KR101839216B1 - 상호정전용량 기반의 터치센서 및 제조방법 - Google Patents

상호정전용량 기반의 터치센서 및 제조방법 Download PDF

Info

Publication number
KR101839216B1
KR101839216B1 KR1020160094667A KR20160094667A KR101839216B1 KR 101839216 B1 KR101839216 B1 KR 101839216B1 KR 1020160094667 A KR1020160094667 A KR 1020160094667A KR 20160094667 A KR20160094667 A KR 20160094667A KR 101839216 B1 KR101839216 B1 KR 101839216B1
Authority
KR
South Korea
Prior art keywords
electrode
electrode array
array layer
layer
electrodes
Prior art date
Application number
KR1020160094667A
Other languages
English (en)
Other versions
KR20170142804A (ko
Inventor
김종호
박연규
김민석
최재혁
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of KR20170142804A publication Critical patent/KR20170142804A/ko
Application granted granted Critical
Publication of KR101839216B1 publication Critical patent/KR101839216B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • H01L27/323
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 상호정전용량 기반의 터치센서 및 제조 방법에 관한 것으로서, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서는 기판, 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층, 제 1 전극 어레이층의 하부에 형성된 절연층, 절연층의 하부에 형성되며, 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층, 제 2 전극 어레이층의 하부에 형성된 유전체 시트, 유전체 시트의 하부에 형성된 디스플레이 및 제 1 전극 및 제 2 전극 각각에 전기회로적으로 연결되어, 제 1 전극 및 제 2 전극 각각에 전압을 인가하고, 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함하되, 디스플레이는 공통 접지를 포함하고, 공통 접지는 제 1 전극 및 제 2 전극의 회로 접지와 전기적으로 연결된 것이다.

Description

상호정전용량 기반의 터치센서 및 제조방법{TOUCH SENSOR BASED ON MUTUAL CAPACITANCE AND MANUFACTURING METHOD THEREOF}
본 발명은 상호정전용량 기반의 터치센서 및 제조방법에 관한 것이다.
근래에 들어 터치 패널 기술은 우리 일상에 깊숙이 잡아 다양한 방면에서 생활에 편의를 제공하고 있으며, 일상생활에 반드시 필요한 핵심 기술로서 각광을 받고 있다. 일반적으로 이러한 터치 패널 기술은 노트북, 개인정보단말기(PDA), 게임기, 스마트폰, 네비게이션 등 다양한 전자/통신기기에 사용될 수 있으며, 사용자가 원하는 기능을 선택하거나 입력하는 데 이용될 수 있다.
이러한 터치 패널 기술은 크게 저항막 방식과 정전용량 방식으로 구현될 수 있다. 저항막 방식은 상부와 하부 전극막이 스페이서에 의해 이격되고, 눌림에 의해 서로 접촉될 수 있도록 배치된 형태이다. 따라서, 상부 전극막이 형성되어 있는 상판이 손가락, 펜 등의 입력수단에 의해 눌릴 때 상부와 하부의 전극막이 통전되고, 그 위치의 저항값 변화에 따른 전압변화를 제어부에서 인지하여 접촉좌표를 인식하는 방식이다.
정전용량 박식은 정전용량을 센싱하기 위한 투명전극필름인 ITO(Indium Tin Oxide)가 가로 및 세로로 배치되어 정전용량을 측정하며, 정전용량을 측정하는 방법에 따라서 상호정전용량(mutual capacitance) 방식과 자기정전용량(self capacitance) 방식으로 나뉜다. 구체적으로, 상호정전용량 방식은 가로로 배치된 ITO에 전압을 가하고 세로로 배치된 ITO에 유도된 전압을 측정하여 정전용량을 측정할 수 있다. 상호정전용량방식은 가로 및 세로 M, N개의 ITO로 이루어진 터치스크린에서 가로축 M개에 대하여 각각 차례로 전압을 가하며, 세로축 N개에 유도된 전압을 측정하여, 정전용량을 측정할 수 있으므로 M x N 개의 데이터가 발생할 수 있다. 그러나 측정하는데 많은 시간이 소요되는 단점이 있다.
또한, 종래의 상호정전용량 방식의 터치기반 압력 센서는, 하중의 부하시 전극과 접지가 가까워지며, 캐패시터의 변화량이 손의 크기에 영향을 받기 때문에 절대적인 힘의 크기를 얻는 것이 불가능하였다.
대한민국 공개특허 제10-2014-0017858호
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 접촉 위치 및 접촉 힘(압력)을 측정할 수 있는 상호정전용량 기반의 터치센서 및 제조방법을 제공한다.
구체적으로, 터치센서의 회로 접지와 디스플레이 내의 접지를 전기회로적으로 연결하여 추가적인 공정 없이도, 정밀한 접촉 위치 및 접촉 힘을 측정할 수 있는 터치 센서 및 그 제조 방법을 제공한다.
또한, 정밀한 접촉 위치와 접촉 힘을 측정하는 전극을 각각 분리하여, 더 높은 민감도로 접촉 위치 및 접촉 힘을 측정하는 터치 센서 및 그 제조 방법을 제공한다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서는, 기판, 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층, 제 1 전극 어레이층의 하부에 형성된 절연층, 절연층의 하부에 형성되며, 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층, 제 2 전극 어레이층의 하부에 형성된 유전체 시트, 유전체 시트의 하부에 형성된 디스플레이 및 제 1 전극 및 제 2 전극 각각에 전기회로적으로 연결되어, 제 1 전극 및 제 2 전극 각각에 전압을 인가하고, 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함한다. 이때, 디스플레이는 공통 접지를 포함하고, 공통 접지는 제 1 전극 및 제 2 전극의 회로 접지와 전기적으로 연결된 것이다.
여기서, 디스플레이는 액정 디스플레이(Liquid Crystal Display, LCD), 유기 발광 다이오드(Organic Light-Emitting Diode, OLED), 및 전자종이 중 어느 하나일 수 있다.
이때, 디스플레이가 유기 발광 다이오드(Organic Light-Emitting Diode, OLED)인 경우, 유기 발광 다이오드는 전면 발광 타입이다. 또한, 공통 접지는 유기 발광 다이오드의 음극(cathode) 전극일 수 있다.
그러나, 디스플레이가 액정 디스플레이(Liquid Crystal Display, LCD)인 경우, 공통 접지는 액정 디스플레이에 포함된 액정층의 상부에 위치한다.
또한, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는, 기판, 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층, 제 1 전극 어레이층의 하부에 형성된 절연층, 절연층의 하부에 형성되며, 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층, 제 2 전극 어레이층의 하부에 형성된 유전체 시트, 유전체 시트의 하부에 형성되며, 제 2 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 3 전극을 포함하는 제 3 전극 어레이층, 제 3 전극 어레이층의 하부에 형성된 디스플레이, 및 제 1 전극, 제 2 전극, 및 제 3 전극 각각에 전기회로적으로 연결되어, 제 1 전극 및 제 2 전극, 제 3 전극 각각에 전압을 인가하고, 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함한다. 이때, 제어부는 제 1 전극 어레이층 및 제 2 전극 어레이층 사이에 형성되는 제 1 커패시턴스의 변화를 기초하여 접촉 위치를 검출하고, 제 2 전극 어레이층 및 상기 제 3 전극 어레이층 사이에 형성되는 제 2 커패시턴스의 변화량에 기초하여 접촉 힘 또는 압력을 검출한다.
여기서, 제 1 전극, 제 2 전극 및 제 3 전극은 복수의 단위전극 및 각각의 단위전극을 연결하는 브릿지를 포함한다.
이때, 제 3 전극의 단위전극의 수직폭은 상기 제 1 전극의 단위전극의 수직폭 보다 크거나 같고, 제 2 전극의 단위전극의 수직폭 보다 작거나 같다.
또는, 제 2 전극의 단위전극의 수직폭은 제 1 전극의 단위전극의 수직폭 보다 작거나 같고, 제 3전극의 단위전극의 수직폭 보다 크거나 같을 수 있다.
또한, 제 1 전극 각각이 IC의 x포트에 연결된 경우, 제 2 전극 각각은 IC의 y 포트에 연결되고, 제 3 전극은 상기 IC의 x 포트에 연결된다. 여기서, y포트는 드라이브 포트이다.
이때, 제 3 전극이 연결된 IC의 x 포트에는 적어도 하나의 고정 커패시터가 연결될 수 있다.
또한, 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서는 기판, 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층, 제 1 전극 어레이층의 하부에 형성된 절연층, 절연층의 하부에 형성되며, 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층, 제 2 전극 어레이층의 하부에 형성된 디스플레이, 디스플레이의 하부에 형성되며, 제 2 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 3 전극을 포함하는 제 3 전극 어레이층, 제 3 전극 어레이층의 하부에 형성된 유전체 시트, 유전체 시트의 하부에 형성되며, 제 3 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 4전극을 포함하는 제 4 전극 어레이층 및 제 1 전극, 제 2 전극, 제 3 전극, 및 제 4 전극 각각에 전기회로적으로 연결되어, 제 1 전극, 제 2 전극, 제 3 전극, 및 제 4 전극 각각에 전압을 인가하고, 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함한다. 이때, 제어부는 제 1 전극 어레이층 및 제 2 전극 어레이층 사이에 형성되는 제 1 커패시턴스의 변화를 기초하여 접촉 위치를 검출하고, 제 3 전극 어레이층 및 제 4 전극 어레이층 사이에 형성되는 제 3커패시턴스의 변화량에 기초하여 접촉 힘 또는 압력을 검출한다.
이때, 기판은 글라스(glass), 강화 고분자 기판, 폴리이미드(polyimide, PI) 필름 중 어느 하나일 수 있다.
또한, 유전체 시트는 접지용 전극층의 상부에 형성된 제 1 투명 필름, 제 1 투명 필름의 상부에 형성된 유전체층, 및 유전체층의 상부에 형성된 제 2 투명필름을 포함한다. 이때, 유전체층은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane), 및 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함하는 것일 수 있다.
또한, 본 발명의 제 2 실시예에 따른 상호전정용량 기반의 터치센서의 제조방법은 기판의 하부에 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층을 형성하는 단계; 제 1 전극 어레이층의 하부에 절연층을 형성하는 단계; 절연층의 하부에, 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층을 형성하는 단계; 제 2 전극 어레이층의 하부에 유전체 시트를 형성하는 단계; 유전체 시트의 하부에 제 2 전극과 교차하는 적어도 하나의 제 3 전극을 포함하는 제 3 전극 어레이층을 형성하는 단계; 및 유전체 시트의 하부에 디스플레이를 결합하는 단계를 포함한다.
여기서, 디스플레이는 액정 디스플레이(Liquid Crystal Display, LCD), 유기 발광 다이오드(Organic Light-Emitting Diode, OLED), 및 전자종이 중 어느 하나일 수 있다.
이때, 디스플레이가 유기 발광 다이오드(Organic Light-Emitting Diode, OLED)인 경우, 유기 발광 다이오드는 전면 발광 타입이다.
또한, 기판은 글라스(glass), 강화 고분자 기판, 및 폴리이미드(polyimide, PI) 필름 중 어느 하나일 수 있다.
한편, 유전체 시트를 형성하는 단계는 제 1 보호 필름의 상부에 제 1 투명 필름을 형성하는 단계; 제 1 투명 필름의 상부에 유전체층을 형성하는 단계; 유전체층의 상부에 형성된 제 2 투명필름을 형성하는 단계; 및 제 2 투명필름의 상부에 제 2 보호필름을 형성하는 단계를 포함한다.
여기서, 유전체층은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane), 및 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함할 수 있다.
이때, 유전체 시트의 하부에 디스플레이를 결합하는 단계는 유전체 시트의 제 1 보호필름 및 상기 제 2 보호필름을 제거하는 단계 및 유전체 시트의 상부 및 하부에 접착필름을 형성하는 단계를 포함한다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 접촉 힘을 측정할 수 있는 상호정전용량 기반의 터치센서 및 제조방법을 제공한다.
구체적으로, 터치센서의 회로 접지와 디스플레이 내의 접지를 전기회로적으로 연결하여 추가적인 공정 없이도, 정밀한 접촉 위치 및 접촉 힘을 측정할 수 있다.
또한, 정밀한 접촉 위치와 접촉 힘을 측정하는 전극을 각각 분리하여 형성하는 터치 센서 및 그 제조 방법을 제공함으로써, 더 높은 민감도로 접촉 위치 및 접촉 힘을 측정하는 것이 가능하다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 구성도이다.
도 2는 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치 센서의 개략적인 구성을 도시하고 있는 도면이다.
도 3은 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 및 제 2 전극 어레이층을 도시한 도면이다.
도 4는 본 발명의 제 1 실시예에 따른 유전체 시트의 구성도이다.
도 5는 본 발명의 제 1 실시예에 따른 상호정전용량 기반 터치 센서의 제조 방법을 설명하기 위한 순서도이다.
도 6은 본 발명의 제 1 실시예에 따른 전극 어레이층을 형성하는 방법을 도시한 도면이다.
도 7은 본 발명의 제 1 실시예에 따른 전극 어레이층의 각 층의 구조를 더욱 상세히 도시한 도면이다.
도 8은 본 발명의 제 1 실시예에 따른 유전체 시트를 제작하는 방법을 상세히 설명하기 위한 제작 공정 순서도이다.
도 9는 본 발명의 제 1 실시예에 따른 상호정전용량 터치 센서의 결합방법을 설명하기 위한 도면이다.
도 10은 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 구성도이다.
도 11은 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 내지 제 3 전극 어레이층을 개략적으로 도시하고 있는 도면이다.
도 12는 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 내지 제 3 전극 어레이층을 개략적으로 도시하고 있는 또 다른 도면이다.
도 13은 도 11에 도시된 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 내지 제 3 전극을 확대한 도면이다.
도 14는 도 11에 도시된, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 회로도를 도시하고 있는 도면이다.
도 15는 도 12에 도시된, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 회로도를 도시하고 있는 도면이다.
도 16은 본 발명의 제 2 실시예에 따른 터치센서의 제 1 전극 내지 제 3 전극의 다른 실시예를 도시하고 있다.
도 17은 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 도면이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1 개의 유닛이 2 개 이상의 하드웨어를 이용하여 실현되어도 되고, 2 개 이상의 유닛이 1 개의 하드웨어에 의해 실현되어도 된다.
본 명세서에 있어서 단말 또는 디바이스가 수행하는 것으로 기술된 동작이나 기능 중 일부는 해당 단말 또는 디바이스와 연결된 서버에서 대신 수행될 수도 있다. 이와 마찬가지로, 서버가 수행하는 것으로 기술된 동작이나 기능 중 일부도 해당 서버와 연결된 단말 또는 디바이스에서 수행될 수도 있다.
도 1은 종래의 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 구성도이다.
도 1을 참조하면, 종래의 상호정전용량 기반의 터치센서(10A)는 접촉 위치와 힘을 동시에 측정하기 위해, 사람의 손가락이나 임의의 객체가 접촉하여 터치되는 기판(100A), 기판의 하부에 형성된 전극층(200A), 유전체시트(300A) 및 디스플레이(400A)를 포함하여 구성되었다.
종래의 상호정전용량 기반의 터치센서(10A)에서, 전극 어레이층(200A)은 절연 물질을 사이에 두고, X축 또는 Y축으로 서로 교차되도록 형성된 복수의 전극을 포함하였다. 따라서, x축 또는 Y축으로 형성된 복수의 전극 사이의 커패시터의 변화량 또는 디스플레이(400A) 및 전극 어레이층(200A)의 사이에 위치한 유전체 시트(300A) 사이에 형성되는 커패시턴스의 변화량을 측정함으로써, 기판(100A)에 터치되는 임의의 객체의 접촉 위치 및 접촉되는 힘(압력)을 측정하였다.
구체적으로, 종래의 상호정전용량 기반의 터치센서(10A)의 경우, 서로 교차되도록 형성된 복수의 전극의 상부 방향으로 형성되는 커패시턴스(C1)를 측정하여 임의의 객체의 접촉 위치를 측정하고, 하부 방향으로 형성되는 커패시턴(C2)를 측정하여 임의의 객체가 접촉되는 힘(압력)을 측정하였다.
이때, 접촉에 의하여 변화되는 커패시턴스(C1)의 변화값은 접촉여부를 검출하기에 충분하나, 압력에 따른 커패시턴스(C2)의 변화값은 그 차이가 크지 않기 때문에, 검출하는데 어려움이 따랐다.
이를 해결하기 위해, 종래의 기술에서는 접지전극(30)을 유전체 시트(300A) 및 디스플레이(400A) 사이에 형성하거나, 유전체 시트(300A)의 하부에 형성하여, 커패시턴스(C2)의 변화값을 측정함으로써, 보다 더 정확하게 접촉 힘(압력)을 검출하고자 하였다.
그러나, 기판(100)의 상부에 터치되는 임의의 객체의 접촉 면적이 증가할 경우, 절대적인 힘(압력)을 측정하는데 어려움이 있으며, 또한, 세 개의 전극 층을 공정하기 위해서, 생산 비용이 증가하는 문제점이 발생하였다.
따라서, 본 발명의 일 실시예에는, 상호정전용량 기반의 터치 센서를 제조함에 있어서, 디스플레이 내에 존재하는 공통 접지와 터치 센서의 회로 접지(미도시됨)을 연결함으로써, 제조 공정을 단순화시키고 제작 비용을 절감시키는 방법을 제공하고자 한다.
이하, 도면을 참조하여 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서 및 제조방법을 상세히 설명하도록 한다.
도 2는 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치 센서의 개략적인 구성을 도시하고 있는 도면이다.
도 3은 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 및 제 2 전극 어레이층을 도시한 도면이다.
도 4는 본 발명의 제 1 실시예에 따른 유전체 시트의 구성도이다.
도 2를 참조하면, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)는 기판(100), 기판(100)의 하부에 형성된 전극 어레이층(200), 전극 어레이층의 하부에 형성된 유전체 시트(300B) 및 유전체 시트의 하부에 형성된 디스플레이(400B)를 포함한다.
기판(100)은 사람의 손가락이나 임의의 객체가 접촉하여 터치되는 부분으로서, 터치에 의한 압력으로 변형될 수 있다. 기판(100)은 예를 들어, 글라스(glass), 강화고분자 기판, 및 폴리이미드(polyimide, PI) 필름 중 어느 하나를 포함하여 구성될 수 있으나 이에 제한되는 것은 아니다.
전극 어레이층(200)은 기판(100)의 하부에 형성되며, 제 1 전극 어레이층(210), 절연층(220) 및 제 2 전극 어레이층(230)을 포함한다.
이때, 제 1 전극 어레이층(210)은 복수의 제 1 전극이 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게형성된 것이다.
마찬가지로, 제 2 전극 어레이층(230)은 복수의 제 2 전극이 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게형성된 것이나, 도 3에 도시된 바와 같이, 복수의 제 2 전극은 제 1 전극과 교차하도록 형성된다.
일례로, 제 1 전극 어레이층(210)에 포함된 제 1 전극이 x 축 방향을 따라 배치되었다면, 제 2 전극 어레이층(230)제 2 전극은 제 1 전극과 수직한 방향인 Y축 방향으로 배치될 수 있다.
이때, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230)은 전도성 전극 재료를 형성한 후, 포토리소그래피 또는 이온빔 리소그래피 등의 방법을 이용하여 패터닝함으로써 형성할 수 있으나, 이에 제한되는 것은 아니다.
여기서, 제 1 전극 및 제 2 전극을 형성하는 전도성 전극 재료는 인듐 주석 산화물(Induim Tin Oxide, ITO), 탄소 나노튜브(Carbon Nano Tube, CNT), 그래핀(Graphene), 금속 나노 와이어, 전도성 고분자(PEDOT, Poly(3,4-ethylenedioxythiophene)) 또는 투명 전도성 산화물(TCO) 중 어느 하나를 포함하여 구성된 것일 수 있으나 이에 한정되지 않는다.
절연층(220)은, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230)의 사이에 형성되며, 복수의 제 1 전극 및 복수의 제 2 전극을 전기적으로 절연시킨다. 제 1 전극어레이층(210) 및 제 2 전극 어레이층(230)은 절연층에 의하여 절연층의 두께만큼 서로 이격될 수 있다. 이때, 절연층(220)은 전도성이 없는 고분자 물질을 이용하여 형성할 수 있다. 이때, 전도성이 없는 고분자 물질은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane) 고분자 중 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
유전체 시트(300B)는 전극 어레이층(200)의 하부에 형성되며, 외력에 의해 변형되는 강성이 작은 재료들로 형성될 수 있다.
유전체 시트(300B)는 디스플레이(400B) 및 전극 어레이층(200)의 사이에 위치하여, 전극 어레이층(200)에 포함된 복수의 전극에 의해 발생되는 커패시턴스를 저장할 수 있다. 특히, 본 발명의 제 1 실시예에 따른 유전체 시트(300B)는 접지용 전극층을 포함하지 않는다.
유전체 시트는(300B)은 기판(100)의 상부에 터치되는 제 1 객체의 압력 또는 하중에 의해 변형될 수 있으며, 이에 따라 유전체 시트(300B)의 내부에 형성된 커패시턴스의 변화를 발생시킬 수 있다.
즉, 전극 어레이층(200) 및 디스플레이(400B) 내에 존재하는 공통 접지(50) 사이에 발생되는 커패시턴스의 변화를 검출함으로써, 기판(100)의 상부에 터치되는 임의의 객체의 압력을 측정할 수 있다.
이하, 본 발명의 제 1 실시예에 따른 유전체 시트(300B)에 관하여, 도 4를 참조하여 더욱 상세히 설명하도록 한다.
본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)의 유전체 시트(300B)는 도 4에 도시된 바와 같이, 제 1 보호필름(310A), 제 1 보호필름(310A)의 상부에 형성된 제 1 투명 필름(320A), 제 1 투명 필름(320A)의 상부에 형성된 유전체층(330), 유전체층(330)의 상부에 형성된 제 2 투명필름(320B) 및 제 2 투명필름(320B)의 상부에 형성된 제 2 보호 필름(310B)을 포함한다.
본 발명의 제 1 실시예에 따른 유전체 시트(300B)를 구성하는 제 1 보호필름(310A), 제 2 보호필름(310B), 제 1 투명필름(320A) 및 제 2 투명필름(320B)는 폴리에스터(polyester, PET) 필름일 수 있으나, 이에 제한되는 것은 아니다.
또한 유전체층(330)은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane) 고분자로 형성될 수 있다. 또한, 유전체층(330)은 터치 패널 고분자인 OCA(Optically Clear Adhesive)로 형성될 수도 있다.
한편, 제 1 보호필름(310A) 및 제 2 보호필름(310B)은 유전체 시트(300B)의 상부 및 하부에 기판(100), 전극 어레이(200) 및 디스플레이(400B)가 결합되기 전에 제거 될 수 있다. 제 1 보호필름(301A) 및 제 2 보호필름(310B)가 제거된 유전체 시트의 상부 및 하부에는 제 1 접착필름(20A) 및 제 2 접착필름(20B)를 형성될 수 있다. 따라서, 제 1 접착필름(20A)에 의하여 유전체 시트의 상부에 전극 어레이층(200)을 결합시키고, 제 2 접착필름(20B)에 의하여, 유전체 시트의 하부에 디스플레이(400B)를 결합할 수 있다.
다시 말해, 도 2를 참조하면, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치 센서(10B)는 유전체 시트(300B)의 하부에 디스플레이(400B)를 포함한다. 이때, 디스플레이(400)는 발광다이오드(Light Emitting Diodes, LED), 액정 디스플레이(Liquid Crystal Display, LCD), 박막 트랜지스터 액정 디스플레이(Thin Film Transistor-Liquid Crystal Display, TFT LCD), 유기 발광 다이오드(Organic Light-Emitting Diode, OLED), 플렉시블 디스플레이(Flexible Display), 3차원 디스플레이(3D Display), 전자종이 중에서 어느 하나일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)는 종래의 상호정전용량 기반의 터치센서(10A)와 달리, 접지용 전극이 유전체 시트(300B) 내에 포함되지 않는다.
터치 센서를 구성하기 위해, 디스플레이(400B)는 이미 공통 전극(50)에 접지되어 있다. 따라서, 본 발명의 제 1 실시예에서, 제 1 전극 및 제 2 전극 각각에 연결된 상호정전용량 기반의 터치센서(10B)의 회로의 접지(미도시됨)는 디스플레이(400B)의 내부에 포함된 공통 접지(50)과 전기적으로 연결될 수 있다.
즉, 추가적인 공정을 생략하고, 터치센서(10B)의 회로의 접지(미도시됨)와 디스플레이(400B)의 내부에 포함된 공통 접지(50)를 전기 회로적으로 연결함으로써, 생산비용을 절감하면서 보다 더 정확하게 터치되는 위치 및 터치되는 힘(압력)을 검출하는 것이 가능하다.
이때, 본 발명의 제 1실시예에 따른 상호정전용량 기반의 터치센서(10B)에 포함된 디스플레이(400B)가 액정 디스플레이(Liquid Crystal Display, LCD)인 경우, 공통 접지(50)는 액정 디스플레이의 액정층의 상부에 위치한다.
반면, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)에 포함된 디스플레이(400B)가 유기 발광 다이오드(Organic Light-Emitting Diode, OLED)인 경우, 유기 발광 다이오드는 전면 발광 타입일 수 있으며, 본 발명의 제 1 실시예에 따른 공통 전극(50)은 유기 발광 다이오드의 음극(cathode) 일 수 있다.
한편, 도시되지는 않았으나, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)는 상술한 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230)에 포함된 제 1 전극 및 제 2 전극 각각에 전기회로적으로 연결되어, 전압을 인가하고, 인가된 전압에 따라 형성되는 커패시턴스를 검출하는 제어부를 포함한다. 구체적으로, 전압의 인가에 따라, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230) 사이에는 커패시턴스(C1)가 형성된다.
더욱 상세하게, 도 2에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)의 경우, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230)에 포함된 제 1 전극 및 제 2 전극 각각에 전압이 인가되면, 제 1 전극의 상부 방향 및 제 2 전극의 하부 방향으로 커패시턴스가 형성될 수 있다. 이하 발명의 상세한 설명에서, 제 1 전극의 상부 방향으로 형성되는 커패시턴스를 C1, 제 2 전극의 하부 방향으로 형성되는 커패시턴스를 C2라고 정의하여 설명하도록 한다.
이어서, 판(100)의 상부에 임의의 제 1 객체가 터치될 경우, 제 1 객체의 접촉 여부에 따라 커패시턴스(C1) 값은 변화하게 된다. 또한, 제 1 객체의 하중 또는 압력에 의하여 유전체 시트(300B) 내의 유전체 층(330)이 변형됨에 따라, 커패시턴스(C2) 값이 변화하게 된다. 이때, 접촉에 의한 커패시턴스(C1)의 변화값은 접촉여부를 검출하기에 충분하나, 압력에 따를 커패시턴스(C2)의 변화값은 그 차이가 크지 않기 때문에 검출하는데 어려움이 따른다.
따라서, 본 발명의 일 실시예에 따른 상호전정용량 기반의 터치센서(10B)는 제 1 전극 및 제 2 전극 각각에 연결된 상호정전용량 기반의 터치센서(10B)의 회로의 접지(미도시됨)를 디스플레이(400B)의 내부에 포함된 공통 접지(50)와 전기적으로 연결함으로써, 추가적인 공정을 생략하고, 생산비용을 절감하면서도 신호대잡음비(SNR)을 향상시켜 제 2 전극의 하부 방향으로 형성되는 커패시턴스(C2)의 변화값을 보다 더 정확하게 검출할 수 있다.
따라서, 기판(100)에 접촉된 객체의 하중 또는 압력에 따라, 변화하는 커패시턴스(C2)의 변화량을 검출하여, 보다 더 정확하게 기판(100)에 터치된 객체의 터치되는 위치, 압력, 및 힘을 정확하게 측정할 수 있다.
한편, 본 발명의 제 1 실시예에 따른 제어부는 기판에 접촉되는 객체로 인한 커패시턴스 변화값과, 가해진 힘으로 인해 변형되는 커패시턴스 변화값을 구별하기 위해, 주파수를 이용하는 기술을 사용할 수 있다. 예컨대, 객체가 사용자의 손가락일 경우, 사용자의 손가락에 대한 정전용량은 주파수와 함께 변할 수 있으며, 유전체 시트(300B) 내의 필드로 인한 커패시턴스 값은 주파수에 대해 대략 일정하게 유지될 수 있다.
또한, 유전체 시트(300B)에 포함되는 유전체층(330)의 유전 상수는, 주파수에 대한 커패시턴스의 변화값이 작도록 주파수와 관련되어 고려될 수 있다.
이하, 도 5 내지 도 9를 참조하여, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치 센서의 제조 방법에 대하여 상세히 설명하도록 한다.
도 5는 본 발명의 제 1 실시예에 따른 상호정전용량 기반 터치 센서의 제조 방법을 설명하기 위한 순서도이다.
도 6은 본 발명의 제 1 실시예에 따른 전극 어레이층을 형성하는 방법을 도시한 도면이고, 도 7은 본 발명의 제 1 실시예에 따른 전극 어레이층의 각 층의 구조를 더욱 상세히 도시한 도면이다.
도 8은 본 발명의 제 1 실시예에 따른 유전체 시트를 제작하는 방법을 상세히 설명하기 위한 제작 공정 순서도이다.
또한, 도 9는 본 발명의 제 1 실시예에 따른 상호정전용량 터치 센서의 결합방법을 설명하기 위한 도면이다.
도 5를 참조하면, 본 발명의 제 1 실시예에 따른 상호정전용량 기반 터치 센서의 제조 방법은, 기판상에 전극 어레이층을 형성하는 단계(S100); 유전체 시트를 제조하는 단계(S200); 유전체 시트의 상부와 전극 어레이층이 맞닿도록 기판 및 전극 어레이층을 플립하여 결합하는 단계(S300) 및 유전체 시트의 하부에 디스플레이를 결합하는 단계(S400)을 포함한다. 그러나 상술한 단계에 제한되는 것은 아니며, 단계(S200)가 먼저 수행되고, 이후, 단계(S100)이 수행될 수 있다. 또는 단계(S100) 및 단계(S200)은 동시에 병렬적으로 수행될 수 있다. 또한, 단계(S300) 및 단계(S400)도 마찬가지로, 단계 (S400)이 먼저 수행된 후, 단계(S300)이 수행되거나 두 단계가 동시에 수행되어도 무관하다.
즉, 본 발명의 실시예에 전극 어레이층(200) 및 유전체 시트(300B)를 제작한 후, 상술한 유전체 시트(300A)에 전극 어레이층(200) 및 디스플레이(400A)를 결합하는 방법으로 제조될 수 있다.
도 6 및 도 7을 참조하면, 기판상에 기 설정된 패턴에 따라 전극 어레이층을 형성하는 단계(S100)에서, 기판(100)을 준비하고, 상술한 기판(100)의 상부에 제 1 전극 어레이층, 절연 필름, 및 제 2 전극 어레이층을 형성한다.
구체적으로, 제 1 전극 어레이층(210)은 기판(100)의 상부에 복수의 제 1 전극 물질을 형성하고, 기 설정된 패턴으로 패터닝 함으로써 형성할 수 있다. 따라서, 제 1 전극 어레이층은 복수의 제 1 전극이 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게형성된 것일 수 있다.
여기서, 전극 형상을 패터닝 하는 방법은 포토리소그래피(Photolithography) 또는 전자빔리소그래피(e-beam lithography) 공정을 이용하는 것일 수 있다. 또는 전극 어레이층(200)은 스크린프린팅(screen printing) 기법을 이용하여 형성할 수도 있으며, 상술한 제작 공정에 국한되는 것은 아니다.
이어서, 제 1 전극 어레이층(210)의 상부에 절연층(220)이 형성될 수 있다. 이때, 절연층(220)은 전도성이 없는 고분자 물질로 형성될 수 있다.
다음으로, 절연층(220) 제 2 전극 어레이층(230)이 형성된다. 제 2 전극 어레이층(230)은 복수의 제 2 전극이 소정의 거리만큼 일정한 간격으로 이격되어 서로 나란하도록 형성할 수 있다. 이때, 복수의 제 2 전극은 제 1 전극과 교차하도록 형성한다.
일례로, 제 1 전극이 x 축 방향을 따라 형성되었다면, 제 2 전극은 제 1 전극과 수직한 방향인 Y축 방향으로 형성한다.
한편, 제 1 전극 및 제 2 전극은 인듐 주석 산화물(Induim Tin Oxide, ITO), 탄소 나노튜브(Carbon Nano Tube, CNT), 그래핀(Graphene), 금속 나노 와이어, 전도성 고분자(PEDOT, Poly(3,4-ethylenedioxythiophene)) 또는 투명 전도성 산화물(TCO) 중 어느 하나를 포함하여 구성된 것일 수 있으나 이에 제한되는 것은 아니다.
다시 말해, 본 발명의 제 1 실시예에 따른 전극 레이층(200)은 도 7에 도시된 바와 같이, 제 1 전극어레이층(210) 및 제 2 전극 어레이층(230)이 절연층(220)에 의하여 절연층(220)의 두께만큼 서로 이격되고, 제 1 전극 어레이층(210)에 포함된 제 1 전극 및 제 2 전극 어레이층(230)에 포함된 제 2 전극은 서로 교차된 형태로 형성된다. 따라서, 제 1 전극 및 제 2 전극 사이에는 커패시턴스가 형성될 수 있다.
다음으로, 본 발명의 제 1 실시예에 따른 유전체 시트를 제조하는 단계(S200)에서, 도 8의 (a) 및 (f)에 도시된 바와 같이, 제 1 보호필름(310A)을 준비하고, 제 1 보호필름(310A)의 상부에 제 1 투명 필름(320A), 유전체층(330), 제 2 투명필름(320B) 및 제 2 투명필름(320B)을 순서대로 적층한다.
이때, 본 발명의 제 1 실시예에 따른 유전체 시트(300B)를 구성하는 제 1 보호필름(310A), 제 2 보호필름(310B), 제 1 투명필름(320A) 및 제 2 투명필름(320B)는 폴리에스터(polyester, PET) 필름일 수 있다.
또한, 유전체층(330)은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane) 및 터치 패널 고분자인 OCA(Optically Clear Adhesive) 중 어느 하나로 형성될 수 있으나, 이에 제한되는 것은 아니다.
이후, 유전체 시트(300B)의 상부와 전극 어레이층(200)이 맞닿도록 기판 및 전극 어레이층을 플립하여 결합하는 단계(S300)에서, 도 9의 (a)에 도시된 바와 같이, 도 8의 제조 방법에 따라 제조된 유전체 시트(300A)의 상부 및 하부에 형성된 제 1 보호필름(310A) 및 제 2 보호필름(310B)를 제거하고, 접착필름을 형성하여, 유전체 시트(300A)의 상부에 도 6의 제조 방법에 따라 제조된 기판(100) 및 전극 어레이층(200)을 결합시킨다.
이때, 기판(100) 및 전극 어레이층(200)은 복수의 전극을 포함하는 전극어레이층(200)이 접착필름에 의해, 유전체 시트(300A)와 접촉되도록 결합시킬 수 있다. 여기서, 접착필름은 OCA(Optically Clear Adhesive) 고분자 필름일 수 있으나 이에 제한되는 것은 아니다.
마지막으로, 유전체 시트(300A) 하부에 디스플레이(400A)를 결합시킴으로써(S400), 제 1 실시예에 따른 터치센서(10B)를 제조할 수 있다.
다시 말해, 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서(10B)는 디스플레이(400B)의 내부에 공통 접지(50)를 포함하는 것이며, 디스플레이(400B)의 내부에 포함된 공통 접지(50)가 터치 센서(10B)의 회로 접지와 전기적으로 연결될 수 있다.
이때, 상호정전용량 기반의 터치센서의 디스플레이가 액정 디스플레이(Liquid Crystal Display, LCD)인 경우, 본 발명의 일 실시예에 따른 공통 접지(50)는 액정 디스플레이의 액정층의 상부에 위치할 수 있다.
또한, 상호정전용량 기반의 터치센서의 디스플레이가 전면 발광 타입의 유기 발광 다이오드(Organic Light-Emitting Diode, OLED)인 경우, 공통 접지(50)는 유기 발광 다이오드의 음극(cathode) 일 수 있다.
따라서, 본 발명의 실시예에 따른 상호정전용량 기반의 터치센서(10B)는 더욱 정밀하게 접촉 위치 및 접촉 힘을 측정하는 것이 가능하다.
그러나, 상술한 본 발명의 제 1 실시예에 따른 상호정전용량 기반의 터치센서의 구성은 일례에 불과하며, 터치센서의 용도 및 설계에 따라 그 구조는 변형될 수 있다.
도 10은 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 구성도이다.
도 10을 참조하면, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서(10C)는 기판(100), 전극 어레이층(200), 유전체시트(300C), 제 3 전극 어레이층(500A) 및 디스플레이(400C)를 포함한다. 이때, 각각의 구성 요소는 본 발명의 제 1 실시예에 따른, 상호정전용량 기반의 터치센서와 동일하므로 각각의 구성 요소를 제조하기 위한 물성 및 재료와 관련된 상세한 설명은 생략하도록 한다.
본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는 전극어레이층(200)의 하부에 유전체 시트(300C) 및, 유전체 시트(300C)의 하부에 제 3 전극 어레이층(500A)을 포함한다.
이때, 제 3 전극 어레이층(500A)은 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게 형성된 복수의 제 3 전극을 포함하며, 제 3 전극 각각은 제 2 전극과 교차되도록 형성될 수 있다. 그러나, 이에 제한되는 것은 아니며, 제 3 전극 어레이층(500A)은 단일 전극으로 형성될 수도 있다.
예를 들어, 제 1 전극이 x축으로 나란하도록 형성되었다면, 제 2 전극은 y축으로 평행하게 형성되며, 제 3 전극은 다시 x 축으로 평행하도록 형성될 수 있다.
따라서, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서(10C)는 전극어레이층(200)에 포함된 제 2 전극 어레이층(230)과 제 3 전극 어레이층(500A)사이에 커패시턴스(C3)를 형성한다.
더욱 상세하게, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서(10C)의 전극 어레이층(200)은 제 1 전극 어레이층(210), 절연층(220) 및 제 2 전극 어레이층(230)을 포함한다. 따라서, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230) 사이에는 커패시턴스, C1이 형성되며, 제 2 전극 어레이층(230) 및 제 3 전극 어레이층(500A) 사이에는 커패시턴스, C3가 형성될 수 있다.
도 11은 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 내지 제 3 전극 어레이층을 개략적으로 도시하고 있는 도면이다.
도 12는 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 어레이층 내지 제 3 전극 어레이층을 개략적으로 도시하고 있는 또 다른 도면이다.
도 11을 참고하면, 본 발명의 제 2 실시예에 따른, 제 1 전극 어레이층은 제 1 전극이 x축으로 나란하도록 형성될 수 있다. 또한, 제 1 전극 어레이층의 하부에는, y축으로 평행하도록 제 2 전극이 배치된 제 2 전극 어레이층이 형성되며, 제 2 전극 어레이층의 하부에는 제 3 전극이 x 축으로 평행하도록 배치된 제 3 전극 어레이층이 형성될 수 있다.
이때, 도 11에 도시된 제 3 전극층은 복수개의 제 3 전극이 평행하도록 형성된 것이나, 이에 제한 되는 것은 아니며, 도 12에 도시된 바와 같이, 제 3 전극 어레이층은 하나의 단일 전극으로 형성될 수 도 있다.
도 11 및 도 12를 참조하면, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는 기존의 IC의 x포트 및 y 포트를 이용하여, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230) 사이에 형성된 커패시턴스, C1 및 제 2 전극 어레이층(230) 및 제 3 전극 어레이층(500A) 사이에 형성된 커패시턴스, C3의 변화를 측정할 수 있다. 도 13은 도 11에 도시된 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 제 1 전극 내지 제 3 전극을 확대한 도면이다.
도 13을 참조하면, 제 1 전극 내지 제 제 1 전극의 셀의 면적 및 수직 폭(A)은 제 2 전극의 셀의 면적 및 수직폭(B) 보다 작게 형성되고, 제 2 전극의 셀의 면적 및 수직폭 (B)는 제 3 전극 셀의 면적 및 수직폭(C) 보다 크거나 작도록 형성할 수 있다. 또한, 제 3전극의 수직폭은 제 1 전극보다 크거나 작도록 형성할 수 있다. 다시 말해서, 제 3 전극의 수직폭(C)은 제 1 전극의 수직폭(A)보다 크거나 같고, 제 2 전극의 수직폭 (B)보다 작거나 같게 형성될 수 있다.
한편, 도 13에서, 제 1 전극은 제 2 전극 및 제 3 전극과 달리 스트립 형태의 전극으로 도시되었으나, 이에 한정되는 것은 아니다. 즉, 제 1 전극 내지 제 3 전극은 하나의 셀로 이루어진 복수의 단위전극과 각각의 단위전극이 브릿지(23) 형태로 연결된 형상일 수 있다. 이때, 단위전극의 형상은 도 13에 도시된 사각형의 형상에 한정되지 않고, 원 또는 임의의 면적을 가지는 다각형의 형상으로 구현될 수도 있다. 도 14는 도 11에 도시된, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 회로도를 도시하고 있는 도면이다.
도 15는 도 12에 도시된, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서의 회로도를 도시하고 있는 도면이다.
도 14 및 도 15를 참조하면, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는 별도의 직접회로 기판을 제조하지 않고, 기존의 IC(integrated circuit)를 이용하여 C1 및 C3의 변화량을 측정할 수 있다. 구체적으로, 제 1 전극이 x 포트에 연결이 되었다면, 제 2 전극은 y 포트에 연결하고, 제 3 전극은 x포트에 연결할 수 있다. 또는 제 1 전극을 y포트에 연결하였다면, 제 2 전극은 x포트에 연결하고, 제 3 전극은 y포트에 연결할 수 있다.
더욱 상세하게, 본 발명의 제 2 실시예에 따르면, 제 1 전극 어레이층(210)과 제 3 전극 어레이층(500A)의 사이에 위치한 제 2 전극 어레이층(230)을 기존의 IC의 드라이브 포트에 연결할 수 있다. 여기서 드라이브 포트는 종래의 터치 IC에서 시그널(signal)을 가해주는 포트로서, 드라이브 포트에 제2 전극을 연결함으로써, 노이즈를 감소시키고 더욱 안정된 커패시턴스 값을 측정하는 것이 가능하다.
본 발명의 제 2 실시예에 따른 터치센서의 경우, 제 1 전극 어레이층(210) 및 제 2 전극 어레이층(230) 사이에 형성되는 커패시턴스 C1의 변화량을 측정하여 터치 위치를 측정할 수 있다. 구체적으로, 제 1 전극 어레이층(210)의 제 1 전극 및 제 2 전극 어레이층(230)의 제 2 전극 각각의 사이에는 내부 프린지 커패시턴스 및 외부 프린지 커패시턴스가 존재하며, 제 1 전극 어레이층(210)의 상부 기판에 손가락 또는 임의의 객체가 터치될 경우, 외부 프린지 커패시턴스는 변화하게 된다. 일례로, 사람의 손이 터치되는 경우, 외부 프린지 커패시턴스는 사람의 손을 통해 빠져나갈 수 있으며, 이에 따라 커패시턴스의 총량 또한 변화하게 된다. 따라서, 커패시턴스의 변화량을 측정하고, 신호처리를 통해 터치의 유무 또는 터치 되는 위치를 되는 위치를 x 좌표 및 y 좌표를 산출할 수 있다.
또한, 본 발명의 제 2 실시예에 따른 터치센서는 전술한 바와 같이, 제 2 전극 어레이층(230) 및 제 3 전극 어레이층(500A) 사이에 형성된 커패시턴스 C2의 변화량을 측정하여, 기판(100)에 접촉된 객체의 하중, 압력, 또는 힘을 측정할 수 있다. 그러나, 여기서 기판(100)에 접촉된 객체로 인하여 유도되는 외부 프린지 커패시턴스의 변화량은 객체의 하중, 압력, 또는 힘을 측정하는데 노이즈 요소로 작용할 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 제 2 전극을 드라이브포트에 연결하지 않는 경우, 커패시턴스 C2에 가해지는 프린지 커피시턴스의 영향을 감소시키기 위하여, 전극의 크기를 도 16과 같이 설계하는 것이 가능하다.
도 16은 본 발명의 제 2 실시예에 따른 터치센서의 제 1 전극 내지 제 3 전극의 다른 실시예를 도시하고 있다.
도 16을 참조하면, 본 발명의 제 2 실시예에 따른 터치센서는 커패시턴스 C2에 가해지는 프린지 커패시턴스의 영향을 최소화 하기 위하여, 객체가 접촉되는 기판과 가장 근접한 제 1 전극어레이층의 제 1 전극의 셀의 수직폭(A) 및 면적을 가장 크게 설계할 수 있다. 따라서, 제 2 전극의 셀의 수직폭(B) 및 면적은 제 1 전극의 셀의 수직폭(A) 보다 작거나 같고, 제 3 전극의 셀의 수직폭(C) 및 면적은 제 2 전극의 셀의 수직폭(B) 및 면적보다 작거나 같도록 형성될 수 있다.
한편, 기존의 터치센서에 연결되는 IC 는, x 포트 및 y포트에 대칭적으로 전극이 연결되어 초기 커패시턴스 값이 비슷하나, 도 11 내지 도 15에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는 제 3 전극의 개수가 가변적일 수 있으며, 제 3 전극의 개수에 따라 측정되는 커패시턴스 값의 변화폭이 커질 수 있다. 따라서, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서는, 제 3 전극과 연결되는 회로의 일면에 하나 이상의 고정 커패시터를 연결하여 측정되는 제 3 전극의 커패시턴스 값의 범위를 조절할 수 있다.
더욱 상세하게, 도 11 및 도 14에 도시된 상호정전용량 기반의 터치센서의 경우, 개별적으로 각각의 포트에서 커패시턴스를 측정하여 개별 힘을 검출하는 것이 가능하며, 측정되는 커패시턴스의 값은 아래 수학식 1과 같이 산출될 수 있다.
Figure 112016072503266-pat00001
또한, 도 12 및 도 15에 도시된 바와 같이, y 전극이 하나로 연결되어 터치되는 총 힘을 검출하는 상호정전용량 기반의 터치센서의 경우, 측정되는 커패시턴스의 값은 아래 수학식 2와 같이 산출될 수 있다.
Figure 112016072503266-pat00002
이때, 수학식 1 및 수학식 2에서, IC의 커패시턴스 측정 한계값을 Cmax라고 할때, 고정 커패시터가 의 커패시턴스값(Co)은, 측정되는 커패시턴스의 범위가 아래 수학식 3의 범위에 오도록 설정하는 것이 바람직하다.
Figure 112016072503266-pat00003
따라서, 본 발명의 제 2 실시예에 따른 상호정전용량 기반의 터치센서(10C)의 제어부는 기판상에 제 1 객체가 접촉되었을 때, 커패시턴스, C1의 변화량을 감지하여, 제 1 객체의 접촉 여부를 검출하고, 제 1 객체의 질량 또는 하중에 의하여 유전체 시트의 변형으로 발생되는 커패시턴스, C3의 변화량을 검출하여, 제 1 객체가 기판에 가하는 힘 또는 압력 등을 측정할 수 있다.
도 17은 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서의 구성을 개략적으로 도시하고 있는 도면이다.
도 17을 참조하면, 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서(10D)는 기판(100), 전극 어레이층(200), 디스플레이(400D), 제 3 전극 어레이층(500A), 유전체 시트(300D) 및 제 4 전극 어레이층(500B)을 포함한다.
이때, 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서 (10D)역시, 각각의 구성 요소는 본 발명의 제 1 실시예에 따른, 상호정전용량 기반의 터치센서와 동일하므로 각각의 구성 요소를 제조하기 위한 물성 및 재료와 관련된 상세한 설명은 생략하도록 한다.
도 17에 도시된 바와 같이, 본 발명의 제 3 실시예에 따른 상호정전용량 기반의 터치센서(10D)는 디스플레이(400D)가 전극 어레이층(200)의 하부에 형성된다. 또한, 디스플레이(400D)의 하부에는 제 3 전극 어레이층(500A), 유전체 시트(300D) 및 제 4 전극 어레이층(500B)이 순서대로 형성된다. 즉, 디스플레이(400D)의 하부에 제 3 전극 어레이층(500A) 및 제 4 전극 어레이층(500B)이 유전체 시트(300D)를 사이에 두고 이격되도록 형성된다.
제 3 전극 어레이층(500A)은 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게 형성된 복수의 제 3 전극을 포함하며, 제 4 전극 어레이층(500B)은 소정의 거리만큼 일정한 간격으로 이격되어 서로 평행하게 형성된 복수의 제 4 전극을 각각 포함한다. 이때, 제 3 전극 및 제 4 전극은 서로 교차되도록 형성될 수 있다.
예를 들어, 제 1 전극이 x 축으로 평행하도록 형성되었다면, 제 2 전극은 y축으로 평행하게 형성되며, 제 3 전극은 x 축으로, 제 4 전극은 축으로 평행하도록 형성될 수 있다.
따라서, 제 1 전극 어레이층 및 제 2 전극 어레이층 사이에 커패시턴스, C1 이 형성되며, 제 3 전극 어레이층 및 제 4 전극 어레이층 사이에 커패시턴스, C4가 형성될 수 있다.
본 발명의 제 3 실시예에 따른 제어부는, 기판(100)의 상부에 임의의 제 1 객체가 터치될 경우, 변화되는 커패시턴스, C1 값을 측정하여 제 1 객체의 접촉 여부를 검출한다. 또한, 제 1 객체의 하중 또는 압력에 의하여 유전체 시트 내의 유전체 층이 변형됨에 따라 변화되는 커패시턴스, C4 값을 측정하여 접촉 힘(압력)을 검출할 수 있다.
도 18은 본 발명의 제 4 실시예에 따른 상호정전용량 기반의 터치센서에 포함되는 유전체 시트를 도시하고 있다.
한편, 본 발명의 제 4 실시예에 따른 유전체 시트(300E)는 제 1 실시예 내지 제 3 실시예에서 서술한 상호정전용량 기반의 터치센서에 포함되는 유전체 시트(300B 내지 300D)에 적용될 수 있다. 즉, 전술한 제 1 실시예 내지 제 3 실시예의 디스플레이(400B 내지 400D) 및 전극 어레이층(200)의 사이에 위치하여, 전극 어레이층(200)에 포함된 복수의 전극에 의해 발생되는 커패시턴스를 저장할 수 있다.
즉, 유전체 시트(300E)는 기판(100)의 상부에 터치되는 제 1 객체의 압력 또는 하중에 의해 변형될 수 있으며, 이에 따라 유전체 시트(300E)의 내부에 형성된 커패시턴스의 변화를 발생시킬 수 있다.
따라서, 전극 어레이층(200) 및 디스플레이(400B 내지 400D) 사이에 발생되는 커패시턴스의 변화를 검출함으로써, 기판(100)의 상부에 터치되는 임의의 객체의 압력을 측정할 수 있다.
도 18을 참조하면, 본 발명의 제 4 실시예에 따른 상호 정전용량 기반의 터치센서에 포함되는 유전체 시트(300E)는 제1 보호필름(310A), 제 1 보호필름(310A)의 상부에 형성된 제 1 투명 필름(320A), 제 1 투명 필름(320A)의 상부에 형성된 유전체층(330E), 유전체층의 상부에 형성된 제 2 투명필름(320B) 및 제 2 투명필름(320B)의 상부에 형성된 제 2 보호 필름(310B)을 포함한다.
이때, 도 18에 도시된 바와 같이, 본 발명의 제 4 실시예에 따른 유전체층은 제 1 유전체층(332E) 및 제 2 유전체층(334E)을 포함할 수 있다. 구체적으로, 제 1 유전체층(332E)은 제 2 유전체층(334E) 사이에 형성될 수 있다. 즉, 본 발명의 제 4 실시예에 따른 유전체층(330E)은 제 2 유전체층(334E), 제 2 유전체층(334E)의 상부에 형성된 제 1 유전체층(332E), 및 제 1 유전체층(332E)의 상부에 형성된 제 2 유전체층(334E)을 포함한다.
이때, 본 발명의 제 4 실시예에 따른 제 1 유전체 시트(332E)는 제 1 실시예 내지 제 3 실시예에서 전술한 유전층(3330)과 동일한 구성 및 동일한 재질로 형성될 수 있다. 다시 말해, 제 1 유전체층(332E)은 외력에 의해 변형되는 강성이 작은 재료들로 형성될 수 있다. 일례로, 제 1 유전체층(332E)은 겔, 젤, 실리콘, PDMS(polydimethylsiloxane) 고분자 중 어느 하나로 형성될 수 있다.
제 2 유전체층(334E)은 제 1 유전체층(332E)에 보다 강성이 강한 물질로 형성될 수 있다. 따라서 제 2 유전체층(334E)는 PDMS(polydimethylsiloxane) 고분자 필름 또는 터치 패널 고분자인 OCA(Optically Clear Adhesive) 필름 중 어느 하나일 수 있다. 따라서, 제 1 유전체층(332E)를 강성이 낮은 물질로 선택했을 때 발생하는 리킹(leaking) 현상 또는 핸들링 문제를 해결할 수 있다.
예를 들어, 대면적으로 유전체 시트를 제작 후, 컷팅 공정을 수행할때, 제 1 유전체층(332E)를 실리콘 유전체, 겔, 또는 젤 중 어느 하나로 선택하여 유전체 시트(330E)를 제작하는 경우, 제 1 유전체층(332E)의 물질이 유전체 시트(330E)밖으로 새어나와 핸들링이 어려워지거나, 오염이 되는 경우가 발생할 수 있다. 따라서, 본 발명의 제 4 실시예에 따른 상호 정전용량형 터치센서에 포함되는 유전체 시트(300E)의 경우, 유전체층(330E)에 포함된 제 2 유전체층(334E)에 의하여 상술한 문제점을 해결할 수 있다.
이외에, 본 발명의 제 4 실시예에 따른 유전체 시트(300E)에서 유전체 층을 제외한, 제 1 보호필름(310A), 제 2 보호필름(310B), 제 1 투명필름(320A) 및 제 2 투명필름(320B)은 제 1 실시예 내지 제 3 실시예에서 전술한 것과 동일하므로 자세한 설명은 생략하도록 한다.
한편, 본 발명의 실시예에 따른 제어부는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)와 같은 하드웨어 구성 요소를 의미하며, 소정의 역할들을 수행한다. 그렇지만 '구성 요소'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, 각 구성 요소는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.
따라서, 일 예로서 구성 요소는 소프트웨어 구성 요소들, 객체지향 소프트웨어 구성 요소들, 클래스 구성 요소들 및 태스크 구성 요소들과 같은 구성 요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다.
또한, 구성 요소들과 해당 구성 요소들 안에서 제공되는 기능은 더 작은 수의 구성 요소들로 결합되거나 추가적인 구성 요소들로 더 분리될 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
10A, 10B, 10C, 10D: 상호정전용량 기반의 터치센서
30: 접지용 전극층
50: 공통 접지
100: 기판
200: 전극 어레이층
210: 제 1 전극 어레이층
230: 제 2 전극 어레이층
300A, 300B: 유전체 시트
310A: 제 1 보호필름, 310B: 제 2 보호필름
320A: 제 1 투명필름, 320B: 제 2 투명필름
400A, 400B, 400C, 400D: 디스플레이
500A: 제 3 전극 어레이층
500B: 제 4 전극 어레이층

Claims (25)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 기판,
    상기 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층,
    상기 제 1 전극 어레이층의 하부에 형성된 절연층,
    상기 절연층의 하부에 형성되며, 상기 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층,
    상기 제 2 전극 어레이층의 하부에 형성된 유전체 시트,
    상기 유전체 시트의 하부에 형성되며, 상기 제 2 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 3 전극을 포함하는 제 3 전극 어레이층,
    상기 제 3 전극 어레이층의 하부에 형성된 디스플레이, 및
    상기 제 1 전극, 상기 제 2 전극, 및 상기 제 3 전극 각각에 전기회로적으로 연결되어, 상기 제 1 전극 및 상기 제 2 전극, 상기 제 3 전극 각각에 전압을 인가하고, 상기 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함하되,
    상기 제어부는
    상기 제 1 전극 어레이층 및 제 2 전극 어레이층 사이에 형성되는 제 1 커패시턴스의 변화를 기초하여 접촉 위치를 검출하고,
    상기 제 2 전극 어레이층 및 상기 제 3 전극 어레이층 사이에 형성되는 제 2 커패시턴스의 변화량에 기초하여 접촉 힘 또는 압력을 검출하며,
    상기 제 1 전극 각각이 IC의 x 포트에 연결된 경우,
    상기 제 2 전극 각각은 IC의 y 포트에 연결되고, 상기 제 3 전극은 상기 IC의 x 포트에 연결되는 것인,
    상호정전용량 기반의 터치센서.
  7. 제 6 항에 있어서,
    상기 제 1 전극, 제 2 전극 및 제 3 전극은 복수의 단위전극 및 각각의 단위전극을 연결하는 브릿지를 포함하는 것인, 상호정전용량 기반의 터치센서.
  8. 제 7 항에 있어서,
    상기 제 3 전극의 단위전극의 수직폭은 상기 제 1 전극의 단위전극의 수직폭 보다 크거나 같고, 상기 제 2 전극의 단위전극의 수직폭 보다 작거나 같은 것인,
    상호정전용량 기반의 터치센서.
  9. 제 7 항에 있어서,
    상기 제 2 전극의 단위전극의 수직폭은 상기 제 1 전극의 단위전극의 수직폭 보다 작거나 같고, 상기 제 3전극의 단위전극의 수직폭 보다 크거나 같은 것인, 상호정전용량 기반의 터치센서.
  10. 삭제
  11. 제 6 항에 있어서,
    상기 y 포트는 드라이브 포트인 것인, 상호정전용량 기반의 터치센서.
  12. 제 11 항에 있어서,
    상기 제 3 전극이 연결된 상기 IC의 x 포트에는 적어도 하나의 고정 커패시터가 연결되는 것인,
    상호정전용량 기반의 터치센서.
  13. 기판,
    상기 기판의 하부에 형성되고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층,
    상기 제 1 전극 어레이층의 하부에 형성된 절연층,
    상기 절연층의 하부에 형성되며, 상기 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층,
    상기 제 2 전극 어레이층의 하부에 형성된 디스플레이,
    상기 디스플레이의 하부에 형성되며, 상기 제 2 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 3 전극을 포함하는 제 3 전극 어레이층,
    상기 제 3 전극 어레이층의 하부에 형성된 유전체 시트,
    상기 유전체 시트의 하부에 형성되며, 상기 제 3 전극과 교차하고, 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 4 전극을 포함하는 제 4 전극 어레이층 및
    상기 제 1 전극, 상기 제 2 전극, 상기 제 3 전극, 및 상기 제 4 전극 각각에 전기회로적으로 연결되어, 상기 제 1 전극, 상기 제 2 전극, 상기 제 3 전극, 및 상기 제 4 전극 각각에 전압을 인가하고, 상기 인가된 전압에 따라 형성되는 커패시턴스의 변화량을 검출하는 제어부를 포함하되,
    상기 제어부는
    상기 제 1 전극 어레이층 및 제 2 전극 어레이층 사이에 형성되는 제 1 커패시턴스의 변화를 기초하여 접촉 위치를 검출하고,
    상기 제 3 전극 어레이층 및 상기 제 4 전극 어레이층 사이에 형성되는 제 3커패시턴스의 변화량에 기초하여 접촉 힘 또는 압력을 검출하는 것인,
    상호정전용량 기반의 터치센서.
  14. 제 6 항 또는 제 13항에 있어서,
    상기 기판은
    글라스(glass), 강화 고분자 기판, 폴리이미드(polyimide, PI) 필름 중 어느 하나인 것인, 상호정전용량 기반의 터치센서.
  15. 제 6 항 또는 제 13항에 있어서,
    상기 유전체 시트는
    접지용 전극층의 상부에 형성된 제 1 투명 필름,
    상기 제 1 투명 필름의 상부에 형성된 유전체층, 및
    상기 유전체층의 상부에 형성된 제 2 투명필름을 포함하고,
    상기 유전체층은 제 1 유전체층, 및
    상기 제1 유전체층의 상부면 및 하부면에 형성된 제 2 유전체층을 포함하는 것인,
    상호정전용량 기반의 터치센서.
  16. 제 15 항에 있어서,
    상기 제 1 유전체층은
    겔, 젤, 실리콘, PDMS(polydimethylsiloxane), 및 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함하는 것인,
    상호정전용량 기반의 터치센서.
  17. 제 15 항에 있어서,
    상기 제 2 유전체층은
    PDMS(polydimethylsiloxane) 또는 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함하는 것인,
    상호정전용량 기반의 터치센서.
  18. 기판의 하부에 기 설정된 거리만큼 일정한 간격으로 이격되어 서로 평행하게 배치된 복수의 제 1 전극을 포함하는 제 1 전극 어레이층을 형성하는 단계;
    상기 제 1 전극 어레이층의 하부에 절연층을 형성하는 단계;
    상기 절연층의 하부에, 상기 제 1 전극과 교차하고, 기 설정된 간격으로 이격되어 서로 평행하게 배치된 복수의 제 2 전극을 포함하는 제 2 전극 어레이층을 형성하는 단계;
    상기 제 2 전극 어레이층의 하부에 유전체 시트를 형성하는 단계;
    상기 유전체 시트의 하부에 상기 제 2 전극과 교차하는 적어도 하나의 제 3 전극을 포함하는 제 3 전극 어레이층을 형성하는 단계; 및
    상기 유전체 시트의 하부에 디스플레이를 결합하는 단계를 포함하며,
    상기 유전체 시트를 형성하는 단계는
    제 1 보호 필름의 상부에 제 1 투명 필름을 형성하는 단계;
    상기 제 1 투명 필름의 상부에 유전체층을 형성하는 단계;
    상기 유전체층의 상부에 형성된 제 2 투명필름을 형성하는 단계; 및
    상기 제 2 투명필름의 상부에 제 2 보호필름을 형성하는 단계를 포함하되,
    상기 제 1 투명 필름의 상부에 유전체층을 형성하는 단계는
    상기 제 1 투명 필름의 상부에 제 2 유전체층을 형성하는 단계;
    상기 제 2 유전체층의 상부에 제 1 유전체층을 형성하는 단계; 및
    상기 제 1 유전체층의 상부에 제 2 유전체층을 형상하는 단계를 포함하며,
    상기 유전체 시트의 하부에 디스플레이를 결합하는 단계는
    상기 유전체 시트의 상기 제 1 보호필름 및 상기 제 2 보호필름을 제거하는 단계 및
    상기 유전체 시트의 상부 및 하부에 접착필름을 형성하는 단계를 포함하는 것인, 상호정전용량 기반의 터치센서의 제조방법.
  19. 제 18 항에 있어서,
    상기 디스플레이는 액정 디스플레이(Liquid Crystal Display, LCD), 유기 발광 다이오드(Organic Light-Emitting Diode, OLED), 및 전자종이 중 어느 하나인 것인, 상호정전용량 기반의 터치센서의 제조방법.
  20. 제 18 항에 있어서,
    상기 디스플레이가 유기 발광 다이오드(Organic Light-Emitting Diode, OLED)인 경우, 상기 유기 발광 다이오드는 전면 발광 타입인 것인,
    상호정전용량 기반의 터치센서의 제조방법.
  21. 제 18 항에 있어서,
    상기 기판은
    글라스(glass), 강화 고분자 기판, 및 폴리이미드(polyimide, PI) 필름 중 어느 하나인 것인, 상호정전용량 기반의 터치센서의 제조방법.
  22. 삭제
  23. 제 18 항에 있어서,
    상기 제 1 유전체층은
    겔, 젤, 실리콘, PDMS(polydimethylsiloxane), 및 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함하는 것인,
    상호정전용량 기반의 터치센서의 제조방법.
  24. 제 18 항에 있어서,
    상기 제 2 유전체층은
    PDMS(polydimethylsiloxane) 또는 OCA(Optically Clear Adhesive) 고분자 중 어느 하나를 포함하는 것인,
    상호정전용량 기반의 터치센서의 제조방법.
  25. 삭제
KR1020160094667A 2016-06-16 2016-07-26 상호정전용량 기반의 터치센서 및 제조방법 KR101839216B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160075248 2016-06-16
KR1020160075248 2016-06-16

Publications (2)

Publication Number Publication Date
KR20170142804A KR20170142804A (ko) 2017-12-28
KR101839216B1 true KR101839216B1 (ko) 2018-04-27

Family

ID=60939461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160094667A KR101839216B1 (ko) 2016-06-16 2016-07-26 상호정전용량 기반의 터치센서 및 제조방법

Country Status (1)

Country Link
KR (1) KR101839216B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590222B1 (ko) * 2021-11-30 2023-10-17 하이비스 주식회사 압력감지와 전기적 특성의 동시 측정이 가능한 압력감지재

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널
KR101452749B1 (ko) * 2013-04-24 2014-10-23 한국표준과학연구원 멀티터치에 따른 근접, 접촉위치 및 접촉힘을 감지하는 센서 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452749B1 (ko) * 2013-04-24 2014-10-23 한국표준과학연구원 멀티터치에 따른 근접, 접촉위치 및 접촉힘을 감지하는 센서 및 그 제조방법
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널

Also Published As

Publication number Publication date
KR20170142804A (ko) 2017-12-28

Similar Documents

Publication Publication Date Title
KR102077316B1 (ko) 플렉서블 터치 스크린 패널 이를 구비한 플렉서블 표시장치
US20190361547A1 (en) Pressure-sensitive touch panel
CN105955535B (zh) 一种显示面板
US10684719B2 (en) Apparatus for sensing touch pressure
US20160179276A1 (en) Pressure-Sensitive Touch Panel
KR101152554B1 (ko) 터치 스크린 패널 및 이를 구비한 영상표시장치
TWI506502B (zh) 觸摸點及觸摸壓力的檢測方法
TWI581161B (zh) 電容性觸控模組及其觸控顯示裝置
Walia et al. Patterned Cu-mesh-based transparent and wearable touch panel for tactile, proximity, pressure, and temperature sensing
US20110007026A1 (en) Positioning method for touch screen
KR20120000565A (ko) 정전용량형 터치 장치와 결합된 액정 표시 장치
CN101963855A (zh) 用于触摸屏的多点触摸辨识方法
KR20110100565A (ko) 터치스크린
CN106249953A (zh) 一种压感触摸屏及显示装置
US10466833B2 (en) Touch control device comprising pressure-sensing layer and flat touch sensing layer
US20210109615A1 (en) Resistive pressure sensor device system
KR20120027693A (ko) 정전용량식 터치스크린 및 그 제조방법
TWI465992B (zh) 觸控面板觸控點之檢測方法
KR20100019810A (ko) 터치 스크린 시스템
EP3336670B1 (en) Touch sensor and display device including the same
KR101349703B1 (ko) 멀티터치와 단일힘을 감지하는 터치입력구조 및 그 제조방법
KR101839216B1 (ko) 상호정전용량 기반의 터치센서 및 제조방법
CN106855758A (zh) 触摸显示装置
KR102245826B1 (ko) 플렉서블 터치 스크린 패널 이를 구비한 플렉서블 표시장치
US20150177849A1 (en) Touch-control type keyboard

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant