KR101860477B1 - Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same - Google Patents

Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same Download PDF

Info

Publication number
KR101860477B1
KR101860477B1 KR1020160179489A KR20160179489A KR101860477B1 KR 101860477 B1 KR101860477 B1 KR 101860477B1 KR 1020160179489 A KR1020160179489 A KR 1020160179489A KR 20160179489 A KR20160179489 A KR 20160179489A KR 101860477 B1 KR101860477 B1 KR 101860477B1
Authority
KR
South Korea
Prior art keywords
sic
silicon carbide
composite material
sintering
zirconium
Prior art date
Application number
KR1020160179489A
Other languages
Korean (ko)
Inventor
김영욱
장승훈
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020160179489A priority Critical patent/KR101860477B1/en
Application granted granted Critical
Publication of KR101860477B1 publication Critical patent/KR101860477B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a composition for manufacturing a silicon carbide-zirconium carbonitride composite material, and a method for manufacturing a silicon carbide-zirconium carbonitride composite material using the same. According to an embodiment of the present invention, the composition for manufacturing a silicon carbide-zirconium carbonitride composite material using the same comprises 41.0-91.0 wt% of β-silicon carbide (β-SiC), 8.0-55.0 wt% of zirconium nitride (ZrN), and 1.0-4.0 wt% of a sintering additive. According to the present invention, the composition for manufacturing a silicon carbide-zirconium carbonitride composite material, and the method for a manufacturing silicon carbide-zirconium carbonitride composite material using the same can manufacture an electrical conductivity ceramic composite material having high electrical conductivity.

Description

탄화규소-지르코늄 탄질화물 복합 소재 제조용 조성물 및 이를 이용한 탄화규소-지르코늄 탄질화물 복합 소재의 제조방법{Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same}[0001] The present invention relates to a composition for producing a silicon carbide-zirconium carbonitride composite material and a process for producing a silicon carbide-zirconium carbonitride composite material using the same,

본 발명은 세라믹 복합 소재 제조용 조성물, 이를 이용한 세라믹 복합 소재의 제조방법 및 이에 의해 제조된 세라믹 복합 소재에 관한 것이다.The present invention relates to a composition for preparing a ceramic composite material, a method for manufacturing a ceramic composite material using the same, and a ceramic composite material produced thereby.

세라믹은 열을 가해 만든 비금속 무기재료를 총괄하여 이르는 말로써, 우수한 물리적 특성 및 기계적 특성으로 인하여 다양한 산업분야의 제품 제조를 위해 사용되고 있다.Ceramics are used to manufacture products in various industrial fields due to excellent physical and mechanical properties, which is a general term for non-metallic inorganic materials made by applying heat.

최근, 경량, 고강도 또는 고내열성 소재에 대한 산업 분야의 요구가 증가됨에 따라 강도가 높은 구조 세라믹(structural ceramics) 소재에 관련한 연구가 활발히 진행되고 있으며, 이러한 구조 세라믹의 소재로 탄화규소(SiC), 알루미나(Al2O3), 지르코니아(MgO stb. ZrO2/Y2O3 stb. ZrO2), 질화 붕소(BN) 또는 질화규소(Si3N4) 등이 널리 사용되고 있다. In recent years, there has been a great deal of research on structural ceramics having high strength as the demands of industry for lightweight, high strength, or high heat resistant materials are increasing. Materials for such structural ceramics include silicon carbide (SiC) Alumina (Al 2 O 3 ), zirconia (MgO stb. ZrO 2 / Y 2 O 3 stb. ZrO 2 ), boron nitride (BN) or silicon nitride (Si 3 N 4 ) are widely used.

그 중에서도 탄화규소(SiC)는 높은 강도와 경도, 우수한 고온 물성, 내 방사선 특성 및 내 플라즈마 부식 특성 등 다양한 장점을 갖기 때문에 반도체 공정부품, 내화학성 기계부품 등의 제조에 사용되고 있다.Among them, silicon carbide (SiC) is used for manufacturing semiconductor process parts and chemical resistant machine parts because it has various advantages such as high strength and hardness, excellent high temperature property, radiation resistance characteristic and plasma plasma corrosion characteristic.

한편, 질화지르코늄(ZrN)은 높은 녹는점, 높은 전기전도도, 우수한 화학적 안정성, 낮은 중성자 포획 능력, 용융된 철(iron) 및 강(steel)에 대한 부식 저항성 등의 특성들을 골고루 갖춰 다양한 구조적 그리고 기능적 용도를 가지는 중요한 세라믹 소재이다.Zirconium nitride (ZrN), on the other hand, has a wide range of structural and functional properties such as high melting point, high electrical conductivity, excellent chemical stability, low neutron capture ability, and corrosion resistance to molten iron and steel. It is an important ceramics material having use.

하지만, 상기와 같이 탄화규소 및 질화지르코늄은 서로 다른 장점을 가지는 매력적인 소재임에도 불구하고, 현재까지 각각의 장점을 모두 갖춘 소재로서 탄화규소와 질화지르코늄을 복합화한 2성분 복합체(binary composite)에 대한 기술은 알려진 바 없다.However, despite the fact that silicon carbide and zirconium nitride are attractive materials having different merits as described above, a technology for a binary composite in which silicon carbide and zirconium nitride are combined as materials having respective merits to date Is not known.

한국공개특허 제10-2015-0114942호 (공개일 : 2015.10.13)Korean Patent Publication No. 10-2015-0114942 (Publication date: October 13, 2015) 한국공개특허 제10-2015-0135690호 (공개일 : 2015.12.03.)Korean Patent Publication No. 10-2015-0135690 (Publication date: December 3, 2015). 한국공개특허 제10-2014-0106777호 (공개일 : 2014.09.04.)Korean Patent Publication No. 10-2014-0106777 (Publication date: 2014.09.04.) 한국공개특허 제10-1397153호 (등록일 : 2014.05.13.)Korean Patent Laid-Open No. 10-1397153 (Registered on May 13, 2014). 한국공개특허 제10-2014-0073091호 (공개일 : 2014.06.16.)Korean Patent Laid-Open No. 10-2014-0073091 (Publication date: June 16, 2014).

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 탄화규소와 질화지르코늄을 복합화한 신규한 2성분 복합체(binary composite)의 제조를 위한 조성물, 이를 이용한 복합체의 제조방법의 제공을 그 목적으로 한다.Disclosure of the Invention The present invention has been conceived to solve the problems of the prior art as described above, and provides a composition for the production of a novel binary composite in which silicon carbide and zirconium nitride are combined, and a method for producing a composite using the composite .

상기한 바와 같은 기술적 과제를 달성하기 위해서 본 발명은, 41.0 내지 91.0 중량%의 β-탄화규소(β-SiC); 8.0 내지 55.0 중량%의 질화지르코늄(ZrN); 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive)를 포함하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재 제조용 조성물을 제공한다.In order to accomplish the above-mentioned technical object, the present invention provides a method of manufacturing a silicon carbide semiconductor device, 8.0 to 55.0 wt% zirconium nitride (ZrN); Zirconium carbonitride (SiC-Zr 2 CN) composite material, which comprises a sintering additive and a sintering additive in an amount of 1.0 to 4.0% by weight.

또한, 상기 상기 β-탄화규소는 마이크론(micron) 또는 서브마이크론(sub-micron) 분말인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재 제조용 조성물을 제공한다.Also, the present invention provides a composition for producing a silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material, wherein the β-silicon carbide is a micron or a sub-micron powder.

또한, 상기 소결 첨가제는 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)을 1 : 0.5 ~ 3의 몰비로 포함하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재 제조용 조성물을 제공한다.The sintering additive may include silicon carbide-zirconium carbonitride (SiC-zirconium carbonitride) in a molar ratio of yttrium oxide (Y 2 O 3 ) and scandium oxide (III) (Sc 2 O 3 ) Zr 2 CN) composite material.

그리고, 본 발명은 발명의 다른 측면에서, (a) 41.0 내지 91.0 중량%의 β-탄화규소(β-SiC) 분말; 8.0 내지 55.0 중량%의 질화지르코늄(ZrN) 분말; 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive) 분말을 혼합하는 단계; 및 (b) 상기 단계 (a)에서 얻어진 혼합 분말을 이용해 질소(N2) 분위기하에서 소결해 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제조하는 단계를 포함하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법을 제공한다.In another aspect of the present invention, the present invention provides a process for producing a silicon carbide powder, comprising the steps of: (a) blending 41.0 to 91.0% by weight of? -Silicon carbide (? -SiC) powder; 8.0 to 55.0% by weight of zirconium nitride (ZrN) powder; And 1.0 to 4.0% by weight of a sintering additive powder; And (b) sintering the mixed powder obtained in the step (a) under a nitrogen (N 2 ) atmosphere to produce a composite material of silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) A method for producing a carbonitride (SiC-Zr 2 CN) composite material is provided.

또한, 상기 단계 (b)에서 1900 내지 2050 ℃의 온도 및 20 내지 60 MPa의 압력하에서 1 내지 12 시간동안 가압 소결하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법을 제공한다.(SiC-Zr 2 CN) composite material in the step (b) is characterized by press-sintering at a temperature of 1900 to 2050 ° C. and a pressure of 20 to 60 MPa for 1 to 12 hours. And a manufacturing method thereof.

또한, 상기 단계 (b)에서 Y-Sc-Zr-Si-O-C-N 계 액상이 형성되어 액상소결(liquid phase sintering) 기구를 통해 치밀화가 이뤄지는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법을 제공한다.In the step (b), a liquid phase of Y-Sc-Zr-Si-OCN is formed and densified by a liquid phase sintering mechanism. The silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material.

또한, 상기 단계 (b)에서 상기 Y-Sc-Zr-Si-O-C-N 계 액상으로부터 용해-재석출(dissolution-reprecipitation) 기구를 통해 질소 원자(N)가 도핑된 탄화규소가 석출 및 성장하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법을 제공한다.Further, in step (b), silicon nitride doped with nitrogen atoms (N) is precipitated and grown from the Y-Sc-Zr-Si-OCN-based liquid phase through a dissolution-reprecipitation mechanism Zirconium carbonitride (SiC-Zr 2 CN) composite material.

그리고, 본 발명은 발명의 또 다른 측면에서, 상기 방법에 의해 제조된 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제공한다.In another aspect of the present invention, there is provided a silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material produced by the above method.

또한, 상온에서의 전기 비저항(electrical resistivity)이 4.4 x 10-4 내지 1.1 x 10-2 Ω·cm이고, 상온에서의 열전도도(thermal conductivity)가 96 내지 190 W/mK인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제공한다.It is also preferable that the electrical resistivity at room temperature is 4.4 x 10 -4 to 1.1 x 10 -2 Ωcm and the thermal conductivity at room temperature is 96 to 190 W / Silicon-zirconium carbonitride (SiC-Zr 2 CN) composite material.

또한, 상대밀도(relative density)가 98% 이상인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제공한다.The present invention also provides a silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material having a relative density of 98% or more.

본 발명에 따른 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법에 의하면, β-탄화규소(β-SiC) 및 질화지르코늄(ZrN) 분말에 소결첨가제로서 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)의 혼합 분말을 첨가하고 질소(N2) 분위기에서 소결함으로써, Y-Sc-Zr-Si-OCN으로 이루어진 유리질 액상이 형성되어 탄화규소가 β상에서 α상으로 상변태하는 것을 완벽히 억제하고, 액상소결(liquid phase sintering) 기구로 치밀화를 촉진시키며, 나아가, 용해-석출(dissolution-precipitation) 기구에 의해 질소 도핑된(N-doped) 탄화규소 입자를 성장시키고, 전기전도성이 뛰어난 지르코늄 탄질화물(Zr2CN) 결정립이 인시츄(in-situ) 합성되어, 모노리식(monolithc) 탄화규소와 비교하더라도 최대 10배 이상 향상된 전기전도성을 가지는 우수한 전기전도성 세라믹 복합 소재를 제조할 수 있다.According to the method for producing a composite material of silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) according to the present invention, yttrium oxide (Y 2 O 3) is added as a sintering additive to β-SiC and zirconium nitride powders, Sc-Zr-Si-OCN is formed by sintering in a nitrogen (N 2 ) atmosphere by adding a mixed powder of zirconium oxide (ZrO 3 ) and scandium oxide (Sc 2 O 3 ) beta phase to the alpha phase and promotes densification by means of a liquid phase sintering mechanism and further promotes densification by means of a dissolution-precipitation mechanism by introducing nitrogen doped (N-doped) silicon carbide particles And zirconium carbonitride (Zr 2 CN) grains excellent in electric conductivity are synthesized in-situ to provide excellent electric conductivity having electric conductivity improved by at least 10 times compared with monolithic silicon carbide Manufacture of ceramic composite materials Can.

도 1은 모노리식(monolithic) 탄화규소(SiC) 시편과 질화지르코늄(ZrN)이 첨가된 탄화규소(SiC) 복합체 시편의 X-선 회절(XRD) 패턴이다.
도 2는 모노리식(monolithic) 탄화규소(SiC) 시편과 질화지르코늄(ZrN)이 첨가된 탄화규소(SiC) 복합체 시편의 미세구조를 보여주는 이미지이다.
도 3은 SZN35 시편에 대한 주사전자현미경(SEM) 이미지 및 에너지분산분광법(EDS)을 통한 Si, Zr, Y, Sc, C 및 N에 대한 도트 맵핑(dot mapping) 이미지를 나타낸다.
도 4(a) 및 도 4(b)는 모노리식(monolithic) 탄화규소(SiC) 시편과 질화지르코늄(ZrN)이 첨가된 탄화규소(SiC) 복합체 시편의 캐리어 농도, 캐리어 이동도 및 전기전도도를 출발 원료 조성물에 포함된 초기 질화지르코늄(ZrN) 함량의 함수로 나타낸 그래프이다.
도 5는 모노리식(monolithic) 탄화규소(SiC) 시편과 질화지르코늄(ZrN)이 첨가된 탄화규소(SiC) 복합체 시편의 열전도도(thermal conductivity) 및 포논 평균자유행로(phonon mean free path)를 나타낸 그래프이다.
1 is an X-ray diffraction (XRD) pattern of a silicon carbide (SiC) composite specimen to which monolithic silicon carbide (SiC) specimen and zirconium nitride (ZrN) are added.
2 is an image showing the microstructure of a silicon carbide (SiC) composite specimen to which monolithic silicon carbide (SiC) specimen and zirconium nitride (ZrN) are added.
Figure 3 shows a dot mapping image for Si, Zr, Y, Sc, C and N through SEM images and energy dispersive spectroscopy (EDS) on SZN35 specimens.
Figures 4 (a) and 4 (b) show the carrier concentration, carrier mobility and electrical conductivity of monolithic silicon carbide (SiC) specimens and zirconium nitride (ZrN) added silicon carbide As a function of the initial zirconium nitride (ZrN) content in the starting material composition.
5 shows the thermal conductivity and phonon mean free path of a silicon carbide (SiC) composite specimen to which a monolithic silicon carbide (SiC) specimen and zirconium nitride (ZrN) Graph.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments in accordance with the concepts of the present invention can make various changes and have various forms, so that specific embodiments are illustrated in the drawings and described in detail in this specification or application. It should be understood, however, that the embodiments according to the concepts of the present invention are not intended to be limited to any particular mode of disclosure, but rather all variations, equivalents, and alternatives falling within the spirit and scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises ", or" having ", or the like, specify that there is a stated feature, number, step, operation, , Steps, operations, components, parts, or combinations thereof, as a matter of principle.

이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 전기전도성 탄화규소-지르코늄 탄질화물 복합 소재 제조용 조성물은, 41.0 내지 91.0 중량%의 β-탄화규소(β-SiC); 8.0 내지 55.0 중량%의 질화지르코늄(ZrN); 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive)를 포함한다.The composition for preparing an electrically conductive silicon carbide-zirconium carbonitride composite material according to the present invention comprises 41.0 to 91.0% by weight of? -Carbide (? -SiC); 8.0 to 55.0 wt% zirconium nitride (ZrN); And 1.0 to 4.0% by weight of a sintering additive.

상기 β-탄화규소는 내마모성, 내부식성, 고열전도성 및 화학안정성 등의 우수한 특성을 나타내며, 세라믹 복합 소재의 주성분으로 세라믹 복합 소재의 제조를 위한 혼합 분말에 41.0 내지 91.0 중량%의 함량으로 포함되는 것이 바람직하다.The β-silicon carbide exhibits excellent properties such as abrasion resistance, corrosion resistance, high thermal conductivity and chemical stability, and is mainly composed of ceramic composite material and is contained in a mixed powder for producing ceramic composite material in an amount of 41.0 to 91.0 wt% desirable.

한편, 상기 β-탄화규소의 입자 크기는 특별히 제한되지 않으나, 높은 비표면적에 따른 소결특성 향상 및 체적비저항 증가의 원인이 되는 소결첨가제의 함량 감소를 위해 마이크론(micron) 또는 서브마이크론(sub-micron) 크기의 입도를 가지는 것이 바람직하다.On the other hand, the particle size of the β-silicon carbide is not particularly limited. However, in order to reduce the content of the sintering additive which causes the sintering property and the volume resistivity to increase depending on the high specific surface area, a micron or sub- ) ≪ / RTI > size.

그리고, 상기 질화지르코늄(ZrN)은 본 발명에 따른 조성물에 세라믹 복합 소재의 제조를 위한 혼합 분말에 8.0 내지 55.0 중량%의 함량으로 포함되는 것이 바람직하다.It is preferable that the zirconium nitride (ZrN) is contained in the composition according to the present invention in an amount of 8.0 to 55.0% by weight in the mixed powder for producing the ceramic composite material.

또한, 상기 소결 첨가제는 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)의 혼합물을 사용하되, 상기 산화이트륨 및 산화스칸듐(Ⅲ)이 1 : 0.5 ~ 3의 몰비로 포함된 혼합물인 것이 바람직하며, 나아가, 산화이트륨 : 산화스칸듐(Ⅲ)의 몰비가 1 : 1인 것이 더욱 바람직하다.The sintering additive is a mixture of yttrium oxide (Y 2 O 3 ) and scandium oxide (Sc 3 O 3 ), wherein yttrium oxide and scandium oxide (III) are mixed in a molar ratio of 1: 0.5 to 3 It is further preferable that the molar ratio of yttrium oxide: scandium oxide (III) is 1: 1.

상기 산화이트륨 및 산화스칸듐이 소결 첨가제로서 본 발명에 따른 조성물에 포함됨으로써, 소결 공정 중에 Y-Sc-Zr-Si-OCN으로 이루어진 유리질 액상이 형성되어 탄화규소가 β상에서 α상으로 상변태하는 것을 완벽히 억제하고, 액상소결(liquid phase sintering) 기구로 치밀화를 촉진시키며, 나아가, 용해-석출(dissolution-precipitation) 기구에 의해 질소 도핑된(N-doped) 탄화규소 입자를 성장시키고, 높은 전기전도성의 지르코늄 탄질화물(Zr2CN) 결정립이 인시츄(in-situ) 합성되어, 전기전도성이 현저히 향상된 복합 소재를 제조할 수 있다. Since yttrium oxide and scandium oxide are included in the composition according to the present invention as a sintering additive, a glassy liquid phase composed of Y-Sc-Zr-Si-OCN is formed during the sintering process to perfectly convert the silicon carbide into? Doped silicon carbide grains are grown by a dissolution-precipitation mechanism, and a high-conductivity zirconium-silicon carbide grains are grown by a liquid-phase sintering mechanism, The carbonitride (Zr 2 CN) crystal grains are synthesized in-situ, so that a composite material with remarkably improved electrical conductivity can be produced.

상기한 효과를 달성하기 위해 상기 소결 첨가제는 본 발명에 따른 전기전도성 탄화규소-지르코늄 탄질화물 복합 소재 제조용 조성물에 1.0 내지 4.0 중량%의 함량으로 포함되는 것이 바람직하다. 상기 소결 첨가제의 함량이 1.0 중량% 미만인 경우에는 소결이 불충분하여 소결성이 좋지 못해 소결밀도가 감소하여 치밀한 세라믹 복합 소재를 제조할 수 없고, 이에 의해 세라믹 복합 소재 내에 기공이 형성되어 전기전도성 및 기계적 물성이 저하될 수 있다. 그리고, 소결첨가제의 함량이 4.0 중량%를 초과하는 경우에는 뚜렷한 소결 밀도의 증가는 없는 상태에서 과량의 소결 첨가제가 탄화규소 입계상으로 남게 되어, 체적비저항이 증가하여 전기 전도도가 감소되는 문제가 발생할 수 있어 소결 첨가제의 함량을 상기한 범위로 조절하는 것이 바람직하다.In order to achieve the above effect, the sintering additive is preferably contained in an amount of 1.0 to 4.0% by weight in the composition for preparing an electrically conductive silicon carbide-zirconium carbonitride composite material according to the present invention. If the content of the sintering additive is less than 1.0% by weight, sintering is insufficient and the sintering property is poor due to insufficient sintering density, so that a dense ceramic composite material can not be manufactured. Thus, porosity is formed in the ceramic composite material and electrical conductivity and mechanical properties Can be lowered. If the content of the sintering additive exceeds 4.0% by weight, excess sintering additive remains in the silicon carbide grain boundary without a significant increase in the sintering density, thereby increasing the specific resistivity and decreasing the electric conductivity It is preferable to adjust the content of the sintering additive to the above range.

다음으로, 본 발명에 따른 전기전도성 탄화규소-지르코늄 탄질화물 복합 소재의 제조방법에 대해 이하에서 설명한다.Next, a method of manufacturing the electrically conductive silicon carbide-zirconium carbonitride composite material according to the present invention will be described below.

본 발명에 따른 전기전도성 탄화규소-지르코늄 탄질화물 복합 소재의 제조방법은, (a) 41.0 내지 91.0 중량%의 β-탄화규소(β-SiC) 분말; 8.0 내지 55.0 중량%의 질화지르코늄(ZrN) 분말; 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive) 분말을 혼합하는 단계; 및 (b) 상기 단계 (a)에서 얻어진 혼합 분말을 이용해 질소(N2) 분위기하에서 소결해 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제조하는 단계를 포함한다.A method for manufacturing an electrically conductive composite material of silicon carbide-zirconium carbonitride according to the present invention comprises the steps of: (a) mixing 41.0 to 91.0% by weight of? -Silicon carbide (? -SiC) powder; 8.0 to 55.0% by weight of zirconium nitride (ZrN) powder; And 1.0 to 4.0% by weight of a sintering additive powder; And (b) sintering the mixed powder obtained in the step (a) under a nitrogen (N 2 ) atmosphere to produce a silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material.

상기 단계 (a)에서는 β-탄화규소(β-SiC) 분말, 질화지르코늄(ZrN) 분말; 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive) 분말을 혼합해, 전술한 탄화규소-지르코늄 탄질화물 복합 소재 제조용 혼합 분말 조성물을 제조하는 단계이다.In step (a), β-silicon carbide (β-SiC) powder, zirconium nitride (ZrN) powder; And 1.0 to 4.0% by weight of a sintering additive powder to prepare a mixed powder composition for preparing the silicon carbide-zirconium carbonitride composite material.

나아가, 본 단계에서는 필요에 따라 상기 혼합 분말을 분쇄하는 단계를 더 포함하도록 구성하여 균일한 입도를 가지며, 높은 비표면적을 가지는 혼합 분말을 제조하도록 구성할 수 있다. 이와 같이 혼합분말을 분쇄하기 위해서는 공지된 다양한 분말 분쇄 방법을 사용할 수 있으며, 예를 들어, 에탄올 등의 유기 용매에 혼합 분말을 혼합하여 분산시키고, 지르코니아 볼 등을 이용하여 분쇄하는 유성볼밀 방식을 사용할 수 있으나, 이러한 방법에 제한받지 않고 다양한 방법을 사용하여 분말을 분쇄하도록 구성할 수 있다.Further, in this step, the step of grinding the mixed powder may be further carried out as necessary to form a mixed powder having a uniform particle size and a high specific surface area. In order to crush the mixed powder, various well-known powder crushing methods may be used. For example, an oil-based ball milling method in which a mixed powder is mixed and dispersed in an organic solvent such as ethanol and pulverized using zirconia balls or the like is used But can be configured to crush the powder using various methods without being limited to these methods.

다음으로, 상기 단계 (b)는 상기 단계 (a)에서 얻어진 혼합 분말을 이용해 질소(N2) 분위기하에서 탄화규소-지르코늄 탄질화물 복합 소재로 이루어진 소결체를 제조하는 단계이다.Next, the step (b) is a step of producing a sintered body composed of a silicon carbide-zirconium carbonitride composite material under a nitrogen (N 2 ) atmosphere using the mixed powder obtained in the step (a).

본 발명은 상기한 조성의 혼합 분말을 질소(N2) 분위기에서 소결하여, 질소가 도핑된 탄화규소 입자를 성장시키고, 전기전도성이 뛰어난 지르코늄 탄질화물(Zr2CN) 결정립이 인시츄(in-situ) 합성되어, 모노리식(monolithc) 탄화규소와 비교하더라도 최대 10배 이상 향상된 전기전도성을 가지는 우수한 전기전도성 세라믹 복합 소재를 제조할 수 있다.In the present invention, the mixed powder of the above-mentioned composition is sintered in a nitrogen (N 2 ) atmosphere to grow silicon carbide particles doped with nitrogen, and zirconium carbonitride (Zr 2 CN) situ and synthesized to produce an excellent electroconductive ceramic composite material having an electrical conductivity up to 10 times higher than that of monolithic silicon carbide.

보다 상세히 설명하면, 상기 혼합 분말을 이용해 질소(N2) 분위기에서 소결할 경우, Y2O3-Sc2O3으로 이루어진 소결 첨가제가가 탄화규소(SiC), 탄화규소 표면의 이산화규소(SiO2), 질화지르코늄(ZrN), 및 질화지르코늄 표면의 지르코니아(ZrO2)와 반응해 Y-Sc-Zr-Si-OCN 액상이 형성되며, 상기 액상은 액상소결 기구로 탄화규소-지르코늄 탄질화물 복합 소재를 치밀화하고, 나아가, 치밀화가 이루어지는 과정에서 용해-석출 기구로 질소 원자(N)가 도핑(doping)된 전기전도성 탄화규소의 입자 성장을 유도하고, 인시츄(in-situ)로 지르코늄 탄질화물(Zr2CN)이 형성됨으로써, 높은 전기전도성을 가지는 탄화규소-지르코늄 탄질화물 복합 소재를 얻을 수 있다.More specifically, when sintering in a nitrogen (N 2 ) atmosphere using the mixed powder, the sintering additive composed of Y 2 O 3 -Sc 2 O 3 is composed of silicon carbide (SiC), silicon dioxide on the surface of silicon carbide Zr-Si-OCN liquid phase is formed by reacting with zirconium (ZrO 2 ) on the surface of zirconium nitride, zirconium nitride (ZrN 2 ), and zirconium nitride, and the liquid phase is mixed with a silicon carbide-zirconium carbonitride composite It is possible to densify the material and induce grain growth of the electrically conductive silicon carbide doped with nitrogen atoms (N) by a dissolution-precipitation mechanism in the course of densification, and to induce the growth of zirconium carbonitride (Zr 2 CN) is formed, whereby a silicon carbide-zirconium carbonitride composite material having high electrical conductivity can be obtained.

한편, 본 단계 (b)는 1900 내지 2050 ℃의 온도의 20 내지 60 MPa의 압력의 질소 분위기하에서 1 내지 12 시간동안 가압소결에 의해 수행되는 것이 바람직하나, 반드시 이에 제한되는 것은 아니다.Meanwhile, the step (b) is preferably, but not necessarily, performed by pressure sintering under a nitrogen atmosphere at a temperature of 1900 to 2050 ° C and a pressure of 20 to 60 MPa for 1 to 12 hours.

앞서 상세히 설명한 본 발명에 따른 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법에 의하면, β-탄화규소(β-SiC) 및 질화지르코늄(ZrN) 분말에 소결첨가제로서 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)의 혼합 분말을 첨가하고 질소(N2) 분위기에서 소결함으로써, Y-Sc-Zr-Si-OCN으로 이루어진 유리질 액상이 형성되어 탄화규소가 β상에서 α상으로 상변태하는 것을 완벽히 억제하고, 액상소결(liquid phase sintering) 기구로 치밀화를 촉진시키며, 나아가, 용해-석출(dissolution-precipitation) 기구에 의해 질소 도핑된(N-doped) 탄화규소 입자를 성장시키고, 전기전도성이 뛰어난 지르코늄 탄질화물(Zr2CN) 결정립이 인시츄(in-situ) 합성되어, 모노리식(monolithc) 탄화규소와 비교하더라도 최대 10배 이상 향상된 전기전도성을 가지는 우수한 전기전도성 세라믹 복합 소재를 제조할 수 있다.According to the method for producing a composite material of silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) according to the present invention, which is described in detail above, yttrium oxide (SiC) is added as a sintering additive to? -Silicon carbide (? SiC) and zirconium nitride A glassy liquid phase composed of Y-Sc-Zr-Si-OCN is formed by adding a mixed powder of Y 2 O 3 and scandium oxide (Sc 2 O 3 ) and sintering in a nitrogen (N 2 ) atmosphere It is possible to completely suppress the phase transformation of silicon carbide from? Phase to? Phase, accelerate densification by means of a liquid phase sintering mechanism, and further promote the N-doped by dissolution-precipitation mechanism. Silicon carbide grains are grown and zirconium carbonitride (Zr 2 CN) grains with excellent electrical conductivity are synthesized in-situ to have an electrical conductivity of at least 10 times higher than that of monolithic silicon carbide Superior Electrical Conductivity Cera It is possible to manufacture a composite material.

이하, 본 발명을 실시예를 들어 더욱 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail with reference to examples.

제시된 실시예는 본 발명의 구체적인 예시일 뿐이며, 본 발명의 범위를 제한하기 위한 것은 아니다.The embodiments presented are only a concrete example of the present invention and are not intended to limit the scope of the present invention.

<실시예><Examples>

상용 β-SiC 분말(~0.5 μm, Grade BF-17, H.C. Starck, Berlin, Germany), ZrN 분말 (Kojundo Chemical Laboratory Co., Ltd., Sakado-shi, Japan), Y2O3분말(99.99%, Kojundo Chemical Laboratory Co., Ltd.), 및 Sc­O3분말(99.9%, Kojundo Chemical Laboratory Co., Ltd.)을 출발 물질로 사용했다.Y 2 O 3 powder (99.99%) was added to a commercial β-SiC powder (~ 0.5 μm, Grade BF-17, HC Starck, Berlin, Germany), ZrN powder (Kojundo Chemical Laboratory Co., Ltd., Sakado- , Kojundo Chemical Laboratory Co., Ltd.) and ScO 3 powder (99.9%, Kojundo Chemical Laboratory Co., Ltd.) were used as starting materials.

SiC 볼과 폴리프로필렌(polypropylene) 용기를 이용해 아래 '표 1'에 기재된 5개의 혼합 분말 배치를 에탄올 내에서 24시간 동안 혼합하였다. 아래 '표 1'에서 확인할 수 있는 바와 같이 5개 배치의 ZrN 함량은 각각 0, 4, 10, 20, 및 35 vol%이었다. 그리고, 첨가제의 함량은 2 vol%로, Sc2O3와 Y2O의 몰비는 1:1로 고정하였다.The five mixed powder batches listed in Table 1 below were mixed in ethanol for 24 hours using SiC balls and polypropylene containers. As can be seen in Table 1 below, the ZrN contents of the five batches were 0, 4, 10, 20, and 35 vol%, respectively. The content of the additive was 2 vol%, and the molar ratio of Sc 2 O 3 and Y 2 O was fixed at 1: 1.

밀링 공정을 거친 슬러리를 건조시킨 후, 시브(60 mesh)를 이용해 체가름하고, 질소분위기 하에서 2000oC에서 3시간 동안 40 MPa의 압력으로 핫프레스(hot press)법을 통한 소결을 실시하였다.The milled slurry was dried and sieved using a sieve (60 mesh) and sintered by hot press at a pressure of 40 MPa at 2000 ° C for 3 hours under a nitrogen atmosphere.

시편명Psalm name 배치 조성(vol%)Batch composition (vol%) 배치 조성(wt%)Batch composition (wt%) 이론theory
밀도density
(g/cm(g / cm 33 ))
상대opponent
밀도density
(%)(%)
상온 열용량Room temperature heat capacity
(J/(gK))(J / (gK))
상온 열확산도Room temperature thermal diffusivity
(mm(mm 22 /s)/ s)
SZN0SZN0 98.00% SiC
+ 1.13% Y2O3
+ 0.87% Sc2O3
98.00% SiC
+ 1.13% Y 2 O 3
+ 0.87% Sc 2 O 3
97.280% SiC
+ 1.026% Sc2O3
+ 1.694% Y2O3
97.280% SiC
+ 1.026% Sc 2 O 3
+ 1.694% Y 2 O 3
3.240 3.240 98.998.9 0.667
±0.000
0.667
± 0.000
92.0
±1.3
92.0
± 1.3
SZN4SZN4 96.00% SiC
+ 4.00% ZrN
+ 1.13% Y2O3
+ 0.87% Sc2O3
96.00% SiC
+ 4.00% ZrN
+ 1.13% Y 2 O 3
+ 0.87% Sc 2 O 3
88.832% SiC
+ 8.567% ZrN
+ 0.986% Sc2O3 + 1.615% Y2O3
88.832% SiC
+ 8.567% ZrN
+ 0.986% Sc 2 O 3 + 1.615% Y 2 O 3
3.4033.403 98.598.5 0.689
±0.000
0.689
± 0.000
82.4
±0.3
82.4
± 0.3
SZN10SZN10 88.00% SiC
+ 10.00% ZrN
+ 1.13% Y2O3
+ 0.87% Sc2O3
88.00% SiC
+ 10.00% ZrN
+ 1.13% Y 2 O 3
+ 0.87% Sc 2 O 3
77.590% β-SiC
+ 19.984% ZrN + 0.920% Sc2O3 + 1.506% Y2O3
77.590% β-SiC
+ 19.984% ZrN + 0.920% Sc 2 O 3 + 1.506% Y 2 O 3
3.647 3.647 98.798.7 0.605
±0.000
0.605
± 0.000
75.8
±0.2
75.8
± 0.2
SZN20SZN20 78.00% SiC
+ 20.00% ZrN
+1.13% Y2O3
+ 0.87% Sc2O3
78.00% SiC
+ 20.00% ZrN
+ 1.13% Y 2 O 3
+ 0.87% Sc 2 O 3
61.864% β-SiC
+ 35.953% ZrN
+ 0.828% Sc2O3 + 1.355% Y2O3
61.864% beta-SiC
+ 35.953% ZrN
+ 0.828% Sc 2 O 3 + 1.355% Y 2 O 3
4.055 4.055 99.599.5 0.715
±0.000
0.715
± 0.000
55.1
±0.1
55.1
± 0.1
SZN35SZN35 63.00% SiC
+ 35.00% ZrN
+ 1.13% Y2O3
+ 0.87% Sc2O3
63.00% SiC
+ 35.00% ZrN
+ 1.13% Y 2 O 3
+ 0.87% Sc 2 O 3
43.425% β-SiC
+ 54.678% ZrN + 0.719% Sc2O3 + 1.178% Y2O3
43.425% β-SiC
+ 54.678% ZrN + 0.719% Sc 2 O 3 + 1.178% Y 2 O 3
4.666 4.666 99.099.0 0.570
±0.000
0.570
± 0.000
38.1
±0.1
38.1
± 0.1

<실험예 1> 미세구조 및 상(phase) 분석<Experimental Example 1> Microstructure and phase analysis

SiC-2 vol% Y2O3-Sc2O3혼합 분말을 출발 물질로 핫프레스 공정을 통해 제조한 모노리식(monolithic) SiC 시편(SZN0)의 상대밀도(relative density)는 98.9%이었으며, ZrN을 포함하는 모든 복합체 시편들도 98.5% 이상의 상대밀도를 가질 정도로 치밀화되었다(상기 '표 1' 참조). 이러한 결과는 4 내지 35 vol%의 함량의 ZrN 첨가는 SiC-Zr2CN 복합체의 치밀화에 악영향을 주지 않는 것을 의미한다.The relative density of the monolithic SiC specimen (SZN0) prepared by the hot press process from the mixed powder of SiC-2 vol% Y 2 O 3 -Sc 2 O 3 was 98.9% and the relative density of ZrN Were also densified to have a relative density of 98.5% or more (see Table 1 above). These results indicate that the addition of ZrN in an amount of 4 to 35 vol% does not adversely affect the densification of the SiC-Zr 2 CN composite.

모노리식 SiC 시편의 경우, 가열 과정에서 Y2O3-Sc2O3첨가제가 SiC 입자의 표면에 형성되어 있는 SiO2와 반응해 Y-Sc-Si 산화물 액상을 형성하는데, Y-Sc-Si-옥시카보나이트라이드(OCN) 액상은 소결 분위기를 형성하는 질소와 SiC가 온도 증가에 따라 용해되어 형성된다. Y-Sc-Si-OCN 액상은 액상 소결(liquid-phase sintering)을 통해 시편의 치밀도를 향상시킬 수 있다.In monolithic SiC specimens, the Y 2 O 3 -Sc 2 O 3 additive reacts with the SiO 2 formed on the surface of the SiC particles to form a Y-Sc-Si oxide liquid phase during the heating process. Y-Sc-Si - Oxycarbonitride (OCN) liquid phase is formed by dissolving nitrogen and SiC forming sintering atmosphere with increasing temperature. The Y-Sc-Si-OCN liquid phase can improve the density of the specimen through liquid-phase sintering.

이와 마찬가지로, SiC-Zr2CN 복합체의 경우에는 가열 과정에서 Y2O3-Sc2O3첨가제가 SiC 및 ZrN 각각으로부터 유래하는 SiO2및 ZrO2와 반응해 Y-Sc-Zr-Si 산화물 액상을 형성한다. 온도가 증가함에 따라, Y-Sc-Zr-Si-OCN 액상은 소결 분위기를 형성하는 질소, SiC 및 ZrN가 온도 증가에 따라 용해되어 형성된다. Y-Sc-Zr-Si-OCN 액상은 액상 소결을 통해 시편의 치밀도를 향상시켰다.Similarly, in the case of the SiC-Zr 2 CN composite, the Y 2 O 3 -Sc 2 O 3 additive reacts with SiO 2 and ZrO 2 derived from SiC and ZrN, respectively, in the heating process to form a Y-Sc-Zr- . As the temperature increases, the Y-Sc-Zr-Si-OCN liquid phase is formed by dissolving nitrogen, SiC and ZrN forming the sintering atmosphere as the temperature increases. The Y-Sc-Zr-Si-OCN liquid phase improved the density of the specimen through liquid phase sintering.

도 1은 모노리식 SiC 시편과 ZrN이 첨가된 SiC 복합체 시편의 X-선 회절(XRD) 패턴이다. XRD 분석 결과는 다음과 같이 요약될 수 있다. 즉, (1) 모노리식 SiC (SZN0)는 β-SiC (3C, JCPDS 29-1129)만으로 이루어지고, (2) 모든 시편에서 핫프레스 공정 중에 SiC의 β상에서 α상으로의 상변태가 완전히 억제되었다. 그리고, (3) ZrN 입자는 소결 중에 이웃하는 β-SiC 입자로부터의 탄소 입자와 결합해 Zr2CN상 (JCPDS 71-6065, 도 1에서 삼각형으로 표시됨)으로 변환되었다.1 is an X-ray diffraction (XRD) pattern of a monolithic SiC specimen and a ZrN added SiC composite specimen. The XRD analysis results can be summarized as follows. That is, (1) the monolithic SiC (SZNO) is composed of only β-SiC (3C, JCPDS 29-1129) and (2) the phase transformation from β to α phase of SiC is completely inhibited during the hot pressing process in all the specimens . And (3) ZrN particles were converted to Zr 2 CN phases (JCPDS 71-6065, represented by triangles in FIG. 1) by bonding with carbon particles from neighboring β-SiC particles during sintering.

상기 결과는 모노리식 SiC(SZN0)에서는 Y-Sc-Si-OCN 액상, SiC-Zr2CN 복합체에서는 Y-Sc-Zr-Si-OCN 액상이 형성되고, 40 MPa의 압력하에서 2000oC의 온도로 소결하는 과정에서 질소 분위기는 SiC의 β상에서 α상으로의 상변태를 억제한다는 것을 의미한다. 한편, 인시츄(in-situ)로 Zr2CN이 형성되는 반응은 아래 화학반응식으로 표현될 수 있다. The result is a monolithic SiC (SZN0) in the Y-Sc-Si-OCN liquid, SiC-Zr 2 CN complex in the Y-Sc-Zr-Si- OCN liquid phase is formed, and a temperature of 2000 o C under the environment of 40 MPa pressure , The nitrogen atmosphere suppresses the phase transformation from β phase to α phase of SiC. Meanwhile, the reaction in which Zr 2 CN is formed in situ can be expressed by the following chemical reaction formula.

4ZrN + 2SiC → 2Zr2CN + 2Si(liquid) + N2(gas) 4ZrN + 2SiC → 2Zr 2 CN + 2Si (liquid) + N 2 (gas)

상기 반응에서 액상인 Si과 기상인 N2는 Y-Sc-Zr-Si-OCN 액상에 용해 가능하다. 또 다른 가능한 메커니즘으로는 소결 및 냉각 과정에서 Zr2CN상이 Y-Sc-Zr-Si-OCN 액상으로부터 석출되는 것을 생각할 수 있다. 상기 화학반응식에 따르면 ZrN 함량이 4, 10, 20 및 35 vol%로 증가함에 따라 Zr2CN상의 함량은 각각 8.5, 19.8, 35.6 및 54.2% 으로 계산될 수 있다. 한편, 리트벨트법(Rietveld refinement method)을 이용해 측정된 Zr2CN상의 함량은 ZrN 함량이 4, 10, 20 및 35 vol%로 증가함에 따라 각각 10.2%, 20.6%, 35.6% 및 54.4%인 것으로 나타났다. 즉, SZN20 및 SZN35 시편에서의 Zr2CN함량은 측정치와 계산치가 거의 동일한 반면, SZN4 및 SZN10 시편은 Zr2CN 피크가 상대적으로 낮은 강도를 나타내어 결과적으로 Zr2CN 함량은 측정치와 계산치 간의 차이가 상대적으로 크게 나타났다. 이와 유사한 결과가 β-SiC, TiN, 및 2 vol% Y2O3-Sc2O3 첨가제로부터 제조된 SiC-Ti2CN복합체에 대해서도 보고된 바 있다.In this reaction, Si in liquid phase and N 2 in gaseous phase are soluble in Y-Sc-Zr-Si-OCN liquid phase. Another possible mechanism is that the Zr 2 CN phase precipitates from the Y-Sc-Zr-Si-OCN liquid phase during sintering and cooling. According to the chemical equation ZrN as the content of 4, 10, 20, and increased to 35 vol% on the content of Zr 2 CN can be calculated as 8.5, 19.8, 35.6 and 54.2%, respectively. On the other hand, the content of Zr 2 CN measured by the Rietveld refinement method was 10.2%, 20.6%, 35.6% and 54.4%, respectively, as the ZrN content increased to 4, 10, 20 and 35 vol% appear. In other words, the Zr 2 CN contents in the SZN 20 and SZN 35 specimens were almost the same as the measured values and the calculated values, while the SZN 4 and SZN 10 specimens had relatively low Zr 2 CN peaks. As a result, the Zr 2 CN content Respectively. Similar results have been reported for SiC-Ti 2 CN composites made from β-SiC, TiN, and 2 vol% Y 2 O 3 -Sc 2 O 3 additives.

도 2는 모노리식 SiC 및 SiC-Zr2CN 복합체 시편의 미세구조를 나타내며, 그 특징은 아래와 같이 요약될 수 있다. Fig. 2 shows the microstructure of the monolithic SiC and SiC-Zr 2 CN composite specimens, the characteristics of which can be summarized as follows.

(1) 모노리식 SiC 및 SiC-Zr2CN 복합체 모두 SiC 결정립은 등축(equiaxed)이었으며, 이는 모든 시편에서 SiC의 β상에서 α상으로의 상변태가 일어나지 않았음을 나타낸다. 참고로, SiC의 β상에서 α상으로의 상변태는 일반적으로 SiC 결정립에 각짐 현상(faceting)을 일으키는 것으로 널리 알려져 있다. 상기 결과는 XRD 분석 결과와도 일치한다(도 1 참조). (1) Both monolithic SiC and SiC-Zr 2 CN composites showed equiaxed SiC grains, indicating that no phase transformation of β-phase to α-phase of SiC occurred in all specimens. For reference, the phase transformation from Si phase to beta phase is generally known to cause faceting of SiC grains. The results are consistent with the XRD analysis results (see FIG. 1).

(2) 원료 혼합 분말에서 ZrN 함량이 0에서 35 vol%로 증가함에 따라 SiC의 평균 입도는 5.3에서 2.7 ㎛로 감소했으며, 이는 ZrN이 입성장 저해제로서 작용했음을 의미한다. (2) As the ZrN content increased from 0 to 35 vol% in the mixed powder, the average particle size of SiC decreased from 5.3 to 2.7 ㎛, indicating that ZrN acted as a grain growth inhibitor.

(3) 원료 혼합 분말에서 ZrN 함량이 0에서 35 vol%로 증가함에 따라 Zr2CN의 평균 입도는 2.0에서 3.8 ㎛로 증가하였는데, 이는 핫프레스 공정 중에 Zr2CN 결정립의 입성장이 일어났음을 의미한다.(3) The average particle size of Zr 2 CN increased from 2.0 to 3.8 ㎛ as the ZrN content increased from 0 to 35 vol% in the raw mixed powder, indicating that the Zr 2 CN grain growth occurred during the hot pressing process do.

(4) Zr2CN 결정립의 크기 및 형상은 결정립의 위치에 따라 달랐는데, 작고 구형의 Zr2CN 결정립 (<1 μm)은 대부분 SiC 결정립 내에 포획된 반면에 크고 불규칙한 형상의 Zr2CN 결정립 (≥1 μm)은 결정립계 또는 다중점(multigrain junction)에 위치했다. 이러한 현상은 아마도 작고 구형인 Zr2CN 결정립은 액상으로부터 석출되어 형성되고 성장하는 SiC 결정립 내에 포획되고, 크고 불규칙한 형상의 Zr2CN 결정립은 상기 화학반응식에 따른 반응을 통해 형성되어 SiC 결정립의 성장에 의해 변형이 일어나기 때문인 것으로 보인다. ZrN와 마찬가지로, Zr2CN도 핫프레스 공정을 수행하는 온도에서 연성(ductility)를 가진다. SiC-Zr2CN 복합체에서 관찰되는 Zr2CN 결정립 크기 및 형상은 SiC-Ti2CN 복합체 및 SiC-Si3N4 나노/마이크로 복합체 등 다른 복합체에 대해 알려진 유사한 결과에 의해 뒷받침된다.(4) The size and shape of Zr 2 CN grains were different depending on the position of the grains. Small and spherical Zr 2 CN grains (<1 μm) were mostly trapped in SiC grains while large and irregular Zr 2 CN grains ≥ 1 μm) were located at grain boundaries or at multigrain junctions. This phenomenon is presumably due to the fact that the small and spherical Zr 2 CN crystal grains are formed by precipitation from the liquid phase and are trapped in the growing SiC crystal grains, and large and irregular Zr 2 CN grains are formed through the reaction according to the above chemical reaction formula, This is because it is caused by deformation. Like ZrN, Zr 2 CN also has a flexible (ductility) at a temperature to perform a hot press process. The size and shape of Zr 2 CN grains observed in SiC-Zr 2 CN composites are supported by similar results for other composites such as SiC-Ti 2 CN composite and SiC-Si 3 N 4 nano / micro composite.

도 3은 SZN35 시편에 대한 주사전자현미경(SEM) 이미지 및 에너지분산분광법(EDS)을 통한 Si, Zr, Y, Sc, C 및 N에 대한 도트 맵핑(dot mapping) 이미지를 나타낸다. EDS 결과는 (1) 밝은 회색 결정립은 Zr, C 및 N로 이루어진 Zr2CN 상에 해당되며, (2) 어두운 회색 결정립은 주로 Si 및 C와 약간의 N로 이루어진 질소 도핑된(N-doped) SiC에 해당됨을 보여준다. 이러한 결과로부터 SZN35 시편은 질소 도핑된(N-doped) SiC 결정립과 Zr2CN 결정립으로 이루어짐을 알 수 있다. Y 및 Sc는 Zr2CN 결정립 상에 있거나 근방에 위치한 것으로 보아 이들 원소는 Zr2CN 결정립에 친화성을 가지는 것으로 보인다. 소결 과정에서 질소 도핑된(N-doped) SiC 결정립이 성장할 때, N 원자는 C 자리에 치환되어 전도대(conduction band) 근처에 도너 준위(Nc)를 형성하므로, SiC-Zr2CN 복합체는 질소 도핑에 의해 높은 캐리어 밀도를 가질 수 있다.Figure 3 shows a dot mapping image for Si, Zr, Y, Sc, C and N through SEM images and energy dispersive spectroscopy (EDS) on SZN35 specimens. The EDS results show that (1) the light gray grains correspond to the Zr 2 CN phase consisting of Zr, C and N, and (2) the dark gray grains are mainly N-doped, consisting mainly of Si and C, SiC &lt; / RTI &gt; From these results, it can be seen that the SZN35 specimen consists of N-doped SiC grains and Zr 2 CN grains. Y and Sc are located on or near Zr 2 CN grains, and these elements appear to have affinity for Zr 2 CN grains. As the N-doped SiC grains grow during the sintering process, the N atoms are substituted at the C-positions to form a donor level (N c ) near the conduction band, so that the SiC-Zr 2 CN complexes contain nitrogen Doping can have a high carrier density.

<실험예 2> 전기적 특성(Electrical properties) 고찰<Experimental Example 2> Examination of Electrical Properties

도 4(a) 및 도 4(b)는 모노리식 SiC 및 SiC-Zr2CN 복합체의 캐리어 농도, 캐리어 이동도 및 전기전도도를 초기 ZrN 함량의 함수로 나타낸 결과이다. Y2O3-Sc2O3와 함께 소결해 얻어진 모노리식 SiC 및 SiC-Zr2CN 복합체는 n-형 반도체인 것으로 확인되었다. Y2O3-Sc2O3첨가제와 함께 소결해 얻어진 모노리식 SiC(SZN0)의 캐리어 농도는 7.4 x 1019cm-3 이며, ZrN 함량이 4 vol%에서 35 vol%로 증가함에 따라 캐리어 농도는 2.6 x 1020cm-3에서 7.9 x 1020cm-3로 증가하였다. SZN0의 캐리어 농도는, 질소 도핑된(N-doped) 4H-SiC 에피택셜층(epilayer) 및 Y2O3,AlN-Y2O3,AlN-Er2O3,및 Y2O3-RE2O3(RE=Sm,Gd,Lu)을 첨가해 소결한 SiC 세라믹스에 대해 기보고된 캐리어 농도 값에 비해 높은 것으로 나타났다. SZN0 시편의 핫프레싱 공정 중에 소결 분위기를 형성하는 질소가 용해되어 Y-Sc-Si-OCN 액상이 형성된다. 현재의 소결 조건 하에서는 Y-Sc-Si-OCN 액상에서의 용해-석출에 의해 β-SiC의 입성장을 통해 SiC 격자 내에 유효한 질소 도핑이 이루어진다. 이러한 결과는 SZN0 시편에 형성되는 Y-Sc-Si-OCN 액상이, Y2O3를 첨가해 소결한 SiC 세라믹스 내의 Y-Si-OCN 액상, AlN-Er2O3를 첨가해 소결한 SiC 세라믹스 내의 Er-Al-Si-OCN 액상, 및 AlN-Dy2O3를 첨가해 소결한 SiC 세라믹스 내의 Dy-Al-Si-OCN 액상 등과 같은 기존의 다른 옥시카보나이트라이트(OCN) 액상보다 높은 질소 용해도를 가짐을 의미한다. 그리하여, 본 연구에서의 SiC 시편(SZN0)의 전기전도도(3.8 x 103(Ωm)-1)는 Y2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(7.7 x 102(Ωm)-1), AlN-Y2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(1.3 x 103(Ωm)-1), AlN-Er2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(1.2 x 103(Ωm)-1), AlN-Dy2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(1.3 x 103(Ωm)-1), Y2O3-Sm2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(2.5 x 103(Ωm)-1), 및 Y2O3-Gd2O3를 첨가해 소결한 SiC 세라믹스의 전기전도도(1.8 x 103(Ωm)-1)등에 비해 높은 것으로 나타났다.Figures 4 (a) and 4 (b) show the carrier concentration, carrier mobility and electrical conductivity of monolithic SiC and SiC-Zr 2 CN composites as a function of initial ZrN content. The monolithic SiC and SiC-Zr 2 CN composites obtained by sintering together with Y 2 O 3 -Sc 2 O 3 were found to be n-type semiconductors. The carrier concentration of the monolithic SiC (SZNO) obtained by sintering with the Y 2 O 3 -Sc 2 O 3 additive was 7.4 × 10 19 cm -3 . As the ZrN content increased from 4 vol% to 35 vol%, the carrier concentration Was increased from 2.6 x 10 20 cm -3 to 7.9 x 10 20 cm -3 . The carrier concentration of SZNO is selected from the group consisting of N-doped 4H-SiC epitaxial layer and Y 2 O 3 , AlN-Y 2 O 3 , AlN-Er 2 O 3 , and Y 2 O 3 -RE SiC ceramics sintered with 2 O 3 (RE = Sm, Gd, Lu) were higher than those reported previously. During the hot pressing process of the SZNO specimen, the nitrogen which forms the sintering atmosphere is dissolved to form the Y-Sc-Si-OCN liquid phase. Under current sintering conditions, effective nitrogen doping is carried out in the SiC lattice through grain growth of β-SiC by dissolution-precipitation in the Y-Sc-Si-OCN liquid phase. These results Y-Si-OCN liquid, AlN-Er SiC ceramics sintered by adding 2 O 3 in the Y-Sc-Si-OCN liquid phase, SiC ceramics sintered by the addition of Y 2 O 3 formed on SZN0 specimen (OCN) liquid phase, such as the Er-Al-Si-OCN liquid phase in the SiC ceramics and the Dy-Al-Si-OCN liquid phase in the SiC ceramics sintered with AlN-Dy 2 O 3 . The electrical conductivity (3.8 x 10 3 (Ωm) -1 ) of the SiC specimen (SZN 0) in this study was calculated as the electrical conductivity (7.7 × 10 2 Ωm -1 ) of the SiC ceramics sintered with Y 2 O 3 ), Electrical conductivity of SiC ceramics sintered with AlN-Y 2 O 3 (1.3 x 10 3 (Ωm) -1 ), electrical conductivity of SiC ceramics sintered with AlN-Er 2 O 3 3 (Ωm) -1), AlN -Dy 2 O electric conductivity (1.3 x 10 3 (Ωm) of the SiC ceramics sintered by the addition of 3 -1), Y 2 O 3 -Sm 2 O 3 sintered by the addition of (1.8 x 10 3 (Ωm) -1 ) of the SiC ceramics sintered with addition of Y 2 O 3 -Gd 2 O 3 and the electrical conductivity of the SiC ceramics (2.5 x 10 3 (Ωm) -1 ) Respectively.

SZN0의 높은 전기전도도는, (1) Y-Sc-Si-OCN 액상에서의 용해-석출을 통한 입성장에 의해 SiC 격자 내에 효과적인 질소 도핑이 이루어지고, (2) SiC 결정립에 비해 매우 낮은 전기전도도를 가지는 소결첨가제를 소량(2 vol%) 첨가함에 따른 것이다.The high electrical conductivity of SZNO is (1) effective nitrogen doping in the SiC lattice by grain growth through dissolution-precipitation in the Y-Sc-Si-OCN liquid phase, (2) very low electrical conductivity (2 vol%) was added to the sintering additive.

Y2O3-Sc2O3첨가제와 함께 ZrN를 SiC에 첨가함으로써, 핫프레싱 과정에서 ZrN이 용해되어 액상 조성이 Y-Sc-Si-OCN에서 Y-Sc-Zr-Si-OCN으로 변화된다. SiC-Zr2CN 복합체가 모노리식 SiC 시편(SZN0)보다 높은 캐리어 농도를 가지는 것은, Y-Sc-Zr-Si-OCN 액상이 소결 분위기 뿐만 아니라 ZrN로부터도 유래하는 질소에 의해 Y-Sc-Si-OCN 액상에 비해 보다 높은 질소 함유량을 가짐을 암시한다. 그러므로, SZN35 시편은 다른 시편들과 비교해 가장 높은 캐리어 농도(7.9 x 1020cm-3)를 가진다. 흥미로운 점은, SZN35 시편의 캐리어 농도값은 SiC의 질소 용해도 상한치(8.0 x 1020cm-3)에 거의 다다를 정도이다. 이러한 결과는 본원 실시예의 소결 조건하에서 복합체 내의 SiC 결정립이 Y-Sc-Zr-Si-OCN 액상 내에서 질소에 의해 효과적으로 도핑 되었음을 의미한다. 모노리식 SiC의 캐리어 이동도는 3.2 cm2/Vs인 것으로 나타났다. 한편, 복합체 시편의 캐리어 이동도는 ZrN 함량이 4에서 35 vol%로 증가함에 따라 2.2에서 18 cm2/Vs로 증가했다. 결과적으로, SiC-Zr2CN 복합체 시편의 전기전도도는 ZrN 함량이 4에서 35 vol%로 증가함에 따라 9.1 x 103에서 2.3 x 105(Ωm)-1로 증가하며, 이들 수치는 모노리식 SiC 시편의 전기전도도(3.8 x 103(Ωm)-1)보다 높은 것으로 드러났다.ZrN is added to SiC together with the Y 2 O 3 -Sc 2 O 3 additive to change the liquid phase composition from Y-Sc-Si-OCN to Y-Sc-Zr-Si-OCN in the hot pressing process . The reason why the SiC-Zr 2 CN composite has a higher carrier concentration than the monolithic SiC specimen (SZNO) is that the Y-Sc-Zr-Si-OCN liquid phase is composed of Y-Sc-Si Suggesting that it has a higher nitrogen content than the -OCN liquid phase. Therefore, the SZN35 specimen has the highest carrier concentration (7.9 × 10 20 cm -3 ) compared to other specimens. Interestingly, the carrier concentration of the SZN35 specimen is close to the upper limit of nitrogen solubility (8.0 x 10 20 cm -3 ) of SiC. These results indicate that the SiC grains in the composite under the sintering conditions of this embodiment were effectively doped with nitrogen in the Y-Sc-Zr-Si-OCN liquid phase. The carrier mobility of monolithic SiC was 3.2 cm 2 / Vs. On the other hand, the carrier mobility of the composite specimen increased from 2.2 to 18 cm 2 / Vs as the ZrN content increased from 4 to 35 vol%. As a result, the electrical conductivity of SiC-Zr 2 CN composite specimens increased from 9.1 x 10 3 to 2.3 x 10 5 (Ωm) -1 as the ZrN content increased from 4 to 35 vol% Which is higher than the electrical conductivity of the specimen (3.8 x 10 3 (Ωm) -1 ).

상기와 같이 SiC-Zr2CN 복합체가 높은 전기전도도를 나타내는 것은, (1) Y-Sc-Zr-Si-OCN 액상에서의 용해-석출을 통한 β-SiC 결정립 성장에 의해 질소 도핑된( N-doped) SiC 결정립이 성장하고, (2) 전기전도성의 Zr2CN결정립이 포함되고, (3) 전기절연성 첨가제가 소량 포함되기 때문이다.The SiC-Zr 2 CN composite exhibits high electrical conductivity as described above because (1) the nitrogen-doped (N- doped SiC crystal grains grow, (2) electrically conductive Zr 2 CN grains are included, and (3) electrically insulating additives are included in small amounts.

기존 연구에 따르면, SiC-MoSi2, SiC-NbC-Ti, SiC-Ti2CN 및 SiC-graphene 등과 같이 SiC 및 전도성 상(phase)을 포함하는 복합체는 상온에서 102~105(Ωm)-1의 전기전도도를 가지는 것으로 알려져 있으며, 상기 전기전도도 수치는 본원 실시예의 SiC-Zr2CN 복합체 시편들의 전기전도도 값과 견줄만하다. 하지만, 본원 실시예 중 SZN35 시편의 전기전도도(2.3 x 105(Ωm)-1)는 상기 SiC-MoSi2, SiC-NbC-Ti, 및 SiC-graphene 복합체 등의 전기전도도에 비해서도 높으며, 20 vol% TiN을 포함하는 SiC-Ti2CN복합체에 준하는 높은 수치를 나타낸다. 이러한 결과는 SiC에 ZrN를 첨가함으로써 SiC 세라믹스의 전기전도도를 효과적으로 향상시킬 수 있음을 의미한다.According to previous studies, SiC-MoSi 2, SiC- NbC-Ti, SiC-Ti 2 complex is 10 2 to 10 5 at room temperature containing the SiC and a conductive (phase), such as CN, and SiC-graphene (Ωm) - 1 , and the electrical conductivity values are comparable to the electrical conductivity values of the SiC-Zr 2 CN composite specimens of this embodiment. However, the electric conductivity (2.3 x 10 5 (Ωm) -1 ) of the SZN 35 specimen in this embodiment is higher than the electric conductivity of the SiC-MoSi 2 , SiC-NbC-Ti, and SiC-graphene complexes, It shows a high value similar to the SiC-Ti 2 CN complex comprising the% TiN. These results indicate that the addition of ZrN to SiC can effectively improve the electrical conductivity of SiC ceramics.

<실험예 3> 열적 특성(Thermal properties) 고찰<Experimental Example 3> Consideration of thermal properties

도 5는 모노리식 SiC 및 SiC-Zr2CN 복합체 시편의 열적 특성, 즉, 열전도도(thermal conductivity) 및 포논 평균자유행로(phonon mean free path)를 나타낸다. 상기 '표 1'에는 상온(RT)에서 측정된 시편의 열용량(heat capacity) 및 열확산도(thermal diffusivity)가 기재되어 있다.Figure 5 shows the thermal properties, i.e., thermal conductivity and phonon mean free path, of the monolithic SiC and SiC-Zr 2 CN composite specimens. Table 1 shows the heat capacity and thermal diffusivity of the specimen measured at room temperature (RT).

모노리식 SiC 시편의 열전도도는 199.6 W/mK이며, ZrN 함량을 35 vol%까지 증가시키면 복합체의 시편의 열전도도는 96.7 W/mK로 점차 감소하였는데, 이는 (1) Zr2CN의 열전도도(43W/mK)는 SiC에 비해 낮고, (2) SiC 결정립 크기가 감소(5.3 → 2.7 ㎛)하고, (3) SiC와 Zr2CN간의 계면 면적이 증가하기 때문이다. 일반적으로, 물질 내에서 포논 및 전자 모두 열을 전도시킬 수 있긴 하지만, 반도체성의 SiC 세라믹스에서 열은 주로 포논에 의해 전도되고 전자에 의해서는 일부만이 전도된다. 모노리식 SiC 및 SiC-Zr2CN 복합체의 열전도도에 대한 전자 기여의 효과를 알아보기 위해, 열전도에 대한 전자 기여도를 아래 식에 따른 비데만-프란츠의 법칙(Wiedemann-Franz law)를 이용해 평가하였다.Monolithic SiC the thermal conductivity of the sample is 199.6 W / mK, increasing the ZrN content up to 35 vol% the thermal conductivity of the composite specimens were gradually reduced to 96.7 W / mK, which (1) the thermal conductivity of the Zr 2 CN degrees ( 43W / mK) is lower than that of SiC, (2) the grain size of SiC decreases (5.3 → 2.7 μm), and (3) the interfacial area between SiC and Zr 2 CN increases. Generally, in semiconducting SiC ceramics, heat is conducted mainly by phonons and only partly by electrons, although both phonons and electrons can conduct heat in the material. In order to investigate the effect of electron contribution on the thermal conductivity of monolithic SiC and SiC-Zr 2 CN composites, the electron contribution to thermal conductivity was evaluated using the Wiedemann-Franz law according to the following equation .

Figure 112016127624980-pat00001
Figure 112016127624980-pat00001

상기 식에서, σ, T, 및 L은 각각 전기전도도, 온도 및 로렌츠수(Lorenz number, 2.44 x 10-8WΩK-2)를 나타낸다. 비데만-프란츠의 법칙에 의하면, 열전도에 대한 전자 기여도는 ZrN 함량이 0에서 35 vol%로 증가함에 따라 0.01에서 1.71 %로 증가하지만, 이러한 전자 기여도는 포논 기여도에 비하면 무시해도 좋은 정도이다. 따라서, 모노리식 SiC 및 SiC-Zr2CN 복합체에서 열은 대부분 포논에 의해 전도된다. 다결정성 세라믹스에 있어서 포논은 화학적 또는 구조적인 결함에 의해 산란될 수 있다. 대표적으로, 포논-결함 산란(phonon-defect scattering) 및 포논-결정립계 산란(phonon-grain boundary scattering)을 들 수 있다. SiC 및 Zr2CN 세라믹스에 있어서는, 산소가 비산화물 세라믹스의 열전도도에 영향을 미치는 격자 내 주요 불순물이다.Wherein, σ, T, and L represents a respective electrical conductivity, temperature and number of Lorentz (Lorenz number, 2.44 x 10 -8 WΩK -2). According to Bidemann-Franz's law, the electron contribution to thermal conductivity increases from 0.01 to 1.71% as the ZrN content increases from 0 to 35 vol%, but this electron contribution is negligible compared to the contribution of phonons. Therefore, heat is mostly conducted by phonons in monolithic SiC and SiC-Zr 2 CN composites. In polycrystalline ceramics, phonons can be scattered by chemical or structural defects. Representatively, phonon-defect scattering and phonon-grain boundary scattering are examples. In SiC and Zr 2 CN ceramics, oxygen is a major impurity in the lattice that affects the thermal conductivity of the non-oxide ceramics.

모노리식 SiC 및 SiC-Zr2CN 복합체의 상온에서의 포논 평균자유행로는 각각 24.0(SZN0), 21.5(SZN4), 20.0(SZN10), 14.7(SZN20) 및 10.7 nm(SZN35)로 측정되었는바, ZrN 함량의 증가에 따른 열전도도의 감소 경향은 각 시편에서의 포논 평균자유행로의 경향과 일치하는 것으로 확인되었다. 모노리식 SiC 및 SiC-Zr2CN 복합체 내의 SiC 및 Zr2CN의 평균 입도는 각각 2.7 ~ 5.3 ㎛ 및 2.0 ~ 3.8 ㎛이므로, 모노리식 SiC 및 SiC-Zr2CN 복합체의 포논 평균자유행로는 SiC 및 Zr2CN결정립 크기에 비해 상당히 짧아, 열전도도는 주로 격자 결함에 의해 영향을 받고 이차적으로 포논-결정립계 산란(phonon-grain boundary scattering)에 의해 영향을 받는 것으로 보인다.The phonon mean free path of monolithic SiC and SiC-Zr 2 CN composites at room temperature was measured as 24.0 (SZN0), 21.5 (SZN4), 20.0 (SZN10), 14.7 (SZN20) and 10.7 nm (SZN35) The decreasing tendency of thermal conductivity with increasing ZrN content was confirmed to be consistent with the tendency of phonon mean free path in each specimen. Since the average particle sizes of SiC and Zr 2 CN in monolithic SiC and SiC-Zr 2 CN composites are 2.7 to 5.3 μm and 2.0 to 3.8 μm, respectively, the phonon average free path of the monolithic SiC and SiC-Zr 2 CN composite is SiC and Zr 2 CN grain size, thermal conductivity is mainly affected by lattice defects and secondarily by phonon-grain boundary scattering.

Claims (10)

41.0 내지 91.0 중량%의 β-탄화규소(β-SiC); 8.0 내지 55.0 중량%의 질화지르코늄(ZrN); 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive)를 포함하며,
상기 소결 첨가제는 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)을 1 : 0.5 ~ 3의 몰비로 포함하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재 제조용 조성물.
41.0 to 91.0% by weight of beta -silicon carbide (beta -SiC); 8.0 to 55.0 wt% zirconium nitride (ZrN); And 1.0 to 4.0% by weight of a sintering additive,
Wherein the sintering additive comprises silicon carbide-zirconium carbonitride (SiC-Zr 2 (Y 2 O 3 )), wherein the sintering additive comprises yttria (Y 2 O 3 ) and scandium oxide (Sc 2 O 3 ) in a molar ratio of 1: CN) composites.
제 1항에 있어서, 상기 β-탄화규소는 마이크론(micron) 또는 서브마이크론(sub-micron) 분말인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재 제조용 조성물.The method of claim 1, wherein the β- silicon carbide micron (micron) or sub-micron (sub-micron) powder of the silicon carbide which is characterized-zirconium carbonitride (Zr-2 CN SiC) composite material for producing the composition. 삭제delete (a) 41.0 내지 91.0 중량%의 β-탄화규소(β-SiC) 분말; 8.0 내지 55.0 중량%의 질화지르코늄(ZrN) 분말; 및 1.0 내지 4.0 중량%의 소결 첨가제(sintering additive) 분말을 혼합하는 단계; 및
(b) 상기 단계 (a)에서 얻어진 혼합 분말을 이용해 질소(N2) 분위기하에서 소결해 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재를 제조하는 단계를 포함하며,
상기 소결 첨가제는 산화이트륨(Y2O3) 및 산화스칸듐(Ⅲ)(Sc2O3)을 1 : 0.5 ~ 3의 몰비로 포함하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법.
(a) 41.0 to 91.0% by weight of? -silicon carbide (? -SiC) powder; 8.0 to 55.0% by weight of zirconium nitride (ZrN) powder; And 1.0 to 4.0% by weight of a sintering additive powder; And
(b) sintering the mixed powder obtained in the step (a) under a nitrogen (N 2 ) atmosphere to produce a silicon carbide-zirconium carbonitride (SiC-Zr 2 CN)
Wherein the sintering additive comprises silicon carbide-zirconium carbonitride (SiC-Zr 2 (Y 2 O 3 )), wherein the sintering additive comprises yttria (Y 2 O 3 ) and scandium oxide (Sc 2 O 3 ) in a molar ratio of 1: CN) composite material.
제 4항에 있어서,
상기 단계 (b)에서 1900 내지 2050 ℃의 온도 및 20 내지 60 MPa의 압력하에서 1 내지 12 시간동안 가압 소결하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법.
5. The method of claim 4,
Zirconium carbonitride (SiC-Zr 2 CN) composite material in the step (b) is characterized by press-sintering at a temperature of 1900 to 2050 ° C. and a pressure of 20 to 60 MPa for 1 to 12 hours .
제 5항에 있어서,
상기 단계 (b)에서 Y-Sc-Zr-Si-O-C-N 계 액상이 형성되어 액상소결(liquid phase sintering) 기구를 통해 치밀화가 이뤄지는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법.
6. The method of claim 5,
Zirconium carbonitride (SiC-Zr 2 CN) is formed by forming a Y-Sc-Zr-Si-OCN-based liquid phase in the step (b) and densifying it through a liquid phase sintering mechanism. Method of manufacturing composite material.
제 6항에 있어서,
상기 단계 (b)에서 상기 Y-Sc-Zr-Si-O-C-N 계 액상으로부터 용해-석출(dissolution-precipitation) 기구를 통해 질소 원자(N)가 도핑된 탄화규소가 석출 및 성장하는 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재의 제조방법.
The method according to claim 6,
Wherein the silicon carbide doped with nitrogen atoms (N) is precipitated and grown from the Y-Sc-Zr-Si-OCN-based liquid phase in the step (b) through a dissolution-precipitation mechanism. (SiC-Zr 2 CN) composite material.
제 4항 내지 제 7항 중 어느 한 항에 기재된 방법에 의해 제조된 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재.A silicon carbide-zirconium carbonitride (SiC-Zr 2 CN) composite material produced by the method according to any one of claims 4 to 7. 제 8항에 있어서,
상온에서의 전기 비저항(electrical resistivity)이 4.4 x 10-4 내지 1.1 x 10-2 Ω·cm이고, 상온에서의 열전도도(thermal conductivity)가 96 내지 190 W/mK인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재.
9. The method of claim 8,
Characterized in that the electrical resistivity at room temperature is 4.4 x 10 -4 to 1.1 x 10 -2 ? Cm and the thermal conductivity at room temperature is 96 to 190 W / mK. Zirconium carbonitride (SiC-Zr 2 CN) composite material.
제 8항에 있어서,
상대밀도(relative density)가 98% 이상인 것을 특징으로 하는 탄화규소-지르코늄 탄질화물(SiC-Zr2CN) 복합 소재.
9. The method of claim 8,
(SiC-Zr 2 CN) composite material having a relative density of 98% or more.
KR1020160179489A 2016-12-26 2016-12-26 Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same KR101860477B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160179489A KR101860477B1 (en) 2016-12-26 2016-12-26 Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160179489A KR101860477B1 (en) 2016-12-26 2016-12-26 Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same

Publications (1)

Publication Number Publication Date
KR101860477B1 true KR101860477B1 (en) 2018-05-23

Family

ID=62452408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160179489A KR101860477B1 (en) 2016-12-26 2016-12-26 Composition used for manufacturing SiC-Zr2CN composites and method for manufacturing SiC-Zr2CN composites using the same

Country Status (1)

Country Link
KR (1) KR101860477B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012004B1 (en) * 2018-05-31 2019-08-19 한전원자력연료 주식회사 Silicon carbide ceramics having an environment barrier layer and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262366A (en) 1986-03-17 1993-11-16 Sumitomo Electric Industries, Ltd. Formation of a ceramic composite by centrifugal casting
US5389450A (en) 1987-06-12 1995-02-14 Lanxide Technology Company, Lp Composite materials and methods for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262366A (en) 1986-03-17 1993-11-16 Sumitomo Electric Industries, Ltd. Formation of a ceramic composite by centrifugal casting
US5389450A (en) 1987-06-12 1995-02-14 Lanxide Technology Company, Lp Composite materials and methods for making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012004B1 (en) * 2018-05-31 2019-08-19 한전원자력연료 주식회사 Silicon carbide ceramics having an environment barrier layer and method of manufacturing the same
WO2019231045A1 (en) * 2018-05-31 2019-12-05 한전원자력연료 주식회사 Silicon carbide sintered body having oxidation resistance layer, and method for producing same

Similar Documents

Publication Publication Date Title
Wang et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics
Liu et al. Improvement in mechanical properties in AlN-h-BN composites with high thermal conductivity
JP3624219B2 (en) Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same
EP0626358B1 (en) Electrically conductive high strength dense ceramic
Kim et al. Electrical resistivity of α-SiC ceramics sintered with Al2O3 or AlN additives
Lanfant et al. Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics
Lim et al. Mechanical properties of electrically conductive silicon carbide ceramics
Li et al. High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron–carbon sources
Zawrah et al. Liquid-phase sintering of SiC in presence of CaO
Seo et al. Electrically conductive SiC-BN composites
Seo et al. High-temperature strength of a thermally conductive silicon carbide ceramic sintered with yttria and scandia
Liang et al. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives
Kim et al. Highly conductive SiC ceramics containing Ti2CN
Yang et al. Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment
KR20110077154A (en) Manufacturing method of zirconium diboride-silicon carbide composite
Jang et al. Electrical and thermal properties of SiC-Zr2CN composites sintered with Y2O3-Sc2O3 additives
US20100130344A1 (en) High resistivity SiC material with B, N and O as the only additions
Feng et al. In Situ preparation and thermoelectric properties of B 4 C 1− x–TiB 2 composites
JPS6128627B2 (en)
Sha et al. Microstructure and mechanical properties of ZrB2-based ceramic composites with nano-sized SiC particles synthesized by in-situ reaction
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
KR101681184B1 (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
Zheng et al. Synergetic enhancement of electrical conductivity and infrared emissivity of SiC-MoSi2 ceramics via N doping
KR101620510B1 (en) Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same
US10541064B2 (en) SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant