KR101832823B1 - Method of synthesis of conducting polymer nanowires by chemical process - Google Patents

Method of synthesis of conducting polymer nanowires by chemical process Download PDF

Info

Publication number
KR101832823B1
KR101832823B1 KR1020120005487A KR20120005487A KR101832823B1 KR 101832823 B1 KR101832823 B1 KR 101832823B1 KR 1020120005487 A KR1020120005487 A KR 1020120005487A KR 20120005487 A KR20120005487 A KR 20120005487A KR 101832823 B1 KR101832823 B1 KR 101832823B1
Authority
KR
South Korea
Prior art keywords
pthnws
present
nanowires
polythionine
chemical
Prior art date
Application number
KR1020120005487A
Other languages
Korean (ko)
Other versions
KR20130085067A (en
Inventor
이재준
나라얀찬드라데브낫
Original Assignee
건국대학교 글로컬산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 글로컬산학협력단 filed Critical 건국대학교 글로컬산학협력단
Priority to KR1020120005487A priority Critical patent/KR101832823B1/en
Publication of KR20130085067A publication Critical patent/KR20130085067A/en
Application granted granted Critical
Publication of KR101832823B1 publication Critical patent/KR101832823B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 전도성고분자 나노선(nanowires)을 제조함에 있어서, 전기화학적 방법이 아닌 화학적 방법을 통해 비교적 간단하게 전도성고분자 폴리티오닌 나노선(Poly(thionine) nanowires; PTHNWs)을 제조할 수 있는 화학적 방법을 이용한 전도성고분자 나노선 합성방법에 관한 것이다.
본 발명은 염화제이철(FeCl3)과 과산화수소(H2O2)의 존재 하에서 촉매 반응에 의해 템플릿-프리(template-fee)의 간단하고 효과적인 방법으로 대기 조건에서 저비용으로 대량의 폴리티오닌 나노선(PTHNWs)을 제조하는 것이 가능하며, 종래 폴리티오닌(PTH) 박막과 전기화학적 활성이 유사하여 바이오센서, 전기화학 센서, 태양전지 등 다양한 분야에서 유용하게 이용될 수 있다.
The present invention relates to a chemical method capable of producing a conductive polymeric polythionine nanowires (PTHNWs) by a chemical method rather than an electrochemical method in the production of conductive polymer nanowires To a method for synthesizing a conductive polymer nanowire.
The present invention provides a simple and effective method of template-free by catalytic reaction in the presence of ferric chloride (FeCl 3 ) and hydrogen peroxide (H 2 O 2 ) (PTHNWs) can be produced, and it can be usefully used in various fields such as biosensor, electrochemical sensor, solar cell and the like because of its similar electrochemical activity to a polythionine (PTH) thin film.

Description

화학적 방법을 이용한 전도성고분자 나노선 합성방법{METHOD OF SYNTHESIS OF CONDUCTING POLYMER NANOWIRES BY CHEMICAL PROCESS}[0001] METHOD OF SYNTHESIS OF CONDUCTING POLYMER NANOWIRES BY CHEMICAL PROCESS [0002]

본 발명은 화학적 방법을 이용한 전도성고분자 나노선 합성방법에 관한 것으로, 더욱 상세하게는 종래 전도성고분자 나노선(nanowires)을 제조함에 있어서, 전기화학적 방법이 아닌 화학적 방법을 통해 비교적 간단하게 전도성고분자 나노선을 제조할 수 있는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive polymer nanowire synthesis method using a chemical method, and more particularly, to a method of synthesizing a conductive polymer nanowire using a chemical method, And a method for producing the same.

전도성 고분자(Conducting polymers; CPs)는 여러 전자 및 광학 장치에서 종래 금속 및 반도체 물질을 대체할 수 있다. 최근 몇 년 동안, 전도성 고분자의 나노구조가 금속과 유사한 전도성, 높은 표면 대 부피비(surface-to-volume ratio), 및 낮은 차원수(demensionality) 등을 이유로 화학센서, 멤브레인, 디스플레이, 전기 나노디바이스, 및 약물 전달 시스템 등에서 널리 연구되고 있다(A. Kros, R. J. M. Nolte, N. A. J. M. Sommerdijk, Adv. Mater., 2002, 14, 1779; S. J. Choi, S.M. Park, Adv. Mater., 2000, 12, 1547; J. Wang, S. Chan, R. R. Carlson, Y. Luo, G. L. Ge, R. S. Ries, J. R. Health, H. R. Tseng, Nano Lett., 2004, 4, 1693; M. Granstrㆆm, M. Berggren, O. Inganㅴs, Science, 1995, 267, 1479).
Conducting polymers (CPs) can replace conventional metal and semiconductor materials in many electronic and optical devices. In recent years, nanostructures of conductive polymers have been increasingly used in chemical sensors, membranes, displays, electrical nano devices, and semiconductor devices due to metal-like conductivity, high surface-to-volume ratios, and low demensionality. And drug delivery systems, etc. (A. Kros, RJM Nolte, NAJM Sommerdijk, Adv. Mater. , 2002, 14 , 1779; SJ Choi, SM Park, Adv. Mater. , 2000, 12 , 1547; Wang, S. Chan, RR Carlson, Y. Luo, GL Ge, RS Ries, JR Health, HR Tseng, Nano Lett, 2004, 4, 1693;. M. Granstr ㆆ m, M. Berggren, O. Ingan ㅴ s , Science , 1995, 267 , 1479).

다양한 화학적 및 전기화학적 방법이 전도성 고분자의 입자, 와이어, 로드, 튜브 및 섬유와 같은 1-D 나노구조 합성에 적용되었다. 보통, 이러한 낮은 차원의 전도성 고분자 구조는 합성 구조 방향으로 하드와 소프트 템플릿을 도입하여 개발되었다(C. G. Wu, T. Bein, Science, 1994, 264, 1757; C. R. Martin, Acc. Chem. Res., 1995, 28, 61; R. V. Parthasarathy, C. R. Martin, Nature, 1994, 369, 298; J. Jang, H. Yoon, Chem. Commun., 2003, 720; K. Huang, M. Wan, Chem. Mater., 2002, 14, 3486; L. Zhang, Y. Long, Z. Chen, M. Wan, Adv. Funct. Mater., 2004, 14, 693).
Various chemical and electrochemical methods have been applied to the synthesis of 1-D nanostructures such as particles, wires, rods, tubes and fibers of conductive polymers. Generally, this low dimensional conductive polymer structure has been developed by introducing hard and soft templates in the direction of the synthetic structure (CG Wu, T. Bein, Science , 1994, 264 , 1757; CR Martin, Acc. Chem. Res. , 1995 , 28, 61; RV Parthasarathy, CR Martin, Nature, 1994, 369, 298; J. Jang, H. Yoon, Chem Commun, 2003, 720;.... K. Huang, M. Wan, Chem Mater, 2002 , 14 , 3486; L. Zhang, Y. Long, Z. Chen, M. Wan, Adv.Photo.Mater ., 2004, 14 , 693).

페노티아진(phonothiazine) 유도체의 안정하고 유일한 전도성 고분자인 폴리티오닌(poly(thionie); PTH)은, 작은 분자 화합물의 다양한 산화환원 반응에 대한 높은 전기화학적 활성에 때문에 전기 분석 목적으로 널리 사용된다(Y. Yong, A. J. S. Ahammad, G.-R. Xu, S. Kim, J.-J. Lee, Bull. Korean Chem. Soc., 2008, 29, 1883; A. J. S. Ahammad, N. C. D. Nath, S. Kim, Y. Kim, J.-J. Lee, Bull. Korean Chem. Soc., 2011, 32, 779; A. J. S. Ahammad, N. C. D. Nath, G.-R. Xu, S. Kim, J.-J. Lee, J. Electrochem. Soc., 2011, 158 (6) F106; A. J. S. Ahammad. M. M. Rahman, G.-R. Xu, S. Kim, J.-J. Lee, Electrochim. Acta, 2011, 56, 5266; A. J. S. Ahammad. S. Sarker, J.-J. Lee, J. Nanosci. Nanotechnol. 2011, 11, 5670; X.-H. Fu, Electroanalysis, 2007, 19, 1831). Poly (thionie) (PTH), a stable and unique conductive polymer of phonothiazine derivatives, is widely used for electrophoretic analysis due to its high electrochemical activity against various redox reactions of small molecule compounds 2008, 29 , 1883; AJS Ahammad, NCD Nath, S. Kim, S. Kim, J.-J. Lee, Bull. Y. Kim, J.-J. Lee, Bull. Korean Chem. Soc ., 2011, 32, 779; AJS Ahammad, NCD Nath, G.-R. Xu, S. Kim, J.-J. Lee, J ... Electrochem Soc, 2011, 158 (6) F106;. AJS Ahammad MM Rahman, G.-R. Xu, S. Kim, J.-J. Lee, Electrochim Acta, 2011, 56, 5266;. AJS Ahammad S. Sarker, J.-J. Lee, J. Nanosci , Nanotechnol , 2011, 11, 5670, X.-H. Fu, Electroanalysis , 2007, 19 , 1831).

일반적으로, 폴리티오닌(PTH)은 다양한 조건 하에서 전기화학적 방법으로 금, 백금, 및 탄소 기반 재료와 같은 통상적인 전극 물질 위에 매우 얇은 막으로 제조되는데, 폴리티오닌 나노선(poly(thionie) nanowires; PTHNWs) 역시 최근 센 등에 의해 보고되었다(A. W. Shi, F. L. Qu, M. H. Yang, G. L. Shen, R. Q. Yu, Sens Actuators B, 2008, 129, 779). Generally, polythionine (PTH) is prepared by electrochemical methods under a variety of conditions on very thin films on conventional electrode materials such as gold, platinum, and carbon-based materials, including poly (thionate) nanowires ; PTHNWs) have also recently been reported by Sen et al. (AW Shi, FL Qu, MH Yang, GL Shen, RQ Yu, Sens Actuators B , 2008, 129 , 779).

상기 폴리티오닌 나노선(PTHNWs)은 템플릿(template)으로서 양극 처리된 알루미늄 옥사이드(anodized aluminium oxide; AAO)의 사용을 기본으로 하며, 복잡한 처리 단계 동안 순도 저하 및 나노구조의 보존을 위해 화학적 에칭 및 하소(calcination) 과정을 포함한 사후 처리가 요구되는 등 제조방법이 복잡하였다(M. Wan, Adv. Mater., 2008, 20, 2926).The polythionine nanowires (PTHNWs) are based on the use of anodized aluminum oxide (AAO) as a template and are used for chemical etching and chemical etching to reduce purity and to preserve the nanostructures during complex processing steps. (M. Wan, Adv. Mater. , 2008, 20 , 2926), which requires a post-treatment including a calcination process.

결국, 본 발명은 종래기술의 문제점을 해결하고자 안출된 것으로, 본 발명은 간단하고 신규한 폴리티오닌 나노선(Poly(thionine) nanowires; PTHNWs)의 화학적 합성방법을 제공하는데 그 주된 목적이 있다. Accordingly, it is an object of the present invention to provide a method for chemical synthesis of simple and novel polythionine nanowires (PTHNWs).

또한, 본 발명은 상기와 같이 합성된 신규한 폴리티오닌 나노선(PTHNWs)으로 코팅된 바이오센서용 전극 및 상기 전극을 채용한 바이오센서를 제공하는데 다른 목적이 있다.It is another object of the present invention to provide an electrode for a biosensor coated with the novel polythionine nanowires (PTHNWs) synthesized as described above and a biosensor employing the electrode.

상기 목적을 달성하기 위하여, 본 발명은 화학적 방법을 이용한 전도성고분자 폴리티오닌 나노선(PTHNWs)의 합성방법을 제공한다. In order to accomplish the above object, the present invention provides a method for synthesizing conductive polymer polythionine nanowires (PTHNWs) by a chemical method.

본 발명에서, 상기 화학적 합성방법은 수용액 내에서 염화제이철(FeCl3)의 촉매 반응과 산화제로서 과산화수소(H2O2)의 촉매/산소(catalyst/oxygen) 반응을 통해 티오닌(thionine)의 중합(polymerization)을 촉진하는 것을 특징으로 한다.In the present invention, the chemical synthesis method is a method in which thionine polymerization is carried out by catalytic reaction of ferric chloride (FeCl 3 ) in an aqueous solution and catalyst / oxygen reaction of hydrogen peroxide (H 2 O 2 ) thereby accelerating the polymerization.

또한, 본 발명은 상기와 같이 합성된 신규한 폴리티오닌 나노선(PTHNWs)으로 코팅된 바이오센서용 전극을 제공한다.The present invention also provides an electrode for a biosensor coated with the novel polythionine nanowires (PTHNWs) synthesized as described above.

또한, 본 발명은 상기 전극을 채용한 바이오센서를 제공한다.The present invention also provides a biosensor employing the electrode.

본 발명의 바이오센서는 기준전극, 상대 전극 및 작업 전극을 포함하여 구성되며, 상기 기준 전극은 Ag/AgCl 전극인 것을 특징으로 한다.The biosensor of the present invention includes a reference electrode, a counter electrode, and a working electrode, and the reference electrode is an Ag / AgCl electrode.

상기와 같은 본 발명에 따르면, 본 발명은 염화제이철(FeCl3)과 과산화수소(H2O2)의 존재 하에서 촉매/산소 반응에 의해 템플릿-프리(template-fee)의 간단하고 효과적인 방법으로 대기 조건에서 저비용으로 대량의 폴리티오닌 나노선(PTHNWs)을 제조하는 것이 가능하며, 종래 폴리티오닌 박막과 전기화학적 활성이 유사하여 바이오센서, 전기화학 센서, 태양전지 등 다양한 분야에서 유용하게 이용될 수 있다.According to the present invention as described above, the present invention provides a simple and effective method of template-fee by catalytic / oxygenation reaction in the presence of ferric chloride (FeCl 3 ) and hydrogen peroxide (H 2 O 2 ) (PTHNWs) can be produced at low cost in a low cost and can be used in various fields such as a biosensor, an electrochemical sensor, a solar cell and the like because of its similar electrochemical activity to a conventional polythionine thin film have.

도 1은 본 발명의 일실시예에 따라 화학적 합성법으로 제조된 PTHNWs의 SEM 사진으로, 삽입 그림은 분리된 한 개의 PTHNWs이다.
도 2는 티오닌 단량체(a)와 본 발명의 PTHNWs(b)를 DMF에 용해한 용액의 UV-Vis 흡수 스펙트럼이며, 삽입그림은 티오닌 단량체(a; 보라색)와 PTHNWs(b; 연한 녹색)의 용액 상태 사진이다.
도 3a는 KBr과 혼합한 티오닌(a)과 본 발명의 PTHNWs(b)의 FTIR 스펙트럼으로, 화학적 합성 후 FTIR 스펙트럼에서의 특성의 유의한 변화를 나타낸 것이다.
도 3b는 이차 아민 가교(-NH-)를 통해 유리 아민기를 포함하고 두 개 단량체 단위로부터 중합된 PTHNWs를 도식화한 것이다.
도 4a는 통상적인 유리 탄소 전극(a)과 pH 7의 0.1 M 인산 완충액에서 20 ㎷/s의 스캔 속도로 유리 탄소 전극에 드롭 캐스트한 본 발명의 PTHNWs(b)의 순환 전류전압곡선이다.
도 4b는 pH 7의 0.1 M 인산 완충액에서 50, 100, 150, 200, 250, 및 300 ㎷/s의 스캔 속도로 유리 탄소 전극에 드롭 캐스트한 본 발명의 PTHNWs의 전류전압곡선으로, 삽입 그림은 스캔 속도 함수로서 피크 전류를 나타낸다(R2 = 0.993).
FIG. 1 is a SEM photograph of PTHNWs prepared by a chemical synthesis method according to an embodiment of the present invention, wherein the inset is one separated PTHNWs. FIG.
2 is a UV-Vis absorption spectrum of a solution of thionine monomer (a) and PTHNWs (b) of the present invention dissolved in DMF, and the inset shows the absorption spectrum of a thionine monomer (a; purple) and PTHNWs This is a solution state photograph.
FIG. 3A shows FTIR spectra of thionine (a) mixed with KBr and PTHNWs (b) of the present invention, and shows a significant change in characteristics in the FTIR spectrum after chemical synthesis.
Figure 3b depicts PTHNWs polymerized from two monomer units containing a free amine group via secondary amine bridging (-NH-).
4A is a cyclic current-voltage curve of PTHNWs (b) of the present invention dropped on a glass carbon electrode at a scanning speed of 20 ㎷ / s in a 0.1 M phosphate buffer solution of pH 7 and a conventional glassy carbon electrode (a).
Figure 4b is a current-voltage curve of PTHNWs of the present invention drop-cast onto glass carbon electrodes at a scan rate of 50, 100, 150, 200, 250, and 300 ㎷ / s in 0.1 M phosphate buffer at pH 7, It represents peak current as a function of scan speed (R 2 = 0.993).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 화학적 방법을 이용한 전도성고분자의 합성방법을 제공한다.The present invention provides a method for synthesizing a conductive polymer using a chemical method.

구체적으로, 본 발명은 (1) 염화제이철(FeCl3) 수용액을 제조하는 단계; (2) 상기 염화제이철 수용액을 교반하면서 티오닌 단량체를 첨가하는 단계; (3) 상기 용액에 과산화수소(H2O2)를 첨가하여 환류하는 단계; 및 (4) 침전물을 분리하여 세척 및 건조하는 단계;를 포함하는 화학적 방법을 이용한 폴리티오닌 나노선(PTHNWs)의 합성방법을 제공한다.
Specifically, the present invention provides a method for producing iron chloride (FeCl 3 ) comprising: (1) preparing an aqueous solution of ferric chloride (FeCl 3 ); (2) adding a thionine monomer while stirring the ferric chloride aqueous solution; (3) adding hydrogen peroxide (H 2 O 2 ) to the solution and refluxing; And (4) separating, washing and drying the precipitate. The present invention also provides a method for synthesizing polythionine nanowires (PTHNWs) using a chemical method.

본 발명에서 상기 화학적 합성방법은 템플릿-프리(template-free)의 방법으로, 수용액 내에서 염화제이철(FeCl3)의 촉매 반응과 산화제로서 과산화수소(H2O2)의 촉매/산소(catalyst/oxygen) 반응을 통해 티오닌(thionine)의 중합(polymerization)을 촉진하는 것을 특징으로 한다.
In the present invention, the chemical synthesis method is a template-free method in which the catalytic reaction of ferric chloride (FeCl 3 ) in an aqueous solution and the catalytic reaction of hydrogen peroxide (H 2 O 2 ) ) To accelerate the polymerization of thionine.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 폴리티오닌 나노선의 제조Example 1. Preparation of polythionine nanowire

염화제이철(FeCl3) 수용액에 티오닌(thionine)을 교반하면서 첨가한 후, 과산화수소를 추가하여 50℃에서 24시간 동안 환류하였다.Thionine was added to an aqueous solution of ferric chloride (FeCl 3 ) with stirring, followed by addition of hydrogen peroxide and refluxing at 50 ° C for 24 hours.

반응이 완료되면 검은색 침전을 5,000 rpm으로 원심분리하여 수집한 후, 0.1 N HCl 수용액과 증류수로 수차례 세척하여 Fe+3이온을 제거하고, 공기 분위기의 40℃ 오븐에서 건조하여 폴리티오닌 나노선(PTHNWs)을 수득하였다.
When the reaction was completed, the black precipitate was collected by centrifugation at 5,000 rpm, washed several times with 0.1 N HCl aqueous solution and distilled water to remove Fe +3 ions, and dried in an oven at 40 ° C in an air atmosphere to remove the polythionine Route (PTHNWs).

상기에서 수득된 PTHNWs를 드롭 캐스팅(drop-casting)의 방법으로 탄소 유리 기판 상에 증착하여 주사전자현미경(scanning electron microscopy; SEM)으로 관찰한 결과, 직경이 약 200 ㎚이고, 길이가 2-5 ㎛로 확인되었으며(도 1 참조), N,N-디메틸포름아마이드(DMF)에 쉽게 용해되어 연한 녹색을 나타내었다.
The PTHNWs obtained above were deposited on a carbon glass substrate by a drop-casting method and were observed by scanning electron microscopy (SEM). As a result, they were found to have a diameter of about 200 nm and a length of 2-5 (See Fig. 1), and was easily dissolved in N, N-dimethylformamide (DMF) to show a light green color.

또한, 상기 PTHNWs를 DMF에 용해하여 UV-Vis 흡수 스펙트럼을 관찰한 결과, PTHNWs에서 유의한 흡수가 증가가 확인되었으며, PTHNWs의 흡수 밴드(274, 330, 493 ㎚)는 일반적으로 티오닌의 흡수 밴드(272, 330, 및 502 ㎚)와 유사하였다. 이 중 274 및 330 ㎚에서의 흡수 밴드는 각각 페노티아진(phenothiazine) 고리의 π-π* 전이 및 아민기의 n-π* 전이에 기인한다. 또한, 630 ㎚에서의 다른 흡수 밴드는 폴리(1,5-디아미노나프탈렌)과 일치한다(Y.-B. Shim, J.-H. Park, J. Electrochem. Soc., 2000, 147, 381). The absorption band of PTHNWs (274, 330, and 493 ㎚) was found to be generally higher than that of thionine absorption band (272, 330, and 502 nm). Absorption bands at 274 and 330 of the ㎚ are each phenothiazine (phenothiazine) π-π * of the ring due to n-π * transition of the transition, and an amine group. Further, another absorption band at 630 nm corresponds to poly (1,5-diaminonaphthalene) (Y.-B. Shim, J.-H. Park, J. Electrochem. Soc ., 2000, 147 , 381 ).

이러한 결과는 점진적으로 산화되어 스핀리스 바이폴라론(spinless bipolron)을 생산하기 위해 점차적으로 산화될 때 나타나는 전도성 고분자의 전형적인 양상으로, 티오닌이 단량체의 산화에 의해 성공적으로 중합되었음을 시사한다(A. J. S. Ahammad, N. C. D. Nath, G.-R. Xu, S. Kim, J.-J. Lee, J. Electrochem. Soc., 2011, 158 (6) F106; Q. Gao, X. Cui, F. Yang, Y. Ma, and X. Yang, Biosens. Bioelectron., 2003, 19, 277; X.-G. Li, M.-R. Huang, S.-X. Li, Acta Materialia, 2004, 52, 5363).These results suggest that thionin has been successfully polymerized by the oxidation of monomers as a typical example of a conductive polymer that is gradually oxidized and gradually oxidized to produce a spinless bipolron (AJS Ahammad, NCD Nath, G.-R. Xu, S. Kim, J.-J. Lee, J. Electrochem. Soc ., 2011, 158 (6) F106; Q. Gao, X. Cui, F. Yang, Y. X. Yang, Biosens. Bioelectron ., 2003, 19, 277; X.-G. Li, M. R. Huang, S.-X. Li, Acta Materialia , 2004, 52, 5363).

한편, PTHNWs의 FTIR 스펙트럼은 도 3A에 나타낸 바와 같다. On the other hand, the FTIR spectrum of PTHNWs is as shown in FIG. 3A.

단량체 티오닌의 3330 및 3393 ㎝-1에서의 흡수 밴드는, 각각 대칭 및 비대칭 ??NH2 신축 진동(stretching vibration)에 기인하며, PTHNWs의 이차 아민(N-H)의 스트레칭에 기인하여 3324 ㎝-1에서 매우 넓은 밴드가 나타났다. 또한, 약 1600 ㎝-1에서의 흡수 밴드는 단량체 및 고분자의 일차 아민의 N-H 결합 모드에 기인한다.The absorption bands of monomer thionine at 3330 and 3393 cm -1 are due to symmetric and asymmetric NH 2 stretching vibrations and are due to stretching of the secondary amine (NH) of PTHNWs to 3324 cm -1 A very wide band appeared. The absorption band at about 1600 ㎝ -1 is due to the NH bond mode of the primary amine of the monomer and the polymer.

통상적으로 이 지역에서 이차 아민의 어떠한 밴드도 나타나지 않는 것을 고려할 때, PTHNWs는 이차 아민의 가교를 통해 유리 아민기를 포함하며 두 개의 단량체 단위로 형성되는 것을 알 수 있었다(도 3B 참조).
Considering that no band of secondary amines is normally present in this region, it was found that PTHNWs were formed by the cross-linking of secondary amines to form two monomer units containing free amine groups (see FIG. 3B).

또한, 본 발명의 PTHNWs를 유리 탄소 전극에 코팅(PTHNWs/GC)하여 전기화학적 성질을 측정한 결과, 통상적인 유리 탄소 전극(GC) 위에 전기화학적으로 제조된 PTH 박막과 일치하는 것으로 확인되었으며, PTHNWs의 산화 및 환원 피크는 각각 0.07 및 ??0.10 V(vs Ag/AgCl)에서 나타났다(도 4A 참조).The PTHNWs of the present invention were coated on a glass carbon electrode (PTHNWs / GC) and the electrochemical properties of the PTHNWs were measured. As a result, it was confirmed that the PTHNWs coincided with the electrochemically prepared PTH thin film on a conventional glass carbon electrode (GC) Oxidation and reduction peaks of 0.07 and 0.10 V (vs Ag / AgCl), respectively (see FIG. 4A).

또한, 전극반응에서 나타난 50 내지 300 ㎷/s의 스캔 속도 범위 이상에서 PTHNWs/GC의 유사 가역 산화환원 피크의 스캔 속도 의존은 표면-제어 프로세스이다(도 4B 참조).
In addition, the scan rate dependence of the pseudopeptide redox peak of PTHNWs / GC over the scan rate range of 50-300 ㎷ / s in electrode reactions is a surface-controlled process (see FIG. 4B).

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific descriptions are only for the preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(1) 염화제이철(FeCl3) 수용액을 제조하는 단계;
(2) 상기 염화제이철 수용액을 교반하면서 티오닌 단량체를 첨가하는 단계;
(3) 상기 용액에 과산화수소(H2O2)를 첨가하여 환류하는 단계; 및
(4) 침전물을 분리하여 세척 및 건조하는 단계;를 포함하는 화학적 방법을 이용한 폴리티오닌 나노선(Poly(thionine) nanowires; PTHNWs)의 합성방법.
(1) preparing an aqueous solution of ferric chloride (FeCl 3 );
(2) adding a thionine monomer while stirring the ferric chloride aqueous solution;
(3) adding hydrogen peroxide (H 2 O 2 ) to the solution and refluxing; And
(4) separating and washing the precipitate, and drying the precipitate. The method of synthesizing polythionine nanowires (PTHNWs) using a chemical method.
제 1항에 있어서,
화학적 합성방법은 템플릿-프리(template-free)의 방법으로, 수용액 내에서 염화제이철(FeCl3)의 촉매 반응과 산화제로서 과산화수소(H2O2)의 촉매/산소(catalyst/oxygen) 반응을 통해 티오닌(thionine)의 중합(polymerization)을 촉진하는 것을 특징으로 화학적 방법을 이용한 폴리티오닌 나노선(Poly(thionine) nanowires; PTHNWs)의 합성방법.
The method according to claim 1,
The chemical synthesis method is a template-free method in which the catalytic reaction of ferric chloride (FeCl 3 ) in aqueous solution and the catalytic / oxygen reaction of hydrogen peroxide (H 2 O 2 ) as oxidant A method for synthesizing polythionine nanowires (PTHNWs) using a chemical method, characterized by accelerating the polymerization of thionine.
삭제delete 삭제delete 삭제delete
KR1020120005487A 2012-01-18 2012-01-18 Method of synthesis of conducting polymer nanowires by chemical process KR101832823B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120005487A KR101832823B1 (en) 2012-01-18 2012-01-18 Method of synthesis of conducting polymer nanowires by chemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120005487A KR101832823B1 (en) 2012-01-18 2012-01-18 Method of synthesis of conducting polymer nanowires by chemical process

Publications (2)

Publication Number Publication Date
KR20130085067A KR20130085067A (en) 2013-07-29
KR101832823B1 true KR101832823B1 (en) 2018-02-27

Family

ID=48995394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120005487A KR101832823B1 (en) 2012-01-18 2012-01-18 Method of synthesis of conducting polymer nanowires by chemical process

Country Status (1)

Country Link
KR (1) KR101832823B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chemical Physics Letters. Elsevier B.V.. 2013, Vol. 559, pp. 56-60
Sensor and Actuators B. Elsevier B.V.. 2008, Vol. 129, pp. 779-783*

Also Published As

Publication number Publication date
KR20130085067A (en) 2013-07-29

Similar Documents

Publication Publication Date Title
Jamadade et al. Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior
Golczak et al. Comparative XPS surface study of polyaniline thin films
Xu et al. Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia coli O157: H7
Feng et al. Self-degradable template synthesis of polyaniline nanotubes and their high performance in the detection of dopamine
Wang Preparation and application of polyaniline nanofibers: an overview
Berti et al. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing
CN110698710B (en) Method for preparing covalent organic framework material film by quantitative layer-by-layer self-assembly
Dai et al. Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode
Chu et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods
Wang et al. Facile low-temperature growth of carbon nanosheets toward simultaneous determination of dopamine, ascorbic acid and uric acid
KR101816800B1 (en) Method of preparing metal nano wire and 3D metal nano catalyst
Zhang et al. Fabrication, characterization and electrochemistry of organic–inorganic multilayer films containing polyoxometalate and polyviologen via layer-by-layer self-assembly
JP2008128747A (en) High sensitivity gas sensor and its manufacturing method
KR101197986B1 (en) Fabrication of Polyvinyl alcohol/Poly3,4-ethylenedioxythiophenePEDOT coaxial nanofibers and PEDOT nanotubes using vapor deposition polymerization mediated electrospinning and their application as a chemical sensor
Zhang et al. Electrochemical synthesis of three-dimensional polyaniline network on 3-aminobenzenesulfonic acid functionalized glassy carbon electrode and its application
Zhou et al. Diameter-controlled synthesis of polyaniline microtubes and their electrocatalytic oxidation of ascorbic acid
Nath et al. A facile template-free chemical synthesis of poly (thionine) nanowires
KR101832823B1 (en) Method of synthesis of conducting polymer nanowires by chemical process
del Valle et al. Electro-synthesis and characterization of polymer nanostructures from terthiophene using silica mesoporous films as template
Sun et al. Layer‐by‐layer assemblies of polycation bearing Os complex with electroactive and electroinactive polyanions and their electrocatalytic reduction of nitrite
JP4899230B2 (en) Gas sensor material, manufacturing method thereof, and gas sensor
Zhou et al. Conducting polyaniline/poly (tetrafluoroethylene) composite films with tunable surface morphology and hydrophilicity
Prună et al. Electrochemical activity and microscopy of electrosynthesised poly (o-phenylenediamine) nanotubes
Wu et al. Micro/nanostructures of PANI obtained in the presence of water soluble polymers and their electrochemical sensing properties
JP4831561B2 (en) Organic-inorganic hybrid thin film and manufacturing method thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant