KR101838518B1 - A Method for the well placement investigation using Productivity Potential Area Map - Google Patents
A Method for the well placement investigation using Productivity Potential Area Map Download PDFInfo
- Publication number
- KR101838518B1 KR101838518B1 KR1020170004952A KR20170004952A KR101838518B1 KR 101838518 B1 KR101838518 B1 KR 101838518B1 KR 1020170004952 A KR1020170004952 A KR 1020170004952A KR 20170004952 A KR20170004952 A KR 20170004952A KR 101838518 B1 KR101838518 B1 KR 101838518B1
- Authority
- KR
- South Korea
- Prior art keywords
- well
- reservoir
- productivity
- potential distribution
- ppm
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000011835 investigation Methods 0.000 title 1
- 230000000694 effects Effects 0.000 claims abstract description 5
- 238000009826 distribution Methods 0.000 claims description 41
- 239000003129 oil well Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000035699 permeability Effects 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
-
- E21B41/0092—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0637—Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Data Mining & Analysis (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Life Sciences & Earth Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Physics (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Quality & Reliability (AREA)
- Mathematical Analysis (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Animal Husbandry (AREA)
- Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Primary Health Care (AREA)
- Probability & Statistics with Applications (AREA)
- Marine Sciences & Fisheries (AREA)
- Algebra (AREA)
- Bioinformatics & Computational Biology (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Geology (AREA)
Abstract
Description
본 발명은 생산성 잠재력 분포 영역도(Productivity Potential Area Map, PPAM)에 관한 것으로, 더욱 상세하게는 저류층에서 유정의 위치를 최적화 하고, 상기 유정에서의 생산성을 판단하기 위한 기존방법 중 하나인 생산성 잠재력 분포도(Productivity Potential Map, PPM)에 상기 유정에 위치에 따라 격자블록에 영향을 미치는 정도인 영향반경을 고려하여 저류층의 최적 유정위치 및 생산성을 파악할 수 있는 방법에 관한 것이다.The present invention relates to a productivity potential area map (PPAM), and more particularly to a productivity potential distribution map (PPAM) that optimizes the location of oil wells in a reservoir, (PPM) is a method for determining the optimum oil well location and productivity of a reservoir considering the radius of influence, which is a degree that affects the grid block depending on the location of the oil well.
석유나 천연가스와 같은 에너지 자원의 생산에 있어서 저류층(reservoir)의 지질학적 자료 및 과거의 실제 생산이력 등의 데이터로부터 미래의 자원 생산량을 정확히 예측하는 것이 필요하다. In the production of energy resources such as oil and natural gas, it is necessary to accurately predict future resource production from data such as reservoir geological data and past actual production history.
이를 위해, 기존의 자동위치선정모델은 유정 위치를 자동으로 변동시키면서 생산성을 평가하는 시뮬레이션 작업이 반복적으로 수행된다.To this end, the existing automatic location model is repeatedly performed simulation work to evaluate the productivity while automatically changing the location of the well.
최적해 탐색에서 반복연산에 의해 많은 연산시간이 소요되는데 최적해에 근접하고 우수한 초기 유정 위치를 선정하여 상기 반복연산 과정을 줄이는 것이 가능하다.It is possible to reduce the iterative computation process by selecting a good initial well location close to the optimal solution and requiring a long computation time by the iterative computation in the optimal solution search.
이를 위한 기존의 방법 중 하나인 생산성 잠재력 분포도(PPM) 평가방법은 발견적 해결기법으로 저류층의 잠재적인 생산능력을 평가하는 방법이다. One of the existing methods for evaluating the productivity potential distribution (PPM) is a method of evaluating the potential production capacity of a reservoir by a heuristic solution technique.
이는 저류층의 물성자료(오일유량, 투과도, 저류층두께, 오일점성도, 압력 등)를 활용하여 2D로(평면도)로 표현되는 격자블록내에 상기 생산성 잠재력 분포도(PPM)값을 할당하고 유정 위치 선정에 사용된다.This is done by assigning the productivity potential distribution map (PPM) value to the grid block expressed in 2D (top view) using property data of the reservoir (oil flow, permeability, reservoir layer thickness, oil viscosity, do.
그러나 상기 생산성 잠재력 분포도(PPM)는 한 격자에만 국한되는 값으로서 상기 물성자료 값이 균질한 저류층에서는 유정위치를 선택하기 어려운 단점이 있다. 이에 따라 여러개의 격자에 걸쳐 영향을 미치는 유정의 생산성을 대표할 수 있는 방법이 필요한 실정이다.However, the productivity potential distribution map (PPM) is limited to one grid, and it is difficult to select a well location in a homogeneous reservoir. Therefore, there is a need for a method that can represent the productivity of wells affecting several lattices.
이와 관련하여, 종래의 기술을 살펴보면, '다목적 유전 알고리즘과 실물옵션에 기반한 저류층의 생산성 평가방법'이 대한민국 등록특허 제10-1657890호에 개시되고 있으나, 이는 상기한 문제점을 해결하여 저류층의 생산성을 대표하여 나타내기 어려운 문제점이 있다.Regarding the related art, a 'method for evaluating the productivity of a reservoir layer based on a multipurpose genetic algorithm and a real option' is disclosed in Korean Patent No. 10-1657890, which solves the above problems, There is a problem that it is difficult to be represented on a representative basis.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 유정위치에 영향을 받는 격자블록을 파악하고 이에 따른 유정의 생산성 나타낼 수 있는 방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a method of identifying a grid block influenced by a well location and showing productivity of the well.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하고자 하는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems to be solved by the present invention, which are not mentioned here, As will be appreciated by those skilled in the art.
본 발명에 따른 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법은, 저류층의 격자블록을 기준으로 생산성 잠재력 분포도(PPM)를 산출하는 제 1 단계, 유정위치에 따른 상기 저류층 격자블록의 생산성 영향을 고려한 영향반경식을 산출하는 제 2 단계, 상기 생산성 잠재력 분포도(PPM)에 상기 영향반경식을 고려하여 생산성 잠재력 분포 영역도(PPAM)을 산출하는 제 3 단계를 포함하여 구성된다.A method for searching a well location using the productivity potential distribution area map according to the present invention includes a first step of calculating a productivity potential distribution map (PPM) based on a grid block in a reservoir layer, A second step of calculating an influence radius equation, and a third step of calculating a productivity potential distribution area map (PPAM) by taking the impact radius equation into account in the productivity potential distribution map (PPM).
본 발명에 따른 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법은, 유정위치에 영향을 받는 격자블록을 파악할 수 있고, 이에 따른 유정의 생산성을 나타낼 수 있는 효과가 있다.The method of searching for a location of a well using the productivity potential distribution area map according to the present invention can grasp the grid blocks affected by the location of the well and can show the productivity of the well.
도 1은 본 발명에 따른 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법에 따른 순서도를 나타낸 것이다.FIG. 1 is a flowchart illustrating a method for searching for a location of a well using a productivity potential distribution area map according to the present invention.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings.
본 발명에 따른 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법은, 저류층의 격자블록을 기준으로 생산성 잠재력 분포도(PPM)를 산출하는 제 1 단계(S10), 유정위치에 따른 상기 저류층 격자블록의 생산성 영향을 고려한 영향반경식을 산출하는 제 2 단계(S20), 상기 생산성 잠재력 분포도(PPM)에 상기 영향반경식을 고려하여 생산성 잠재력 분포 영역도(PPAM)을 산출하는 제 3 단계(S30)를 포함하여 구성된다.A method for searching a well location using the productivity potential distribution area map according to the present invention includes a first step (S10) of calculating a productivity potential distribution map (PPM) based on a grid block of a storage layer, A second step S20 of calculating an influence radius formula considering the influence, and a third step S30 of calculating a productivity potential distribution area map PPAM considering the influence radius formula on the productivity potential distribution map PPM .
먼저, 상기 제 1 단계(S10)는, 저류층의 격자블록을 기준으로 생산성 잠재력 분포도(PPM)를 산출한다.First, in the first step S10, a productivity potential distribution map (PPM) is calculated based on a grid block in a storage layer.
상기 생산성 잠재력 분포도(PPM)는, 저류층의 최적화 유정위치를 발견하기 위한 기존의 방법의 하나로서, 상기 저류층의 잠재적인 생산능력을 평가하는 발견적 해결기법에 관한 것이다.The productivity potential distribution map (PPM) relates to a heuristic solution technique for evaluating the potential production capacity of the reservoir as one of the existing methods for finding the optimum oil location of the reservoir.
구체적으로, 균질저류층에서 방사형의 유사-정상상태 오일유동 방정식(darcy 방정식)을 이용한다.Specifically, a radial pseudo-steady state oil flow equation (darcy equation) is used in a homogeneous reservoir.
상기 오일유동 방정식을 이용한 오일의 유량()은,The flow rate of the oil using the oil flow equation ( )silver,
이때, 는 투과도(md), 는 오일 상대투과도, 는 저류층 두께(ft), 는 오일용적인자(bbi/STB), 는 오일의 점성도(cp), 는 외곽반경(ft), 는 튜빙반경(ft), 는 유정손상지수, 는 저류층 평균압력(psia), 는 공저압력(psia)이다.At this time, (Md), Oil relative permeability, Is the reservoir thickness (ft), Is the oil volume factor (bbi / STB), Is the viscosity (cp) of the oil, (Ft), < / RTI > Is the tubing radius (ft), Is a well- Is the reservoir average pressure (psia), Is the coercive pressure (psia).
오일 상대투과도 는 오일 포화율에 관련된 함수로서, 이는 오일의 누적 생산량과 밀접한 관련이 있는 함수이다. 이를 바탕으로, 오일의 상대 유체 투과도를 오일포화율로 대체할 수 있다고 가정하는 경우, 오일의 유동 능력()과 저류층 격자블록의 단위부피당 오일 함유량()의 곱의 식으로 표현되어 생산성 잠재력 분포도(PPM)의 식으로 나타낼 수 있다.Oil relative permeability Is a function related to the oil saturation rate, which is a function closely related to the cumulative production of oil. On the basis of this, if it is assumed that the relative fluid permeability of the oil can be replaced by the oil saturation rate, ) And the oil content per unit volume of the retention grid block ( ), And can be expressed by the expression of productivity potential distribution (PPM).
상기 생산성 잠재력 분포도(PPM)의 식은, The expression of the productivity potential distribution map (PPM)
이때, 는 오일의 투과도, 는 저류층의 다공성, s는 오일의 포화도At this time, The permeability of the oil, Is the porosity of the reservoir, s is the saturation of the oil
는 시추위치의 저류층 격자블록의 수를 나타낸다. Represents the number of reservoir grid blocks in the drilling location.
상기 생산성 잠재력 분포도(PPM)는, 상기 저류층 격자블록의 상대적인 생산성을 나타내는 척도가 될 수 있는 식으로 기존에 알려져 있다. The productivity potential distribution map (PPM) is known as a measure indicating the relative productivity of the reservoir grid block.
상기 생산성 잠재력 분포도(PPM)는, 격자의 크기, 유체의 물성에 해당하는 인자와 같이 상기 저류층 격자블록의 공통적인 특성은 제외하여 상대적인 비교를 실시하는 형태로 최적의 유정 위치를 파악 하는 것이 바람직하다.It is preferable that the productivity potential distribution map (PPM) grasps the optimum oil well position in such a manner that relative comparison is performed except for the common characteristics of the reservoir grid block, such as factors corresponding to the size of the grid and the physical properties of the fluid .
다음으로, 상기 제 2 단계(S20)는, 유정위치에 따른 상기 저류층 격자블록의 생산성 영향을 고려한 영향반경식을 산출한다.Next, the second step (S20) calculates an influence radius equation considering the productivity effect of the reservoir grid block according to the well location.
상기 생산성 잠재력 분포도(PPM)는, 상기 저류층의 모든 깊에에 따른 지반층의 물성 값을 평면도 형태로 한층에 표현하는 2D 값에 해당되므로, 상기 생산성 잠재력 분포도(PPM)값이 높은 격자에만 유정을 위치시키게 되면 유사지역에서 오일의 물성값이 균질한 저류층에서는 상기 생산성 잠재력 분포도(PPM)의 값이 동일하여 최적의 유정의 위치를 선택하기 어려운 단점이 있다.Since the productivity potential distribution map (PPM) corresponds to a 2D value representing a physical property value of the ground layer according to all the depths of the reservoir layer in the form of a plan view, the productivity potential distribution map (PPM) It is difficult to select the optimum oil well location because the value of the productivity potential distribution (PPM) is the same in a reservoir having a homogeneous oil property value in a similar area.
또한, 상기 생산성 잠재력 분포도(PPM) 값이 높은 격자가 밀집되어 있는 형태로 나타나 상기 유정의 위치가 인접하면, 상기 유정간의 간접으로 인해 오히려 생산성이 저하될 수 있다.Also, if the locations of the oil wells are adjacent to each other in the form of a grid having a high PPM value, the productivity may deteriorate due to indirectness between the oil wells.
따라서, 상기 유정이 영향을 미치는 영향반경을 고려하여 상기 생산성 잠재력 분포도(PPM)를 파악 및 평가해야 한다.Therefore, the productivity potential distribution map (PPM) should be grasped and evaluated in consideration of the radius of influence of the oil well.
상기 영향반경을()을 구하기 위한 식은, 하기와 같다.The influence radius is ( ) Is as follows.
상기 영향반경()식은, The influence radius ( ) Expression,
이때, 는 영향반경(ft), 는 유정에서 영향 미친 지점까지의 저류층 평균 투과도(md), 는 유정의 생산시간(day), 는 유정에서 영향 미친 지점까지의 저류층 격자블록의 평균 공극률, 는 유체의 점성도(cp), 는 유정에서 영향 미친 지점까지의 저류층 격자블록의 평균 압축률이다. At this time, (Ft), < / RTI > Is the average permeability (md) of the reservoir from the well to the affected site, Is the production time (day) of the oil well, Is the average porosity of the reservoir lattice block from the well to the affected site, Is the viscosity (cp) of the fluid, Is the average compressibility of the reservoir lattice block from the well to the affected point.
상기 영향반경()식을 이용하여 상기 생산성 잠재력 분포도(PPM)에 적용하기 위해서는, 먼저, 상기 영향반경()식에서 계수에 해당하는 유체의 점성도() 및 동일하게 가정할 수 있는 유정에서 영향 미친 지점까지의 저류층 평균 압축률()을 제거한다.The influence radius ( In order to apply the above equation to the productivity potential distribution map (PPM) using the equation, ) The viscosity of the fluid corresponding to the coefficient in the equation ( ) And the average compressibility of the reservoir from the well to the affected point ).
다음으로, 상기 영향반경식을 상기 [수학식 4]과 같은 비례식으로 도출한다. Next, the influence radius equation is derived in proportion to the equation (4).
다음으로, 상기 제 3 단계(S30)는, 상기 생산성 잠재력 분포도(PPM)에 상기 영향반경식을 고려하여 생산성 잠재력 분포 영역도(PPAM)을 산출한다.Next, the third step S30 calculates the productivity potential distribution area map (PPAM) by taking the influence radius equation into account in the productivity potential distribution map (PPM).
구체적으로, 상기 [수학식 4]에 나타난 비례식을 활용하여 상기 저류층내의 각 격자블록이 유정에 도달하는 시간인 를 기준으로 상대비교하여 상기 격자블록이 어떤 유정에 먼저 영향을 받게 되는지를 도출하는 유정위치결정단계를 더 포함한다.Specifically, by using the proportional expression shown in Equation (4), the time at which each grid block in the reservoir layer reaches the well To determine which lattice block is to be first affected by the lattice block.
상기 유정위치결정단계에 의해, 각 유정에 영향을 받는 상기 격자블록의 구획을 결정하고, 이를 합산하여, 생산성 잠재력 분포 영역도(PPAM)를 결정한다.By the well location determining step, the sections of the grid block affected by each well are determined and added to determine the productivity potential distribution area map (PPAM).
보다 구체적으로는, 상기한 바와 같이, 각 유정에 영향을 받는 상기 격자블록의 구획끼리의 상기 생산성 잠재력 분포도(PPM)를 합산하여 하기의 상기 생산성 잠재력 분포 영역도(PPAM)를 산출하는 것이다.More specifically, as described above, the productivity potential distribution map (PPM) is calculated by summing the productivity potential distribution maps (PPM) of the segments of the grid block affected by each well, as described above.
생산성 잠재력 분포 영역도(PPAM)의 산출식은, The calculation formula of the productivity potential distribution area map (PPAM)
이로 인해, 상기 생산성 잠재력 분포 영역도(PPAM)는, 각 유정이 영향을 미치는 구획에서의 저류층의 생산성 잠재력을 표현할 수 있게 된다.As a result, the productivity potential distribution area map (PPAM) can express the productivity potential of the reservoir in the compartment where each well is affected.
다음으로, 생산성 잠재력 분포 영역도(PPAM)값이 우수한 최적의 유정위치를 선정한다.Next, the optimal oil well location with a good productivity potential map (PPAM) value is selected.
이는, 상기 생산성 잠재력 분포 영역도(PPAM)의 합을 목적함수로 활용하여 최적의 유정위치를 산출하는 것으로, 하기의 [수학식 6]을 통해 나타낼 수 있다.This is because the optimum oil well location is calculated by using the sum of the productivity potential distribution area map (PPAM) as an objective function, which can be expressed by the following equation (6).
상기 [수학식 6]에서 n은 저류층의 유정의 개수와 상기 유정의 영향 내의 격자의 개수이다.In Equation (6), n is the number of wells in the reservoir and the number of lattices within the influence of the well.
()/는, 상기 격자블록이 상기 유정을 기준으로 하여 멀어질수록 낮은 값이 나오고 상기 유정에 가까울수록 값이 높아져, 그 수치는 0~1까지의 거리에 따른 가중치를 나타낼 수 있다.( ) / A value becomes lower as the grid block moves away from the well, and a value becomes higher as the grid block becomes closer to the well, and the value may represent a weight corresponding to a distance from 0 to 1.
상기 ()/에 의해 표현되는 가중치를 이용하여 상기 유정과 상기 격자블록 사이의 거리가 멀수록 생산성에 미치는 영향이 줄어드는 것을 표현할 수 있다. remind ( ) / It can be expressed that as the distance between the oil well and the grid block becomes longer, the effect on productivity is reduced.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As described above, it is to be understood that the technical structure of the present invention can be embodied in other specific forms without departing from the spirit and essential characteristics of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, All changes or modifications that come within the scope of the equivalent concept are to be construed as being included within the scope of the present invention.
S10 : 제 1 단계(생산성 잠재력 분포도(PPM)산출)
S20 : 제 2 단계(영향반경식 산출)
S30 : 제 3 단계(생산성 잠재력 분포 영역도(PPAM)산출)S10: First Stage (PPM calculation)
S20: 2nd step (influence radius calculation)
S30: Third step (PPAM calculation)
Claims (5)
상기 컴퓨터에 의해, 유정위치에 따른 상기 저류층 격자블록의 생산성 영향을 고려한 영향반경식을 산출하는 제 2 단계;
상기 컴퓨터에 의해, 상기 생산성 잠재력 분포도(PPM)에 상기 영향반경식을 고려하여 생산성 잠재력 분포 영역도(PPAM)을 산출하는 제 3 단계;를 포함하고,
상기 영향반경()식은,
이고,
이때,
=영향반경(ft),
=유정에서 영향 미친 지점까지의 저류층 평균 투과도(md),
=유정의 생산시간(day),
=유정에서 영향 미친 지점까지의 저류층 격자블록의 평균 공극률,
=유체의 점성도(cp),
=유정에서 영향 미친 지점까지의 저류층 격자블록의 평균 압축률이며,
상기 영향반경()식에서,
계수에 해당하는 유체의 점성도() 및 동일하게 가정할 수 있는 유정에서 영향 미친 지점까지의 저류층 평균 압축률()을 제거하여,
와 같은 비례식을 도출하는 것을 특징으로 하는 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법.A first step of calculating, by a computer, a productivity potential distribution map (PPM) based on a grid block of a reservoir;
A second step of calculating, by the computer, an influence radius equation considering productivity effects of the reservoir grid block according to a well location;
And a third step of calculating, by the computer, the productivity potential distribution map (PPAM) in consideration of the influence radius equation to the productivity potential distribution map (PPM)
The influence radius ( ) Expression,
ego,
At this time,
= Influence radius (ft),
= Average permeability (md) of the reservoir from the oil well to the impact point,
= Production time of oil well (day),
= Average porosity of the reservoir grid block from the well to the point of impact,
= Viscosity of fluid (cp),
= Average compressibility of the reservoir lattice block from oil well to impact point,
The influence radius ( ) In the equation,
The viscosity of the fluid corresponding to the coefficient ( ) And the average compressibility of the reservoir from the well to the affected point ) Was removed,
And a proportional expression such as the productivity potential distribution area map is derived.
상기 생산성 잠재력 분포도(PPM)는,
PPM= 이고,
이때, 는, 오일의 투과도,
는, 저류층의 다공성,
S는, 오일의 포화도,
는, 시추위치의 저류층 격자블록의 수인 것을 특징으로 하는 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법.The method according to claim 1,
The productivity potential distribution map (PPM)
PPM = ego,
At this time, The permeability of the oil,
The porosity of the reservoir layer,
S is the degree of saturation of the oil,
Is the number of retention grid blocks in the drilling location.
상기 비례식을 활용하여 상기 저류층내의 각 격자블록이 유정에 도달하는 시간인 를 기준으로 상대비교하여 상기 격자블록이 어떤 유정에 먼저 영향을 받게 되는지를 도출하는 유정위치결정단계;를 포함하고,
상기 유정위치결정단계에 의해, 각 유정에 영향을 받는 상기 격자블록의 구획을 결정하여 이를 합산하여, 생산성 잠재력 분포 영역도(PPAM)를 결정하는 것을 특징으로 하는 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법.The method according to claim 1,
By using the proportional equation, the time at which each grid block in the reservoir reaches the well And determining whether the lattice block will be affected first by the lattice block,
And determining the productivity potential distribution area map (PPAM) by determining the zones of the grid blocks affected by each well and summing them by the well location determination step to determine the productivity potential distribution area map Search method.
상기 생산성 잠재력 분포 영역도(PPAM)의 산출식은,
PPAM=
인 것을 특징으로 하는 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법.5. The method of claim 4,
The calculation formula of the productivity potential distribution area map (PPAM)
PPAM =
Wherein the method further comprises the steps of:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170004952A KR101838518B1 (en) | 2017-01-12 | 2017-01-12 | A Method for the well placement investigation using Productivity Potential Area Map |
PCT/KR2018/002090 WO2018131992A1 (en) | 2017-01-12 | 2018-02-21 | Method for searching for location of oil well using productivity potential area map |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170004952A KR101838518B1 (en) | 2017-01-12 | 2017-01-12 | A Method for the well placement investigation using Productivity Potential Area Map |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101838518B1 true KR101838518B1 (en) | 2018-03-14 |
Family
ID=61660454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170004952A KR101838518B1 (en) | 2017-01-12 | 2017-01-12 | A Method for the well placement investigation using Productivity Potential Area Map |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101838518B1 (en) |
WO (1) | WO2018131992A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102067195B1 (en) * | 2019-08-21 | 2020-01-15 | 한국지질자원연구원 | System and method for generating synthetic well density log data of target field using deep neural network |
CN113033862A (en) * | 2020-01-10 | 2021-06-25 | 重庆科技学院 | Heavy oil reservoir supercritical multi-element thermal fluid huff and puff productivity prediction method |
WO2024117766A1 (en) * | 2022-11-29 | 2024-06-06 | 주식회사 골든엔지니어링 | Method, computer device, and computer program for determining abandonment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101647921B1 (en) * | 2015-03-27 | 2016-08-12 | 서울대학교산학협력단 | Method for selecting model similar to real gas production and method for predicting gas production from oil and gas reservoir |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101474874B1 (en) * | 2013-05-22 | 2014-12-30 | 동아대학교 산학협력단 | computing system for well placement optimization developed by SA/ANN and well placement optimization method using Thereof |
-
2017
- 2017-01-12 KR KR1020170004952A patent/KR101838518B1/en active IP Right Grant
-
2018
- 2018-02-21 WO PCT/KR2018/002090 patent/WO2018131992A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101647921B1 (en) * | 2015-03-27 | 2016-08-12 | 서울대학교산학협력단 | Method for selecting model similar to real gas production and method for predicting gas production from oil and gas reservoir |
Non-Patent Citations (1)
Title |
---|
민배현, "인공신경망을 이용한 추가 시추위치 최적화", 서울대학교 대학원:지구환경시스템공학부, 2007. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102067195B1 (en) * | 2019-08-21 | 2020-01-15 | 한국지질자원연구원 | System and method for generating synthetic well density log data of target field using deep neural network |
CN113033862A (en) * | 2020-01-10 | 2021-06-25 | 重庆科技学院 | Heavy oil reservoir supercritical multi-element thermal fluid huff and puff productivity prediction method |
CN113033862B (en) * | 2020-01-10 | 2023-09-22 | 重庆科技学院 | Method for predicting throughput capacity of supercritical multi-element thermal fluid of heavy oil reservoir |
WO2024117766A1 (en) * | 2022-11-29 | 2024-06-06 | 주식회사 골든엔지니어링 | Method, computer device, and computer program for determining abandonment |
Also Published As
Publication number | Publication date |
---|---|
WO2018131992A1 (en) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106093350B (en) | Method for determining heterogeneous carbonate reservoir saturation index | |
AU2007225358B2 (en) | Method for quantifying reservoir connectivity using fluid travel times | |
CN105134191B (en) | Method for evaluating reserves of tight oil well | |
KR101838518B1 (en) | A Method for the well placement investigation using Productivity Potential Area Map | |
CN110130882A (en) | A kind of oil reservoir region evaluation method based on well logging test data | |
CN106896406B (en) | Method and device for predicting high-quality reservoir stratum based on impedance domain attributes | |
CN104879103A (en) | Layered water injection effect analysis method | |
CN103352693A (en) | Productivity prediction system and method based on oil gas content | |
CN111963159A (en) | Method for identifying fluid properties of conglomerate compact oil reservoir | |
CN107153881B (en) | Drilling risk prediction method | |
Al-Khazraji et al. | Development of heterogeneous immature Brownfield with Waterdrive using dynamic opportunity index: a case study from Iraqi oilfields | |
CN111779477B (en) | Fractal theory-based dynamic evaluation method for complexity of hydraulic fracture | |
CN117291417A (en) | For determination of offshore CO 2 Method, device and medium for deciding saline water layer sealing place | |
CN112765527B (en) | Shale gas resource amount calculation method and system | |
Ariadji et al. | Optimization of vertical well placement for oil field development based on basic reservoir rock properties using a genetic algorithm | |
KR20190071289A (en) | Method of economic evaluation about shale play | |
KR101405298B1 (en) | Evaluation of high or low permeability of fractured rock using well head losses from step-drawdown test | |
US10705235B2 (en) | Method of characterising a subsurface volume | |
CN110930020B (en) | Method for determining economic recoverable resource amount of unconventional oil and gas resources | |
CN115705452A (en) | Novel recovery ratio prediction method for middle and later stages of integrated sandstone reservoir development | |
CN114060015A (en) | Method and device for evaluating gas content of tight sandstone | |
CN105528732B (en) | Method for predicting productivity of gas testing well | |
CN107133880B (en) | Method for estimating oil drainage area of development well | |
US11574083B2 (en) | Methods and systems for selecting inflow control device design simulations based on case selection factor determinations | |
Herrera et al. | Gas Blockage Near Wellbore: A Diagnostic Tool for identifying Critical Flow in Oil and Gas Reservoirs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |