KR101872208B1 - Silicon oxide coated with carbon complex and method for manufacturing the same - Google Patents

Silicon oxide coated with carbon complex and method for manufacturing the same Download PDF

Info

Publication number
KR101872208B1
KR101872208B1 KR1020110097597A KR20110097597A KR101872208B1 KR 101872208 B1 KR101872208 B1 KR 101872208B1 KR 1020110097597 A KR1020110097597 A KR 1020110097597A KR 20110097597 A KR20110097597 A KR 20110097597A KR 101872208 B1 KR101872208 B1 KR 101872208B1
Authority
KR
South Korea
Prior art keywords
silicon oxide
carbon composite
graphite
composite material
carbon
Prior art date
Application number
KR1020110097597A
Other languages
Korean (ko)
Other versions
KR20130033734A (en
Inventor
강윤규
Original Assignee
주식회사 예일전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 예일전자 filed Critical 주식회사 예일전자
Priority to KR1020110097597A priority Critical patent/KR101872208B1/en
Publication of KR20130033734A publication Critical patent/KR20130033734A/en
Application granted granted Critical
Publication of KR101872208B1 publication Critical patent/KR101872208B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 효율이 우수하고, 부피변화가 심하지 않아 장시간 사용이 가능한 이차 전지 음극재용 실리콘 산화물을 제공하기 위한 것으로,
수크로즈(Sucrose)와 흑연을 혼합하여 탄소복합체를 제조하는 단계; 및
상기 탄소복합체를 실리콘 산화물 입자 표면에 코팅하는 단계를 포함하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법과 이를 통해 제조된 실리콘 산화물을 제공한다.
The present invention provides a silicon oxide for a cathode material for a secondary battery which is excellent in efficiency and can be used for a long time because the volume thereof is not so changed.
Preparing a carbon composite material by mixing sucrose and graphite; And
And coating the carbon composite material on the surface of the silicon oxide particles to provide a silicon oxide coated with the carbon composite and a silicon oxide produced by the method.

Description

탄소복합체로 코팅된 실리콘 산화물 및 그 제조방법{SILICON OXIDE COATED WITH CARBON COMPLEX AND METHOD FOR MANUFACTURING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a silicon oxide coated with a carbon composite material,

본 발명은 리튬 이차전지의 음극재에 관한 것으로서, 보다 상세하게는 탄소복합체가 코팅된 실리콘 산화물(SiOX)에 관한 것이다.The present invention relates to an anode material of a lithium secondary battery, and more particularly to a silicon oxide (SiO x ) coated with a carbon composite material.

21세기에 들어서면서 IT산업기술은 기타 과학기술 분야에 비해 비약적인 발전은 계속하고 있고, 이들은 노트북, 휴대전화, PDA등 휴대가 가능하고 간편한 모바일기기를 중심으로 많은 상품개발이 주축을 이루어왔으며, 최근에는 모바일 기기의 성능 다양화와 가정, 회사, 사회 등을 연결하는 유비쿼터스 네트워크가 급속도로 진행되고 있다.
In the 21st century, IT industry technology has been developing remarkably in comparison with other scientific and technological fields. Many of them have been focused on mobile devices such as notebooks, mobile phones, and PDAs, which are portable and easy to use. , A ubiquitous network connecting home, company, society, etc. is rapidly proceeding.

특히 환경문제 및 에너지 문제에 대한 관심 및 연구개발이 집중되면서, 전기자동차용 리튬이차전지와 에너지저장용 리튬이차전지에 관한 기술선점 욕구는 전 세계적으로 매우 치열한 경쟁이 진행되고 있고 이를 위한 활발한 연구가 진행되고 있다.
Particularly, attention and research and development have been focused on environmental problems and energy problems, and there is a very intense competition in the worldwide demand for lithium secondary batteries for electric vehicles and lithium secondary batteries for energy storage. It is progressing.

리튬이차전지에 있어서, 특히 음극재료에 대한 기술이 부각되고 있다. 리튬이차전지의 음극 활물질은 흑연이 지속적으로 사용되어 왔으며, 용량 증가에 대한 요구로 인해 다른 탄소계 물질이나, 리튬 금속 화합물 등이 연구되어 왔다. 그러나 음극재료는 초기 비가역용량이 존재하고 부피변화가 심하게 발생되며, 수명 특성이 크게 떨어지는 문제가 있어, 아직까지는 흑연을 대체하여 상용화할 수 있는 물질을 찾아보기 어렵다.
BACKGROUND ART [0002] In lithium secondary batteries, a technique for a negative electrode material has been particularly emphasized. Graphite has been continuously used as an anode active material in lithium secondary batteries, and other carbon-based materials and lithium metal compounds have been studied due to a demand for an increase in capacity. However, there is a problem that the negative electrode material has an irreversible capacity at the initial stage, a volume change occurs to a great extent, and the lifetime characteristic is greatly deteriorated. Therefore, it is difficult to find a material that can be commercialized as a substitute for graphite.

최근에 리튬이차전지의 음극 활물질로 금속 Si 나노와이어(nanowire)가 개발되었으나, 고가의 가격 경쟁력을 극복하지 못하고 있는 실정이다. 또한, 다른 금속 또는 금속 산화물을 이용하여 복합 전극을 제조하는 기술이 등장하고 있으나, 첨가된 금속이나 금속 산화물이 용량을 발현하지 못하고, 낮은 에너지 밀도를 보이는 단점이 존재한다.
Recently, a metal Si nanowire has been developed as an anode active material of a lithium secondary battery, but it has not been able to overcome the high price competitiveness. In addition, although a technique for producing a composite electrode using another metal or a metal oxide has been developed, there is a disadvantage that the added metal or metal oxide does not manifest a capacity and exhibits a low energy density.

한편, 음극 활물질로 SiO-C 복합체를 제조하는 기술이 등장하고 있으나, 이러한 SiO-C복합체는 출발물질(precursor)로 SiO를 사용하여 고온(약 700~1000℃)의 열처리를 필요로 하고, 다시 기계적, 물리적으로 파쇄를 통해 입자크기를 줄여야 하는 기술적 난점을 가지고 있다.
In the meantime, a technique for producing a SiO-C composite as an anode active material has emerged. However, such a SiO-C composite requires heat treatment at a high temperature (about 700 to 1000 ° C) using SiO as a precursor, It has technical difficulties to reduce particle size through mechanical and physical fracturing.

따라서, 전지 효율이 우수하고, 장시간 사용할 수 있는 음극 활물질이 절실히 요구되고 있으며, 이러한 음극 활물질을 경제적이고, 용이하게 제조할 수 있는 방법이 요구되고 있다.Therefore, a negative electrode active material which is excellent in battery efficiency and can be used for a long time is desperately required, and a method for economically and easily manufacturing such negative electrode active material is required.

본 발명의 일측면은 효율이 우수하고, 부피변화가 심하지 않아 장시간 사용이 가능한 리튬 이차전지 음극 활물질용 실리콘 산화물과 이를 용이하게 제조할 수 있는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a silicon oxide for an anode active material of a lithium secondary battery which is excellent in efficiency and can be used for a long time because the volume thereof is not so large, and a method for easily manufacturing the silicon oxide.

본 발명은 수크로즈(Sucrose)와 흑연을 혼합하여 탄소복합체를 제조하는 단계; 및The present invention relates to a method for producing a carbon composite material by mixing carbon black with sucrose to produce a carbon composite material; And

상기 탄소복합체를 실리콘 산화물 입자 표면에 코팅하는 단계를 포함하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법을 제공한다.
And coating the carbon composite material on the surface of the silicon oxide particles.

또한, 본 발명은 상기 방법으로 제조된 탄소복합체로 코팅된 실리콘 산화물을 제공한다.The present invention also provides a silicon oxide coated with a carbon composite prepared by the above method.

본 발명은 음극재의 부피팽창을 최소화를 통해, 안정적인 전기 용량을 확보할 수 있는 음극활물질을 제공한다. 이를 통해, 고성능 리튬 이차전지로의 활용을 기대할 수 있는 장점이 있다.The present invention provides a negative electrode active material capable of securing a stable electric capacity through minimizing the volume expansion of the negative electrode material. As a result, it can be expected to be utilized as a high-performance lithium secondary battery.

도 1의 (a)는 종래의 통상의 탄소입자를 나타낸 SEM 사진이고, (b)는 본 발명의 탄소복합체를 관찰한 SEM 사진임.
도 2는 실시예에서 비교예와 발명예의 전기용량 실험을 나타낸 결과임.
FIG. 1 (a) is a SEM photograph showing conventional conventional carbon particles, and FIG. 1 (b) is a SEM photograph showing a carbon composite material of the present invention. FIG.
Fig. 2 is a graph showing the capacitance test results of the comparative example and the inventive example in the embodiment. Fig.

이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

먼저, 본 발명의 실리콘 산화물의 제조방법에 대하여 상세히 설명한다.
First, the method for producing silicon oxide of the present invention will be described in detail.

수크로즈(Sucrose)와 흑연을 혼합하여 탄소복합체를 제조한다. 상기 탄소복합체를 제조하는 과정은 상기 수크로즈와 흑연을 중량비 4:6의 비율로 혼합하고, 200~500℃의 온도로 2~6시간 동안 가열하면서 밀링하는 건식반응을 통해 제조하는 것이 바람직하다. 상기 밀링시 속도는 100~200rpm이 바람직하다.Sucrose and graphite are mixed to produce a carbon composite. Preferably, the carbon composite material is prepared by mixing the sucrose and graphite in a weight ratio of 4: 6, followed by milling while heating at 200 to 500 ° C for 2 to 6 hours. The milling speed is preferably 100 to 200 rpm.

흑연과 수크로즈(Sucrose)는 모두 탄소로 구성되어 있으나, 수크로즈내의 이당류들이 열처리시 기화되면서, 남아있는 탄소체들이 흑연위에 남게되어 이종 구조 또는 쉘(shell) 구조의 탄소복합체를 형성한다. 그 결과 상기 탄소복합체는 통상의 탄소입자와 달리, 코어쉘(core shell)과 같은 구조를 갖이 반응성 탄화탄소가 흑연위에 균일한 층을 형성하고 있는 구조를 갖는다.
Graphite and sucrose are all composed of carbon, but disaccharides in sucrose are vaporized during heat treatment, leaving the remaining carbon bodies on graphite, forming a heterogeneous or shell-structured carbon complex. As a result, unlike ordinary carbon particles, the carbon composite material has a structure similar to that of a core shell, and the reactive carbon black has a structure in which a uniform layer is formed on graphite.

상기 탄소복합체를 실리콘 산화물 표면에 코팅한다.The carbon composite material is coated on the surface of silicon oxide.

상기 코팅하는 과정은 습식 또는 건식 방법을 이용하여 할 수 있다. 건식방법 중 일종으로 상기 탄소복합체와 실리콘 산화물(SiOX)을 밀링하여 탄소복합체가 코팅된 실리콘 산화물을 얻을 수 있다. 이때에는 20~500rpm의 속도로 2~5시간 동안 밀링하여 제조할 수 있다.
The coating may be performed using a wet or dry method. The carbon composite material and silicon oxide (SiO x ) are milled as a kind of dry method to obtain a silicon oxide coated carbon composite. In this case, it can be manufactured by milling at a speed of 20 to 500 rpm for 2 to 5 hours.

이하, 본 발명의 실시예에 대하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

(실시예)(Example)

입자크기 200~300㎛의 수크로즈(Scurose)분말과 입자크기가 150㎛인 인조 흑연을 준비하고, 상기 수크로즈와 인조 흑연을 중량비 4:6으로 혼합하고, 300℃에서 4시간동안 가열하면서 100~200rpm으로 밀링하여 탄소복합체를 제조하였다.
Scurose powder having a particle size of 200 to 300 탆 and artificial graphite having a particle size of 150 탆 were prepared, and the sucrose and artificial graphite were mixed at a weight ratio of 4: 6. While heating at 300 캜 for 4 hours, 100 To 200 rpm to prepare a carbon composite material.

이렇게 제조된 탄소복합체를 전자현미경인 SEM으로 분석하여 그 결과를 도 1의 (b)에 나타내었다. 통상의 탄소입자인 도 1(a)와 비교할 때, 도 1(b)의 상기 탄소복합체는 코어쉘(sore shell)과 비슷한 구조를 가지며, 반응성 탄화탄소가 인조 흑연위에 균일한 층을 형성하는 것을 확인할 수 있다.
The carbon composite thus prepared was analyzed by SEM, which is an electron microscope, and the results are shown in FIG. 1 (b). Compared with the conventional carbon particles shown in FIG. 1 (a), the carbon composite of FIG. 1 (b) has a structure similar to that of a core shell, and the reactive carbon black forms a uniform layer on the artificial graphite Can be confirmed.

한편, 통상의 탄소입자를 코팅한 실리콘 산화물(비교예)와 상기 탄소복합체를 코팅한 실리콘 산화물(발명예)를 준비하였다. 상기 발명예는 상기 탄소복합체 분말을 실리콘 산화물과 2:8의 중량비로 배합하고 300rpm으로 3시간 동안 밀링하여 제조하였다. 상기 발명예와 비교예에 대해, 충방전 시험을 행하고, 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 발명예는 약 700mAh/g의 용량을 가지고 30 사이클까지 균일하게 유지되고 있음을 확인할 수 있다. On the other hand, silicon oxide coated with ordinary carbon particles (comparative example) and silicon oxide coated with the carbon composite material (inventive example) were prepared. The inventive example was prepared by mixing the carbon composite powder in a weight ratio of 2: 8 with silicon oxide and milling at 300 rpm for 3 hours. Charging and discharging tests were conducted on the inventive and comparative examples, and the results are shown in Fig. As shown in FIG. 2, the inventive example has a capacity of about 700 mAh / g and can be maintained uniformly up to 30 cycles.

즉, 비교예에 비해 본 발명의 발명예는 우수한 전기효율을 가지며, 장시간 활용이 가능하다는 것을 알 수 있다.That is, the inventive example of the present invention has an excellent electric efficiency and can be used for a long time compared to the comparative example.

Claims (5)

수크로즈(Sucrose)와 흑연을 혼합하여, 반응성 탄화산소가 흑연 상에 균일한 층을 형성하는 코어 쉘 구조를 갖는 탄소복합체를 제조하는 단계; 및
상기 탄소복합체를 실리콘 산화물 입자 표면에 코팅하는 단계
를 포함하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법.
Preparing a carbon composite having a core shell structure in which sucrose and graphite are mixed to form a uniform layer of reactive oxygen species on graphite; And
Coating the carbon composite material on the surface of the silicon oxide particles
Lt; RTI ID = 0.0 > 1, < / RTI >
청구항 1에 있어서,
상기 수크로즈와 흑연의 혼합비는 중량비로 4:6의 비율로 혼합하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법.
The method according to claim 1,
Wherein the mixture of sucrose and graphite is mixed in a weight ratio of 4: 6.
청구항 1에 있어서,
상기 탄소복합체는 수크로즈와 흑연을 혼합하고, 200~500℃의 온도에서 2~6시간동안 열처리하여 제조하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법.
The method according to claim 1,
Wherein the carbon composite material is prepared by mixing sucrose and graphite and heat-treating the mixture at a temperature of 200 to 500 ° C for 2 to 6 hours.
청구항 1에 있어서,
상기 코팅은 상기 탄소복합체와 실리콘 산화물을 중량비 2:8의 비율로 혼합한 후, 20~500rpm으로 2~5시간동안 밀링으로 행하는 탄소복합체로 코팅된 실리콘 산화물의 제조방법.
The method according to claim 1,
Wherein the coating is performed by mixing the carbon composite material and the silicon oxide in a weight ratio of 2: 8 and then milling at 20 to 500 rpm for 2 to 5 hours.
청구항 1 내지 4 중 어느 하나의 방법으로 제조된 탄소복합체로 코팅된 실리콘 산화물.A silicon oxide coated with a carbon composite prepared by any one of claims 1 to 4.
KR1020110097597A 2011-09-27 2011-09-27 Silicon oxide coated with carbon complex and method for manufacturing the same KR101872208B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110097597A KR101872208B1 (en) 2011-09-27 2011-09-27 Silicon oxide coated with carbon complex and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110097597A KR101872208B1 (en) 2011-09-27 2011-09-27 Silicon oxide coated with carbon complex and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20130033734A KR20130033734A (en) 2013-04-04
KR101872208B1 true KR101872208B1 (en) 2018-06-29

Family

ID=48436050

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110097597A KR101872208B1 (en) 2011-09-27 2011-09-27 Silicon oxide coated with carbon complex and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101872208B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200144400A (en) * 2019-06-18 2020-12-29 주식회사 네오몬드 Nanoporous carbon composite, method of manufacturing the same, and polymer composite comprising nanoporous carbon composite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188078B1 (en) * 2014-05-13 2020-12-07 삼성전자주식회사 Negative electrode active material for non-lithium secondary battery, preparing method thereof, negative electrode for non-lithium secondary battery comprising the same, and non-lithium secondary battery comprising the negative electrode
KR102627250B1 (en) 2021-01-20 2024-01-19 (주) 싸이엔텍 Silicon carbon coating device for anode material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578870B1 (en) * 2004-03-08 2006-05-11 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR101451801B1 (en) * 2007-02-14 2014-10-17 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200144400A (en) * 2019-06-18 2020-12-29 주식회사 네오몬드 Nanoporous carbon composite, method of manufacturing the same, and polymer composite comprising nanoporous carbon composite
KR102288489B1 (en) * 2019-06-18 2021-08-10 주식회사 네오몬드 Nanoporous carbon composite, method of manufacturing the same, and polymer composite comprising nanoporous carbon composite

Also Published As

Publication number Publication date
KR20130033734A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
KR101819042B1 (en) Silicon oxide coated with graphine-carbon complex and method for manufacturing the same
Si et al. Local Electric‐Field‐Driven Fast Li Diffusion Kinetics at the Piezoelectric LiTaO3 Modified Li‐Rich Cathode–Electrolyte Interphase
Luo et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries
Hu et al. Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes
Zhang et al. Top-down strategy to synthesize mesoporous dual carbon armored MnO nanoparticles for lithium-ion battery anodes
CN103474631B (en) Silicon monoxide composite negative electrode material for lithium ion battery, preparation method and lithium ion battery
Lyu et al. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications
JP5363497B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery including the same, and lithium secondary battery
CN107342411B (en) Preparation method of graphene-silicon-carbon lithium ion battery negative electrode material
CN109888246B (en) Silicon monoxide composite negative electrode material with gradient structure and preparation method and application thereof
CN109326784B (en) Phosphorus doped MoS2Preparation method and application of loaded graphene nanosheet
CN104934608A (en) Preparation method of in-situ graphene coated lithium ion battery cathode material
CN102376937A (en) Nanometer lithium titanate/graphene composite negative electrode material and preparation process thereof
CN102509778A (en) Lithium ion battery cathode material and preparation method thereof
CN107732205A (en) A kind of method for preparing the flower-shaped lithium titanate composite anode material of sulfur and nitrogen co-doped carbon-coated nano
CN112652758B (en) Silicon oxide/carbon microsphere composite negative electrode material for lithium ion battery and preparation method thereof
CN108417800B (en) Graphene-coated graphite/metal composite powder negative electrode material and preparation method thereof
CN112952048A (en) Silicon-carbon composite negative electrode material, preparation method thereof, electrode and secondary battery
CN105206802B (en) Rich lithium sulfonated graphene nano silicon oxide negative material and its preparation method and application
KR101036288B1 (en) Sio-c composite powder for lithium secondary battery and method for manufacturing the same
CN104617301A (en) Preparation method of large-size graphene/graphite composite negative pole material
KR101872208B1 (en) Silicon oxide coated with carbon complex and method for manufacturing the same
El-Desoky et al. Electrochemical performance of novel Li 3 V 2 (PO 4) 3 glass-ceramic nanocomposites as electrodes for energy storage devices
CN102255081B (en) Pole piece material of lithium ion battery positive electrode and negative electrode, and processing method thereof
WO2012161055A1 (en) Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right