KR101867522B1 - manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby - Google Patents

manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby Download PDF

Info

Publication number
KR101867522B1
KR101867522B1 KR1020160169887A KR20160169887A KR101867522B1 KR 101867522 B1 KR101867522 B1 KR 101867522B1 KR 1020160169887 A KR1020160169887 A KR 1020160169887A KR 20160169887 A KR20160169887 A KR 20160169887A KR 101867522 B1 KR101867522 B1 KR 101867522B1
Authority
KR
South Korea
Prior art keywords
support
titanium dioxide
adhesive
carbon
air filter
Prior art date
Application number
KR1020160169887A
Other languages
Korean (ko)
Inventor
양비룡
강은경
김현
Original Assignee
금오공과대학교 산학협력단
주식회사 케이펙스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단, 주식회사 케이펙스 filed Critical 금오공과대학교 산학협력단
Priority to KR1020160169887A priority Critical patent/KR101867522B1/en
Priority to PCT/KR2017/001910 priority patent/WO2018110771A1/en
Application granted granted Critical
Publication of KR101867522B1 publication Critical patent/KR101867522B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

The present invention relates to a vehicular cabin air filter and, more particularly, to a method for manufacturing a carbon nano material-applied cabin air filter and a carbon nano material-applied cabin air filter manufactured by the same including a first step of preparing a first support body, a second step of spraying a first adhesive onto the first support body or growing a titanium dioxide nanotube layer on the first support body, a third step of forming a carbon nano material functional layer on the first adhesive or the titanium dioxide nanotube layer, a fourth step of spraying a second adhesive onto the carbon nano material functional layer, and a fifth step of positioning a second support body on the second adhesive and laminating the first support body and the second support body. A carbon nano material is applied to the present invention, and thus exhaust gas component adsorption efficiency is improved by means of a wide activation specific surface area and hydrophobic properties and a durability-improved cabin air filter is provided by means of alleviation of wettability attributable to an indoor-outdoor temperature difference.

Description

탄소나노소재가 적용된 캐빈에어필터의 제조방법 및 이에 의해 제조된 탄소나노소재가 적용된 캐빈에어필터{manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby}[0001] The present invention relates to a method for manufacturing a cabin air filter to which a carbon nanomaterial is applied, and a cabin air filter using the carbon nanomaterial,

본 발명은 자동차용 캐빈에어필터에 관한 것으로서, 탄소나노소재를 적용하여 자동차 배기가스의 흡착 효율 향상과 필터의 수명을 향상시키는 탄소나노소재가 적용된 캐빈에어필터의 제조방법 및 이에 의해 제조된 탄소나노소재가 적용된 캐빈에어필터에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cabin air filter for automobiles, and more particularly, to a method for manufacturing a cabin air filter to which carbon nanomaterials are applied and which improves adsorption efficiency of automobile exhaust gas and life of a filter, To a cabin air filter to which a material is applied.

자동차용 캐빈에어필터는 대표적으로 멜트브라운, 스펀본드, 니들펀치 등의 방식으로 제작된 폴리에스터, 폴리올레핀, 나일론, 폴리프로필렌 등의 부직포 쌍으로 구성되며 부직포 표면에 고전압장치를 통해 정전시켜 표면에 입자들이 정전기력으로 흡착되기 용이하도록 제작하는 방법이 있다.Automobile cabin air filters are typically composed of a pair of nonwoven fabrics such as polyester, polyolefin, nylon, and polypropylene fabricated by melt brown, spunbond, needle punch, etc., and are electrostatically charged on the surface of the nonwoven fabric through a high- To be adsorbed by an electrostatic force.

이 외에 항균, 탈취 등의 기능성을 부여하기 위해 부직포 사이에 분말 상태의 탄소 소재(활성탄, 탄소섬유 등)를 접착제와 함께 도포하여 제작하는 방법이 있다.In addition to this, there is a method in which a powdery carbon material (activated carbon, carbon fiber, etc.) is applied between nonwoven fabrics together with an adhesive in order to impart functions such as antibacterial and deodorizing.

일반적으로, 자동차용 캐빈에어필터의 주요 성능 지표에는 막 차압, 미세먼지 포집효율, 휘발성 유기화합물 및 배기가스 포집효율이 대표적이며 기능성 부여 목적으로 첨가된 탄소 소재를 포함하여 접착제에 의해 막 차압이 낮은 문제가 있었으나, 접착제를 사용하지 않는 방법이 개발되면서 막 차압에 대한 문제의 비중은 완화되었다.In general, the main performance indexes of automotive cabin air filters are membrane pressure differential, fine dust collecting efficiency, volatile organic compound and exhaust gas collecting efficiency, and include a carbon material added for the purpose of imparting functionality. There was a problem, but as the method of not using the adhesive was developed, the problem of the pressure gaps was alleviated.

대표적인 자동차 배기가스 성분에는 질소산화물, 탄소산화물, 황산화물 및 미세먼지가 해당되며, 정전 부직포에 활성탄이 적용된 자동차용 캐빈에어필터를 이용한 경우에도 자동차 배기가스 성분의 99% 이상의 포집은 어려운 문제점이 있다.Nitrogen oxides, carbon oxides, sulfur oxides and fine dusts are typical automobile exhaust gas components, and even when a cabin air filter for automobiles to which activated carbon is applied to electrostatic nonwoven fabrics is used, it is difficult to collect 99% or more of exhaust gas components of an automobile .

따라서, 활성탄의 탈취효과를 포함하는 고효율 포집 특성의 첨가소재의 개발이 필요한 실정이다.Therefore, it is necessary to develop an additive material having a high efficiency collecting property including deodorizing effect of activated carbon.

대한민국특허청 실용신안공보 제1432637호.Korea Intellectual Property Office Utility Model No.1432637. 대한민국특허청 실용신안공보 제0318828호.Korea Intellectual Property Office Utility Model No.0318828.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 탄소나노소재를 적용하여 자동차 배기가스의 흡착 효율 향상과 필터의 수명을 향상시키는 탄소나노소재가 적용된 캐빈에어필터의 제조방법 및 이에 의해 제조된 탄소나노소재가 적용된 캐빈에어필터의 제공을 그 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a method for manufacturing a cabin air filter to which carbon nano material is applied and to improve the adsorption efficiency of automobile exhaust gas and the life of filter, The present invention also provides a cabin air filter to which a cabin air filter is applied.

상기 목적을 달성하기 위해 본 발명은, 제1지지체를 준비하는 제1단계와, 상기 제1지지체 상에 제1접착제를 분사하거나, 상기 제1지지체 상에 이산화티타늄 나노튜브층을 성장시키는 제2단계와, 상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 탄소나노소재 기능층을 형성하는 제3단계와, 상기 탄소나노소재 기능층 상에 제2접착제를 분사하는 제4단계 및 상기 제2접착제 상에 제2지지체를 위치시키고, 상기 제1지지체와 제2지지체를 합지시키는 제5단계를 포함하여 이루어지는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법 및 이에 의해 제조된 탄소나노소재가 적용된 캐빈에어필터를 기술적 요지로 한다.In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device, comprising: a first step of preparing a first support; a second step of spraying a first adhesive on the first support, or a second step of growing a titanium dioxide nanotube layer on the first support; A third step of forming a carbon nanomaterial functional layer on the first adhesive or on the titanium dioxide nanotube layer, a fourth step of injecting a second adhesive onto the carbon nanomaterial functional layer, And a fifth step of positioning the second support on the second adhesive and joining the first support and the second support. The method of manufacturing a cabin air filter to which a carbon nanomaterial is applied, Cabin air filter with nano material is the technical point.

또한, 상기 탄소나노소재 기능층은, 수분산 도료 100중량부에 대해 탄소나노소재 20~30중량부, 첨가제 5~10중량부를 혼합하여 상기 지지체 상에 도포하여 형성되는 것이 바람직하다.Preferably, the carbon nanofiber functional layer is formed by mixing 20 to 30 parts by weight of a carbon nanomaterial and 5 to 10 parts by weight of an additive with respect to 100 parts by weight of the water-dispersible coating, and coating the mixture on the support.

여기에서, 상기 첨가제는, 이산화티타늄 나노분말(TiO2 nanopowder) 또는 이산화티타늄 나노튜브(TiO2 nanotube)인 것이 바람직하며, 여기에서, 상기 이산화티타늄 나노튜브는, 티타늄(Ti) 호일을 양극 산화하여 형성시킨 것이 바람직하다.Preferably, the additive is a TiO 2 nanopowder or a TiO 2 nanotube, wherein the titanium dioxide nanotube is anodized by a titanium (Ti) .

또한, 상기 탄소나노소재는, 그라핀나노플레이트(Graphene nanoplate), 다중벽탄소나노튜브(Multi-walled carbon nanotube) 및 그라핀산화물(Graphene oxide) 중 어느 하나인 것이 바람직하다.Also, the carbon nanomaterial is preferably one of a graphene nanoplate, a multi-walled carbon nanotube, and a graphene oxide.

또한, 상기 이산화티타늄 나노튜브의 성장은, 상기 제1지지체 상에 수열합성 방식으로 성장되는 것이 바람직하다.The growth of the titanium dioxide nanotubes is preferably performed on the first support by a hydrothermal synthesis method.

또한, 상기 제1지지체 및 제2지지체는, 활성탄 섬유, 폴리에스터, 폴리올레핀, 나일론, 폴리프로필렌 및 폴리에틸렌 중 어느 하나를 이용한 부직포인 것이 바람직하다.The first support and the second support are preferably nonwoven fabric using any one of activated carbon fiber, polyester, polyolefin, nylon, polypropylene and polyethylene.

또한, 상기 제1접착제 및 제2접착제는, 폴리프로필렌 수지를 사용하는 것이 바람직하다.It is preferable that the first adhesive and the second adhesive use a polypropylene resin.

한편, 상기 탄소나노소재는, 상기 제1지지체 1mm2 당 9mg~18mg를 사용하는 것이 바람직하다.The carbon nanomaterial is preferably used in an amount of 9 mg to 18 mg per 1 mm 2 of the first support.

본 발명은 탄소나노소재를 적용함으로서 넓은 활성화 비표면적과 소수성 특성을 이용한 배기가스 성분의 흡착 효율을 향상시키고, 실내외 온도 차에 의한 젖음성 완화를 통해 수명이 향상된 캐빈에어필터를 제공하는 효과가 있다.The present invention has the effect of providing a cabin air filter improved in the efficiency of adsorbing exhaust gas components using a wide activation specific surface area and hydrophobic property by applying carbon nanomaterials and having improved lifespan by alleviating wettability due to the difference between the indoor and outdoor temperatures.

또한, 자동차 내로 유입되는 미세 먼지와 일산화질소와 같은 유해가스의 제거효율이 뛰어나며, 항균성능, 흡착 및 탈취 기능이 우수한 자동차용 캐빈에어필터를 제공하는 효과가 있다.The present invention also provides an automotive cabin air filter which is excellent in the efficiency of removing harmful gases such as fine dust and nitrogen monoxide introduced into automobiles, and has excellent antibacterial performance, adsorption and deodorization function.

도 1 - 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터의 제조방법에 대한 순서도.
도 2 - 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터에 대한 모식도.
도 3 - 본 발명의 일실시예에 따라 제조된 탄소나노소재가 적용된 캐빈에어필터의 미세구조를 나타낸 도.
도 4 - 본 발명의 일실시예에 따라 제조된 탄소나노소재가 적용된 캐빈에어필터와 종래의 필터 대비 자동차 배기가스 속 미세먼지 차단효율 측정 결과를 나타낸 도.
1 is a flowchart of a method for manufacturing a cabin air filter to which a carbon nanomaterial according to the present invention is applied.
2 is a schematic view of a cabin air filter to which the carbon nanomaterial according to the present invention is applied.
3 is a view showing the microstructure of a cabin air filter to which a carbon nanomaterial is applied according to an embodiment of the present invention;
FIG. 4 is a graph showing the result of measurement of the fine dust blocking efficiency in an automobile exhaust gas compared to a conventional air filter and a conventional cabin air filter manufactured according to an embodiment of the present invention. FIG.

본 발명은 자동차용 캐빈에어필터에 관한 것으로서, 탄소나노소재를 적용하여 자동차 배기가스의 흡착 효율 향상과 필터의 수명을 향상시키는 탄소나노소재가 적용된 캐빈에어필터에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cabin air filter for automobiles, and more particularly, to a cabin air filter to which carbon nano materials are applied to improve the adsorption efficiency of automobile exhaust gas and the life of the filter.

이하에서는 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명하고자 한다. 도 1은 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터의 제조방법에 대한 순서도이고, 도 2는 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터에 대한 모식도이고, 도 3은 본 발명의 일실시예에 따라 제조된 탄소나노소재가 적용된 캐빈에어필터의 미세구조를 나타낸 것이고, 도 4는 본 발명의 일실시예에 따라 제조된 탄소나노소재가 적용된 캐빈에어필터와 종래의 필터 대비 자동차 배기가스 속 미세먼지 차단효율 측정 결과를 나타낸 도이다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a schematic view of a cabin air filter to which a carbon nanomaterial according to the present invention is applied, and FIG. 3 is a schematic view of a cabin air filter according to the present invention. FIG. 4 is a graph showing the microstructure of a cabin air filter to which a carbon nanomaterial is applied according to an embodiment of the present invention. FIG. 4 is a graph showing the relationship between a cabin air filter using carbon nanomaterials fabricated according to an embodiment of the present invention, Fig. 5 is a graph showing the result of measurement of the fine dust blocking efficiency.

도시된 바와 같이 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터의 제조방법은 제1지지체를 준비하는 제1단계와, 상기 제1지지체 상에 제1접착제를 분사하거나, 상기 제1지지체 상에 이산화티타늄 나노튜브층을 성장시키는 제2단계와, 상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 탄소나노소재 기능층을 형성하는 제3단계와, 상기 탄소나노소재 기능층 상에 제2접착제를 분사하는 제4단계 및 상기 제2접착제 상에 제2지지체를 위치시키고, 상기 제1지지체와 제2지지체를 합지시키는 제5단계를 포함하여 이루어진다.As shown in the drawings, a method for manufacturing a cabin air filter to which a carbon nanomaterial according to the present invention is applied includes a first step of preparing a first support, a first step of spraying a first adhesive on the first support, A second step of growing a titanium dioxide nanotube layer, a third step of forming a carbon nanomaterial functional layer on the first adhesive or on the titanium dioxide nanotube layer, A fourth step of spraying an adhesive, and a fifth step of positioning a second support on the second adhesive and joining the first support and the second support.

이에 의해 탄소나노소재를 적용함으로서 넓은 활성화 비표면적과 소수성 특성을 이용한 배기가스 성분의 흡착 효율을 향상시키고, 실내외 온도 차에 의한 젖음성 완화를 통해 수명이 향상된 캐빈에어필터를 제공하게 된다.Accordingly, by applying the carbon nanomaterial, it is possible to provide a cabin air filter with improved efficiency of adsorption of exhaust gas components using a wide activation specific surface area and hydrophobic property, and improved lifetime by alleviating wettability due to a difference in indoor / outdoor temperature.

또한, 자동차 내로 유입되는 미세 먼지와 일산화질소와 같은 유해가스의 제거효율이 뛰어나며, 항균성능, 흡착 및 탈취 기능이 우수한 자동차용 캐빈에어필터를 제공하게 된다.Further, it is possible to provide a cabin air filter for an automobile which is excellent in the removal efficiency of harmful gases such as fine dust and nitrogen monoxide introduced into automobiles, and has excellent antibacterial performance, adsorption and deodorization function.

먼저 본 발명에 따른 제1지지체를 준비한다(제1단계).First, a first support according to the present invention is prepared (first step).

상기 제1지지체는 폴리에스터, 폴리올레핀, 나일론, 폴리프로필렌 및 폴리에틸렌과 같은 고분자 물질로 이루어진 다공성 재질의 부직포로 형성된다. 필요에 의해, 상기 고분자 물질과 탄소섬유가 혼섬된 형태의 부직포를 사용할 수도 있다.The first support is formed of a nonwoven fabric made of a porous material made of a polymer material such as polyester, polyolefin, nylon, polypropylene, and polyethylene. If necessary, a nonwoven fabric in which the polymer material and the carbon fibers are mixed may be used.

이러한 고분자 물질로 이루어진 부직포는 멜트블로운, 스펀본드, 니들펀치 등의 방식으로 제작되게 되며, 필요에 의해 부직포 표면을 고전압장치에 의해 정전시켜 표면에 입자들이 정전기력으로 흡착되기 용이하도록 제작할 수도 있다.The nonwoven fabric made of such a polymer material may be manufactured by a method such as meltblown, spunbond, needle punch, etc., and if necessary, the surface of the nonwoven fabric may be electrostatically charged by a high voltage device so that particles are easily adsorbed on the surface by electrostatic force.

그리고, 상기 제1지지체 상에 제1접착제를 분사한다(제2단계).Then, the first adhesive is sprayed onto the first support (second step).

상기 제1접착제는 후술할 탄소나노소재 기능층을 안정적으로 고정시키기 위한 것으로, 상기 제1지지체 상으로의 균일한 도포를 위해 상기 제1지지체 상으로부터 일정 거리에서 분사하여 도포한다. 상기 제1접착제는 폴리프로필렌 접착제를 사용한다.The first adhesive is for stably fixing a carbon nanofiber functional layer to be described later, and is sprayed at a predetermined distance from the first support for uniform application onto the first support. The first adhesive uses a polypropylene adhesive.

또한, 상기 제1지지체 상에 이산화티타늄 나노튜브층을 성장시킨다. 여기에서, 이산화티타늄 나노튜브층은 상기 제1지지체 상에 수열합성 방식으로 성장되는 것이다.Also, a titanium dioxide nanotube layer is grown on the first support. Here, the titanium dioxide nanotube layer is grown on the first support by a hydrothermal synthesis method.

그리고, 상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 탄소나노소재 기능층을 형성한다(제3단계).Then, a carbon nanomaterial functional layer is formed on the first adhesive or on the titanium dioxide nanotube layer (step 3).

상기 탄소나노소재 기능층은 수분산 도료 100중량부에 대해 탄소나노소재 20~30중량부와 첨가제 5~10중량부를 혼합하여 상기 제1접착제 상에 균일하게 분사하여 형성한다.The carbon nanomaterial functional layer is formed by mixing 20 to 30 parts by weight of a carbon nanomaterial and 5 to 10 parts by weight of an additive with respect to 100 parts by weight of the water-dispersible paint, and uniformly spraying the mixture on the first adhesive.

상기 수분산 도료는 물을 사용할 수도 있으며, 고분자의 분자량을 낮추고 친수기를 많은 수지를 사용할 수도 있다. 예컨대, 알키드수지, 아미노수지, 에폭시수지 등을 사용할 수 있다.Water may be used as the water-dispersible coating material, and a resin having a high hydrophilic group may be used by lowering the molecular weight of the polymer. For example, an alkyd resin, an amino resin, an epoxy resin, or the like can be used.

상기 탄소나노소재는 그라핀나노플레이트(Graphene nanoplate), 다중벽탄소나노튜브(Multi-walled carbon nanotube) 및 그라핀산화물(Graphene oxide) 중 어느 하나를 사용한다.The carbon nanomaterial may be one of a graphene nanoplate, a multi-walled carbon nanotube, and a graphene oxide.

이러한 상기 탄소나노소재는, 상기 제1지지체 1mm2 당 9mg~18mg를 사용하는 것이 바람직하다. 이보다 많은 양을 사용할 경우 건조 후 탄소나노소재가 비산할 가능성이 높고, 흡착 효율이 더 이상 높아지지 않게 되거나, 필터링 효율을 떨어뜨리게 된다. 또한, 이보다 적은 양을 사용할 경우 흡착 효과가 미비하게 된다.The carbon nanomaterial is preferably used in an amount of 9 mg to 18 mg per 1 mm 2 of the first support. When the amount is larger than this, there is a high possibility that the carbon nanomaterial is scattered after drying, the adsorption efficiency is no longer increased, or the filtering efficiency is lowered. In addition, when the amount is smaller than this, the adsorption effect becomes insufficient.

이러한 탄소나노소재는 넓은 활성화 비표면적과 소수성 특성을 가지고 있어, 배기가스 성분의 흡착 효율을 향상시키고, 실내외 온도차에 의해서도 낮은 젖음성 특성을 가져 필터의 수명을 향상시키게 된다.These carbon nanomaterials have a wide activation specific surface area and hydrophobic characteristics, which improves the adsorption efficiency of the exhaust gas components and low wettability characteristics due to the difference in temperature between indoor and outdoor, thereby improving the life of the filter.

상기 첨가제는 이산화티타늄 나노분말(TiO2 nanopowder) 또는 이산화티타늄 나노튜브(TiO2 nanotube)를 사용한다.The additive uses titanium dioxide nanopowder (TiO 2 nanopowder) or titanium dioxide nanotube (TiO 2 nanotube).

상기 첨가제로 사용되는 이산화티타늄 나노튜브는 티타늄(Ti) 호일을 양극 산화하여 형성시킨 것으로, 산 수용액에 티타늄(Ti) 호일(양극) 및 백금(Pt) 전극(음극)을 침지시켜 전압을 인가하여 양극 산화시키는 것으로서, 양극 산화 반응 종료 후 세척 및 건조하여, 열처리를 수행한다. 열처리가 종료된 후에는, 칼을 이용해 티타늄 호일 표면을 긁어 이산화티타늄 나노튜브를 얻을 수 있다. 이러한 이산화티타늄 나노튜브는 이산화티타늄 나노분말에 비해서 표면적이 넓은 특징이 있다.Titanium dioxide nanotubes used as the additive are formed by anodizing titanium (Ti) foil. Titanium (Ti) foil (anode) and platinum (Pt) electrodes (cathode) As anodizing, after the anodic oxidation reaction is completed, washing and drying are performed, and heat treatment is performed. After the heat treatment is finished, titanium dioxide nanotubes can be obtained by scraping the surface of the titanium foil using a knife. These titanium dioxide nanotubes have a surface area wider than that of titanium dioxide nanoparticles.

즉, 상기 탄소나노소재 또는 상기 탄소나노소재와 상기 첨가제로 양극산화하여 형성한 이산화티타늄 나노튜브를 함께 혼합하여, 수분산 도료에 분산시켜 상기 제1접착제 상부 또는 수열합성 방식으로 성장한 이산화티타늄 나노튜브 상부에 도포하는 것으로서, 이산화티타늄의 광촉매 효과와, 유해가스를 거의 제거할 수 있으며, 항균성능을 가질 뿐 아니라 흡착 및 탈취 기능도 발휘할 수 있도록 하는 것이다.That is, the carbon nanomaterial or the carbon nanomaterial and the titanium dioxide nanotubes formed by anodic oxidation with the additive are mixed together and dispersed in the water-dispersed paint to form the titanium dioxide nanotubes grown on the first adhesive or the hydrothermally synthesized system The photocatalytic effect of titanium dioxide and the noxious gas can be almost removed, and not only the antibacterial performance but also the adsorption and deodorization function can be exhibited.

일반적으로 이산화티타늄은 유전율이 높은 특징을 가지고 있어 높은 정전기력 성능과 백색광(100mW/cm2) 조사 아래 광촉매 특성을 가지며, 특히, 양극산화에 의해 형성된 이산화티타늄 나노튜브를 첨가제로 하여 탄소나노소재와 함께 자동차용 캐빈에어필터에 적용함으로써, 그 표면적의 증가로 광촉매, 유해가스 제거, 항균성능, 흡착 및 탈취 효율이 더욱 우수한 특징을 갖도록 하는 것이다.In general, titanium dioxide has characteristics of high dielectric constant and has high electrostatic performance and photocatalyst characteristics under irradiation with white light (100 mW / cm 2 ). In particular, titanium dioxide nanotubes formed by anodic oxidation are used as additives, By applying the present invention to a cabin air filter for an automobile, an increase in the surface area of the cabin air filter has a feature of further improving photocatalyst, harmful gas removal, antibacterial performance, adsorption and deodorization efficiency.

또한, 제1지지체 상에 수열합성 방식으로 이산화티타늄 나노튜브층을 형성하고, 그 상부에 양극산화에 의해 합성된 이산화티타늄 나노튜브를 탄소나노소재 기능층의 첨가제로 사용함으로써, 상기의 특징에 대한 효과가 배가 되도록 한 것이다.Further, by using a titanium dioxide nanotube layer formed on a first support by a hydrothermal synthesis method and using titanium dioxide nanotubes synthesized by anodic oxidation on the titanium dioxide nanotube layer as an additive for the carbon nanomaterial functional layer, The effect is to double.

그리고, 상기 탄소나노소재 기능층 상에 제2접착제를 분사한다(제4단계). 상기 제2접착제는 상기 제1접착제와 동일한 재료를 사용하며, 균일한 도포를 위해 상기 탄소나노소재 기능층 상에서 일정 거리에서 분사하여 도포한다.Then, a second adhesive is sprayed onto the carbon nanomaterial functional layer (step 4). The second adhesive uses the same material as the first adhesive, and is sprayed at a certain distance on the carbon nanomaterial functional layer for uniform application.

그리고, 상기 제2접착제 상에 제2지지체를 위치시키고, 상기 제1지지체와 상기 제2지지체를 합지시켜(laminating) 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터를 제공하게 된다(제5단계).A cabin air filter to which the carbon nanomaterial according to the present invention is applied is provided by placing a second support on the second adhesive and laminating the first support and the second support ).

상기 제2지지체는 상기 제1지지체의 설명과 동일하며, 상기 제2접착제가 굳기 전에 상기 제2지지체를 덮어 라미네이팅하여, 그 사이에 탄소나노소재 기능층이 구현된 제1지지체와 제2지지체를 합지시키게 된다.The second support is the same as the description of the first support, and the second support is covered and laminated before the second adhesive is hardened to form a first support and a second support having carbon nanomaterial functional layers implemented therebetween .

이와 같이 제조된 탄소나노소재가 적용된 캐빈에어필터는 도 2에 도시된 바와 같이, 제1지지체와, 상기 제1지지체 상부에 형성된 제1접착제 또는 상기 제1지지체 상부에 성장된 이산화티타늄 나노튜브층과, 상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 형성된 탄소나노소재 기능층과, 상기 탄소나노소재 기능층 상부에 형성된 제2접착제 및 상기 제2접착제 상부에 제1지지체와 합지되어 형성된 제2지지체를 포함하여 이루어지게 된다.2, the cabin air filter to which the carbon nanomaterial is applied has a first support, a first adhesive formed on the first support, or a titanium dioxide nanotube layer grown on the first support, A carbon nanofiber functional layer formed on the first adhesive or on the titanium dioxide nanotube layer; a second adhesive formed on the carbon nanofiber functional layer; And a second support body.

이에 의해 탄소나노소재를 적용함으로서 넓은 활성화 비표면적과 소수성 특성을 이용한 배기가스 성분의 흡착 효율을 향상시키고, 실내외 온도 차에 의한 젖음성 완화를 통해 수명이 향상된 캐빈에어필터를 제공하게 된다.Accordingly, by applying the carbon nanomaterial, it is possible to provide a cabin air filter with improved efficiency of adsorption of exhaust gas components using a wide activation specific surface area and hydrophobic property, and improved lifetime by alleviating wettability due to a difference in indoor / outdoor temperature.

또한, 자동차 내로 유입되는 미세 먼지와 일산화질소와 같은 유해가스의 제거효율이 뛰어나며, 항균성능, 흡착 및 탈취 기능이 우수한 자동차용 캐빈에어필터를 제공하게 된다.Further, it is possible to provide a cabin air filter for an automobile which is excellent in the removal efficiency of harmful gases such as fine dust and nitrogen monoxide introduced into automobiles, and has excellent antibacterial performance, adsorption and deodorization function.

이하에서는 본 발명의 바람직한 실시예에 대해 설명하고자 한다.Hereinafter, preferred embodiments of the present invention will be described.

본 발명의 실시예에 따른 탄소나노소재가 적용된 캐빈에어필터의 제조는 상온, 30~40% 상대습도에서 진행되며, 별도의 클린룸이나 inert 분위기 필요없이 공기 중에서 작업하여도 무방하다.The cabin air filter to which the carbon nanomaterial is applied according to the embodiment of the present invention is manufactured at room temperature, 30 to 40% relative humidity, and may be operated in the air without requiring a separate clean room or an inert atmosphere.

먼저, 상기 제1지지체로 멜트블로운 방식으로 제작된 폴리에스터 재질의 부직포(모델명 : QACA091-55PT)를 준비한다.First, a nonwoven fabric (model name: QACA091-55PT) made of a meltblown polyester material with the first support is prepared.

그리고, 상기 제1지지체 상에 제1접착제를 분사한다. 시중의 스프레이 접착제를 이용하여 상기 제1지지체 상에서 30cm 떨어진 거리에서 1초 정도 제1접착제를 분사한다. 상기 제1접착제는 폴리프로필렌 수지 접착제를 사용한다.Then, the first adhesive is sprayed onto the first support. The first adhesive is sprayed for about 1 second at a distance of 30 cm from the first support using a commercially available spray adhesive. The first adhesive uses a polypropylene resin adhesive.

또한, 상기 제1지지체 상에 수열합성 방식으로 이산화티타늄 나노튜브층을 성장시킨다. 예컨대, 수열합성 방식의 이산화티타늄 나노튜브층의 성장은 티타늄염(전구체 물질, Titanium butoxide, Titanium sulfite, TTIP etc)과 용매(초순수 물, 염산 등) 및 첨가제(계면활성제(나노구조 형상 제어 등), pH 조절을 위한 강염기성염 등) 용액에 상기 제1지지체를 담지하여 200℃ 이하에서 일정시간(10시간 이하)동안 유지하여 합성하게 된다.Also, a titanium dioxide nanotube layer is grown on the first support by a hydrothermal synthesis method. For example, the growth of the titanium dioxide nanotube layer by the hydrothermal synthesis method can be achieved by using titanium salts (titanium precursor materials, Titanium butoxide, Titanium sulfite, TTIP etc.), solvents (ultrapure water, hydrochloric acid, etc.) and additives (surfactants , a strong base salt for pH control, etc.), and the mixture is maintained at 200 ° C or lower for a certain period of time (10 hours or less).

그리고, 상기 탄소나노소재 기능층을 상기 제1접착제 상부 또는 상기 수열합성 방식에 의해 합성된 이산화티타늄 나노튜브층 상부에 도포한다.The carbon nanomaterial functional layer is applied on the first adhesive or on the titanium dioxide nanotube layer synthesized by the hydrothermal synthesis method.

상기 탄소나노소재 기능층에는 이산화티타늄 나노튜브가 포함될 수 있으며, 이 경우에는 상기 이산화티타늄 나노튜브는 양극 산화하여 형성한 것으로서, Trichloroethylene, Acetone, Methanol에서 초음파 세척을 각각 5분씩 수행하고, 질소블로잉 건조된 99.999% 티타늄 호일을 직류전원장치의 (+)극에 연결하고 백금 메쉬를 (-)극에 연결한 다음 Formamide, Ammonium Fluoride, DI water 혼합용액에서 10~100V 범위에서 3~24시간 동안 양극산화시킨다. 양극산화 반응 종료 후 DI water에 충분히 세척 및 질소 블로잉 건조 후 전기로에서 550℃에서 4시간 열처리한다. 열처리가 종료된 후 칼을 이용해 표면을 긁어 얻은 이산화티타늄 나노튜브를 확보할 수 있었다.The carbon nanomaterial functional layer may include titanium dioxide nanotubes. In this case, the titanium dioxide nanotubes are formed by anodic oxidation. Ultrasonic cleaning is performed in each of Trichlorethylene, Acetone, and Methanol for 5 minutes each, followed by nitrogen blowing drying Connect a 99.999% titanium foil to the (+) pole of the DC power supply, connect the platinum mesh to the (-) pole and then apply an anodic oxidation in the mixed solution of Formamide, Ammonium Fluoride and DI water for 10 to 100 V for 3 to 24 hours . After the anodic oxidation reaction, thoroughly wash the DI water, dry it with nitrogen blowing, and heat it at 550 ℃ for 4 hours in an electric furnace. After the heat treatment was completed, the titanium oxide nanotubes were obtained by scraping the surface with a knife.

이러한 상기 제1접착층 상부 또는 수열합성 방식에 의해 합성된 이산화티타늄 나노튜브층 상부에 탄소나노소재 2.5g과 첨가제로 양극산화 방식에 의해 합성된 이산화티타늄 나노튜브 0.7g을 아미노 수지 10g에 수분산시킨 후 균일하게 분사시켜 탄소나노소재 기능층을 형성한다.2.5 g of the carbon nanomaterial and 0.7 g of the titanium dioxide nanotube synthesized by the anodic oxidation method were dispersed in 10 g of the amino resin on the first adhesive layer or on the titanium dioxide nanotube layer synthesized by the hydrothermal synthesis method And then sprayed uniformly to form a carbon nanomaterial functional layer.

그리고, 합지 작업 전에 제1지지체 뒷면에 상기 탄소나노소재 기능층이 묻어나지 않도록 상기 탄소나노소재 기능층이 형성된 옆으로 옮겨준다.Before the laminating operation, the carbon nanomaterial functional layer is transferred to the side where the carbon nanomaterial functional layer is formed so that the functional nanomaterial layer does not appear on the back surface of the first support.

그리고, 옆으로 옮겨둔 제1지지체 상에 스프레이 접착제를 이용하여 30cm 떨어진 거리에서 5초 동안 제2접착제를 분사한다.Then, the second adhesive is sprayed on the first support moved to the side for 5 seconds at a distance of 30 cm by using a spray adhesive.

상기 제2접착제가 굳기 전에 즉시 준비해 둔 제2지지체를 덮어 고무롤러를 이용하여 5~10회 반복하여 압착시켜 상기 제1지지체 및 제2지지체를 합지시킴으로써, 본 발명에 따른 탄소나노소재가 적용된 캐빈에어필터를 제조하였다.The second support immediately before preparation of the second adhesive is covered, and the support is repeatedly pressed 5 to 10 times by using a rubber roller so that the first support and the second support are joined together, whereby the cabin to which the carbon nanomaterial according to the present invention is applied Air filter.

도 3은 종래의 활성탄 및 흑연을 사용한 경우와 본 발명의 일실시예에 따라 제조된 탄소나노소재가 적용된 캐빈에어필터(제1지지체/제1접착제/탄소나노소재 기능층/제2접착제/제2지지체)의 미세구조를 나타낸 것으로, 멜트블로운 폴리에스터 부직포 상에 탄소나노소재 기능층이 형성되어 있음을 확인할 수 있었다.FIG. 3 is a graph showing the results of a comparison between a case where conventional activated carbon and graphite are used and a case where a carbon nanofiber-applied cabin air filter (first support / first adhesive / carbon nanofiber functional layer / second adhesive / 2 support), and it was confirmed that a carbon nanomaterial functional layer was formed on the meltblown polyester nonwoven fabric.

도 3(a)는 종래의 활성탄을 사용한 경우이고, 도 3(b)는 흑연을 사용한 경우, 도 3(c),(d),(e)는 본 발명에 따른 다중벽 탄소나노튜브, 그래핀 산화물, 그래핀나노플레이트를 각각 나타낸 것이다.3 (c), 3 (d), and 3 (e) are graphs showing the results of experiments of the multi-walled carbon nanotube according to the present invention, Pin oxide, and graphene nanoplate, respectively.

본 발명에 따른 탄소나노소재(도 3(c),(d),(e))의 경우 넓은 활성화 비표면적 특징을 가짐으로 인해, 탈취, 미세먼지 차단, 배기가스 차단 등의 성능에서 시판 중이 활성탄 필터보다 뛰어난 특성을 보인다.3 (c), (d), and (e)) according to the present invention have wide activation specific surface area characteristics. Therefore, in the performance of deodorization, fine dust blocking, The filter shows superior characteristics.

또한, 이러한 탄소나노신소재는 소수성 표면을 가지므로, 실내외 온도차에 의한 젖음성 완화를 통해 필터의 수명을 향상시키게 된다.In addition, since such a carbon nano-new material has a hydrophobic surface, the lifetime of the filter can be improved by reducing the wettability due to the temperature difference between indoor and outdoor.

도 4는 종래의 부직포 필터(Polyester filter media)와 Bosch사 활성탄 필터(Activated carbon(Bosch)), 흑연(Graphite), 활성탄(Activated carbon), 이산화티타늄 나노입자 분말(Titanium dioxide, P25)을 적용한 필터를 사용한 경우 대비 본 발명의 실시예(그래핀나노플레이트(Graphene nanoplatelets aggregaters), 다중벽탄소나노튜브(Multi-walled carbon nanotube))를 적용한 폴리에스터 부직포 필터에 대한 자동차 배기가스 속 미세먼지 차단효율 측정 결과를 나타낸 것이다.FIG. 4 is a graph showing the results of a conventional filter using a polyester filter media, a Bosch activated carbon filter (Bosch), graphite, activated carbon, titanium dioxide (P25) Comparison of the case of using the non-woven fabric filter of the present invention (graphene nanoplatelets aggregators, multi-walled carbon nanotube) The results are shown.

본 발명의 실시예에 따른 그래핀나노플레이트(Graphene nanoplatelets aggregaters), 다중벽탄소나노튜브(Multi-walled carbon nanotube))를 적용한 폴리에스터 부직포 필터의 경우 약 80%의 미세먼지 차단 효율이 측정되었다.In the case of the polyester nonwoven fabric filter using the graphene nanoplatelets aggregator and the multi-walled carbon nanotube according to the embodiment of the present invention, the fine dust blocking efficiency of about 80% was measured.

Claims (18)

제1지지체를 준비하는 제1단계;
상기 제1지지체 상에 제1접착제를 분사하거나, 상기 제1지지체 상에 이산화티타늄 나노튜브층을 성장시키는 제2단계;
상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 탄소나노소재 기능층을 형성하는 제3단계;
상기 탄소나노소재 기능층 상에 제2접착제를 분사하는 제4단계; 및
상기 제2접착제 상에 제2지지체를 위치시키고, 상기 제1지지체와 제2지지체를 합지시키는 제5단계;를 포함하여 이루어지고,
상기 탄소나노소재 기능층은,
수분산 도료 100중량부에 대해 탄소나노소재 20~30중량부, 첨가제 5~10중량부를 혼합하여 상기 제1접착제 또는 이산화티타늄 나노튜브 상부에 도포하여 형성되고,
상기 첨가제는,
이산화티타늄 나노분말(TiO2 nanopowder) 또는 이산화티타늄 나노튜브(TiO2 nanotube)인것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
A first step of preparing a first support;
A second step of spraying a first adhesive onto the first support or growing a titanium dioxide nanotube layer on the first support;
A third step of forming a carbon nanomaterial functional layer on the first adhesive or on the titanium dioxide nanotube layer;
A fourth step of spraying a second adhesive onto the carbon nanomaterial functional layer; And
And a fifth step of placing a second support on the second adhesive and joining the first support and the second support,
The carbon nanomaterial functional layer may be formed of,
20 to 30 parts by weight of a carbon nanomaterial and 5 to 10 parts by weight of an additive are mixed with 100 parts by weight of the water-dispersible paint and applied on the first adhesive or the titanium dioxide nanotubes,
Preferably,
(TiO 2 nanopowder) or a titanium dioxide nanotube (TiO 2 nanotube). The method of manufacturing a cabin air filter according to claim 1,
삭제delete 삭제delete 제 1항에 있어서, 상기 이산화티타늄 나노튜브는,
티타늄(Ti) 호일을 양극 산화하여 형성시킨 것을 특징으로 하는 이산화티타늄 나노튜브가 적용된 캐빈에어필터의 제조방법.
The method according to claim 1, wherein the titanium dioxide nanotube is a titanium dioxide nanotube.
Wherein the titanium dioxide nanotube is formed by anodic oxidation of titanium (Ti) foil.
제 1항에 있어서, 상기 탄소나노소재는,
그라핀나노플레이트(Graphene nanoplate), 다중벽탄소나노튜브(Multi-walled carbon nanotube) 및 그라핀산화물(Graphene oxide) 중 어느 하나인 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
The carbon nanomaterial according to claim 1,
Wherein the carbon nanofibers are any one of a graphene nanoplate, a multi-walled carbon nanotube, and a graphene oxide.
제 1항에 있어서, 상기 이산화티타늄 나노튜브의 성장은,
상기 제1지지체 상에 수열합성 방식으로 성장되는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
The method of claim 1, wherein the growth of the titanium dioxide nanotubes comprises:
Wherein the carbon nanotubes are grown on the first support by a hydrothermal synthesis method.
제 1항에 있어서, 상기 제1지지체 및 제2지지체는,
활성탄 섬유, 폴리에스터, 폴리올레핀, 나일론, 폴리프로필렌 및 폴리에틸렌 중 어느 하나를 이용한 부직포인 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
The method according to claim 1, wherein the first support and the second support comprise:
Wherein the non-woven fabric is a non-woven fabric using any one of activated carbon fiber, polyester, polyolefin, nylon, polypropylene and polyethylene.
제 1항에 있어서, 상기 제1접착제 및 제2접착제는,
폴리프로필렌 수지를 사용하는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
The method according to claim 1, wherein the first adhesive agent and the second adhesive agent,
A method of manufacturing a cabin air filter to which a carbon nano material is applied, characterized by using a polypropylene resin.
제 1항에 있어서, 상기 탄소나노소재는,
상기 제1지지체 1mm2 당 9mg~18mg를 사용하는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터의 제조방법.
The carbon nanomaterial according to claim 1,
Wherein the weight of the support is 9 mg to 18 mg per 1 mm 2 of the first support.
제1지지체;
상기 제1지지체 상부에 형성된 제1접착제 또는 상기 제1지지체 상부에 성장된 이산화티타늄 나노튜브층;
상기 제1접착제 상부 또는 상기 이산화티타늄 나노튜브층 상부에 형성된 탄소나노소재 기능층;
상기 탄소나노소재 기능층 상부에 형성된 제2접착제; 및
상기 제2접착제 상부에 제1지지체와 합지되어 형성된 제2지지체;를 포함하여 이루어지며,
상기 탄소나노소재 기능층은,
수분산 도료 100중량부에 대해 탄소나노소재 20~30중량부, 첨가제 5~10중량부를 혼합하여 상기 제1접착제 또는 이산화티타늄 나노튜브 상부에 도포하여 형성되고,
상기 첨가제는,
이산화티타늄 나노분말(TiO2 nanopowder) 또는 이산화티타늄 나노튜브(TiO2 nanotube)인것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터
A first support;
A first adhesive formed on the first support or a titanium dioxide nanotube layer grown on the first support;
A carbon nanofiber functional layer formed on the first adhesive or on the titanium dioxide nanotube layer;
A second adhesive formed on the carbon nanomaterial functional layer; And
And a second support formed on the second adhesive in a state of being laminated with the first support,
The carbon nanomaterial functional layer may be formed of,
20 to 30 parts by weight of a carbon nanomaterial and 5 to 10 parts by weight of an additive are mixed with 100 parts by weight of the water dispersion paint and applied on the first adhesive or the titanium dioxide nanotubes,
Preferably,
A titanium dioxide nanopowder (TiO 2 nanopowder) or a titanium dioxide nanotube (TiO 2 nanotube).
삭제delete 삭제delete 제 10항에 있어서, 상기 이산화티타늄 나노튜브는,
티타늄(Ti) 호일을 양극 산화하여 형성시킨 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
11. The method of claim 10, wherein the titanium dioxide nanotubes comprise:
Wherein the carbon nanofibers are formed by anodizing titanium (Ti) foil.
제 10항에 있어서, 상기 탄소나노소재는,
그라핀나노플레이트(Graphene nanoplate), 다중벽탄소나노튜브(Multi-walled carbon nanotube) 및 그라핀산화물(Graphene oxide) 중 어느 하나인 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
11. The method of claim 10,
Wherein the carbon nanofibers are any one of a Graphene nanoplate, a multi-walled carbon nanotube, and a graphene oxide.
제 10항에 있어서, 상기 이산화티타늄 나노튜브의 성장은,
상기 제1지지체 상에 수열합성 방식으로 성장되는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
11. The method of claim 10, wherein the growth of the titanium dioxide nanotubes comprises:
Wherein the carbon nanotubes are grown on the first support by a hydrothermal synthesis method.
제 10항에 있어서, 상기 제1지지체 및 제2지지체는,
폴리에스터, 폴리올레핀, 나일론, 폴리프로필렌 및 폴리에틸렌 중 어느 하나를 이용한 부직포인 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
11. The method of claim 10,
A cabin air filter to which a carbon nanomaterial is applied is characterized in that the nonwoven fabric is made of any one of polyester, polyolefin, nylon, polypropylene and polyethylene.
제 10항에 있어서, 상기 제1접착제 및 제2접착제는,
폴리프로필렌 수지를 사용하는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
The method according to claim 10, wherein the first adhesive agent and the second adhesive agent,
A cabin air filter to which a carbon nano material is applied, characterized by using a polypropylene resin.
제 10항에 있어서, 상기 탄소나노소재는,
상기 제1지지체 1mm2 당 9mg~18mg을 사용하는 것을 특징으로 하는 탄소나노소재가 적용된 캐빈에어필터.
11. The method of claim 10,
Wherein the weight of the first support is 9 mg to 18 mg per mm 2 of the first support.
KR1020160169887A 2016-12-13 2016-12-13 manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby KR101867522B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160169887A KR101867522B1 (en) 2016-12-13 2016-12-13 manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby
PCT/KR2017/001910 WO2018110771A1 (en) 2016-12-13 2017-02-21 Method for manufacturing cabin air filter utilizing carbon nano-material and cabin air filter utilizing carbon nano-material manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160169887A KR101867522B1 (en) 2016-12-13 2016-12-13 manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby

Publications (1)

Publication Number Publication Date
KR101867522B1 true KR101867522B1 (en) 2018-06-15

Family

ID=62558745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160169887A KR101867522B1 (en) 2016-12-13 2016-12-13 manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby

Country Status (2)

Country Link
KR (1) KR101867522B1 (en)
WO (1) WO2018110771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200075179A (en) 2018-12-17 2020-06-26 에코필텍(주) Cabin filter using waste wooden activated carbon manufacturing method thereof
KR20200128962A (en) 2019-05-07 2020-11-17 김수원 Method for Manufacturing air filter for neutralization of antimicrobial and deodorant harmful components coated with metal silicon and air filter manufactured that method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518455A (en) * 2018-12-23 2019-03-26 上海师范大学 A kind of load nano-sized carbon and the non-woven fabrics of titanium dioxide and preparation method thereof
JP2023515674A (en) * 2020-03-02 2023-04-13 ナノコンプ テクノロジーズ,インク. carbon nanotube sheet for air or water purification
IT202000032693A1 (en) * 2020-12-29 2022-06-29 Directa Plus Spa FILTER ELEMENT INCLUDING GRAPHENE FOR AIR CONDITIONING UNITS.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200318828Y1 (en) 2003-03-27 2003-07-04 이재덕 Gloss-catalyst Air Filter
US20080242785A1 (en) * 2007-03-27 2008-10-02 National Tsing Hua University TiO2-coated CNT, TiO2-coated CNT reinforced polymer composite and methods of preparation thereof
KR20090103351A (en) * 2008-03-28 2009-10-01 코오롱글로텍주식회사 An air filter comprising electrostatic filtering layer(s) consisting of spunlace non-woven fabric produced from polyolefin short fibers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061830A (en) * 2004-08-26 2006-03-09 Nitto Denko Corp Air filter medium for domestic electric appliance
BRPI0608836A2 (en) * 2005-03-07 2016-11-08 3M Innovative Properties Co vehicle passenger compartment air filter device
KR101336286B1 (en) * 2012-11-13 2013-12-03 재단법인대구경북과학기술원 Manufacturing method for carbon nano fiber complex and carbon nano fiber complex
KR101471507B1 (en) * 2013-02-18 2014-12-12 충남대학교산학협력단 Titanium dioxideㆍcarbon material composite for degradation of organic pollutants, OrganicㆍInorganic nanocomposite comprising the same and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200318828Y1 (en) 2003-03-27 2003-07-04 이재덕 Gloss-catalyst Air Filter
US20080242785A1 (en) * 2007-03-27 2008-10-02 National Tsing Hua University TiO2-coated CNT, TiO2-coated CNT reinforced polymer composite and methods of preparation thereof
KR20090103351A (en) * 2008-03-28 2009-10-01 코오롱글로텍주식회사 An air filter comprising electrostatic filtering layer(s) consisting of spunlace non-woven fabric produced from polyolefin short fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200075179A (en) 2018-12-17 2020-06-26 에코필텍(주) Cabin filter using waste wooden activated carbon manufacturing method thereof
KR20200128962A (en) 2019-05-07 2020-11-17 김수원 Method for Manufacturing air filter for neutralization of antimicrobial and deodorant harmful components coated with metal silicon and air filter manufactured that method

Also Published As

Publication number Publication date
WO2018110771A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101867522B1 (en) manufacturing method of cabin air filter using carbon nano-material and cabin air filter using carbon nano-material thereby
Xing et al. Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger
Yan et al. Electrospinning nanofibers and nanomembranes for oil/water separation
US9558895B2 (en) Method for preparing carbon nanofiber composite and carbon nanofiber composite prepared thereby
KR101334294B1 (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
JP6753781B2 (en) Titania particles and their manufacturing method
Thavasi et al. Electrospun nanofibers in energy and environmental applications
US20110192789A1 (en) Metal or metal oxide deposited fibrous materials
Li et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0. 3 purification and oil/water separation
KR101936571B1 (en) Particle protection net with nanofiber filter media
US9095636B2 (en) Catalytic substrates and methods for creating catalytic coatings for indoor air quality applications
KR101270716B1 (en) Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite
Ahn et al. Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: Synthesis, properties, and their photocatalytic mechanism
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
JP5999747B2 (en) Gas purification method and purification device using low temperature plasma and catalytic filter
Chen et al. Anchoring the TiO2@ crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion
CN104138715A (en) Layer-by-layer clicked, bonded and self-assembled graphene oxide polyolefin separation membrane and preparation method thereof
Memon et al. Indoor decontamination textiles by photocatalytic oxidation: a review
KR102230448B1 (en) Non-woven fabric filter for reducing particulate matter and Method for preparing the same
KR101907560B1 (en) manufacturing method of cabin air filter using TiO2 nanotube and cabin air filter using TiO2 nanotube thereby
Gopiraman et al. Preparation, characterization, and applications of electrospun carbon Nanofibers and its composites
CN108635967A (en) A kind of the mask filter material and haze mask of femtosecond laser surface treatment
Liu et al. Multicomponent composite membrane with three-phase interface heterostructure as photocatalyst for organic dye removal
KR101104168B1 (en) Preparation method of carbon material based photocatalyst with improved photo catalytic activity, the photocatalyst prepared by the former method and the filter containing the former carbon material based photo catalyst
Liang et al. Self-Charging, Breathable, and Antibacterial Poly (lactic acid) Nanofibrous Air Filters by Surface Engineering of Ultrasmall Electroactive Nanohybrids

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant