KR101852304B1 - Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes - Google Patents

Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes Download PDF

Info

Publication number
KR101852304B1
KR101852304B1 KR1020170103712A KR20170103712A KR101852304B1 KR 101852304 B1 KR101852304 B1 KR 101852304B1 KR 1020170103712 A KR1020170103712 A KR 1020170103712A KR 20170103712 A KR20170103712 A KR 20170103712A KR 101852304 B1 KR101852304 B1 KR 101852304B1
Authority
KR
South Korea
Prior art keywords
cells
necrox
differentiation
myocardial
present
Prior art date
Application number
KR1020170103712A
Other languages
Korean (ko)
Other versions
KR20180020906A (en
Inventor
김효수
양한모
김주영
이주은
Original Assignee
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교병원 filed Critical 서울대학교병원
Priority to PCT/KR2017/008978 priority Critical patent/WO2018034519A1/en
Publication of KR20180020906A publication Critical patent/KR20180020906A/en
Application granted granted Critical
Publication of KR101852304B1 publication Critical patent/KR101852304B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Abstract

본 발명자들은 줄기세포 유래 심근세포의 분화 효율을 증진시키고 성숙도를 향상시키기 위해 예의 연구한 결과, 네크로엑스(NecroX) 처리군에서 줄기세포기반 심근세포로의 분화효율이 증가하였을 뿐만 아니라 더 성숙한 심근세포를 단기간에 획득할 수 있다는 사실을 확인하고, 본 발명을 완성하였다. 본 발명에 따른 NecroX의 처리로 줄기세포 유래 심근세포는 세포의 크기가 대조군에 비해 크고 굵으며, 튼튼할 뿐만 아니라 치밀한 액틴의 구조를 보여, NecroX 처리로 유도된 줄기세포유래 심근세포는 성숙도가 높아진 심근세포를 제작할 수 있음을 보여주는바, 따라서 NecroX를 처리하면 줄기세포에서 유래된 심근세포의 고효율, 고순도 분화를 유도할 수 있다. 이에, 본 발명의 NecroX는 다른 분화세포의 분화효율과 성숙도도 증가시킬 수 유용한 물질로서 환자 맞춤형 유도만능줄기세포에서 심근세포의 분화를 확립해 심장질환 모델을 제작하는데 도움이 될 것으로 기대된다. The present inventors have conducted intensive studies to improve the efficiency of differentiation of stem cell-derived myocardial cells and improve maturity. As a result, not only did the efficiency of differentiation into stem cell-based myocardial cells increased in the NecroX treated group, Can be obtained in a short time, and the present invention has been completed. According to the present invention, the stem cell-derived myocardial cell according to the present invention has a larger and thicker cell size than that of the control group, and is robust and has a dense actin structure. NecroX-induced stem cell- And thus, NecroX treatment can induce high efficiency and high purity differentiation of myocardial cells derived from stem cells. Accordingly, NecroX of the present invention is expected to be useful for establishing cardiac disease model by establishing differentiation of cardiomyocytes in patient-customized pluripotent stem cells as a useful substance that can increase the differentiation efficiency and maturity of differentiated cells.

Figure R1020170103712
Figure R1020170103712

Description

NecroX를 이용한 줄기세포 유래 심근세포의 분화 효율 및 성숙도 증진 방법 {Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes}TECHNICAL FIELD The present invention relates to a stem cell-derived cardiomyocyte differentiation efficiency and an improved pluripotent stem cell derived cardiomyocyte,

본 발명은 미토콘드리아유래 ROS(Reactive Oxygen Species)의 스캐빈저 (scavenger)인 네크로엑스(NecroX)를 처리하여 줄기세포 유래 심근세포의 분화를 유도하는 방법에 의해 선택적으로 고비율의 심근세포를 분화시키고 성숙화 시키는 방법에 관한 것이다.The present invention relates to a method for differentiating a high proportion of myocardial cells selectively by a method of inducing differentiation of stem cell-derived cardiomyocytes by treating NecroX, a scavenger of ROS (Reactive Oxygen Species) derived from mitochondria, It is about how to mature.

국내에서도 심혈관 질환에 의한 사망률은 급격히 증가해 오고 있다. 그 중에서도 심부전을 앓은 환자의 예후는 위암을 앓은 환자보다도 좋지 않아 심혈관 질환의 치료와 예후를 개선할 수 있는 약제 개발 및 연구가 활발하게 이루어지고 있다. 심근경색 등을 통한 심근세포의 손상은 혈액을 말초로 보내는 심장의 구조적이고 기능적인 능력을 감소시키기 때문에 최종적으로 심부전을 야기하게 된다. 손상된 심근의 복원을 위해 손상 심근세포를 건강한 심근세포로 대체하는 연구가 심장재생의 잠재적인 방법으로 연구되기 시작하였다. 심근세포 대체 세포로서 성체줄기세포인 골격근 근육 모세포 (skeletal myoblast), 다양한 골수유래 줄기세포, 심장에 존재하는 심장 줄기세포 등이 연구되었으나 이들 세포로서는 실제 심근세포에 비해 심장의 기능을 회복을 위한 능력이 많이 떨어져 세포재생능력에 제한이 많거나, 임상적으로 심장의 정상적인 기능회복을 위한 충분한 양의 순수한 심근세포를 획득하기 어려웠다. 이후 배아줄기세포를 이용한 심근세포의 분화방법이 급격하게 발전되었고 배아줄기세포를 통한 심근세포는 원래의 심근세포처럼 수축능이나 활동전위를 가져 기능적이고 구조적인 측면에서는 가장 각광받았으나 결국 자신의 세포가 아니어서 획득된 심근세포를 타인이 이용하기에는 윤리적, 면역적 문제가 존재한다.In Korea, the mortality rate due to cardiovascular disease has been increasing rapidly. Among them, the prognosis of patients with heart failure is worse than that of patients with gastric cancer, so that the development and research of medicines capable of improving the treatment and prognosis of cardiovascular diseases are actively carried out. Myocardial cell damage through myocardial infarction will ultimately lead to heart failure because it reduces the structural and functional capacity of the heart to send the blood to the periphery. Research to replace damaged myocardial cells with healthy myocardial cells to restore damaged myocardium has begun to be studied as a potential method of cardiac regeneration. As a substitute for myocardial cells, adult stem cells such as skeletal myoblasts, various bone marrow-derived stem cells, and cardiac stem cells existing in the heart have been studied. However, these cells have the ability to restore cardiac function It was difficult to acquire a sufficient amount of pure myocardial cells for restoration of normal function of the heart. Since then, the method of differentiating myocardial cells using embryonic stem cells has been rapidly developed, and myocardial cells through embryonic stem cells have been shown to be most functional and structural in terms of their contractility and action potential, like the original myocardial cells, There is an ethical and immune problem for other people to use acquired cardiomyocytes.

그러나 2006년 일본의 야마나카 교수에 의해 개발된 4가지 유전자를 이용한 유도만능 줄기세포 (iPSC : Induced Pluripotent Stem Cell) 제작 방법의 개발로 환자 맞춤형 세포치료 시장과 질병발생 기작연구에 새로운 발전 가능성이 제시되자 다수의 심근세포를 생산하기 위한 자원으로서 유도만능줄기세포의 이용연구도 활발히 진행되었다. 다양한 연구를 통해 유도만능 줄기세포의 심근세포로의 분화효율을 향상시킬 수 있었으며 최근에는 심근세포 분화에 재조합 싸이토카인이 아닌 미세화합물들을 이용해서 다량의 심근세포를 경제적으로 획득하는 연구들이 활발히 진행되고 있다. 또한 유도만능 줄기세포에서 심근세포로의 분화 시 심근세포외에 생기는 다른 세포들을 제거하여 분화심근세포의 순도를 높이는 방법도 연구되고 있다. 주로 심근세포의 표면 마커를 이용한 세포 솔팅 방법이나 성인 심근세포의 대사적 차이를 이용한 선별방법이다. However, the development of inducible pluripotent stem cell (iPSC) production method using four genes developed by Professor Yamanaka of Japan in 2006 showed the possibility of new development in the patient-customized cell therapy market and disease development mechanism research The use of inducible pluripotent stem cells as a resource to produce a large number of myocardial cells has also been actively studied. Various studies have been conducted to improve the efficiency of induction of pluripotent stem cells into myocardial cells. In recent years, studies have been actively conducted to obtain a large amount of myocardial cells economically using microcompounds that are not recombinant cytokines for myocardial cell differentiation . In addition, a method of increasing the purity of differentiated myocardial cells by removing other cells outside of myocardial cells when differentiating into pluripotent myocardial cells from induced pluripotent stem cells has been studied. It is mainly a cell sorting method using surface markers of myocardial cells or a selection method using metabolic difference of adult myocardial cells.

분화가 끝난 심근세포는 신생아의 심근세포와 유사한 성질을 나타내기 때문에 정확한 성인의 심근세포를 반영하고 있지 못하며 질환이 있을 경우 다양한 성인심근세포의 분자적, 구조적, 대사적 특징이 질환환경 조건에 따라 다양한 반응을 갖는 것이 밝혀졌다. 따라서 정밀한 분석을 요하는 독성 및 약물 효과 분석을 하기 위한 심근세포의 성숙도가 낮으면 편중된 결과를 가져오거나 베이스라인이 달라서 정확한 결과를 도출하는데 오류가 개입될 가능성이 높다. 2011년 Hom JR 등은 Developmental Cell지에 신생아의 심근세포는 미토콘드리아의 mPTP (mitochondrial permeability transition pore)가 열려 미토콘드리아의 막전위가 탈분극화되어 세포내 ROS(Reactive Oxygen Species) 레벨이 증가되어 있고, 분화가 진행되어 성숙한 심근세포가 될수록 mPTP가 닫혀서 미토콘드리아의 막전위가 안정되고 ROS 생성이 줄어든다는 보고를 하였다. Since differentiated myocardial cells exhibit similar properties to neonatal myocardial cells, they do not reflect accurate adult myocardial cells. In the case of a disease, the molecular, structural, and metabolic characteristics of various adult myocardial cells It has been found that it has various reactions. Therefore, if the maturity of myocardial cells for analysis of toxicity and drug effects requiring precise analysis is low, there is a high possibility that errors are involved in obtaining biased results or in deriving accurate results due to different baseline. In 2011, Hom JR developed mitochondrial permeability transition pore (mitochondrial permeability transition pore) of mitochondria in neonatal myocardial cells in the Developmental Cell, resulting in depolarization of the mitochondrial membrane potential to increase the level of ROS (Reactive Oxygen Species) Mature myocardial cells, mPTP is closed, mitochondrial membrane potential is stabilized, and ROS production is reduced.

한편, 네크로엑스(NecroX)는 정상섬유아세포 유도만능 줄기세포 유래 분화 심근세포의 분화뿐만 아니라 다른 중배엽 유래 유도만능줄기세포 심근세포 분화의 효율도 증진시키는 등 정상섬유아세포 유도만능 줄기세포에서와 비슷한 역할을 보이는 것이 관찰되고 있으며, 추가 연구에 따라 NecroX는 심근세포 분화뿐 아니라 평활근 세포나 근육세포의 분화 효율 및 성숙도 증가에도 사용되는 등 그 효용은 기작 연구가 진행됨에 따라 심근세포뿐 아니라 다른 종류의 세포 분화에도 응용되는 등 더 넓어질 수 있을 것으로 예상된다.Meanwhile, NecroX has a role similar to that of normal fibroblast-derived pluripotent stem cells, such as promoting the differentiation of differentiated myocardial cells derived from normal fibroblast-derived pluripotent stem cells as well as the efficiency of differentiated pluripotent stem cells derived from pluripotent stem cells . In addition, NecroX has been used to increase the differentiation efficiency and maturation of smooth muscle cells and muscle cells as well as myocardial cell differentiation, and its utility has been studied not only in myocardial cells but also in other types of cells It is also expected to be wider as it is applied to differentiation.

아울러, 줄기세포의 분화를 유도하기 위하여 다양한 연구가 진행 중에 있으나(한국 등록특허 10-1465354 참조), 보다 효율적으로 줄기세포로부터 심근세포를 유도할 수 있는 방법에 관한 연구는 아직 미흡한 실정이다.In addition, although various studies are under way to induce the differentiation of stem cells (see Korean Patent No. 10-1465354), studies on a method for efficiently inducing myocardial cells from stem cells are still insufficient.

본 발명자들은 상기와 같은 종래의 문제점을 해결하기 위하여, 줄기세포 유래 심근세포의 분화 효율을 증진시키고 성숙도를 향상시키기 위해 예의 연구한 결과, 네크로엑스(NecroX)를 이용한 이전의 실험결과에서 NecroX가 mPTP의 개방을 억제하고 미토콘드리아의 막전위를 유지시켜주며, 토콘드리아 ROS(Reactive Oxygen Species)의 스캐빈저로서 세포괴사 (Necrosis)를 억제하면서, 이외에도 칼슘채널의 발현 증가에 NecroX가 기여한다는 사실을 확인하였는바, 이처럼 다양한 NecroX의 기능들이 줄기세포유래 심근세포의 분화효율과 성숙도에 어떠한 영향을 미치는지를 확인해 본 결과, 미토콘드리아 ROS(Reactive Oxygen Species)의 스캐빈저인 세포괴사의 억제제 NecroX-7 (NecX)를 심근세포 분화과정에 처리하였을 때, NecroX 처리군에서 줄기세포기반 심근세포로의 분화효율이 증가하였을 뿐만 아니라, 더 성숙한 심근세포를 단기간에 획득할 수 있다는 사실을 확인하고, 본원발명을 완성하였다.The inventors of the present invention conducted extensive studies to improve the efficiency of differentiation of stem cell-derived cardiomyocytes and improve maturity in order to solve the conventional problems as described above. As a result of previous experiments using NecroX, NecroX showed mPTP (NACROX) as a scavenger of ROS (Reactive Oxygen Species) while inhibiting the opening of the mitochondrial membrane and maintaining the mitochondrial membrane potential. The effect of various NecroX functions on stem cell-derived cardiomyocyte differentiation efficiency and maturation was examined. As a result, NecroX-7 (NecX-7, an inhibitor of cytotoxicity of mitochondrial ROS (Reactive Oxygen Species) ) Was treated with myocardial cell differentiation, the efficiency of differentiation into stem cell-based myocardial cells was increased in the NecroX treated group Not only was a, confirmed that it is possible to obtain a more mature cardiomyocytes in a short period of time, and have accomplished the present invention.

이에, 본 발명은 네크로엑스(NecroX)를 포함하는 배지에서 줄기세포를 배양하는 단계를 포함하는 줄기세포를 심근세포로 분화시키는 방법을 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a method for differentiating stem cells into myocardial cells including culturing stem cells in a medium containing NecroX.

또한, 본 발명은 네크로엑스를 포함하는 줄기세포로부터 심근세포로의 분화 유도용 조성물을 제공하는 것을 다른 목적으로 한다. It is another object of the present invention to provide a composition for inducing differentiation of stem cells into myocardial cells including Necro X.

또한, 본 발명은 상기 방법에 의해 분화되어 a) cardiac Troponin T (cTnT) 및 α-sarcomeric actin을 발현함; 및 b) 박동하는 세포인 특성을 나타내는 것을 특징으로 하는 심근세포 및 상기 심근세포를 유효성분으로 함유하는 심장질환 치료용 세포치료제를 제공하는 것을 또 다른 목적으로 한다.The present invention also relates to a method of differentiating by a) expressing cardiac Troponin T (cTnT) and a-sarcomeric actin; And b) a pulsatile cell. The present invention also provides a cell therapy agent for treating a heart disease, which contains the myocardial cell as an active ingredient.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은, 네크로엑스(NecroX)를 포함하는 배지에서 줄기세포를 배양하는 단계를 포함하는 줄기세포를 심근세포로 분화시키는 방법을 제공한다. In order to accomplish the above object, the present invention provides a method for differentiating stem cells into myocardial cells including culturing stem cells in a medium containing NecroX.

또한, 본 발명은 네크로엑스를 포함하는 줄기세포로부터 심근세포로의 분화 유도용 조성물을 제공한다.In addition, the present invention provides a composition for inducing differentiation of stem cells into cardiomyocytes comprising necrox.

본 발명의 일 구현예로, 상기 네크로엑스는 바람직하게는 5nM 내지 500nM의 농도로 포함될 수 있으나, 이에 제한되지 않는다. In one embodiment of the present invention, the Necro X may be included at a concentration of preferably 5 nM to 500 nM, but is not limited thereto.

또한, 본 발명은 상기 방법에 의해 분화되어 a) cardiac Troponin T (cTnT) 및 α-sarcomeric actin을 발현함; 및 b) 박동하는 세포인 특성을 나타내는 것을 특징으로 하는 심근세포 및 상기 심근세포를 유효성분으로 함유하는 심장질환 치료용 세포치료제를 제공한다.  The present invention also relates to a method of differentiating by a) expressing cardiac Troponin T (cTnT) and a-sarcomeric actin; And b) a pulsatile cell. The present invention also provides a cell therapy agent for treating a heart disease comprising the myocardial cell as an active ingredient.

본 발명자들은 네크로엑스(NecroX)를 처리하면 줄기세포로부터 보다 효율적으로 순도 높은 심근세포의 분화를 유도할 수 있다는 사실을 확인하고 본 발명을 완성하였다. 본원발명에 따라 NecroX를 이용하여 환자 맞춤형 유도만능줄기세포에서 심근세포의 분화를 확립할 수 있으며, 나아가 이를 이용한 심장질환 모델을 제작할 수 있어 진단기술 및 신약개발에 이바지할 수 있다. 또한, 향후 인체적용이 가능한 유도만능 줄기세포가 개발되면 이를 세포치료제로 이용하여 곧바로 임상시험을 시행할 수 있는 여건이 조성될 수 있을 것으로 기대된다.The inventors of the present invention confirmed that treatment of NecroX can induce differentiation of cardiomyocytes with high purity from stem cells more efficiently and completed the present invention. According to the present invention, it is possible to establish the differentiation of myocardial cells in patient-customized induced pluripotent stem cells using NecroX, and furthermore, it is possible to produce a cardiac disease model using the same, thereby contributing to the development of diagnostic techniques and new drugs. In addition, when induction pluripotent stem cells capable of being applied to the human body are developed in the future, it is expected that conditions for conducting clinical trials can be established immediately by using them as a cell therapy agent.

도 1은 줄기세포에서 심근세포를 분화시키는 과정을 시간순서에 따라 처리가 필요한 배지와 시약으로 간단하게 도식화한 것이다.
도 2는 줄기세포에서 심근세포로의 분화가 끝난 시점인 12일째에 보이는 분화세포의 특정 형태를 네크로엑스(NecroX; NecX) 처리 농도별로 촬영한 것이다.
도 3은 줄기세포에서 심근세포로의 분화가 끝난 시점인 12일째에 전체 분화세포에서 심근세포의 마커인 cTNT 양성세포의 비율을 네크로엑스(NecroX; NecX) 처리 농도별로 나타낸 유세포 분석결과와 그 정량 그래프이다.
도 4는 줄기세포에서 심근세포로의 분화 22일째에 대조군 (Vehicle)과 실험군 (NecroX; NecX)에서 심근의 actin을 염색하는 a-sarcomeric actin과 미토콘드리아를 표시해주는 Tom20, 그리고 세포의 핵을 염색하는 DAPI의 면역염색 결과이다.
도 5는 줄기세포에서 심근세포로의 분화 22일째에 대조군 (Vehicle)과 실험군 (NecX)에서의 칼슘 채널들 (RYR2, CAV2.1, SERCA2)의 유전자 발현을 보여주는 결과이다.
도 6은 줄기세포에서 심근세포로의 분화 22일째에 대조군 (Vehicle)과 실험군 (NecroX; NecX)을 이용한 실험으로 세포내 칼슘에 결합하는 염색액인 FLUO-4를 사용하여 분화 심근에서의 규칙적으로 방출되는 칼슘의 농도 (ΔF/F)를 나타낸 결과이다.
도 7은 줄기세포에서 심근세포의 분화과정에 네크로엑스(NecroX; NecX) 처리가 미치는 영향에 대한 도해이다.
FIG. 1 is a schematic representation of the process of differentiating myocardial cells from stem cells into media and reagents that require treatment in time sequence.
FIG. 2 is a photograph showing a specific type of differentiated cells observed at day 12, which is the end of differentiation from stem cells to myocardial cells, by NecroX (NecX) treatment concentration.
FIG. 3 is a graph showing the results of flow cytometry analysis of the percentage of cTNT-positive cells, which are markers of cardiac myocytes in all differentiated cells, by NecroX (NecX) treatment concentration on the 12th day after the end of differentiation from stem cells to myocardial cells Graph.
Fig. 4 shows a-sarcomeric actin that stains myocardial actin in the control group (Vehicle) and experimental group (NecroX; NecX) at day 22 differentiation from stem cells to myocardial cells, Tom20 which indicates mitochondria, It is the result of immunological staining of DAPI.
FIG. 5 shows the gene expression of calcium channels (RYR2, CAV2.1, SERCA2) in the vehicle (Vehicle) and the experimental group (NecX) on the 22nd day from the stem cell to the myocardial cell differentiation.
FIG. 6 shows the results of the experiment using the vehicle (Vehicle) and the experimental group (NecroX; NecX) on the 22nd day from the stem cell to the myocardial cell using FLUO-4, And the concentration of calcium released (? F / F).
Figure 7 is an illustration of the effect of NecroX (NecX) treatment on the differentiation process of cardiomyocytes in stem cells.

본 발명자들은 줄기세포 유래 심근세포의 분화 효율을 증진시키고 성숙도를 향상시키기 위해 예의 연구한 결과, 네크로엑스(NecroX) 처리군에서 줄기세포기반 심근세포로의 분화효율이 증가하였을 뿐만 아니라 더 성숙한 심근세포를 단기간에 획득할 수 있다는 사실을 확인하고, 본원발명을 완성하였다.The present inventors have conducted intensive studies to improve the efficiency of differentiation of stem cell-derived myocardial cells and improve maturity. As a result, not only did the efficiency of differentiation into stem cell-based myocardial cells increased in the NecroX treated group, Can be obtained in a short time, and the present invention has been completed.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 네크로엑스(NecroX)를 포함하는 배지에서 줄기세포를 배양하는 단계를 포함하는 줄기세포를 심근세포로 분화시키는 방법에 관한 것이다. The present invention relates to a method of differentiating stem cells into myocardial cells, comprising culturing the stem cells in a medium containing NecroX.

본 발명에서 "네크로엑스(NecroX)"는 괴사(necrosis)에 대한 강력한 세포 보호 효과와 염증 억제 기능을 가진 저분자화합물로서 과도하게 축적된 활성산소와 칼슘을 제거하는 기전이 확인되었으며, 미토콘드리아의 mPTP가 열리는 것을 억제해서 세포의 미토콘드리아 막전압을 유지시켜주고, ROS(reactive oxygen species) 스케빈저로서 산화스트레스(oxidative stress)를 억제한다. 여기에 더하여 JNK pathyway를 억제하는 작용들이 알려져 있다.In the present invention, "NecroX" is a low-molecular compound having a strong cytoprotective effect against necrosis and an inflammation-suppressing function, and it has been confirmed that the excessive accumulation of active oxygen and calcium is eliminated, and mitochondrial mPTP It inhibits the opening and maintains the mitochondrial membrane potential of the cells and inhibits oxidative stress as a reactive oxygen species (ROS) scavenger. In addition, actions that inhibit the JNK pathway are known.

또한, 본 발명에서 "ROS"는 reactive oxygen species의 약자로서, 활성산소를 의미하며, 활성산소(reactive oxygen species)는 세포에 손상을 입히는 모든 종류의 변형된 산소를 말한다. 활성산소가 우리 몸에 무조건 해로운 것은 아니며, 예를 들어 체내에서 과산화수소의 분해 결과 생성되는 수산화 라디칼은 병원체 등을 무차별적으로 공격하여 소독약 역할을 수행하고 있다. Also, in the present invention, "ROS" is an abbreviation of reactive oxygen species, which means active oxygen, and reactive oxygen species refers to all kinds of modified oxygen that damage cells. Active oxygen is not harmful to our body unconditionally. For example, hydroxyl radicals generated as a result of decomposition of hydrogen peroxide in the body act as a disinfectant by indiscriminately attacking pathogens and the like.

또한, 본 발명은 네크로엑스(NecroX)를 포함하는 줄기세포로부터 심근세포로의 분화 유도용 조성물에 관한 것이다.The present invention also relates to a composition for inducing differentiation of stem cells into cardiomyocytes comprising NecroX.

또한, 본 발명은 상기 방법에 의해 분화되어 a) cardiac Troponin T (cTnT) 및 α-sarcomeric actin을 발현함; 및 b) 박동하는 세포인 특성을 나타내는 것을 특징으로 하는 심근세포 및 상기 심근세포를 유효성분으로 함유하는 심장질환 치료용 세포치료제에 관한 것이다.The present invention also relates to a method of differentiating by a) expressing cardiac Troponin T (cTnT) and a-sarcomeric actin; And b) a cell that is pulsatile. The present invention also relates to a cell therapy agent for treating a heart disease comprising the myocardial cell as an active ingredient.

본 발명의 일실시예에서는, 줄기세포 유래 심근세포의 분화 효율을 증진시키고 성숙도를 향상시키기 위하여, 인슐린이 포함 안 된 배지로 시작하여 Wnt 억제제 (CHIR99021)를 2일간 처리한 후, 10ng/ml 농도의 액티빈A (activin A)와 그 두 배 양의 bFGF (20ng/ml)를 하루 동안 처리하였다가, 하루가 지난 후 배지를 갈고, 그 다음날 GSK 억제제인 IWR1을 이틀간 처리한 다음, 이틀 후에 인슐린이 포함된 배지로 2일에 한 번씩 배지를 갈아주면서, 네크로엑스(NecroX)를 첨가한 심근세포 분화배지를 관찰하였다(실시예 1 참조). In one embodiment of the present invention, the Wnt inhibitor (CHIR99021) was treated for 2 days, starting with medium lacking insulin, to enhance the differentiation efficiency of stem cell-derived myocardial cells and to improve maturation, (20 ng / ml) was treated for one day, and the day after that, the medium was shaved. The next day, the GSK inhibitor, IWR1, was treated for two days, and two days later, insulin (NecroX) -mediated cardiomyocyte differentiation medium was observed (see Example 1) while changing the medium every two days.

본 발명의 다른 실시예에서는, 심근세포 마커 발현 세포의 증가를 확인하기 위하여 유세포 분석을 수행하였으며(실시예 2 참조), 면역형광염색을 수행하여 심근세포에서의 α-sarcomeric actin과 미토콘드리아 (Tom20)을 관찰하였고(실시예 3 참조), 심근세포에서의 유전자 발현 양상을 조사하고자 Realtime PCR을 수행하였다(실시예 4 참조).In another embodiment of the present invention, flow cytometry analysis was performed to ascertain myocardial cell marker expressing cells (see Example 2). Immunofluorescent staining was performed to determine the presence of α-sarcomeric actin and mitochondria (Tom 20) (See Example 3). Real-time PCR was performed to examine the expression pattern of the gene in myocardial cells (see Example 4).

본 발명의 또 다른 실시예에서는, 분화된 심근세포 내 칼슘의 변화를 측정하기 위하여, 칼슘 특이적 염색시약인 FLUO-4를 이용해 분화 심근세포의 기능상의 차이를 비교하였고, 본 발명의 NecroX가 분화심근세포의 칼슘채널의 증가를 유도해 박동 수가 더 빠르고 강해진 심근세포를 대조군보다 더 이른 시간에 획득할 수 있으며, 더 순도 높은 심근세포를 제공함을 확인하였다(실시예 5 참조).In another embodiment of the present invention, in order to measure changes in differentiated myocardial calcium, functional differences of differentiated myocardial cells were compared using FLUO-4, a calcium-specific staining reagent, and NecroX of the present invention It was confirmed that the cardiac muscle cells were induced to increase the calcium channel, so that the heart rate was faster and stronger, and myocardial cells were able to be obtained earlier than the control group and provided more purity myocardial cells (see Example 5).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[실시예][Example]

실시예 1. 인간피부섬유아세포 유도만능줄기세포 심근세포의 고효율 고순도 분화 방법 확립Example 1 Establishment of high-efficiency high-purity differentiation method of human dermal fibroblast-induced pluripotent stem cell myocardial cells

줄기세포 유래 심근세포의 분화 효율을 증진시키고 성숙도를 향상시키기 위하여, 정상인 피부섬유아세포 유래 유도만능 줄기세포에서 단층 분화 조건을 확립하였다. 도 1에 나타낸 바와 같이, 마트리젤이 코팅된 35mm 배양접시에 ROCK 억제제를 10μM의 농도로 첨가하여 아큐테이즈를 사용해 단일세포로 분리한 유도만능줄기세포를 2X106개로 씨딩하였다. 세포가 35mm 배양접시를 가득 채울 때까지 mTeSRTM1 (STEMCELL Technologies)으로 갈아주고, 유도만능줄기세포가 35mm 배양접시를 가득 채우면 B27 minus insulin (Thermo Fisher Scientific) 보충제가 들어간 RPMI 1640배지 (Thermo Fisher Scientific)에 6μM의 농도가 되도록 GSK-3 억제제인 CHIR99021 (Cayman Chemical)을 첨가한 다음, 각 5nM, 100nM, 및 500nM의 네크로엑스(NecroX)도 첨가한 심근세포 분화배지를 준비하였고, RPMI 1640배지로 가볍게 한 번 씻어낸 후에 위의 심근세포 분화배지를 2ml 넣어서 24시간 동안 배양하였다. In order to improve the differentiation efficiency of stem cell - derived myocardial cells and to improve the maturity, faulted differentiation conditions were established in normal pluripotent stem cells derived from dermal fibroblasts. As shown in Fig. 1, 10 mM of ROCK inhibitor was added to a 35 mm culture dish coated with Matrigel, and induction pluripotent stem cells isolated with single cells were seeded at 2 x 10 < 6 > The cells were changed to mTeSR TM 1 (STEMCELL Technologies) until the 35 mm petri dish was filled, and when the inducible pluripotent stem cells were filled in 35 mm culture dishes, they were inoculated into RPMI 1640 medium supplemented with B27 minus insulin (Thermo Fisher Scientific) ), CHIR99021 (Cayman Chemical), which is a GSK-3 inhibitor, was added to a concentration of 6 μM, and then cardiac cell differentiation medium supplemented with 5 nM, 100 nM, and 500 nM of NecroX was prepared. After lightly washing once, 2 ml of the myocardial cell differentiation medium was added and cultured for 24 hours.

그 후, 다음날도 동일하게 RPMI 1640배지로 가볍게 한 번 씻어낸 다음 각 5nM, 100nM, 및 500nM의 NecroX가 첨가된 동일한 심근세포 분화 배지로 바꾸어주고 24시간동안 배양하였다. 다음날 10ng/ml의 액티빈 A (Activin A: R&D)와 20ng/ml의 bFGF를 B27 minus insulin 보충제가 들어간 RPMI1640 배지에 첨가하고 각 5nM, 100nM, 및 500nM의 NecroX도 첨가하여 이전 실험과 동일하게 RPMI 1640배지로 가볍게 한 번 씻어낸 후 배지를 갈아주고 24시간 동안 배양하였다.Thereafter, the same day, the cells were rinsed with RPMI 1640 medium one time Were replaced with the same myocardial cell differentiation medium supplemented with 5 nM, 100 nM, and 500 nM NecroX, respectively, and cultured for 24 hours. The following day, 10 ng / ml of Activin A (R & D) and 20 ng / ml of bFGF were added to RPMI 1640 medium supplemented with B27 minus insulin, and 5 nM, 100 nM and 500 nM of NecroX were added to each well. After washing once with 1640 medium, the medium was changed and cultured for 24 hours.

다음날 B27 minus insulin 보충제가 들어간 RPMI1640 배지에 각 5nM, 100nM, 및 500nM의 NecroX만 첨가하여 RPMI 1640배지로 가볍게 한 번 씻어주고 배지를 갈아서 24시간동안 배양하였다. 다음날 B27 minus insulin 보충제가 들어간 RPMI1640 배지에 각 5nM, 100nM, 및 500nM의 NecroX를 첨가하고 5μM의 Wnt 억제제인 IWR1 (SigmaAldrich)을 넣어준 배지를 RPMI 1640로 가볍게 한 번 씻어낸 후 배지를 갈아서 48시간 동안 배양하였다. 이후 B27 minus insulin 보충제가 들어간 RPMI1640 배지에 각 5nM, 100nM, 및 500nM의 NecroX만 첨가하여 RPMI 1640배지로 가볍게 한 번 씻어주고 배지를 갈아서 24시간 동안 배양하였으며, 동일 과정을 다음날에도 반복하였다. 이후 B27 (Thermo Fisher Scientific) 보충제가 들어간 배지에 각 5nM, 100nM, 및 500nM의 NecroX를 첨가하고 RPMI 1640로 가볍게 한 번 씻어낸 후 배지를 갈아서 48시간 동안 배양하였다. B27 보충제가 들어간 배지로 갈아줄 경우 당일에도 심근세포가 출현한 것을 볼 수 있으며, 심근세포의 박동 수와 출현비율은 NecroX 농도 의존적으로 증가하는 것을 관찰할 수 있었다.On the following day, only 5 nM, 100 nM, and 500 nM of NecroX were added to the RPMI1640 medium supplemented with B27 minus insulin supplement, washed lightly with RPMI 1640 medium, and the medium was ground and cultured for 24 hours. On the next day, each of 5 nM, 100 nM, and 500 nM of NecroX was added to RPMI 1640 medium supplemented with B27 minus insulin. IWR1 (Sigma Aldrich), a 5 μM Wnt inhibitor, was rinsed once with RPMI 1640 lightly, Lt; / RTI > Then, only 5 nM, 100 nM, and 500 nM of NecroX were added to the RPMI1640 medium supplemented with B27 minus insulin supplement. The cells were washed once with RPMI 1640 medium and cultured for 24 hours. The same procedure was repeated the next day. Then, 5nM, 100nM, and 500nM NecroX were added to the medium supplemented with B27 (Thermo Fisher Scientific) supplements and washed lightly once with RPMI 1640, and the medium was ground and cultured for 48 hours. When the medium was supplemented with B27 supplement, the myocardial cells appeared on the day. The number of myocardial cells and the ratio of NecroX concentration were increased.

그 결과, 도 2에 나타낸 바와 같이, NecroX를 처리한 군에서 더 균일하게 배양접시 바닥에서 떨어진 심근세포를 관찰할 수 있었으며, 심근세포의 분화 효율이 증가되었다는 사실을 확인할 수 있었다.As a result, as shown in FIG. 2, in the group treated with NecroX, it was possible to more uniformly observe myocardial cells distant from the bottom of the culture dish, and it was confirmed that the differentiation efficiency of myocardial cells was increased.

실시예 2. 유세포 분석을 통한 심근세포 마커 (cTnT) 발현 세포의 증가 확인Example 2. Confirmation of Increase of Myocardial Cell Marker (cTnT) Expressing Cell by Flow Cytometry

심근세포 마커 발현 세포의 증가를 확인하기 위하여 유세포 분석을 수행하였는바, 유도만능줄기세포 유래 분화 심근세포가 있는 디쉬를 PBS로 두 번 헹구어내고 0.25% Trypsin-EDTA 용액을 처리하여 세포를 FACS 튜브로 모았다. 1000 rpm, 3분간 원심분리기를 이용해 시험관에 모인 세포를 PBS+2.5% FBS (Fetal bovine serum)이 첨가된 FACS buffer로 헹구어주고, 세포 pellet을 잘 풀어준 다음, 최종농도 1% paraformaldehyde로 10분간 실온에서 세포를 고정해 주었다. 고정 후, FACS buffer를 첨가하여, 1000 rpm, 3분간 원심분리로 세포를 헹구어 준 다음, vortex를 하면서 천천히 최종 농도 90%가 되도록 Methanol을 넣어서 세포를 4℃에서 10분간 permeabilization 시켜주었다. Permeabilization 후, FACS tube 윗부분까지 FACS buffer를 채워 1000rpm, 3분간 원심분리하고 여분의 methanol을 헹구어 내준 다음, FACS buffer로 한 번 더 세포를 씻어주었다. 세포를 분주한 후, 1:100의 농도로 cardiac troponin T 일차 항체를 넣어서 얼음 위에서 30분간 배양해준 다음, FACS buffer를 채워 1800rpm, 3분간 원심분리로 여분의 항체를 제거해 주었다. 각 항체가 상응하는 형광이 달린 이차 항체를 1:300으로 넣어서 동일하게 얼음 위에서 30분간 배양한 후, 다시 FACS buffer를 채워 1800rpm, 3분간 원심분리로 세포를 헹구어 주었다. 이후 세포 pellet을 잘 풀어주고 FACS 기기를 이용해 분석하였다. In order to confirm the increase of myocardial cell marker expressing cells, flow cytometry analysis was carried out. The dish containing the induced pluripotent stem cells was rinsed twice with PBS, treated with 0.25% Trypsin-EDTA solution, Gathered. The cells collected in the test tube were rinsed with FACS buffer supplemented with PBS + 2.5% FBS (Fetal Bovine Serum) using a centrifuge at 1000 rpm for 3 minutes, the cell pellet was loosened, and the cells were incubated with 1% paraformaldehyde for 10 minutes at room temperature To fix the cells. After the fixation, the cells were rinsed by centrifugation at 1000 rpm for 3 minutes, followed by vortexing, and the cells were permeabilized for 10 minutes at 4 ° C with methanol so that the final concentration was 90%. After perfection, the upper part of the FACS tube was filled with FACS buffer, centrifuged at 1000 rpm for 3 minutes, rinsed with excess methanol, and washed once more with FACS buffer. After the cells were dispensed, cardiac troponin T primary antibody was added at a concentration of 1: 100 and incubated on ice for 30 minutes. FACS buffer was added and centrifuged at 1800 rpm for 3 minutes to remove excess antibody. Each antibody was incubated on ice for 30 minutes in the same manner as that of the second antibody with the corresponding fluorescence at 1: 300. FACS buffer was further added thereto, and the cells were rinsed by centrifugation at 1800 rpm for 3 minutes. The cells were then pelleted and analyzed using a FACS instrument.

그 결과, 도 3에 나타낸 바와 같이, NecroX 처리군은 분화 실시 후 빠르면 약 12일부터 박동 심근세포가 관찰되었으며, 유세포 분석을 통해 심근세포 마커인 cardiac Troponin T (cTnT)의 발현 여부를 검토하였을 때 대조군에 비해 NecroX 처리군이 cTnT양성세포가 더 증가한 것을 관찰할 수 있었고, 100nM의 NecroX 처리군에서는 양성세포의 증가비율이 5배 이상 되었다.As a result, as shown in Fig. 3, in the NecroX treated group, pulsatile myocardial cells were observed as early as 12 days after the differentiation, and when cardiac Troponin T (cTnT) expression was examined through flow cytometry Compared with the control group, the cTnT-positive cells were more increased in the NecroX-treated group, and the increase rate of the positive cells in the 100 nM NecroX-treated group was 5-fold or more.

실시예Example 3. 분화 22일째의  3. Day 22 of differentiation 심근세포에서의In myocardial cells α- α- sarcomericsarcomeric actin과 미토콘드리아 ( actin and mitochondria ( Tom20Tom20 )의 )of 면역형광염색Immunofluorescent staining

면역형광염색을 수행하기 위하여, 유도만능줄기세포 유래 분화 심근세포가 있는 디쉬를 PBS로 두 번 헹구어내고 -20℃에 보관한 차가운 100% 메탄올을 1 ㎖ 디쉬에 첨가한 후 즉시 -20℃로 세포를 옮겨 10분간 방치하여 세포를 고정시켰다. 10분 후 세포를 꺼내어 메탄올을 버리고 0.05% TBS-T(1XTBS :Tris-Buffered Saline, 0.05% tween 20)로 5분씩 3번 씻어준 다음, 염색하고자 하는 부위에 Dako pen으로 동그랗게 표시를 하였다. 이후 1% BSA(Bovine Serum Albumin), 0.05% Triton X-100을 PBS에 녹이고 0.22 μm 필터로 걸러 준비한 블로킹 용액(blocking solution)을 세포가 마르지 않게 표시한 부분에 덮어준 다음, 실온에서 30분 동안 블로킹 과정을 실시하였다. 다음으로, α-sarcomeric actin에 대한 1차 항체를 희석액에 1 : 100으로 희석해서 1차 항체 용액을 제조한 후 블로킹 용액을 제거하고, 1차 항체 용액을 처리한 다음, 4℃에서 밤새 반응시켰다. 다음날 0.05% TBS-T로 10분씩 3번 헹구어 준 후 세포가 마르지 않도록 각각의 항체에 상응하는 2차 항체 용액(1:100)을 제작하여 각각의 세포에 처리한 다음, 실온에서 차광하여 2시간 동안 반응시켰다. 이후 다시 두 번째 항체 염색을 위해 블로킹 과정부터 다시 수행하여 Tom20에 대한 1차 항체를 처리하고 이후 동일한 과정을 통해 염색을 진행하였다. 마지막으로, 0.05% TBS-T로 실온에서 10분간 3번 헹구어준 후 핵 염색을 위해 1 ㎎/㎖의 DAPI (4',6-diamidino-2-phenylindole) 용액을 1:1000이 되도록 희석액에 섞어준 다음, 세포에 넣어주고 차광하여 실온에서 10분간 반응시켰다. 형광현미경으로 DAPI가 핵에 염색이 된 것을 확인하고 0.05% TBS-T로 3번 헹구어낸 후 커버슬립(cover slip)을 이용하여 fluorescence mounting medium(DAKO사)으로 마운팅하였다. 마운팅 후, Laser scanning confocal microscopy 710 (Zeiss, Germany)를 이용해서 형광을 찍은 후, Zeiss Zen software로 분석하였다. To perform immunofluorescence staining, the dish containing the induced pluripotent stem cell-derived differentiated myocardial cells was rinsed twice with PBS, and the cold 100% methanol stored at -20 ° C was added to 1 ml of dish, And the cells were allowed to stand for 10 minutes. After 10 min, the cells were removed and the methanol was discarded. The cells were washed three times with 0.05% TBS-T (1 × TBS: Tris-Buffered Saline, 0.05% tween 20) for 5 min each time and the area to be stained was marked with a Dako pen. Then, the blocking solution prepared by dissolving 1% BSA (Bovine Serum Albumin) and 0.05% Triton X-100 in PBS and filtering with a 0.22 μm filter was applied to the area where the cells were not dripped, Blocking process. Next, the primary antibody against α-sarcomeric actin was diluted 1: 100 in the diluent to prepare the primary antibody solution, the blocking solution was removed, the primary antibody solution was treated, and the reaction was carried out at 4 ° C. overnight . The next day, the cells were rinsed with 0.05% TBS-T 3 times for 10 minutes. Then, the secondary antibody solution (1: 100) corresponding to each antibody was prepared so that the cells did not dry, treated with each cell, Lt; / RTI > Then, for the second antibody staining, the first antibody against Tom20 was treated again after the blocking process, and then the staining was carried out through the same procedure. Finally, rinse with 0.05% TBS-T three times for 10 minutes at room temperature. For nuclear staining, 1 mg / ml DAPI (4 ', 6-diamidino-2-phenylindole) After incubation, cells were shaded and reacted at room temperature for 10 minutes. Fluorescence microscopy confirmed that DAPI was stained with nuclei, rinsed 3 times with 0.05% TBS-T, and mounted with a fluorescence mounting medium (DAKO) using a cover slip. After mounting, fluorescence was taken using a laser scanning confocal microscope 710 (Zeiss, Germany) and analyzed with Zeiss Zen software.

광학현미경으로 관찰한 결과, 도 4에 나타낸 바와 같이, 분화 후 22일 경과된 시점에서 면역형광염색을 통해서 α-sarcomeric actin의 염색을 진행한 결과 vehicle 군에 비해 NecroX을 처리한 군의 분화심근세포가 크기도 더 크고 α-sarcomeric actin의 염색의 패턴도 좀 더 굵고 뚜렷한 경향을 보이는 것이 관찰되었다. Tom20로 염색되는 미토콘드리아는 두 군 간의 차이가 미미했으나 NecroX 처리군의 미코콘드리아가 좀더 진하고 양이 증가되어 있는 것이 관찰되었다.As a result of observation with an optical microscope, as shown in Fig. 4, when α-sarcomeric actin staining was performed through immunofluorescence staining at 22 days after differentiation, NecroX-treated differentiated myocardial cells And the pattern of staining of α-sarcomeric actin was also observed to be thicker and more pronounced. Mitochondria stained with Tom20 were observed to be slightly darker in the NecroX treated group than in the NecroX treated group.

실시예 4. 분화 22일째의 심근세포에서의 유전자 발현의 조사Example 4. Investigation of Gene Expression in Myocardial Cells on Day 22 of Differentiation

심근세포에서의 유전자 발현 양상을 조사하고자 Realtime PCR을 수행하기 위하여 유도만능줄기세포 유래 분화 심근세포를 Trizol reagent로 녹여서 RNA를 획득하였다. 획득한 심근세포의 RNA를 정량하여 RNA 1μg을 이용하여 reverse transcription을 통해 cDNA를 합성하였다. 이 cDNA 생성물 1μl를 SYBR® Green PCR Master Mix와 섞어주고 RYR2, CaV2.1, 및 SERCA2의 프라이머를 사용하여 realtime PCR을 수행하였다. In order to investigate the expression pattern of the gene in myocardial cells, in order to perform Realtime PCR, the induced pluripotent stem cell differentiated myocardial cells were dissolved in Trizol reagent to obtain RNA. RNA of myocardial cells obtained was quantified and cDNA was synthesized by reverse transcription using 1 μg of RNA. 1 μl of this cDNA product was mixed with SYBR® Green PCR Master Mix and real-time PCR was performed using RYR2, CaV2.1, and SERCA2 primers.

그 결과, 도 5에 나타낸 바와 같이, 분화 후 22일 경과된 시점에서 유전자의 발현 양상을 조사하였을 때 NecroX를 처리한 군이 대조군에 비해 세포내 calcium handling에 관련된 유전자들인 RYR2, CaV2.1, 및 SERCA2 (RYR2; SR막에 있는 calcium 유리 ion channel, CaV2.1; L-type calcium channel, SERCA2; sarcomeric reticulum (SR) 내로 calcium을 집어넣는 pump)이 더 증가되어 있는 경향을 관찰할 수 있었다.As a result, as shown in FIG. 5, when the expression pattern of the gene was examined at the time of 22 days after the differentiation, the NecroX-treated group showed a higher level of RYR2, CaV2.1, We could observe that the SERCA2 (RYR2; calcium glass ion channel, CaV2.1; L-type calcium channel, SERCA2, a pump that pumps calcium into the sarcomeric reticulum (SR)

실시예 5. 칼슘(Calcium) 염색시약인 FLUO-4를 이용한 분화심근세포 내 calcium의 변화 측정 결과Example 5. Measurement of calcium change in differentiated myocardial cells using FLUO-4, a calcium-dyeing reagent

유도만능줄기세포 유래 분화 심근세포를 D-PBS로 두 번 헹구어준 후 organic anion-transport inhibitors인 probenecid가 1mM로 처리된 1% FBS가 첨가된 PBS에 최종농도 1uM 이 되도록 칼슘 indicator인 FLUO-4가 들어간 용액을 세포에 처리해 주었다. FLUO-4가 처리된 상태에서 30분간 37°C에서 배양한 다음, 다시 1% FBS가 들어간 PBS로 두 번 세포를 헹구어 주었다. 이후 1.8 mM CaCl2와 5mM glucose가 포함된 extracellular solution (Nacl, Kcl, HEPES, MgCl2)로 세포를 갈아주고, 실온에서 30분간 배양한 후, 라이브 이미징 장치로 Ca2+의 intensity 변화를 측정하였다. Induced pluripotent stem cell differentiated myocardial cells were rinsed twice with D-PBS and probenecid, an organic anion-transport inhibitor, was added to 1 μM FBS-treated PBS containing 1 mM of FLUO-4, a calcium indicator The resulting solution was treated with the cells. After FLUO-4 treatment, the cells were incubated at 37 ° C for 30 minutes, and then rinsed twice with PBS containing 1% FBS. Then, the cells were changed with an extracellular solution (Nacl, Kcl, HEPES, MgCl 2 ) containing 1.8 mM CaCl 2 and 5 mM glucose, incubated at room temperature for 30 minutes, and then the intensity of Ca 2+ was measured with a live imaging device.

그 결과, 도 6에 나타낸 바와 같이, calcium 특이적 염색시약인 FLUO-4를 이용해 분화 심근세포의 기능상의 차이를 비교해 보았을 때에도 NecroX를 처리한 군이 대조군에 비교해서 더 규칙적이고 높은 ΔF/F 값을 보였다. 즉, 최대치에 도달하는 calcium의 양과 최대치에서 기저레벨로 감소 되는 속도가 NecroX를 처리한 군에서 증가 되는 것이 관찰되었다. 반면, 최대 calcium 배출량의 90%에 도달하기까지의 시간은 NecroX 처리한 군에서 감소되는 것으로 보였다.As a result, as shown in FIG. 6, when comparing the functional differences of differentiated myocardial cells using FLUO-4, a calcium-specific staining reagent, the NecroX-treated group showed a more regular and higher ΔF / F value Respectively. In other words, it was observed that the amount of calcium reaching the maximum value and the rate of decrease from the maximum value to the base level increased in the NecroX treated group. On the other hand, the time to reach 90% of the maximum calcium emission appeared to decrease in the NecroX treated group.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (6)

네크로엑스(NecroX)를 포함하는 배지에서 줄기세포를 배양하는 단계를 포함하는, 줄기세포를 심근세포로 분화시키는 방법으로서,
상기 방법으로 얻어진 심근세포는 세포 내 칼슘이 증가됨에 따라 박동이 촉진되는 것을 특징으로 하는, 방법.
A method of differentiating stem cells into myocardial cells, comprising culturing the stem cells in a medium containing NecroX,
Wherein the myocardial cell obtained by the above method is characterized in that the beating is promoted as the intracellular calcium is increased.
제1항에 있어서,
상기 네크로엑스는 5nM 내지 500nM의 농도로 포함되는 것을 특징으로 하는, 방법.
The method according to claim 1,
Wherein the necro X is contained at a concentration of 5 nM to 500 nM.
네크로엑스를 포함하는, 줄기세포로부터 심근세포로의 분화 유도용 조성물로서,
상기 심근세포는 세포 내 칼슘이 증가됨에 따라 박동이 촉진되는 것을 특징으로 하는, 조성물.
A composition for inducing differentiation of stem cells into myocardial cells, comprising NecroX,
Wherein the myocardial cells are stimulated with an increase in intracellular calcium.
제3항에 있어서,
상기 네크로엑스는 5nM 내지 500nM의 농도로 포함되는 것을 특징으로 하는, 조성물.
The method of claim 3,
Wherein the necrox is contained at a concentration of 5 nM to 500 nM.
제1항에 있어서,
상기 네크로엑스는 심근세포 내 칼슘의 증가를 유도하여 박동을 촉진하는 것을 특징으로 하는, 방법.
The method according to claim 1,
Wherein the Necro X promotes an increase in calcium in myocardial cells to promote beating.
삭제delete
KR1020170103712A 2016-08-18 2017-08-16 Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes KR101852304B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008978 WO2018034519A1 (en) 2016-08-18 2017-08-17 Method for enhancing differentiation efficiency and maturation level of stem cell-derived cardiac muscle cells by using necrox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160104679 2016-08-18
KR20160104679 2016-08-18

Publications (2)

Publication Number Publication Date
KR20180020906A KR20180020906A (en) 2018-02-28
KR101852304B1 true KR101852304B1 (en) 2018-04-25

Family

ID=61401406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170103712A KR101852304B1 (en) 2016-08-18 2017-08-16 Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes

Country Status (1)

Country Link
KR (1) KR101852304B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039506A1 (en) 2020-08-19 2022-02-24 주식회사 미토이뮨테라퓨틱스 Mitochondria-targeted antioxidant as agent for treating pathologic inflammation caused by mabc-r infection
WO2022220519A1 (en) 2021-04-12 2022-10-20 주식회사 미토이뮨테라퓨틱스 Novel crystal form of 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl-n-(tetrahydro-2h-pyran-4-yl)-1h-indole-7-amine
WO2022220518A1 (en) 2021-04-12 2022-10-20 주식회사 미토이뮨테라퓨틱스 Sulfate of 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl-n-(tetrahydro-2h-pyran-4-yl)-1h-indole-7-amine, and novel crystal form thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN HEART ASSOCIATION(2014)*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039506A1 (en) 2020-08-19 2022-02-24 주식회사 미토이뮨테라퓨틱스 Mitochondria-targeted antioxidant as agent for treating pathologic inflammation caused by mabc-r infection
WO2022220519A1 (en) 2021-04-12 2022-10-20 주식회사 미토이뮨테라퓨틱스 Novel crystal form of 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl-n-(tetrahydro-2h-pyran-4-yl)-1h-indole-7-amine
WO2022220518A1 (en) 2021-04-12 2022-10-20 주식회사 미토이뮨테라퓨틱스 Sulfate of 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl-n-(tetrahydro-2h-pyran-4-yl)-1h-indole-7-amine, and novel crystal form thereof

Also Published As

Publication number Publication date
KR20180020906A (en) 2018-02-28

Similar Documents

Publication Publication Date Title
Wang et al. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction
JP7386290B2 (en) Genetic markers for engraftment of human ventricular progenitor cells
JP4377690B2 (en) Stem cells that transform into beating cardiomyocytes
Leri et al. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology
KR101852304B1 (en) Method for enhancement of maturation and differentiation efficiency of induced pluripotent stem cell derived cardiomyocytes
CN111133099B (en) Use of neuropilin-1 (NRP 1) as a cell surface marker for isolation of human cardiac ventricular progenitor cells
EP3183337B1 (en) Use of jagged 1/frizzled 4 as a cell surface marker for isolating human cardiac ventricular progenitor cells
Barreto et al. Cardiac progenitor cells from stem cells: learning from genetics and biomaterials
WO2007085745A1 (en) Method for culturing cells derived from the adipose tissue and uses thereof
WO2009027563A1 (en) Population of adult stem cells derived from cardiac adipose tissue and use thereof in cardiac regeneration
KR20110034617A (en) Compositions and methods for using cells to treat heart tissue
AU2019236234B2 (en) Reagents and methods with Wnt agonists and bioactive lipids for generating and expanding cardiomyocytes
Ennis et al. Isolation, characterization, and differentiation of human umbilical cord perivascular cells (HUCPVCs)
US9969978B2 (en) Method for producing cardiomyocytes from human or mouse embryonic stem cells in a medium consisting of a serum-free medium and N2 supplement
CN105705632A (en) Method for differentiating pluripotent stem cell induced from mesenchymal stem cell into chondrocyte
EP4168022A1 (en) Pluripotent stem cell-derived heart organoid
Cheng et al. Influence of human platelet lysate on extracellular matrix deposition and cellular characteristics in adipose-derived stem cell sheets
Yannarelli et al. Donor mesenchymal stromal cells (MSCs) undergo variable cardiac reprogramming in vivo and predominantly co-express cardiac and stromal determinants after experimental acute myocardial infarction
Zhang et al. hAECs and their exosomes improve cardiac function after acute myocardial infarction in rats
CN106661545B (en) Method for preparing induced pluripotent stem cells and induced pluripotent stem cells prepared thereby
Di Felice et al. OPLA scaffold, collagen I, and horse serum induce a higher degree of myogenic differentiation of adult rat cardiac stem cells
CA2982179A1 (en) Epicardial-derived paracrine factors for repairing cardiac tissue
WO2018034519A1 (en) Method for enhancing differentiation efficiency and maturation level of stem cell-derived cardiac muscle cells by using necrox
Chong et al. Lentiviral vector transduction of fetal mesenchymal stem cells
Ohtsu et al. Stimulation of P19CL6 with multiple reagents induces pulsating particles in vivo

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant