumin A, 5F)은 다음의 방법으로 추출할 수 있으나, 이에 제한되지 않는다.In Tongkat Ali, compound 10 (pasakbumin A, 5F) can be extracted by, but not limited to, the following method.

1) 통캇알리에서 다양한 화합물의 추출방법1) Extraction method of various compounds from Tongkat Ali

통캇알리는 2013년 3월 베트남의 Dak Lak province에서 채집하여 VAST 연구원인 Bui Van Thanh 박사님이 감별한 통캇알리 뿌리를 사용하였다. 건조된 통캇알리 26 kg을 100% 메탄올로 4시간 동안 3회 반복 초음파추출한 뒤, 추출액을 여과 후 감압 농축하여 메탄올 추출물 440 g을 얻었다. 이를 물에 넣고 연속적으로 클로로포름 및 부탄올로 분배하여 클로로포름, 부탄올 및 물 층으로 분획하여 각각 113.86, 204.82 및 66.76 g의 추출물을 얻었다.Tongkat Ali was picked in Dak Lak province, Vietnam in March 2013 and used Tongkat Ali root, identified by VAST researcher Dr. Bui Van Thanh. 26 kg of dried Tongkat Ali was ultrasonically extracted with 100% methanol for 4 hours repeatedly, and the extract was filtered and concentrated under reduced pressure to obtain 440 g of methanol extract. The mixture was partitioned into chloroform and butanol, and the fractions were fractionated into chloroform, butanol and water to obtain 113.86, 204.82 and 66.76 g of the extract, respectively.

클로로포름 층에 있는 분획물을 실리카 용매상에서 진공 하에 크로마토그래피를 수득하는 단계를 거친 뒤, 클로로포름 겔 컬럼을 헥산-아세톤(40:1 -> 1: 1. v/v)의 구배(gradient)로 용출시켜 총 6 개의 분획을 수득하고, 이를 각각 EL1A (14.2 g), EL1B (11.3 g), EL1C (17.2 g), EL1D (21.6 g), EL1E (25.2 g) 및 EL1F (7.3 g)으로 명명하였다. 이 중 EL1D 분획을 다시 실리카 겔 컬럼에 로딩하고 클로로포름:아세톤을 6:1 (v/v)로 혼합한 이동상 용매를 사용하여 화합물 8(eurycomalactone, 15E1) (407.0 mg)을 수득하였다. After fractionating the fractions in the chloroform layer on a silica solvent under vacuum, the chloroform gel column was eluted with a gradient of hexane-acetone (40: 1? 1: 1. v / v) A total of 6 fractions were obtained and named EL1A (14.2 g), EL1B (11.3 g), EL1C (17.2 g), EL1D (21.6 g), EL1E (25.2 g) and EL1F (7.3 g). Compound E (eurycomalactone, 15E1) (407.0 mg) was obtained using a mobile phase solvent in which an EL1D fraction was again loaded on a silica gel column and mixed with chloroform: acetone at a ratio of 6: 1 (v / v).

부탄올 층에 있는 분획물을 Diaion HP-20P 컬럼을 사용하여 물과 메탄올 혼합 용매를 이동상으로 메탄올의 비율을 0, 25, 50, 75 및 100%로 늘려 5개의 분획을 수득하고 이를 각각 EL2A (82.0 g), EL2B (26.3 g), EL2C (32.8 g), EL2D (12.4 g) 및 EL2E (72.5 g)으로 명명하였다. 이 중 EL2B 분획을 다시 실리카 겔 컬럼에 로딩하고 클로로포름:메탄올을 8:1 (v/v)로 혼합한 이동상 용매를 사용하여 화합물 9(pasakbumin C, 5D) (109.0 mg), 화합물 10(pasakbumin A, 5F) (875.0 mg), 화합물 11(13α(21)-epoxyeurycomanone, 5G) (10.0 mg), 화합물 12(longilactone, 5B) (110.0 mg), 및 화합물 13(2-dihydro-18-dedihydrolongilactone, 5H) (58.0 mg)을 수득하였다. The fraction in the butanol layer was separated into five fractions by increasing the proportion of methanol to mobile phase to 0, 25, 50, 75 and 100% using a Diaion HP-20P column as a mobile phase and eluting with EL2A (82.0 g ), EL2B (26.3 g), EL2C (32.8 g), EL2D (12.4 g) and EL2E (72.5 g). The EL2B fraction was again loaded on a silica gel column, and a mobile phase solvent in which chloroform: methanol was mixed in an amount of 8: 1 (v / v) was used to obtain Compound 9 (109.0 mg), Compound 10 (pasakbumin A , 5F) (875.0 mg), Compound 11 (13α (21) -epoxyeurycomanone, 5G) (10.0 mg), Compound 12 (longilactone, 5B) (110.0 mg), and Compound 13 (2-dihydro-18-dedihydrolongilactone, ) (58.0 mg).

EL2C 분획을 J'sphere ODS H-80 컬럼 (250 mm x 20 mm column)을 장착한 HPLC에 로딩하고 11% MeCN 수용액을 5 ㎖/분의 유속으로 흘려주어 화합물 1(Eurylactone E, 65B2) (1.3 mg), 화합물 2(Eurylactone F, 65B3) (12.1 mg), 화합물 3(eurylactone G, 5E5) (7.4 mg) 및 화합물 15(5α, 14β, 15β-trihydroxyklaineanone, 5H) (1.2 mg)를 수득하였다. The EL2C fraction was loaded onto HPLC equipped with a Jsphere ODS H-80 column (250 mm x 20 mm column) and an 11% MeCN aqueous solution was flowed at a flow rate of 5 ml / min to yield compound 1 (Eurylactone E, 65B2) mg), Compound 2 (Eurylactone F, 65B3) (12.1 mg), Compound 3 (eurylactone G, 5E5) (7.4 mg) and Compound 15 (5 ?, 14 ?, 15? -trihydroxyklaineanone, 5H) (1.2 mg).

EL2D 분획 역시 J'sphere ODS H-80 컬럼 (250 mm x 20 mm column)을 장착한 HPLC에 로딩하고 15% MeCN 수용액을 5 ㎖/분의 유속으로 흘려주어 화합물 4(eurycomalide D, 5E8) (1.0 mg), 화합물 5(eurycomalide E, 61A1) (1.0 mg), 및 화 6(13α, 21-dihydroxyeurycomanone, 5E7) (10.3 mg)을 수득하였다. The EL2D fraction was also loaded onto HPLC equipped with a J'sphere ODS H-80 column (250 mm x 20 mm column) and a 15% MeCN aqueous solution was flowed at a flow rate of 5 ml / min to yield compound 4 (eurycomalide D, 5E8) mg), Compound 5 (eurycomalide E, 61A1) (1.0 mg), and 16 (13 ?, 21-dihydroxyeurycomanone, 5E7) (10.3 mg).

EL2E 분획은 실리카 겔 컬럼에 로딩하고 클로로포름:아세톤을 1:1 (v/v)로 혼합한 이동상 용매를 사용하여 화합물 7(eurylactone A, 64A3) (5.0 mg), 및 화합물 14(14, 15β-dihydroxyklaineanone, 64A4) (45.0 mg)를 수득하였다.The EL2E fraction was loaded on a silica gel column, and Compound 7 (eurylactone A, 64A3) (5.0 mg) and Compound 14 (14,15? -Cyclohexylcarbodiimide) were dissolved in a mobile phase solvent mixed with chloroform: acetone 1: 1 (v / v) dihydroxyklaineanone, 64A4) (45.0 mg).

Figure 112017034435023-pat00003
Figure 112017034435023-pat00003

Figure 112017034435023-pat00004
Figure 112017034435023-pat00004

Figure 112017034435023-pat00005
Figure 112017034435023-pat00005

2) 화합물 10(pasakbumin A, 5F)의 추출방법2) Extraction method of compound 10 (pasakbumin A, 5F)

통캇알리는 2013년 3월 베트남의 Dak Lak province에서 채집하여 VAST 연구원인 Bui Van Thanh 박사님이 감별한 통캇알리 뿌리를 사용하였다. 건조된 통캇알리 26 kg을 100% 메탄올로 4시간 동안 3회 반복 초음파추출한 뒤, 추출액을 여과 후 감압 농축하여 메탄올 추출물 440 g을 얻었다. 이를 물에 넣고 연속적으로 클로로포름 및 부탄올로 분배하여 클로로포름, 부탄올 및 물 층으로 분획하여 각각 113.86, 204.82 및 66.76 g의 추출물을 얻었다.Tongkat Ali was picked in Dak Lak province, Vietnam in March 2013 and used Tongkat Ali root, identified by VAST researcher Dr. Bui Van Thanh. 26 kg of dried Tongkat Ali was ultrasonically extracted with 100% methanol for 4 hours repeatedly, and the extract was filtered and concentrated under reduced pressure to obtain 440 g of methanol extract. The mixture was partitioned into chloroform and butanol, and the fractions were fractionated into chloroform, butanol and water to obtain 113.86, 204.82 and 66.76 g of the extract, respectively.

부탄올 층에 있는 분획물을 Diaion HP-20P 컬럼을 사용하여 물과 메탄올 혼합 용매를 이동상으로 메탄올의 비율을 0, 25, 50, 75 및 100%로 늘려 5개의 분획을 수득하고 이를 각각 EL2A (82.0 g), EL2B (26.3 g), EL2C (32.8 g), EL2D (12.4 g) 및 EL2E (72.5 g)으로 명명하였다. The fraction in the butanol layer was separated into five fractions by increasing the proportion of methanol to mobile phase to 0, 25, 50, 75 and 100% using a Diaion HP-20P column as a mobile phase and eluting with EL2A (82.0 g ), EL2B (26.3 g), EL2C (32.8 g), EL2D (12.4 g) and EL2E (72.5 g).

이 중 EL2B 분획을 다시 실리카 겔 컬럼에 로딩하고 클로로포름:메탄올을 8:1 (v/v)로 혼합한 이동상 용매를 사용하여 화합물 10(pasakbumin A, 5F) (875.0 mg)을 수득하였다.Compound 10 (pasakbumin A, 5F) (875.0 mg) was obtained by using the mobile phase solvent in which the EL2B fraction was again loaded on a silica gel column and mixed with chloroform: methanol at 8: 1 (v / v).

본 발명자들은 통캇알리로부터 추출한 단일 물질들의 직접적인 항결핵 효과를 확인하였다.The present inventors have confirmed the direct antituberculous effect of single substances extracted from Tongkat Ali.

<실시예 1>&Lt; Example 1 >

결핵균의 배양Culture of Mycobacterium tuberculosis

표준 결핵균주(H37Rv)를 배양하기 위하여 액체배지는 10% ADC (5% bovine albumin, 2% dextrose, 0.03% catalse, 0.85% sodium chloride)와 0.2% glycerol이 포함된 Middlbrook 7H9 broth (Difco Laboratories, USA)를 사용하였으며, 배지에 결핵균을 접종한 후 진탕배양기에서 37℃로 배양하였다. 3주 후 결핵균을 1x107 bacteria/200 μl로 소량씩 분주하여 -70℃에 냉동보관하고 실험시 녹여 사용하였다. In order to culture the standard Mycobacterium tuberculosis (H37Rv), liquid medium was Middlbrook 7H9 broth (Difco Laboratories, USA) containing 10% ADC (5% bovine albumin, 2% dextrose, 0.03% catalase, 0.85% sodium chloride) and 0.2% glycerol ) Were used. After inoculation of Mycobacterium tuberculosis in the medium, the cells were cultured at 37 ° C in a shaking incubator. After 3 weeks, the Mycobacterium tuberculosis was subdivided into 1 × 10 7 bacteria / 200 μl, kept frozen at -70 ° C, and dissolved in the experiment.

<실시예 2>&Lt; Example 2 >

세포 배양Cell culture

쥐의 큰포식세포주 Raw264.7를 ATCC에서 구매하여, 10% FBS (Atlas, USA)와 penicillin/streptomycin (USA)이 포함된 RPMI1640으로 배양하였다. 결핵균 감염시 penicillin/streptomycin이 제외된 10% FBS만이 포함된 RPMI1640을 사용하였다.Rat264.7 was purchased from ATCC and cultured in RPMI1640 supplemented with 10% FBS (Atlas, USA) and penicillin / streptomycin (USA). RPMI 1640 containing only 10% FBS with penicillin / streptomycin excluded was used for tuberculosis infection.

<실시예 3>&Lt; Example 3 >

세포 내 결핵균 감염Intracellular tuberculosis infection

쥐의 큰포식세포주 Raw264.7에 H37Rv를 1 또는 5 MOI (multiplicity of infection)로 4시간 동안 37℃, 5% CO2 인큐베이터에서 감염시켰다. 4시간 후, 세포 내로 감염되지 않은 박테리아를 제거하기 위하여 PBS로 2회 닦아낸 뒤, 10% FBS가 첨가된 RPMI1640을 세포에 처리해준 후 24시간 또는 48시간 동안 37℃, 5% CO2 인큐베이터에서 배양하였다. H37Rv was infected with a 1% or 5% MOI (multiplicity of infection) for 4 hours at 37 ° C in a 5% CO 2 incubator in Raw 264.7 of the rat's large predominant cell line Raw264.7. After 4 hours, the cells were rinsed twice with PBS to remove uninfected bacteria, treated with RPMI 1640 supplemented with 10% FBS for 24 hours or 48 hours at 37 ° C in a 5% CO 2 incubator Lt; / RTI &gt;

<실시예 4><Example 4>

박테리아 약물 독성 실험 Bacterial drug toxicity test

10% ADC (5% bovine albumin, 2% dextrose, 0.03% catalse, 0.85% sodium chloride)와 0.2% glycerol이 포함된 Middlbrook 7H9 broth 5 ml에 결핵균을 접종시킨 뒤, 다양한 약물들을 일정 농도(10 μM)로 처리한 후 3일 동안 37℃, 진탕배양기에서 배양하였다. After incubation of 5 ml of Middlbrook 7H9 broth with 10% ADC (5% bovine albumin, 2% dextrose, 0.03% catalase, 0.85% sodium chloride) and 0.2% glycerol, And cultured in a shaking incubator at 37 ° C for 3 days.

3일 후, 배양액 중 일부(2 ml)는 흡광도를 이용하여 세균의 성장을 비교하기 위해 흡광값(OD600값)을 측정하였다. 나머지 배양액은 1.5 ml 튜브에 옮겨 10% ADC와 0.2% glycerol이 포함된 Middlbrook 7H9 broth에 1/10로 연속 희석하였고, 이것을 10% OADC(0.06% oleic acid, 5% bovine albumin, 2% dextrose, 0.03% catalse, 0.85% sodium chloride)와 0.5% glycerol이 포함된 Middlebrook 7H10 agar(Difco Laboratories, USA) 배지에 접종하여 37℃ 인큐베이터에서 21일 동안 배양하였다.After 3 days, a portion (2 ml) of the culture was measured for absorbance (OD600 value) for comparison of the growth of bacteria using absorbance. The remaining cultures were transferred to 1.5 ml tubes and serially diluted 1/10 in Middlbrook 7H9 broth containing 10% ADC and 0.2% glycerol. This was diluted with 10% OADC (0.06% oleic acid, 5% bovine albumin, 2% dextrose, 0.03 (Difco Laboratories, USA) medium containing 0.5% glycerol and 0.5% glycerol, and cultured in a 37 ° C incubator for 21 days.

<실시예 5>&Lt; Example 5 >

세포 내 박테리아 성장 - 집락형성단위 분석 (Colony-forming unit assay)Intracellular bacterial growth-Colony-forming unit assay

감염된 세포를 PBS로 2회 닦아낸 후, 0.1% 사포닌을 처리하여 37℃, 5% CO2 인큐베이터에서 10분 동안 세포를 용해시킨다. 세포 용해물을 1.5 ml 튜브에 옮겨 10% ADC와 0.2% glycerol이 포함된 Middlbrook 7H9 broth에 1/10로 연속 희석하였고, 이것을 10% OADC 와 0.5% glycerol이 포함된 Middlebrook 7H10 agar배지에 접종하여 37℃ 인큐베이터에서 21일동안 배양하였다. 21일 후 Middlebrook 7H10 agar 배지에 생성된 세균집락 (colony)을 육안으로 관찰하여 계수하였다.The infected cells are wiped twice with PBS, treated with 0.1% saponin and the cells are lysed in a 5% CO 2 incubator at 37 ° C for 10 minutes. The cell lysate was transferred to a 1.5 ml tube and serially diluted 1/10 in 10% ADC and Middlbrook 7H9 broth containing 0.2% glycerol. This was inoculated on a Middlebrook 7H10 agar medium containing 10% OADC and 0.5% glycerol, Lt; 0 &gt; C incubator for 21 days. After 21 days, colonies of bacteria formed on the Middlebrook 7H10 agar medium were counted by visual observation.

<실시예 6>&Lt; Example 6 >

세포 성장률 측정Cell growth rate measurement

세포는 12-well 세포 배양 접시에 2ⅹ105 세포/ml로 분주하였다. 24시간의 안정화 후 H37Rv를 5 MOI로 4시간 동안 감염시켰다. PBS로 2회 세척 후 화합물 10(pasakbumin A, 5F)을 10 μM로 처리한 뒤 24시간과 72시간에 세포를 수확하였다. 수확한 세포는 trypan blue로 염색한 뒤 혈구계 상에서 염색되지 않은 세포 수를 세어 세포 성장률을 측정하였다.Cells were plated at 2 × 10 5 cells / ml in 12-well cell culture dishes. After 24 hours of stabilization, H37Rv was infected for 4 hours at 5 MOI. Cells were harvested at 24 and 72 hours after treatment with 10 μM of compound 10 (pasakbumin A, 5F) after 2 washes with PBS. The harvested cells were stained with trypan blue and counted the number of cells that had not been stained on the hemocytometer to measure the cell growth rate.

<실시예 7>&Lt; Example 7 >

산화질소 생산 측정Measurement of nitric oxide production

산화질소는 공기 중에서 수초 내에 아질산염 이온으로 산화되기 때문에, 산화질소의 생산을 아질산염 이온의 농도로 측정하였다. 아질산염 이온의 측정은 Intron-bio사의 nitric oxide detection kit를 사용하였다. Raw264.7 세포에 H37Rv를 5 MOI로 감염시킨 뒤 다양한 약물을 처리한 후 48시간에 상층액을 수거하여 6,000 RPM, 4℃로 10분 동안 원심분리하였다. 수거한 시료를 96 well microplate에 100 μl씩 옮긴 다음 sulfanilamide 50μl와 실온에서 10분 동안 반응시킨 후, naphthalenediamine 50 μl를 첨가하여 실온에서 10분 동안 반응시켰다. 그 후 microplate reader를 이용하여 540 nm의 파장에서 흡광도를 측정하였다. 표준곡선은 정제된 아질산염으로 희석하여 작성하였다.Since nitric oxide is oxidized to nitrite in the air in a few seconds, the production of nitric oxide is measured by the concentration of nitrite ions. The nitrite ions were measured by Intron-bio nitric oxide detection kit. Raw264.7 cells were infected with 5 MOI of H37Rv and treated with various drugs. After 48 hours, the supernatant was collected and centrifuged at 6,000 rpm at 4 ° C for 10 minutes. The collected samples were transferred to 96-well microplates in a volume of 100 μl, and then 50 μl of sulfanilamide was reacted at room temperature for 10 minutes. Then, 50 μl of naphthalenediamine was added thereto and reacted at room temperature for 10 minutes. The absorbance was then measured at a wavelength of 540 nm using a microplate reader. Standard curves were prepared by diluting with purified nitrite.

<실시예 8>&Lt; Example 8 >

ELISA ELISA

Raw264.7 세포에 H37Rv를 5 MOI로 감염시킨 뒤 다양한 약물을 처리한 후 48시간에 상층액을 수거하였다. 수거한 상층액은 6,000 RPM, 4℃로 10분 동안 원심분리하여 상층액에 존재하는 세포의 조직 파편이나 죽은 세포를 제거한 후 -70℃에 보관하였다. Raw264.7 cells were infected with 5 MOI of H37Rv and treated with various drugs, and the supernatant was collected at 48 hours. The collected supernatant was centrifuged at 6,000 rpm for 10 min at 4 ° C to remove tissue debris or dead cells from the supernatant and stored at -70 ° C.

96 well microplate에 각각의 capture Ab를 1 μg/ml의 농도로 처리한 후 4℃에서 하룻밤 동안 반응시켰다. Wash buffer(0.05% Tween-20in PBS)로 3회 닦아내어준 후 blocking buffer(1% BSA in PBS)를 처리하여 1시간 동안 반응시켰다. -70℃에 보관한 샘플을 1/5희석하여 처리한 뒤 2시간 동안 반응시켰고, detection Ab를 0.25 μg/ml의 농도로 희석하여 반응시켰다. Avidine peroxidase를 반응시킨 후, avidine peroxidase의 기질로 0.1 M citric acid monohydrate (pH 4.0)(Sigma-Aldrich, St. Louis, Mo, USA)에 2,2′-azino-bis(3-ethylbenzoline-6-sulfonic acid) diammonium salt (ABTS, Sigma-Aldrich, St. Louis, Mo, USA)와 3% H2O2 (Sigma-Aldrich, St. Louis, Mo, USA)를 2:1의 비율로 희석하여 반응시켰다. Each capture Ab was treated at a concentration of 1 μg / ml in a 96-well microplate and reacted overnight at 4 ° C. After washing three times with Wash buffer (0.05% Tween-20in PBS), the cells were treated with blocking buffer (1% BSA in PBS) and reacted for 1 hour. The samples stored at -70 ° C were diluted to 1/5, reacted for 2 hours, and the detection Ab was diluted to a concentration of 0.25 μg / ml. Azine-bis (3-ethylbenzene-6-carboxamide) was added to 0.1 M citric acid monohydrate (pH 4.0) (Sigma-Aldrich, St. Louis, Mo. USA) as an avidin peroxidase substrate. sulfonic acid) diammonium salt (ABTS, Sigma-Aldrich, St. Louis, Mo, USA) and 3% H 2 O 2 (Sigma -Aldrich, St. Louis, Mo, USA) 2: the reaction was diluted at a ratio of 1: 1 .

흡광도는 405 nm의 파장으로 microplate reader(Biotek Instruments Inc., Powerwave XS, Wincoski, USA)를 이용하여 측정하였다.Absorbance was measured using a microplate reader (Biotek Instruments Inc., Powerwave XS, Wincoski, USA) at a wavelength of 405 nm.

<실시예 9>&Lt; Example 9 >

Western blot assayWestern blot assay

시료에 RIPA buffer[10 mM Tris HCl; pH 8.0, 1 mM EDTA, 140 mM NaCl, 0.1% DOC (deoxycholate), 0.1% SDS, 0.1% triton X-100]를 넣고 10분마다 교반기로 혼합시켰다. 4회 반복 후, 13,000 rpm으로 30분간 원심분리하여 상층액을 분리한 다음 Bradford Assay Kit (Bio-Rad, USA)를 이용하여 단백질을 정량하였다. To the sample was added RIPA buffer [10 mM Tris HCl; pH 8.0, 1 mM EDTA, 140 mM NaCl, 0.1% DOC (deoxycholate), 0.1% SDS, 0.1% triton X-100] were mixed and mixed with a stirrer every 10 minutes. After repeating 4 times, the supernatant was separated by centrifugation at 13,000 rpm for 30 minutes, and proteins were quantified using Bradford Assay Kit (Bio-Rad, USA).

단백질 분리를 위해 SDS-PAGE를 수행하였으며, 40% Acrylamide, 1 M Tris-HCl (pH 8,8, pH 6.8), 10% SDS, 10% Ammonium persulfate, TEMED, 증류수, 5X SDS gel loading buffer, 1X SDS running buffer를 사용하였다. 100 V로 전기영동 한 뒤, 4℃에서 120 V로 1시간 동안 단백질을 PVDF Transfer Membrane (Millipore, USA)에 이동시켰다. 단백질이 이동된 membrane에 5% skim milk 용액으로 1시간 동안 처리한 다음 TBS-T buffer(20 mM Tris, 150 mM NaCl, pH 8.0, 1% Tween 20)로 10분간 3번 세척하고 1차 항체를 포함하는 항체희석용액(5% skim milk)을 실온에서 2시간 이상 처리하였다. SDS-PAGE was performed for the separation of proteins, and 40% Acrylamide, 1 M Tris-HCl (pH 8,8, pH 6.8), 10% SDS, 10% Ammonium persulfate, TEMED, distilled water, 5X SDS gel loading buffer, SDS running buffer was used. After electrophoresis at 100 V, proteins were transferred to PVDF Transfer Membrane (Millipore, USA) at 4 ° C and 120 V for 1 hour. The membrane was treated with 5% skim milk solution for 1 hour and then washed three times for 10 minutes with TBS-T buffer (20 mM Tris, 150 mM NaCl, pH 8.0, 1% Tween 20) (5% skim milk) was treated at room temperature for more than 2 hours.

2차 항체가 함유된 항체희석용액으로 실온에서 반응시킨 뒤, ECL 용액(Animal Genetics Inc., Korea)으로 감광시킨 membrane을 암실에서 필름에 노출시켜 인화하였다.After reacting at room temperature with antibody dilution solution containing secondary antibody, the membrane exposed to ECL solution (Animal Genetics Inc., Korea) was exposed to the film in the dark room for printing.

<실험예 1><Experimental Example 1>

통캇알리에서 추출된 단일 물질들의 결핵균 살균 효과 분석Analysis of Sterilization Effect of Mycobacterium tuberculosis by Single Substances from Tongkat Ali

통캇알리(Eurycoma longifolia)로부터 추출한 단일 물질 총 15종(화합물 1-15)을 이용하여 병원성이 강한 결핵균주 H37Rv에 대한 직접적인 독성 효과를 분석하였다. Eurycoma longifolia ), we analyzed the direct toxic effect on H37Rv, a highly pathogenic M. tuberculosis strain, using 15 compounds (Compound 1-15).

H37Rv를 액체 배양 배지에 접종시킨 뒤, 화합물 1-15를 동일 농도로 처리해 준 후 3일 뒤에 흡광값(OD600 값)과 집락형성단위 분석(CFU assay)으로 결핵균의 성장을 비교한 결과를 하기 표 1에 나타내었다. The results of comparing the growth of Mycobacterium tuberculosis with the absorbance (OD600 value) and the CFU assay (CFU assay) 3 days after the inoculation of H37Rv into the liquid culture medium, Respectively.

Figure 112017034435023-pat00006
Figure 112017034435023-pat00006

표 1에서 보는 바와 같이, 총 15개의 단일 물질들 모두 결핵균 자체에 직접적인 살균 효과를 나타내지 않았다.As shown in Table 1, a total of 15 single substances did not show a direct bactericidal effect on the Mycobacterium tuberculosis itself.

<실험예 2><Experimental Example 2>

큰포식세포를 통한 통캇알리에서 추출된 단일 물질들의 결핵균 증식억제 실험Experiments to inhibit the growth of Mycobacterium tuberculosis by single substances extracted from Tongkat Ali through large phagocytic cells

쥐의 큰포식세포주인 Raw264.7 세포에 H37Rv를 5 MOI로 4시간 동안 감염시킨 뒤, 총 15개의 단일 물질들을 동일 농도로 처리하였다. 48시간 후, 세포를 용해하여 세포 안에 감염된 박테리아 수를 집락형성단위로 측정한 결과를 하기 표 2에 나타내었다. Raw 264.7 cells, a large predominant cell line of rats, were infected with H37Rv at 5 MOI for 4 hours, after which 15 single substances were treated at the same concentration. After 48 hours, the cells were lysed and the number of infected bacteria in the cells was measured in terms of colony forming units. The results are shown in Table 2 below.

Figure 112017034435023-pat00007
Figure 112017034435023-pat00007

총 15개의 단일 물질들 중 화합물 10(pasakbumin A, 5F)만이 대조군에 비하여 세포 내 박테리아의 수를 약 1.8배 감소시켰다.Of the total of 15 monolayers, only compound 10 (pASAKBINUM A, 5F) reduced the number of intracellular bacteria by about 1.8 times compared to the control.

다만, 화합물 8(eurycomalactone, 15E1) 처리에 의한 박테리아 수 감소는 화합물 8(eurycomalactone, 15E1) 의 항결핵 활성 때문이 아니라 세포 독성으로 인한 것임을 확인하였다. However, it was confirmed that the decrease in the number of bacteria by treatment with eurycomalactone (15E1) was due to cytotoxicity rather than the anti-tuberculosis activity of eurycomalactone (15E1).

<실험예 3><Experimental Example 3>

표준 결핵균 H37Rv에 감염된 큰포식세포에서 화합물 10(pasakbumin A, 5F)의 면역 활성 능력 관찰Observation of immunopotentiating activity of compound 10 (pasakbumin A, 5F) in macrophage cells infected with the standard M. tuberculosis H37Rv

H37Rv 감염 후 화합물 10(pasakbumin A, 5F)의 처리는 Raw264.7 세포의 성장률에 영향을 미치지 않았다. 그러나 화합물 10(pasakbumin A, 5F)은 결핵균에 감염된 그룹에서 오히려 세포를 보호하는 역할을 하는 것을 관찰하였으며, 측정한 결과는 하기 표 3a에 나타내었다(도 1).Treatment of Compound 10 (pasakbumin A, 5F) after infection with H37Rv did not affect the growth rate of Raw264.7 cells. However, Compound 10 (pasakbumin A, 5F) was observed to protect cells in the group infected with Mycobacterium tuberculosis, and the results are shown in Table 3a below (Fig. 1).

[표 3a][Table 3a]

Figure 112017034435023-pat00008
Figure 112017034435023-pat00008

또한, 산화질소의 생산량은 화합물 10(pasakbumin A, 5F) 처리군이 대조군에 비하여 약 2배 증가 하였으며, 측정한 결과는 하기 표 3b에 나타내었다(도 1).In addition, the production amount of nitric oxide was about twice as much as that of the control group in the compound 10 (paclitaxel A, 5F) treatment, and the measurement results are shown in Table 3 (b).

[표 3b][Table 3b]

Figure 112017034435023-pat00009
Figure 112017034435023-pat00009

또한, 염증성 염증성 사이토카인인 TNF-α의 경우 화합물 10(pasakbumin A, 5F) 처리군이 대조군에 비해 약 1.7배 증가하였고, 항염증성 사이토카인인 IL-10의 생산은 다소 감소하는 경향이 관찰 되었으며(도 1), 측정한 결과는 하기 표 3c 및 표 3d에 나타내었다.In addition, TNF-a, an inflammatory inflammatory cytokine, increased approximately 1.7-fold in the group treated with Compound 10 (pasakbumin A, 5F) compared to the control group, and IL-10 production, which is an anti-inflammatory cytokine, (Fig. 1), and the measurement results are shown in Tables 3c and 3d.

[표 3c][Table 3c]

Figure 112017034435023-pat00010
Figure 112017034435023-pat00010

[표 3d][Table 3d]

Figure 112017034435023-pat00011
Figure 112017034435023-pat00011

<실험예 4><Experimental Example 4>

큰포식세포주에서 화합물 10(pasakbumin A, 5F)의 항결핵 활성 기전 규명Identification of antitubercular activity of compound 10 (pasakbumin A, 5F) in a large predominant cell line

Raw264.7 세포에 H37Rv 감염 시 화합물 10(pasakbumin A, 5F)처리는 Erk1/2와 IκBα및 NF-κB의 인산화 수준을 확연하게 증가시켰다(도 2).Treatment with compound 10 (pasakbumin A, 5F) upon infection of Raw264.7 cells with H37Rv markedly increased the phosphorylation levels of Erk1 / 2 and IκBα and NF-κB (FIG. 2).

또한, 파고솜 성숙의 간접적인 증거인 cathepsin D의 잘려진 형태의 발현 수준도 증가하였다(도 2).In addition, the level of expression of the truncated form of cathepsin D, which is indirect evidence of papoucemia, also increased (Fig. 2).

자가포식 관련 유전자의 발현 패턴 분석 결과 H37Rv 감염 시, 화합물 10(pasakbumin A, 5F)처리군에서 p-mTOR과 beclin-1의 단백질 수준의 발현이 증가되었다(도 2).Analysis of expression patterns of autophagic genes revealed that the expression of p-mTOR and beclin-1 protein levels was increased in the compound 10 (paclitaxel A, 5F) treated group (Fig. 2).

Claims (10)

삭제delete 하기 화학식 I의 pasakbumin A를 유효성분으로 포함하는 결핵 치료용 또는 예방용 약제학적 조성물:
Figure 112017034435023-pat00012

[화학식 I]
A pharmaceutical composition for the treatment or prophylaxis of tuberculosis comprising as an active ingredient paskakbumin A of the formula (I):
Figure 112017034435023-pat00012

(I)
삭제delete 삭제delete 삭제delete 제2항에 있어서, 항결핵 치료제를 추가로 포함하는 것을 특징으로 하는 약제학적 조성물.
The pharmaceutical composition according to claim 2, further comprising an anti-tuberculosis therapeutic agent.
삭제delete pasakbumin A와 식품첨가제를 포함하는 결핵의 개선용 또는 예방용 기능성 식품.
Functional food for the improvement or prevention of tuberculosis including pasakbumin A and food additives.
제8항에 있어서, pasakbumin A가 통캇알리에서 추출된 것을 특징으로 하는 기능성 식품.9. The functional food according to claim 8, wherein the pasakbumin A is extracted from Tongkat Ali. 제2항에 있어서, pasakbumin A가 통캇알리에서 추출된 것을 특징으로 하는 약제학적 조성물.3. The pharmaceutical composition according to claim 2, wherein the pasakbumin A is extracted from Tongkat Ali.
KR1020170045492A 2017-04-07 2017-04-07 Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis KR101872637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170045492A KR101872637B1 (en) 2017-04-07 2017-04-07 Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170045492A KR101872637B1 (en) 2017-04-07 2017-04-07 Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis

Publications (1)

Publication Number Publication Date
KR101872637B1 true KR101872637B1 (en) 2018-06-28

Family

ID=62780026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170045492A KR101872637B1 (en) 2017-04-07 2017-04-07 Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis

Country Status (1)

Country Link
KR (1) KR101872637B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020351A1 (en) * 2004-05-27 2007-01-25 Rathod Meena R Antitubercular extracts of Salicornia brachiata
KR20140089691A (en) * 2013-01-07 2014-07-16 영농조합법인 이노플랜트 Method for increasing growth and bioactive compound content of Eurycoma sp. adventitious root
KR20150096041A (en) * 2014-02-14 2015-08-24 최원형 Anti-tuberculosis composition for treating or preventing tuberculosis comprising Melia azedarach L. extracts or Lobelia chinensis Lour extracts and fractions thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020351A1 (en) * 2004-05-27 2007-01-25 Rathod Meena R Antitubercular extracts of Salicornia brachiata
KR20140089691A (en) * 2013-01-07 2014-07-16 영농조합법인 이노플랜트 Method for increasing growth and bioactive compound content of Eurycoma sp. adventitious root
KR20150096041A (en) * 2014-02-14 2015-08-24 최원형 Anti-tuberculosis composition for treating or preventing tuberculosis comprising Melia azedarach L. extracts or Lobelia chinensis Lour extracts and fractions thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. Tada et al, ‘New antiulcer quassinoids from Eurycoma longifolia’, European Journal of Medicinal Chemistry, 1991, Vol.26. No.3, pp.345-349.* *
N. Erasmus et al, `Effect of Eurycoma longifolia Jack (Tongkat ali) extract on human spermatozoa in vitro', Andrologia, 2012, Vol.44, pp.308-314.* *

Similar Documents

Publication Publication Date Title
Ong et al. Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics
Lima et al. Poisonous mushrooms; a review of the most common intoxications
Thomé et al. Chloroquine: modes of action of an undervalued drug
Vamanu et al. Antioxidant and antimicrobial activities of ethanol extracts of Cynara scolymus (Cynarae folium, Asteraceae family)
Dejani et al. Immunological and parasitological parameters in Schistosoma mansoni-infected mice treated with crude extract from the leaves of Mentha x piperita L.
Jouda et al. The antibacterial effect of some medicinal plant extracts and their synergistic effect with antibiotics
JPWO2008126905A1 (en) Evaluation method and screening method for substances having action to activate / inhibit innate immune mechanism, drug for activating / inhibiting innate immune mechanism, food, and production method thereof
KR101618330B1 (en) Pharmaceutical Composition comprising Lactococcus chungangensis for Previnting or Treating Inflammatory disease
Karunanidhi et al. Antibacterial and antibiofilm activities of nonpolar extracts of Allium stipitatum Regel. against multidrug resistant bacteria
US20240041967A1 (en) Compositions and methods related to rhamnus prinoides (gesho) extract for the inhibition of polymicrobial biofilm formation
Bürgel et al. Cryptococcus neoformans Secretes Small Molecules That Inhibit IL‐1β Inflammasome‐Dependent Secretion
Rafiq et al. Punica granatum rind extract: Antibiotic potentiator and efflux pump inhibitor of multidrug resistant Klebsiella pneumoniae clinical isolates
US9610310B2 (en) Pharmaceutical composition for preventing or treating inflammatory diseases or asthma, containing lagerstroemia ovalifolia extract or fraction thereof as active ingredient
JP2010059100A (en) Antibacterial agent for gram-positive bacteria and antimicrobial activity potentiating agent
JP2021515031A (en) Pathogenic bacteria
KR101872637B1 (en) Pharmaceutical composition or functional food comprising pasakbumin A for treatment of tuberculosis
Teimouri et al. Antimalarial efficacy of low molecular weight chitosan against Plasmodium berghei infection in mice
AU2015352042B2 (en) Titled extracts of Cynara scolymus for use in the treatment of mesothelioma
Ibrahim et al. STUDY THE ANTIBACTERIAL ACTIVITY OF AQUEOUS EXTRACTION OF ONION (Allium cepaL) AGAINST Staphylococcus aureus ISOLATED
JP6842088B2 (en) Composition with antifungal activity
Kanoun et al. In-vitro antibacterial activity of Algerian pomegranate (Punica granatum linn) peels on some antibiotic resistant gram-negative and positive bacterial strains
JP5688233B2 (en) TARC production inhibitor
KR20190022085A (en) Composition comprising tamarixetin for preventing or treating sepsis or septic shock
Khare et al. In vitro and in vivo efficacy of a new herbaceous indian plant-Abutilon indicum against Leishmania donovani infection
KR101776696B1 (en) Isosorbide derivatives having anti-microbial activity and anti-microbial composition composition the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant