KR101816812B1 - A method for extending half-life of a protein - Google Patents

A method for extending half-life of a protein Download PDF

Info

Publication number
KR101816812B1
KR101816812B1 KR1020170033827A KR20170033827A KR101816812B1 KR 101816812 B1 KR101816812 B1 KR 101816812B1 KR 1020170033827 A KR1020170033827 A KR 1020170033827A KR 20170033827 A KR20170033827 A KR 20170033827A KR 101816812 B1 KR101816812 B1 KR 101816812B1
Authority
KR
South Korea
Prior art keywords
myc
pcdna3
protein
leu
substituent
Prior art date
Application number
KR1020170033827A
Other languages
Korean (ko)
Inventor
백광현
김경곤
배성렬
김명선
리란
Original Assignee
주식회사 유비프로틴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유비프로틴 filed Critical 주식회사 유비프로틴
Priority to KR1020170033827A priority Critical patent/KR101816812B1/en
Application granted granted Critical
Publication of KR101816812B1 publication Critical patent/KR101816812B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormones [GH] (Somatotropin)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins

Abstract

The present invention relates to a method for extending a half-life of a protein by comprising substituting one or more lysine residues in an amino acid sequence of a protein, or a protein of which a half-life is extended. A protein of which lysine residues are substituted remains in the body for a long period of time and has excellent treatment effects.

Description

단백질 반감기를 증가시키는 방법 {A method for extending half-life of a protein}{A method for extending half-life of a protein}

본 발명은 단백질 또는 (폴리)펩타이드의 하나 이상의 아미노산 잔기를 치환함에 의해 단백질 또는 (폴리)펩타이드의 반감기를 증가시키는 방법에 관한 것이다. 또한 이러한 방법에 의해 제작된 반감기가 증가된 단백질 또는 (폴리)펩타이드에 관한 것이다. The present invention relates to a method of increasing the half-life of a protein or (poly) peptide by substituting one or more amino acid residues of the protein or (poly) peptide. It also relates to a protein or (poly) peptide with an increased half-life produced by this method.

세포 내 단백질 분해는 리소좀 (lysosome)과 프로테아좀 (proteasome)에 의한 두 가지 경로를 통해 이루어진다. 단백질의 10 ~ 20%를 분해하는 리소좀 경로는 기질 특이성 및 정교한 시간적 조절성이 없다. 즉 내포운동 (endocytosis)에 의해 세포 내로 함입되어 들어간 세포 표면단백질이 리소좀에서 분해되는 것처럼 대부분 세포외 또는 막단백질을 분해하는 과정이다. 그러나, 진핵세포에서 단백질들이 선택적으로 분해되기 위해서는 유비퀴틴 (ubiquitin) 결합효소에 의해 목표단백질에 유비퀴틴이 결합한 후 폴리유비퀴틴 사슬이 형성되고, 이것이 프로테아좀에 의해 인지되고 분해되는 과정, 즉 유비퀴틴-프로테아좀 경로 (ubiquitin-proteasome pathway: UPP)를 거쳐야 한다. 진핵세포 단백질 중 80 ~ 90% 이상은 이 과정을 거쳐서 분해되며, 유비퀴틴-프로테아좀 경로는 진핵세포 내에 존재하는 대부분의 단백질 분해를 조절함으로써, 단백질의 전환과 항상성을 담당한다.Intracellular protein degradation occurs through two pathways, by lysosome and proteasome. The lysosomal pathway, which degrades 10-20% of the protein, lacks substrate specificity and precise temporal control. In other words, it is a process of decomposing most extracellular or membrane proteins, just as the cell surface protein that has been introduced into the cell by endocytosis is decomposed in the lysosome. However, in order to selectively degrade proteins in eukaryotic cells, polyubiquitin chains are formed after ubiquitin is bound to the target protein by ubiquitin-binding enzyme, which is recognized and degraded by the proteasome, that is, ubiquitin-pro. It must go through the ubiquitin-proteasome pathway (UPP). More than 80 to 90% of eukaryotic proteins are degraded through this process, and the ubiquitin-proteasome pathway is responsible for protein conversion and homeostasis by controlling the degradation of most proteins present in eukaryotic cells.

유비퀴틴은 매우 잘 보존된 76개의 아미노산으로 구성된 단백질로서 거의 모든 진핵세포에 존재하며, 그 중 6, 11, 27, 29, 33, 48, 63번째 아미노산 잔기는 라이신 (Lysine, Lys, K)이며, 48과 63번이 폴리유비퀴틴 사슬을 형성하는 데 주요한 역할을 한다. 유비퀴틴이 단백질에 표지되는 과정 (ubiquitination)에는 일련의 효소계 (E1, E2, E3)가 관여하며, 표지된 단백질은 ATP-의존성 단백질 분해효소 복합체인 26S 프로테아좀에 의해 분해된다. 유비퀴틴-프로테아좀 경로는 별개의 두 개의 연속된 과정을 포함하는데, 이 중 첫 번째는 기질에 여러 개의 유비퀴틴 분자를 공유결합으로 표지하는 과정이며, 두 번째는 유비퀴틴에 의해 표지된 단백질이 26S 프로테아좀 복합체에 의해 분해되는 과정이다. 유비퀴틴과 기질의 결합은 기질분자의 라이신 잔기와 유비퀴틴의 C-말단의 글리신 사이의 이소펩티드 결합 (isopeptide bond)을 통해 일어나며, 유비퀴틴-활성화 효소 E1, 유비퀴틴-결합 효소 E2, 유비퀴틴 리가아제 E3에 의해 유비퀴틴과 효소 간에 티올에스테르가 형성됨으로써 이루어진다. 그 중 E1 (ubiquitin-activating enzyme)은 ATP-의존적인 반응으로 유비퀴틴을 활성화시킨다. E2 (ubiquitin-conjugating enzyme)은 유비퀴틴-컨쥬게이션화 도메인 내의 시스테인 (cysteine) 잔기에 E1으로부터 활성화된 유비퀴틴을 받아서 이를 E3 리가아제 (ligase)에 전달하거나 또는 기질 단백질에 직접 전달한다. E3 효소 역시 기질 단백질의 라이신 잔기와 유비퀴틴의 글리신 잔기 간의 안정된 이소펩티드 결합을 촉매한다. 기질 단백질에 결합된 유비퀴틴의 C-말단 라이신 잔기에 또 다른 유비퀴틴이 연결될 수 있는데, 이러한 과정을 반복하여 기질 단백질에 여러 개의 유비퀴틴 분자가 가지를 친 모양으로 연결되어 폴리유비퀴틴 사슬을 형성하면 그 단백질은 26S 프로테아좀에 의해 인식되어 선택적으로 분해된다.Ubiquitin is a very well-preserved protein composed of 76 amino acids and is present in almost all eukaryotic cells, of which the 6, 11, 27, 29, 33, 48, 63 amino acid residues are lysine (Lysine, Lys, K), Numbers 48 and 63 play a major role in forming the polyubiquitin chain. A series of enzyme systems (E1, E2, E3) are involved in the process of labeling ubiquitin on a protein, and the labeled protein is degraded by the 26S proteasome, an ATP-dependent protease complex. The ubiquitin-proteasome pathway involves two separate successive processes, the first of which is the process of covalently labeling several ubiquitin molecules on the substrate, and the second is the process of labeling the protein labeled by ubiquitin with 26S protease. It is a process that is decomposed by the theasome complex. The binding of ubiquitin to the substrate occurs through an isopeptide bond between the lysine residue of the substrate molecule and the C-terminal glycine of ubiquitin, and by ubiquitin-activating enzyme E1, ubiquitin-binding enzyme E2, and ubiquitin ligase E3. It is formed by the formation of thiol esters between ubiquitin and the enzyme. Among them, E1 (ubiquitin-activating enzyme) activates ubiquitin through an ATP-dependent reaction. E2 (ubiquitin-conjugating enzyme) receives activated ubiquitin from E1 at a cysteine residue in the ubiquitin-conjugating domain and transfers it to E3 ligase or directly to a substrate protein. The E3 enzyme also catalyzes the stable isopeptide bond between the lysine residue of the substrate protein and the glycine residue of ubiquitin. Another ubiquitin can be linked to the C-terminal lysine residue of ubiquitin bound to the matrix protein.If this process is repeated to form a polyubiquitin chain by linking several ubiquitin molecules to the matrix protein in a branched shape, the protein is It is recognized by the 26S proteasome and is selectively degraded.

한편, 생체 내에서 치료적 효과를 갖는 다양한 종류의 단백질 및 (폴리)펩타이드가 알려져 있다. 이와 같이 생체 내에서 치료적 효과를 갖는 단백질 또는 (폴리)펩타이드는, 예를 들어, 성장호르몬분비호르몬 (growth hormone releasing hormone, GHRH), 성장호르몬 분비펩타이드 (growth hormone releasing peptide), 인터페론 (interferons, interferon-α or interferon-β), 인터페론수용체 (interferon receptors), 콜로니자극인자 (colony stimulating factors, CSFs), 글루카곤-유사 펩타이드 (glucagon-like peptides), 인터류킨 (interleukins), 인터류킨수용체 (interleukin receptors), 엔자임 (enzymes), 인터류킨결합단백질 (interleukin binding proteins), 사이토카인 결합단백질 (cytokine binding proteins), G-단백질-결합수용체 ( G-protein-coupled receptor), 인간성장호르몬 (human growth hormone, hGH), 대식세포 활성화인자 (macrophage activating factor), 대식세포 펩타이드 (macrophage peptide), B 세포인자 (B cell factor), T 세포인자 (T cell factor), 단백질 A (protein A), 알러지저해제 (allergy inhibitor), 세포괴사 글리코단백질 (cell necrosis glycoproteins), G-단백질-결합수용체 (G-protein-coupled receptor), 면역독소 (immunotoxin), 림프독소 (lymphotoxin), 종양괴사인자 (tumor necrosis factor), 종양억제자 (tumor suppressors), 전이성장인자 (metastasis growth factor), 알파-1 안티트립신 (alpha-1 antitrypsin), 알부민 (albumin), 알파-락트알부민 (alpha-lactalbumin), 아포지질단백질-E (apolipoprotein-E), 에리트로포이에틴 (erythropoietin), 고도로 글리코실화된 에리트로포이에틴 (highly glycosylated erythropoietin), 안지오포이에틴 (angiopoietins), 헤모글로빈 (hemoglobin), 트롬빈 (thrombin), 트롬빈수용체 활성화 펩타이드 (thrombin receptor activating peptide), 트롬보모둘린 (thrombomodulin), 제 VII인자 (factor VII), 제 VIIa인자 (factor VIIa), 제 VIII인자 (factor VIII), 제 IX인자 (factor IX), 제 XIII인자 (factor XIII), 플라스미노겐 활성화인자 (plasminogen activating factor), 유로키나아제 (urokinase), 스트렙토키나아제 (streptokinase), 히루딘 (hirudin), 단백질 C (protein C), C-반응성단백질 (C-reactive protein), 레닌저해제 (renin inhibitor), 콜라게네이즈 저해제 (collagenase inhibitor), 수퍼옥시드 디스무타아제 (superoxide dismutase), 렙틴 (leptin), 혈소판 유래 성장인자 (platelet-derived growth factor), 상피세포성장인자 (epithelial growth factor), 내피세포성장인자 (epidermal growth factor), 안지오스타틴 (angiostatin), 안지오텐신 (angiotensin), 골성장인자 (bone growth factor), 골자극단백질 (bone stimulating protein), 칼시토닌 (calcitonin), 인슐린 (insulin), 아트리오펩틴 (atriopeptin), 연골유도인자 (cartilage inducing factor), 피브린결합펩타이드 (fibrin-binding peptide), 엘카토닌 (elcatonin), 결합조직 활성인자 (connective tissue activating factor), 조직인자계 응고억제제 (tissue factor pathway inhibitor), 여포자극호르몬 (follicle stimulating hormone), 황체형성호르몬 (luteinizing hormone), 황체형성호르몬분비호르몬 (luteinizing hormone releasing hormone), 신경성장인자 (nerve growth factors), 부갑상선호르몬 (parathyroid hormone), 릴랙신 (relaxin), 세크레틴 (secretin), 소마토메딘 (somatomedin), 인슐린 유사 성장인자 (insulin-like growth factor), 부신피질호르몬 (adrenocortical hormone), 글루카곤 (glucagon), 콜레시토키닌 (cholecystokinin), 췌장폴리펩타이드 (pancreatic polypeptide), 가스트린분비펩타이드 (gastrin releasing peptide), 부신피질자극호르몬 방출인자 (corticotropin releasing factor), 갑상선자극호르몬 (thyroid stimulating hormone), 오토택신 (autotaxin), 락토페린 (lactoferrin), 미오스타틴 (myostatin), 수용체 (receptors), 수용체길항제 (receptor antagonists), 세포표면항원 (cell surface antigens), 바이러스 유래 백신항원 (virus derived vaccine antigens), 모노클로널 항체 (monoclonal antibodies), 폴리클로널 항체 (polyclonal antibodies), 및 항체단편을 포함한다. Meanwhile, various kinds of proteins and (poly) peptides having therapeutic effects in vivo are known. As such, proteins or (poly) peptides having a therapeutic effect in vivo are, for example, growth hormone releasing hormone (GHRH), growth hormone releasing peptide, interferons, interferon-α or interferon-β), interferon receptors, colony stimulating factors (CSFs), glucagon-like peptides, interleukins, interleukin receptors, Enzymes, interleukin binding proteins, cytokine binding proteins, G-protein-coupled receptors, human growth hormone (hGH), Macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, Cell necrosis glycoproteins, G-protein-coupled receptor, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressor ( tumor suppressors), metastasis growth factor, alpha-1 antitrypsin, albumin (albumin), alpha-lactalbumin (alph) a-lactalbumin), apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins, hemoglobin, hemoglobin (thrombin), thrombin receptor activating peptide, thrombomodulin, factor VII, factor VIIa, factor VIIa, factor VIII, factor IX ( factor IX), factor XIII, plasminogen activating factor, urokinase, streptokinase, hirudin, protein C, C- C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor), epithelial growth factor, endothelial growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein , Calcitonin, insulin, atriopeptin, cartilage inducing factor, fibrin-binding p eptide), elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, corpus luteum Luteinizing hormone releasing hormone, nerve growth factors, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor ( insulin-like growth factor), adrenocortical hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin releasing peptide, adrenocortical hormone releasing factor ( corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptors, receptor antagonists, cell surface antigens ), virus derived vaccine antigens, monoclonal antibodies, polyclonal antibodies, and antibody fragments.

β-트로핀 (β-trophin)은 인슐린을 분비하는 췌장의 β-세포를 빠르게 성장시킨다. β-트로핀은 제 2형 당뇨병 환자들에게 한 달 또는 일 년에 1회 투여함에 의해, 혈중 당 수치를 일정하게 조절하는 췌장 β-세포의 활동을 충분히 유지할 수 있다. 또한, 인슐린을 투여 받는 것이 아니라, β-트로핀의 투여에 의해 인체가 자신의 인슐린을 생성하므로 부작용이 거의 없다. β-트로핀이 마우스 간에서 일시적으로 발현이 되면 췌장-베타 세포의 증식이 촉진된다는 것이 보고된 바 있다 (Cell 153, 747-758, 2013). β-trophin rapidly grows insulin-secreting pancreatic β-cells. When β-tropine is administered to type 2 diabetic patients once a month or a year, it is possible to sufficiently maintain the activity of pancreatic β-cells that constantly regulate blood sugar levels. In addition, since the human body produces its own insulin by the administration of β-tropine rather than receiving insulin, there are almost no side effects. It has been reported that transient expression of β-tropine in mouse liver promotes the proliferation of pancreatic-beta cells (Cell 153, 747-758, 2013).

성장호르몬 (Growth hormone: GH)은 펩티드 호르몬의 일종으로 뇌하수체 전엽에서 합성 및 분비가 이루어지고, 체내에서 뼈, 연골 등의 성장뿐만 아니라 지방의 분해 및 단백질 합성을 촉진시키는 대사에도 관여한다. 성장호르몬은 왜소증에 대한 치료를 목적으로 사용될 수 있고, 왜소증은 선천성심장병, 만성폐질환, 만성신장질환, 만성소모성질환 등으로 인한 왜소증, 성장호르몬 결핍증이나 갑상선 기능 저하증, 당뇨병 등 호르몬 분비이상으로 인한 왜소증, 또는 선천적 염색체 질환인 터너 증후군을 포함할 수 있다. 성장호르몬은 STAT (signal transducers and activators of transcription) 단백질의 유전자 수준에서의 전사를 조절한다는 것이 보고되었다 (Oncogene, 19, 2585-2597, 2000). Growth hormone (GH) is a type of peptide hormone that is synthesized and secreted in the anterior pituitary gland, and is involved in metabolism that promotes the decomposition of fat and protein synthesis as well as the growth of bones and cartilage in the body. Growth hormone can be used for the purpose of treating dwarfism, and dwarfism is caused by abnormal hormone secretion such as congenital heart disease, chronic lung disease, chronic kidney disease, chronic wasting disease, growth hormone deficiency, hypothyroidism, diabetes, and other hormone secretion disorders. Dwarfism, or a congenital chromosomal disease, Turner syndrome. It has been reported that growth hormone regulates the transcription of STAT (signal transducers and activators of transcription) proteins at the gene level (Oncogene, 19, 2585-2597, 2000).

인슐린 (Insulin)은 체내 혈당을 조절한다. 인슐린은 췌장의 섬세포가 파괴되어 인슐린이 부족해져 혈당의 농도가 증가하는 제 1형 당뇨병 환자에게 투여될 수 있다. 또한, 체세포의 인슐린 수용체에 저항성이 생겨서 인슐린이 분비 됨에도 혈당의 농도가 조절되지 않는 제 2형 당뇨병 환자에게도 투여될 수 있다. 인슐린은 간에서 STAT3의 인산화를 자극하여 결과적으로 간에서의 글루코오스 (glucose) 항상성을 조절한다는 것이 보고되었다 (Cell Metabolism 3, 267-275, 2006). Insulin regulates blood sugar in the body. Insulin can be administered to type 1 diabetic patients, whose islet cells of the pancreas are destroyed, resulting in insufficient insulin and an increase in blood sugar levels. In addition, it can be administered to type 2 diabetic patients whose blood glucose concentration is not regulated even though insulin is secreted due to resistance to the insulin receptor of somatic cells. It has been reported that insulin stimulates the phosphorylation of STAT3 in the liver and consequently regulates glucose homeostasis in the liver (Cell Metabolism 3, 267-275, 2006).

인터페론 (Interferons)은 면역시스템의 세포들인 백혈구, 자연살해세포 (natural killer cell), 섬유아세포, 상피세포 등에 의해서 분비되고 만들어지며, 자연적으로 발생하는 단백질 군의 일종이다. 인터페론은 타입Ⅰ, 타입Ⅱ, 및 타입Ⅲ의 3가지로 분류되고 각 단백질들이 전달하는 수용체의 종류에 따라 결정된다. 인터페론의 작용 기전은 복잡하여 완전하게 이해되고 있지는 못하나, 바이러스, 세균, 암 그리고 다른 외부의 물질들에 대한 면역체계의 반응을 조절한다고 알려져 있다. 한편, 인터페론은 바이러스의 세포들 또는 암세포들을 직접적으로 사멸시키지 않는 대신에 면역시스템의 반응을 촉진하고, 수많은 세포의 단백질 분비를 조절하는 유전자 작용을 조절함으로써 암세포의 성장을 억제시킨다. 인터페론 타입Ⅰ에 포함된 IFN-α는 B형 간염과 C형 간염의 치료에 사용될 수 있음이 알려져 있으며, IFN-β는 다발성경화증을 치료하는데 이용될 수 있다. 인터페론-α는 STAT-1, -2와 -3를 증가시킨다는 것이 보고되었고 (J Immunol, 187, 2578-2585, 2011), 멜라노마 (melanoma) 세포에서는 인터페론-α에 의해 성장을 촉진하는 STAT3 단백질을 활성화한다는 것이 보고되었다 (Euro J Cancer, 45, 1315-1323, 2009). 세포 내에 인터페론-β을 처리하게 되면 AKT를 포함하는 신호전달 과정들의 활성이 유도된다는 것이 보고되었다 (Pharmaceuticals (Basel), 3, 994-1015, 2010). Interferons are secreted and made by immune system cells such as white blood cells, natural killer cells, fibroblasts, and epithelial cells, and are a kind of naturally occurring protein group. Interferon is classified into three types: type I, type II, and type III, and is determined according to the type of receptor that each protein delivers. The mechanism of action of interferon is complex and not fully understood, but is known to regulate the immune system's response to viruses, bacteria, cancer, and other foreign substances. On the other hand, interferon does not directly kill viral cells or cancer cells, but promotes the immune system's response and inhibits the growth of cancer cells by regulating gene functions that regulate the secretion of proteins in numerous cells. It is known that IFN-α contained in interferon type I can be used to treat hepatitis B and hepatitis C, and IFN-β can be used to treat multiple sclerosis. Interferon-α has been reported to increase STAT-1, -2 and -3 (J Immunol, 187, 2578-2585, 2011), and STAT3 protein that promotes growth by interferon-α in melanoma cells Has been reported to activate (Euro J Cancer, 45, 1315-1323, 2009). It has been reported that treatment of interferon-β in cells induces the activity of signaling processes including AKT (Pharmaceuticals (Basel), 3, 994-1015, 2010).

과립구집락자극인자 (G-CSF: Granulocyte-colony stimulating factor)는 과립구들과 줄기세포를 생성하고 혈류로 이 세포들을 방출시키도록 골수를 자극시키는 당단백질이다. 기능적으로 사이토카인과 호르몬의 역할을 하며 집락자극인자 (colony stimulating factor)의 한 유형이다. G-CSF는 조혈체계에 영향을 주는 것에 더하여 신경세포에 신경영양 인자로서 작용할 수 있다. 이것의 수용체는 실제로 뇌와 척수에 있는 뉴런에서 발현되며 중추신경계에서 G-CSF의 작용은 신경세포의 발생을 유도하고, 신경가소성을 증가시키며 세포예정사에 대응한다. 이러한 특성들로 인해 G-CSF는 뇌경색과 같은 신경성 질환의 치료의 발전을 위해 연구 중에 있다. G-CSF는 백혈구의 일종인 과립구들의 생성을 자극시킨다. 또한, 종양학과 혈액학에서 G-CSF의 재조합 형태는 화학치료 후의 호중구 감소증으로부터의 회복을 촉진하기 위해 주로 암 환자들에 사용된다. 과립구집락자극인자 (G-CSF)는 신경교종 (glioma) 세포에서 STAT3를 활성화시키고 이를 통해서 신경교종 증식에 관여한다는 것이 보고되었으며 (Cancer Biol Ther., 13(6), 389-400, 2012), 난소 상피암세포 (ovarian epithelial cancer cells)에서 발현된다는 것과 JAK2/STAT3 경로를 조절함에 따라 여성 자궁암의 병리학적 관련성이 있다는 것이 보고되었다 (Br J Cancer, 110, 133-145, 2014). Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that stimulates the bone marrow to produce granulocytes and stem cells and release these cells into the bloodstream. Functionally, it plays the role of cytokines and hormones and is a type of colony stimulating factor. In addition to affecting the hematopoietic system, G-CSF can act as a neurotrophic factor in neurons. Its receptors are actually expressed in neurons in the brain and spinal cord, and the action of G-CSF in the central nervous system induces the development of neurons, increases neuroplasticity, and responds to predicted cell death. Due to these characteristics, G-CSF is being studied for the development of the treatment of neurological diseases such as cerebral infarction. G-CSF stimulates the production of granulocytes, a type of white blood cell. In addition, in oncology and hematology, the recombinant form of G-CSF is mainly used in cancer patients to promote recovery from neutropenia after chemotherapy. Granulocyte colony stimulating factor (G-CSF) has been reported to activate STAT3 in glioma cells and thereby participate in glioma proliferation (Cancer Biol Ther., 13(6), 389-400, 2012), It has been reported that it is expressed in ovarian epithelial cancer cells and that there is a pathological association of female uterine cancer by regulating the JAK2/STAT3 pathway (Br J Cancer, 110, 133-145, 2014).

에리트로포이에틴 (Erythropoietin, EPO)은 당단백질 호르몬으로, 인터루킨 3 (IL-3), 인터루킨 6 (IL-6), 글루코코르티코이드 및 줄기세포인자와 같은 다양한 성장인자와 작용한다. 에리트로포이에틴은 사이토카인으로서 적혈구의 전구체 형태로 골수에 존재하면서 적혈구 생성에 관여한다. 또한, 에리트로포이에틴은 혈관수축에 의존적인 고혈압과도 연관이 있는데, 간에서 생성되는 체내 철분 조절호르몬 (iron-regulatory hormone)인 헵시딘 호르몬의 흡수를 억제시켜 철 이온의 흡수를 증가시킴으로써 조절한다. 또한, 에리트로포이에틴은 심근경색이나 뇌졸중과 같은 신경손상에 대한 뇌의 반응에 신경을 보호하는 중요한 역할을 한다. 뿐만 아니라 기억증진, 상처회복, 우울증치료에도 효과가 있는 것으로 알려져 있다. 에리트로포이에틴은 폐암이나 혈액 암에서 증가되며 에리트로포이에틴을 투여하게 될 경우 Erk1/2의 인산화에 의해 세포 주기 진행을 조절하여 저산소증에서 효과가 증가된다는 것이 보고되었다 (J Hematol Oncol., 6, 65, 2013). Erythropoietin (EPO) is a glycoprotein hormone and acts with various growth factors such as interleukin 3 (IL-3), interleukin 6 (IL-6), glucocorticoids and stem cell factors. Erythropoietin is a cytokine that is present in the bone marrow as a precursor of red blood cells and is involved in the production of red blood cells. In addition, erythropoietin is also associated with vasoconstriction-dependent hypertension. It is regulated by increasing the absorption of iron ions by inhibiting the absorption of hepcidin hormone, an iron-regulatory hormone produced in the liver. . In addition, erythropoietin plays an important role in protecting nerves in the brain's response to nerve damage such as myocardial infarction or stroke. In addition, it is known to be effective in improving memory, healing wounds, and treating depression. Erythropoietin is increased in lung or blood cancer, and it has been reported that when erythropoietin is administered, the effect in hypoxia is increased by controlling cell cycle progression by phosphorylation of Erk1/2 (J Hematol Oncol., 6, 65). , 2013).

재조합 섬유아세포성장인자-1 (Fibroblast growth factor-1: FGF-1)은 섬유아세포성장인자 중의 하나로써 산성 FGF이며 배아발달, 세포성장, 조직재생, 암 성장과 전이 등에 역할을 한다. 또한 임상 연구에서 FGF-1은 심장에서 혈관신생 (angiogenesis)을 유도한다는 것이 보고되었다 (BioDrugs., 11(5), 301308, 1999). FGF는 진피의 섬유아세포의 성장을 촉진시키는 물질이기 때문에 진피세포를 건강하게 유지시키고 피부탄력을 강화시켜 피부를 촉촉하게 만들어주며 피부세포의 활성화로 피부 전체의 인상이 밝아지면서 뽀얀 피부를 유지할 수 있게 한다. 또한, 상처가 나거나 손상된 피부를 신속하게 회복시키도록 도와주며 피부장벽을 강화시켜서 방어기능을 강화하기도 한다. HEK293 세포에 처리하게 되면 Erk 1/2 인산화가 증가한다는 것이 보고되었다 (Nature, 513(7518), 436-439, 2014). Recombinant fibroblast growth factor-1 (FGF-1) is an acidic FGF as one of fibroblast growth factors and plays a role in embryonic development, cell growth, tissue regeneration, cancer growth and metastasis. In addition, in clinical studies, it has been reported that FGF-1 induces angiogenesis in the heart (BioDrugs., 11(5), 301308, 1999). Since FGF is a substance that promotes the growth of fibroblasts in the dermis, it keeps the dermal cells healthy and strengthens skin elasticity to moisturize the skin, and the skin cells are activated to brighten the entire skin and maintain a white skin. do. In addition, it helps to quickly recover injured or damaged skin and strengthens the defense function by strengthening the skin barrier. It has been reported that treatment with HEK293 cells increases Erk 1/2 phosphorylation (Nature, 513(7518), 436-439, 2014).

혈관내피생성인자 A (Vascular endothelial growth factor A: VEGFA)는 혈관형성 (vasculogenesis) 및 혈관신생 (angiogenesis)을 자극하는 세포에서 생산되는 신호전달 단백질로써 저산소 환경의 조직에 산소를 저장하는 과정에 역할을 한다 (Mol Cell Endocrinol., 397, 5157, 2014). 기관지 천식과 당뇨병의 경우, VEGF의 혈장 농도가 높아져 있으며 (Diabetes, 48(11), 22292239, 2013), VEGF의 정상적인 기능은 배아 발달, 손상 후 새 혈관의 생성, 운동 후 근육과 막힌 혈관을 관통하는 새로운 혈관의 생성 등의 기능을 한다. VEGF가 과발현이 되면 질환이 생기게 된다. 고형암의 경우 계속적으로 혈액이 주입되지 않을 경우 더 이상 커질 수 없는데 VEGF가 발현되면 보다 더 성장하고 전이가 일어나게 된다. 내피세포의 성장 및 증식과 관련해서 중요한 인자로써 암세포에서 신생혈관생성에 작용을 하게 되는데, 이 때 PI3K/Akt/HIF-1α 신호전달과정이 관여한다는 것이 보고되었다 (Carcinogenesis, 34, 426-435, 2013). 또한 VEGF는 AKT 인산화를 유도한다는 것이 보고되었다 (Kidney Int., 68, 1648-1659, 2005). Vascular endothelial growth factor A (VEGFA) is a signaling protein produced by cells that stimulate angiogenesis and angiogenesis, and plays a role in the process of storing oxygen in tissues in a hypoxic environment. Hand (Mol Cell Endocrinol., 397, 5157, 2014). In the case of bronchial asthma and diabetes, plasma concentrations of VEGF are high (Diabetes, 48(11), 22292239, 2013), and the normal function of VEGF is to develop embryos, create new blood vessels after injury, and penetrate muscles and blocked blood vessels after exercise. It functions such as the creation of new blood vessels. Overexpression of VEGF leads to disease. In the case of solid cancer, if blood is not continuously injected, it cannot grow anymore, but when VEGF is expressed, it grows more and metastasis occurs. As an important factor related to the growth and proliferation of endothelial cells, cancer cells act on angiogenesis, and it has been reported that PI3K/Akt/HIF-1α signaling is involved (Carcinogenesis, 34, 426-435, 2013). It has also been reported that VEGF induces AKT phosphorylation (Kidney Int., 68, 1648-1659, 2005).

지방조직에서 분비되는 식욕억제단백질 (Leptin)과 식욕촉진호르몬 (Ghrelin) 중 식욕억제단백질 (Leptin)은 면역, 생식 및 조혈 작용에 중요한 역할을 하는 16-kDa의 체내 순환 호르몬이며 (Cell Res., 10, 81-92, 2000), 식욕촉진호르몬 (Ghrelin)은 성장호르몬 분비수용체 (the growth hormone secretagogue receptor; GHS-R)를 통해서 지방조직에서 분비되어 식욕을 느끼게 하는 28 아미노산으로 구성된 위 펩티드 (stomach-peptide)이며 (J Endocrinol., 192, 313323, 2007; Nature, 442, 656-660, 1999), preproghrelin으로부터 프로세싱 과정을 통해 형성된다 (Pediatr Res., 65, 3944, 2009; J Biol Chem., 281(50), 3886738870, 2006). 식욕억제단백질 (Leptin)은 지방조직에서 분비되어 포만감을 느끼게 하여 더 이상 음식을 섭취하지 않도록 느끼게 하는 호르몬으로, 이 호르몬 분비에 문제가 발생하면 음식을 먹고 싶은 욕구가 발생된다. 과당이 인슐린의 분비를 방해하고 렙틴 분비를 낮추고 그렐린의 분비를 촉진시켜 식욕을 증가시키는 것이 보고된 바 있다 (J Biol Chem., 277(7), 5667-5674, 2002; I.J.S.N., 7(1), 06-15, 2016). 또한 식욕억제단백질 (Leptin)은 유방암 세포에서 AKT의 인산화를 증가시킨다는 것이 보고되었으며 (Cancer Biol Ther., 16(8), 1220-1230, 2015), 자궁암에서는 PI3K/AKT 신호전달 과정에 의해 암 세포 성장을 자극시킨다는 것이 보고되었다 (Int J Oncol., 49(2), 847, 2016). 반면에 식욕촉진호르몬 (Ghrelin)은 성장호르몬 분비수용체 (the growth hormone secretagogue receptor; GHS-R)를 통해서 세포 성장을 조절하며, 체내 칼슘 조절을 통해서 STAT3를 증가시킨다는 것이 보고되었다 (Mol Cell Endocrinol., 285, 19-25, 2008). Among the appetite suppressing proteins (Leptin) and appetite promoting hormones (Ghrelin) secreted from adipose tissue, Leptin is a 16-kDa circulating hormone in the body that plays an important role in immune, reproductive and hematopoietic functions (Cell Res., 10, 81-92, 2000), appetite promoting hormone (Ghrelin) is secreted from adipose tissue through the growth hormone secretagogue receptor (GHS-R), a gastric peptide consisting of 28 amino acids that makes you feel appetite. -peptide) (J Endocrinol., 192, 313323, 2007; Nature, 442, 656-660, 1999), formed through processing from preproghrelin (Pediatr Res., 65, 3944, 2009; J Biol Chem., 281(50), 3886738870, 2006). Appetite suppressing protein (Leptin) is a hormone that is secreted by adipose tissue and makes people feel full and no longer eats food. When a problem occurs in secretion of this hormone, the desire to eat is generated. It has been reported that fructose interferes with the secretion of insulin, lowers leptin secretion, and promotes ghrelin secretion, thereby increasing appetite (J Biol Chem., 277(7), 5667-5674, 2002; IJSN, 7(1)). , 06-15, 2016). In addition, it has been reported that the appetite suppressing protein (Leptin) increases the phosphorylation of AKT in breast cancer cells (Cancer Biol Ther., 16(8), 1220-1230, 2015). It has been reported to stimulate growth (Int J Oncol., 49(2), 847, 2016). On the other hand, it has been reported that Ghrelin regulates cell growth through the growth hormone secretagogue receptor (GHS-R) and increases STAT3 through the regulation of calcium in the body (Mol Cell Endocrinol., 285, 19-25, 2008).

글루카곤유사펩티드 (GLP-1)는 회장과 대장의 L세포에서 분비되는 인크레틴(incretin) 호르몬으로서 인슐린 분비를 증가시킨다. 특히, 포도당 농도에 따라 인슐린 분비를 증가시키는 특징이 있어 저혈당이 발생하지 않으며, 이러한 특징으로 인해 2형 당뇨병 치료에 이용될 수 있다고 보고되었다 (Pharmaceuticals (Basel), 3(8), 2554-2567, 2010; Diabetologia, 36(8), 741-744, 1993). 또한 GLP-1은 상부 소화기관의 운동저하, 식욕억제 등의 작용이 있고 기존에 존재하는 췌장의 β세포를 증식시킬 수도 있다 (Endocr Rev., 16(3), 390-410, 1995; Endocrinology, 141(12), 4600-4605, 2000; Dig Dis Sci., 38(4), 665-673, 1993; Am J Physiol., 273(5 Pt 1), E981- 988, 1997). 그러나 GLP-1의 혈중 반감기는 약 2분 정도로 매우 짧기 때문에 약제로 개발하기에는 큰 단점을 갖고 있다. 또한 glucose 항상성을 조절하며 인슐린 저항성에 중요한 역할을 하기 때문에 현재 당뇨 치료제로 사용되며 STAT3 활성을 유도한다는 것이 보고되었다 (Biochem Biophys Res Commun., 425(2), 304-308, 2012). Glucagon-like peptide (GLP-1) is an incretin hormone secreted from L cells in the ileum and colon and increases insulin secretion. In particular, it has been reported that hypoglycemia does not occur due to the characteristic of increasing insulin secretion depending on the glucose concentration, and it can be used for the treatment of type 2 diabetes due to this characteristic (Pharmaceuticals (Basel), 3(8), 2554-2567, 2010; Diabetologia, 36(8), 741-744, 1993). In addition, GLP-1 has the effect of lowering the movement of the upper digestive system and suppressing appetite, and can proliferate existing β cells of the pancreas (Endocr Rev., 16(3), 390-410, 1995; Endocrinology, 141(12), 4600-4605, 2000; Dig Dis Sci., 38(4), 665-673, 1993; Am J Physiol., 273(5 Pt 1), E981-988, 1997). However, since the half-life of GLP-1 in the blood is very short, about 2 minutes, it has a big disadvantage to develop as a drug. In addition, since it regulates glucose homeostasis and plays an important role in insulin resistance, it is currently used as a therapeutic agent for diabetes and has been reported to induce STAT3 activity (Biochem Biophys Res Commun., 425(2), 304-308, 2012).

골형성단백질 (BMP2)은 TGF-β의 수퍼패밀리 (superfamily) 중 하나로서, 연골과 뼈 형성에 중요한 역할을 하는 단백질이며, 세포성장, 세포사멸 및 분화에 있어 중추적인 역할을 한다 (Genes Dev., 10, 1580-1594, 1996; Development, 122, 3725-3734, 1996; J Biol Chem., 274, 26503-26510, 1999; J Exp Med., 189, 1139-1147, 1999). 골수종 환자에서 나타나는 골 장애에 의해서 세포사멸을 유도하는 항암효과를 보이게 되어 다발성 골수종의 치료제로도 사용될 수 있다고 보고되었다 (Blood, 96(6), 2005-2011, 2000; Leuk Lymphoma., 43(3), 635-639, 2002). Bone morphogenetic protein (BMP2) is one of the superfamily of TGF-β, a protein that plays an important role in cartilage and bone formation, and plays a pivotal role in cell growth, apoptosis, and differentiation (Genes Dev. , 10, 1580-1594, 1996; Development, 122, 3725-3734, 1996; J Biol Chem., 274, 26503-26510, 1999; J Exp Med., 189, 1139-1147, 1999). It has been reported that it can be used as a treatment for multiple myeloma as it exhibits anticancer effects that induce apoptosis due to bone disorders in myeloma patients (Blood, 96(6), 2005-2011, 2000; Leuk Lymphoma., 43(3)). ), 635-639, 2002).

면역글로불린 G (IgG)는 항체의 일종으로서 혈액 및 세포외액에서 발견되는 주요한 항체의 하나이며 세포 조직의 감염을 조절한다. IgG는 작은 크기의 단량체이며, 이는 IgG가 조직으로 쉽게 관류할 수 있도록 한다 (Basic Histology, McGraw-Hill, ISBN 0-8385-0590-2, 2003). IgG는 면역결핍, 자가면역질환, 및 감염을 치료하는데 사용된다 (Proc Natl Acad Sci U S A., 107(46), 19985-19990, 2010). 추가 부탁드립니다.Immunoglobulin G (IgG) is a type of antibody, one of the major antibodies found in blood and extracellular fluid, and controls infection of cellular tissues. IgG is a small sized monomer, which makes it easy to permeate into tissues. (Basic Histology, McGraw-Hill, ISBN 0-8385-0590-2, 2003). IgG is used to treat immunodeficiency, autoimmune diseases, and infections (Proc Natl Acad Sci US A., 107(46), 19985-19990, 2010). Please add.

체내 항상성의 조절과 관련된 단백질 관련 치료제는 암의 유발 위험을 증가시키는 등의 부작용을 갖고 있다. 예를 들어, 인슐린분비호르몬분해효소 (DPP-4) 저해제 계열의 치료제는 갑상선암 유발 가능성이 제기되었고, 인슐린 글라진은 유방암 위험도를 증가시키는 것으로 알려져 있다. 또한, 성장호르몬분비 이상 질환을 가진 환자가 성장호르몬을 지속적으로 투여하거나 과다 투여할 경우 당뇨병, 미세혈관장애, 조기 사망과 관계가 있는 것으로 보고되고 있다. 이와 같이, 기존 단백질 관련 치료제의 부작용으로 인해 새로운 치료제 개발의 필요성이 높아짐에 따라, 본 발명자들은 단백질의 아미노산 서열에 존재하는 하나 이상의 라이신 잔기를 치환시킴으로써 단백질이 유비퀴틴-프로테아좀 시스템에 의해 분해되는 것을 방지하여 단백질의 반감기를 증가시키는 방법을 완성하였다.Protein-related treatments related to the regulation of homeostasis in the body have side effects such as increasing the risk of cancer. For example, insulin secretion hormone degrading enzyme (DPP-4) inhibitors have been suggested to induce thyroid cancer, and insulin glargine is known to increase the risk of breast cancer. In addition, it has been reported that continuous or excessive administration of growth hormone in patients with abnormal growth hormone secretion diseases is associated with diabetes, microvascular disorders, and early death. As described above, as the necessity of developing new therapeutic agents increases due to the side effects of existing protein-related therapeutic agents, the present inventors have replaced one or more lysine residues present in the amino acid sequence of the protein, thereby degrading the protein by the ubiquitin-proteasome system. To increase the half-life of the protein was completed.

본 발명은 단백질 또는(폴리)펩타이드의 반감기를 증가시키는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method of increasing the half-life of a protein or (poly) peptide.

또한 본 발명은 아미노산 서열에 존재하는 하나 이상의 라이신 잔기가 치환된 단백질로서, 증가된 반감기를 갖는 단백질을 제공하는 하는 것을 목적으로 한다.Another object of the present invention is to provide a protein having an increased half-life as a protein in which one or more lysine residues present in an amino acid sequence are substituted.

또한, 본 발명은 증가된 반감기를 갖는 단백질을 포함하는 약학 조성물을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a pharmaceutical composition comprising a protein having an increased half-life.

상기 목적을 달성하기 위해, 본 발명은 단백질의 아미노산 서열에 존재하는 하나 이상의 라이신 잔기를 치환하는 것을 포함하는, 단백질의 반감기를 증가시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a method of increasing the half-life of a protein, comprising replacing one or more lysine residues present in the amino acid sequence of the protein.

본 발명에서, 단백질의 라이신 잔기는 보존적 아미노산으로 치환될 수 있다. 본 발명에서, "보존적 아미노산 치환"은 아미노산 잔기가 유사한, 예를 들어, 전하 또는 소수성을 갖는 화학적 특성을 갖는 측쇄를 가지는 다른 아미노산 잔기에 의해 치환되는 것을 의미한다. 일반적으로 보존적 아미노산 치환에 의해 단백질의 기능적 특성은 실질적으로 변화하지 않는다. 유사한 화학적 특성을 갖는 측쇄를 갖는 아미노산 그룹의 예는 1) 지방족 측쇄: 글리신, 알라닌, 발린, 류신 및 이소류신; 2) 지방족-하이드록실 측쇄: 세린 및 트레오닌; 3) 아미드-함유 측쇄: 아스파라긴 및 글루타민; 4) 방향족 측쇄: 페닐알라닌, 티로신 및 트립토판; 5) 염기성 측쇄: 라이신, 아르기닌 및 히스티딘; 6) 산성 측쇄: 아스파르 테이트 및 글루타메이트 7) 황-함유 측쇄: 시스테인 및 메티오닌을 포함한다.In the present invention, the lysine residue of the protein may be substituted with a conservative amino acid. In the present invention, "conservative amino acid substitution" means that an amino acid residue is substituted by another amino acid residue having a side chain having a similar, for example, charged or hydrophobic chemical property. In general, conservative amino acid substitutions do not substantially change the functional properties of the protein. Examples of groups of amino acids having side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine and tryptophan; 5) basic side chains: lysine, arginine and histidine; 6) Acidic side chains: aspartate and glutamate 7) Sulfur-containing side chains: include cysteine and methionine.

본 발명에서 단백질의 라이신 잔기는 염기성 측쇄를 포함하는 아르기닌 또는 히스티딘으로 치환될 수 있으며, 바람직하게는 아르기닌 잔기로 치환된다.In the present invention, the lysine residue of the protein may be substituted with arginine or histidine containing a basic side chain, preferably with an arginine residue.

본 발명에 따르면 단백질의 아미노산 서열에 존재하는 하나 이상의 라이신 잔기가 아르기닌으로 치환된 단백질은 반감기가 증가되어 체내에서 오랜 시간 잔류할 수 있다.According to the present invention, a protein in which at least one lysine residue in the amino acid sequence of a protein is substituted with arginine has an increased half-life and may remain in the body for a long time.

도 1은 β-트로핀 발현벡터의 구조를 나타낸 것이다.
도 2는 β-트로핀 유전자에 대한 PCR 결과물을 나타낸 것이다.
도 3은 HEK-293T 세포에서 β-트로핀 플라스미드 유전자의 발현을 나타낸 것이다.
도 4는 유비퀴틴화 분석을 통한 β-트로핀의 분해경로를 제시한다.
도 5는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 β-트로핀 치환체의 유비퀴틴화 정도를 나타낸다.
도 6은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 β-트로핀의 반감기 변화를 나타낸다.
도 7은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 8은 성장호르몬 발현 벡터의 구조를 나타낸다.
도 9는 성장호르몬에 대한 PCR 결과물을 나타낸다.
도 10은 HEK-293T 세포에서 성장호르몬 플라스미드 유전자의 발현을 나타낸 것이다.
도 11은 유비퀴틴화 분석을 통한 성장호르몬의 분해경로를 제시한다.
도 12는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 성장호르몬 치환체의 유비퀴틴화 정도를 나타낸다.
도 13은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 성장호르몬의 반감기 변화를 나타낸다.
도 14는 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 15는 인슐린 발현벡터의 구조를 나타낸다.
도 16은 인슐린에 대한 PCR 결과를 나타낸다.
도 17은 HEK-293T 세포에서 인슐린 플라스미드 유전자의 발현을 나타낸다.
도 18은 유비퀴틴화 분석을 통한 인슐린의 분해경로를 제시한다.
도 19는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 인슐린 치환체의 유비퀴틴화 정도를 나타낸다.
도 20은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 인슐린의 반감기 변화를 나타낸다.
도 21은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 22는 인터페론-α 발현벡터의 구조를 나타낸다.
도 23은 인터페론-α 유전자에 대한 PCR 결과를 나타낸다.
도 24는 HEK-293T 세포에서 인터페론-α 플라스미드 유전자의 발현을 나타낸다.
도 25는 유비퀴틴화 분석을 통한 인터페론-α의 분해경로를 제시한다.
도 26은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 인터페론-α 치환체의 유비퀴틴화 정도를 나타낸다.
도 27은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 인터페론-α의 반감기 변화를 나타낸다.
도 28은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 29는 G-CSF 발현벡터의 구조를 나타낸다.
도 30은 G-CSF 유전자에 대한 PCR 결과를 나타낸다.
도 31은 HEK-293T 세포에서 G-CSF 플라스미드 유전자의 발현을 나타낸다.
도 32는 유비퀴틴화 분석을 통한 G-CSF의 분해경로를 제시한다.
도 33은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 G-CSF 치환체의 유비퀴틴화 정도를 나타낸다.
도 34는 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 G-CSF의 반감기 변화를 나타낸다.
도 35은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 36은 인터페론-β 발현벡터의 구조를 나타낸다.
도 37은 인터페론-β 유전자에 대한 PCR 결과를 나타낸다.
도 38은 HEK-293T 세포에서 인터페론-β 플라스미드 유전자의 발현을 나타낸다.
도 39는 유비퀴틴화 분석을 통한 인터페론-β의 분해경로를 제시한다.
도 40은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 인터페론-β 치환체의 유비퀴틴화 정도를 나타낸다.
도 41은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 인터페론-β 의 반감기 변화를 나타낸다.
도 42는 JAK-STAT 및 PI3K/AKT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 43은 에리트로포이에틴 발현벡터의 구조를 나타낸다.
도 44는 에리트로포이에틴 유전자에 대한 PCR 결과를 나타낸다.
도 45는 HEK-293T 세포에서 에리트로포이에틴 플라스미드 유전자의 발현을 나타낸다.
도 46은 유비퀴틴화 분석을 통한 에리트로포이에틴의 분해경로를 제시한다.
도 47은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 에리트로포이에틴 치환체의 유비퀴틴화 정도를 나타낸다.
도 48은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 에리트로포이에틴의 반감기 변화를 나타낸다.
도 49는 MAPK/ERK 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 50은 BMP2 발현벡터의 구조를 나타낸다.
도 51은 BMP2 유전자에 대한 PCR 결과를 나타낸다.
도 52는 HEK-293T 세포에서 BMP2 플라스미드 유전자의 발현을 나타낸다.
도 53은 유비퀴틴화 분석을 통한 BMP2의 분해경로를 제시한다.
도 54는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 BMP2 치환체의 유비퀴틴화 정도를 나타낸다.
도 55는 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 BMP2의 반감기 변화를 나타낸다.
도 56은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 57은 섬유아세포성장인자-1 (FGF-1) 발현벡터의 구조를 나타낸다.
도 58은 섬유아세포성장인자-1 (FGF-1) 유전자에 대한 PCR 결과를 나타낸다.
도 59는 HEK-293T 세포에서 섬유아세포성장인자-1 (FGF-1) 플라스미드 유전자의 발현을 나타낸다.
도 60은 유비퀴틴화 분석을 통한 섬유아세포성장인자-1 (FGF-1)의 분해경로를 제시한다.
도 61은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 섬유아세포성장인자-1 (FGF-1) 치환체의 유비퀴틴화 정도를 나타낸다.
도 62는 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 섬유아세포성장인자-1 (FGF-1)의 반감기 변화를 나타낸다.
도 63은 MAPK/ERK 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 64는 렙틴 (Leptin) 발현벡터의 구조를 나타낸다.
도 65는 렙틴 (Leptin) 유전자에 대한 PCR 결과를 나타낸다.
도 66은 HEK-293T 세포에서 렙틴 (Leptin) 플라스미드 유전자의 발현을 나타낸다.
도 67은 유비퀴틴화 분석을 통한 렙틴 (Leptin)의 분해경로를 제시한다.
도 68은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 렙틴 (Leptin) 치환체의 유비퀴틴화 정도를 나타낸다.
도 69는 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 렙틴 (Leptin)의 반감기 변화를 나타낸다.
도 70은 PI3K/AKT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 71은 혈관내피성장인자 (VEGFA) 발현벡터의 구조를 나타낸다.
도 72는 혈관내피성장인자 (VEGFA) 유전자에 대한 PCR 결과를 나타낸다.
도 73은 HEK-293T 세포에서 혈관내피성장인자 (VEGFA) 플라스미드 유전자의 발현을 나타낸다.
도 74는 유비퀴틴화 분석을 통한 혈관내피성장인자 (VEGFA)의 분해경로를 제시한다.
도 75는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 혈관내피성장인자 (VEGFA) 치환체의 유비퀴틴화 정도를 나타낸다.
도 76은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 혈관내피성장인자 (VEGFA)의 반감기 변화를 나타낸다.
도 77은 JAK-STAT 및 PI3K/AKT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 78은 그렐린/오베스타틴 프리프로펩타이드 (Ghrelin/obestatin prepropeptide) (Prepro-GHRL) 발현벡터의 구조를 나타낸다.
도 79는 그렐린/오베스타틴 프리프로펩타이드 유전자에 대한 PCR 결과를 나타낸다.
도 80은 HEK-293T 세포에서 Prepro-GHRL 플라스미드 유전자의 발현을 나타낸다.
도 81는 유비퀴틴화 분석을 통한 Prepro-GHRL의 분해경로를 제시한다.
도 82는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 Prepro-GHRL 치환체의 유비퀴틴화 정도를 나타낸다.
도 83은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 Prepro-GHRL의 반감기 변화를 나타낸다.
도 84은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 85는 GHRL 발현벡터의 구조를 나타낸다.
도 86은 GHRL 유전자에 대한 PCR 결과를 나타낸다.
도 87은 HEK-293T 세포에서 GHRL 플라스미드 유전자의 발현을 나타낸다.
도 88는 유비퀴틴화 분석을 통한 GHRL의 분해경로를 제시한다.
도 89는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 GHRL 치환체의 유비퀴틴화 정도를 나타낸다.
도 90은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 GHRL의 반감기 변화를 나타낸다.
도 91은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 92는 글루카곤유사펩타이드-1 (GLP-1) 발현벡터의 구조를 나타낸다.
도 93은 글루카곤유사펩타이드-1 (GLP-1) 유전자에 대한 PCR 결과를 나타낸다.
도 94는 HEK-293T 세포에서 글루카곤유사펩타이드-1 (GLP-1) 플라스미드 유전자의 발현을 나타낸다.
도 95는 유비퀴틴화 분석을 통한 글루카곤유사펩타이드-1 (GLP-1)의 분해경로를 제시한다.
도 96은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 글루카곤유사펩타이드-1 (GLP-1) 치환체의 유비퀴틴화 정도를 나타낸다.
도 97은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 글루카곤유사펩타이드-1 (GLP-1)의 반감기 변화를 나타낸다.
도 98은 JAK-STAT 시그널 유도와 같은 효과에 대한 결과를 나타낸다.
도 99는 IgG 중쇄 발현벡터의 구조를 나타낸다.
도 100은 IgG 중쇄 유전자에 대한 PCR 결과를 나타낸다.
도 101은 HEK-293T 세포에서 IgG 중쇄 플라스미드 유전자의 발현을 나타낸다.
도 102는 유비퀴틴화 분석을 통한 IgG 중쇄의 분해경로를 제시한다.
도 103은 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 IgG 중쇄 치환체의 유비퀴틴화 정도를 나타낸다.
도 104는 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 IgG 중쇄의 반감기 변화를 나타낸다.
도 105는 IgG 경쇄 발현벡터의 구조를 나타낸다.
도 106은 IgG 경쇄 유전자에 대한 PCR 결과를 나타낸다.
도 107은 HEK-293T 세포에서 IgG 경쇄 플라스미드 유전자의 발현을 나타낸다.
도 108은 유비퀴틴화 분석을 통한 IgG 경쇄의 분해경로를 제시한다.
도 109는 야생형과 비교하여 라이신 잔기가 아르기닌으로 치환된 IgG 경쇄 치환체의 유비퀴틴화 정도를 나타낸다.
도 110은 단백질합성 저해제 시클로헥사미드 (cycloheximide, CHX)으로 처리한 후 IgG 중쇄의 반감기 변화를 나타낸다.
1 shows the structure of the β-tropin expression vector.
Figure 2 shows the results of PCR for the β-tropin gene.
Figure 3 shows the expression of the β-tropin plasmid gene in HEK-293T cells.
Figure 4 shows the decomposition pathway of β-tropine through ubiquitination analysis.
5 shows the degree of ubiquitination of β-tropine substituents in which lysine residues are substituted with arginine compared to wild type.
6 shows the change in half-life of β-tropine after treatment with the protein synthesis inhibitor cycloheximide (CHX).
7 shows the results for effects such as induction of JAK-STAT signal.
8 shows the structure of a growth hormone expression vector.
9 shows PCR results for growth hormone.
10 shows the expression of the growth hormone plasmid gene in HEK-293T cells.
11 shows the decomposition pathway of growth hormone through ubiquitination analysis.
12 shows the degree of ubiquitination of growth hormone substituents in which lysine residues are substituted with arginine compared to wild type.
13 shows the change in half-life of growth hormone after treatment with the protein synthesis inhibitor cycloheximide (CHX).
14 shows the results for effects such as induction of JAK-STAT signal.
15 shows the structure of the insulin expression vector.
16 shows PCR results for insulin.
17 shows the expression of insulin plasmid gene in HEK-293T cells.
18 shows the pathway of insulin degradation through ubiquitination analysis.
19 shows the degree of ubiquitination of insulin substituents in which lysine residues are substituted with arginine compared to wild type.
20 shows the change in half-life of insulin after treatment with the protein synthesis inhibitor cycloheximide (CHX).
Figure 21 shows the results for the same effect as JAK-STAT signal induction.
22 shows the structure of the interferon-α expression vector.
23 shows PCR results for the interferon-α gene.
24 shows the expression of interferon-α plasmid gene in HEK-293T cells.
25 shows the decomposition pathway of interferon-α through ubiquitination analysis.
26 shows the degree of ubiquitination of interferon-α substituents in which lysine residues are substituted with arginine compared to wild-type.
Figure 27 shows the half-life change of interferon-α after treatment with the protein synthesis inhibitor cycloheximide (CHX).
28 shows the results for effects such as induction of JAK-STAT signal.
29 shows the structure of the G-CSF expression vector.
30 shows PCR results for the G-CSF gene.
31 shows the expression of the G-CSF plasmid gene in HEK-293T cells.
Figure 32 shows the decomposition pathway of G-CSF through ubiquitination analysis.
33 shows the degree of ubiquitination of G-CSF substituents in which lysine residues are substituted with arginine compared to wild type.
34 shows the change in half-life of G-CSF after treatment with the protein synthesis inhibitor cycloheximide (CHX).
35 shows the results for the same effect as JAK-STAT signal induction.
36 shows the structure of an interferon-β expression vector.
37 shows PCR results for the interferon-β gene.
38 shows the expression of interferon-β plasmid gene in HEK-293T cells.
39 shows the pathway of decomposition of interferon-β through ubiquitination analysis.
40 shows the degree of ubiquitination of interferon-β substituents in which lysine residues are substituted with arginine compared to wild-type.
Figure 41 shows the half-life change of interferon-β after treatment with the protein synthesis inhibitor cycloheximide (CHX).
42 shows results for effects such as induction of JAK-STAT and PI3K/AKT signals.
43 shows the structure of an erythropoietin expression vector.
44 shows PCR results for the erythropoietin gene.
Figure 45 shows the expression of erythropoietin plasmid gene in HEK-293T cells.
Figure 46 shows the decomposition pathway of erythropoietin through ubiquitination analysis.
47 shows the degree of ubiquitination of erythropoietin substituents in which lysine residues are substituted with arginine compared to wild type.
48 shows the change in half-life of erythropoietin after treatment with the protein synthesis inhibitor cycloheximide (CHX).
49 shows the results for effects such as induction of MAPK/ERK signals.
50 shows the structure of the BMP2 expression vector.
51 shows PCR results for the BMP2 gene.
52 shows the expression of the BMP2 plasmid gene in HEK-293T cells.
53 shows the decomposition pathway of BMP2 through ubiquitination analysis.
54 shows the degree of ubiquitination of BMP2 substituents in which lysine residues are substituted with arginine compared to wild type.
55 shows the change in half-life of BMP2 after treatment with the protein synthesis inhibitor cycloheximide (CHX).
56 shows the results for effects such as induction of JAK-STAT signal.
57 shows the structure of a fibroblast growth factor-1 (FGF-1) expression vector.
58 shows PCR results for the fibroblast growth factor-1 (FGF-1) gene.
59 shows the expression of fibroblast growth factor-1 (FGF-1) plasmid gene in HEK-293T cells.
Figure 60 shows the decomposition pathway of fibroblast growth factor-1 (FGF-1) through ubiquitination analysis.
61 shows the degree of ubiquitination of fibroblast growth factor-1 (FGF-1) substituents in which lysine residues are substituted with arginine compared to wild type.
Figure 62 shows the half-life change of fibroblast growth factor-1 (FGF-1) after treatment with the protein synthesis inhibitor cycloheximide (CHX).
63 shows the results for effects such as induction of MAPK/ERK signals.
64 shows the structure of a leptin expression vector.
65 shows PCR results for the leptin gene.
Figure 66 shows the expression of the leptin plasmid gene in HEK-293T cells.
67 shows a pathway for degradation of leptin through ubiquitination analysis.
Figure 68 shows the degree of ubiquitination of the leptin substituent in which the lysine residue is substituted with arginine compared to the wild type.
69 shows the change in half-life of leptin after treatment with the protein synthesis inhibitor cycloheximide (CHX).
70 shows the results for the same effect as PI3K/AKT signal induction.
71 shows the structure of the vascular endothelial growth factor (VEGFA) expression vector.
72 shows PCR results for vascular endothelial growth factor (VEGFA) gene.
73 shows the expression of vascular endothelial growth factor (VEGFA) plasmid gene in HEK-293T cells.
74 shows the decomposition pathway of vascular endothelial growth factor (VEGFA) through ubiquitination analysis.
75 shows the degree of ubiquitination of vascular endothelial growth factor (VEGFA) substituents in which lysine residues are substituted with arginine compared to wild type.
76 shows changes in half-life of vascular endothelial growth factor (VEGFA) after treatment with the protein synthesis inhibitor cycloheximide (CHX).
77 shows the results for effects such as induction of JAK-STAT and PI3K/AKT signals.
Figure 78 shows the structure of the expression vector ghrelin / obestatin prepropeptide (Ghrelin / obestatin prepropeptide) (Prepro-GHRL).
79 shows PCR results for ghrelin/obestatin prepropeptide genes.
80 shows the expression of Prepro-GHRL plasmid gene in HEK-293T cells.
81 shows the pathway of decomposition of Prepro-GHRL through ubiquitination analysis.
82 shows the degree of ubiquitination of Prepro-GHRL substituents in which lysine residues are substituted with arginine compared to wild type.
83 shows the half-life change of Prepro-GHRL after treatment with the protein synthesis inhibitor cycloheximide (CHX).
84 shows results for effects such as induction of JAK-STAT signal.
85 shows the structure of the GHRL expression vector.
86 shows PCR results for the GHRL gene.
87 shows the expression of the GHRL plasmid gene in HEK-293T cells.
88 shows the pathway of degradation of GHRL through ubiquitination analysis.
89 shows the degree of ubiquitination of GHRL substituents in which lysine residues are substituted with arginine compared to wild type.
FIG. 90 shows the change in half-life of GHRL after treatment with the protein synthesis inhibitor cycloheximide (CHX).
91 shows the results for effects such as induction of JAK-STAT signal.
92 shows the structure of a glucagon-like peptide-1 (GLP-1) expression vector.
93 shows PCR results for the glucagon-like peptide-1 (GLP-1) gene.
Figure 94 shows the expression of the glucagon-like peptide-1 (GLP-1) plasmid gene in HEK-293T cells.
95 shows the decomposition pathway of glucagon-like peptide-1 (GLP-1) through ubiquitination analysis.
96 shows the degree of ubiquitination of the glucagon-like peptide-1 (GLP-1) substituent in which the lysine residue is substituted with arginine compared to the wild type.
97 shows the half-life change of glucagon-like peptide-1 (GLP-1) after treatment with the protein synthesis inhibitor cycloheximide (CHX).
98 shows the results for effects such as induction of JAK-STAT signal.
99 shows the structure of an IgG heavy chain expression vector.
100 shows PCR results for the IgG heavy chain gene.
101 shows the expression of the IgG heavy chain plasmid gene in HEK-293T cells.
Figure 102 shows the decomposition pathway of the IgG heavy chain through ubiquitination analysis.
103 shows the degree of ubiquitination of IgG heavy chain substituents in which lysine residues are substituted with arginine compared to wild type.
104 shows changes in half-life of IgG heavy chains after treatment with the protein synthesis inhibitor cycloheximide (CHX).
105 shows the structure of an IgG light chain expression vector.
106 shows PCR results for the IgG light chain gene.
107 shows the expression of the IgG light chain plasmid gene in HEK-293T cells.
108 shows the degradation pathway of the IgG light chain through ubiquitination analysis.
Figure 109 shows the degree of ubiquitination of an IgG light chain substituent in which a lysine residue is substituted with arginine compared to the wild type.
110 shows changes in half-life of an IgG heavy chain after treatment with a protein synthesis inhibitor cycloheximide (CHX).

본 발명의 일 구체예에서, 단백질은 β-트로핀이다. 서열번호 1로 표시되는 β-트로핀의 아미노산 서열에서 N-말단에서부터 62, 124, 153 및 158째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 그 결과로서, 상기 반감기가 증가된 β-트로핀 및 이를 포함하는 당뇨병 및 비만 예방 및/또는 치료를 위한 약학 조성물이 제공된다 (Cell, 153(4), 747758, 2013; Cell Metab., 18(1), 5-6, 2013; Front Endocrinol (Lausanne), 4, 146, 2013). In one embodiment of the invention, the protein is β-tropine. At least one of the lysine residues at 62, 124, 153 and 158 from the N-terminus in the amino acid sequence of β-tropine represented by SEQ ID NO: 1 is substituted with an arginine residue. As a result, there is provided a β-tropine having an increased half-life and a pharmaceutical composition for preventing and/or treating diabetes and obesity comprising the same (Cell, 153(4), 747758, 2013; Cell Metab., 18( 1), 5-6, 2013; Front Endocrinol (Lausanne), 4, 146, 2013).

본 발명의 다른 일 구체예에서, 단백질은 성장호르몬이다. 서열번호 10으로 표시되는 성장호르몬의 아미노산 서열에서 N-말단에서부터 64, 67, 96, 141, 166, 171, 184, 194 및 198번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 상기 반감기가 증가된 성장호르몬 및 이를 포함하는 왜소증 및 기타 성장호르몬 결핍 질환 (Kabuki syndrome과 Kearns-Sayre syndrome (KSS)) 예방 또는 치료용 약학 조성물이 제공된다 (J Endocrinol Invest., 39(6), 667-677, 2016; J Pediatr Endocrinol Metab., 2016, [Epub ahead of print]; Horm Res Paediatr. 2016, [Epub ahead of print]). In another embodiment of the present invention, the protein is growth hormone. At least one of the lysine residues at 64, 67, 96, 141, 166, 171, 184, 194 and 198 from the N-terminus in the amino acid sequence of the growth hormone represented by SEQ ID NO: 10 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing or treating growth hormone with an increased half-life and dwarfism and other growth hormone deficiency diseases (Kabuki syndrome and Kearns-Sayre syndrome (KSS)) including the same (J Endocrinol Invest., 39 (6). ), 667-677, 2016; J Pediatr Endocrinol Metab., 2016, [Epub ahead of print]; Horm Res Paediatr. 2016, [Epub ahead of print]).

본 발명의 다른 일 구체예에서, 단백질은 인슐린이다. 서열번호 17로 표시되는 인슐린의 아미노산 서열에서 N-말단에서부터 53 및 88번째 라이신 잔기 중 하나 이상을 아르기닌 잔기로 치환된다. 따라서, 상기 반감기가 증가된 인슐린 및 이를 포함하는 당뇨병 예방 및/또는 치료용 약학 조성물이 제공된다.In another embodiment of the invention, the protein is insulin. At least one of the 53rd and 88th lysine residues from the N-terminus in the insulin amino acid sequence represented by SEQ ID NO: 17 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing and/or treating diabetes including insulin having an increased half-life and the same.

본 발명의 다른 일 구체예에서, 단백질은 인터페론-α이다. 서열번호 22로 표시되는 인터페론-α의 아미노산 서열에서 N-말단에서부터 17, 54, 72, 93, 106, 135, 144, 154, 156, 157 및 187번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 인터페론-α 및 이를 포함하는 자가면역을 포함하는 면역 질환 및/또는 고형암 및 혈액암을 포함하는 암 및/또는 감염 질환의 예방 및/또는 치료용 약학 조성물이 제공된다 (Ann Rheum Dis., 42(6), 672-676, 1983; Memo., 9, 63-65, 2016). In another embodiment of the invention, the protein is interferon-α. At least one of the 17, 54, 72, 93, 106, 135, 144, 154, 156, 157 and 187th lysine residues from the N-terminus in the amino acid sequence of interferon-α represented by SEQ ID NO: 22 is substituted with an arginine residue. . Accordingly, there is provided a pharmaceutical composition for preventing and/or treating cancer and/or infectious diseases including interferon-α and autoimmune including the same and/or solid cancer and hematologic cancer including the interferon-α with increased half-life (Ann Rheum Dis., 42(6), 672-676, 1983; Memo., 9, 63-65, 2016).

본 발명의 다른 일 구체예에서, 단백질은 과립구집락자극인자이다. 서열번호 31으로 표시되는 과립구집락 자극인자 아미노산 서열에서 N-말단으로부터 11, 46, 53, 64 및 73번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 과립구집락자극인자 및 이를 포함하는 호중구감소증 예방 및/또는 치료용 약학조성물이 제공된다 (EMBO Mol Med. 2016, [Epub ahead of print]).In another embodiment of the present invention, the protein is a granulocyte colony stimulating factor. At least one of the 11th, 46th, 53rd, 64th and 73rd lysine residues from the N-terminus in the granulocyte colony stimulating factor amino acid sequence represented by SEQ ID NO: 31 is substituted with an arginine residue. Accordingly, there is provided a granulocyte colony stimulating factor with an increased half-life and a pharmaceutical composition for the prevention and/or treatment of neutropenia comprising the same (EMBO Mol Med. 2016, [Epub ahead of print]).

본 발명의 다른 일 구체예에서, 단백질은 인터페론-β이다. 서열번호 36으로 표시되는 과립구집락 자극인자 아미노산 서열에서 N-말단으로부터 4, 40, 54, 66, 73, 120, 126, 129, 136, 144, 155 및 157번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 인터페론-β 및 이를 포함하는 다발성 경화증, 자가면역질환, 바이러스 감염, HIV와 관련된 질병,C형 간염, 류마티스성 관절염 등의 예방 및/또는 치료용 약학 조성물이 제공된다. 또한, 자가면역을 포함하는 면역 질환 및/또는 고형암 및 혈액암을 포함하는 암 및/또는 감염 질환의 예방 및/또는 치료용 약학 조성물이 제공된다 (Ann Rheum Dis., 42(6), 672-676, 1983; Memo., 9, 63-65, 2016). In another embodiment of the invention, the protein is interferon-β. At least one of the 4, 40, 54, 66, 73, 120, 126, 129, 136, 144, 155 and 157 th lysine residues from the N-terminus in the granulocyte colony stimulating factor amino acid sequence represented by SEQ ID NO: 36 is an arginine residue. Is substituted. Accordingly, there is provided a pharmaceutical composition for the prevention and/or treatment of interferon-β with an increased half-life and multiple sclerosis, autoimmune diseases, viral infections, HIV-related diseases, hepatitis C, rheumatoid arthritis, and the like. In addition, there is provided a pharmaceutical composition for the prevention and/or treatment of immune diseases including autoimmune and/or cancer and/or infectious diseases including solid cancer and hematologic cancer (Ann Rheum Dis., 42(6), 672- 676, 1983; Memo., 9, 63-65, 2016).

본 발명의 다른 일 구체예에서, 단백질은 에리트로포이에틴 (EPO)이다. 서열번호 43으로 표시되는 에리트로포이에틴 아미노산 서열에서 N-말단으로부터 47, 72, 79, 124, 143, 167, 179 및 181번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 에리트로포이에틴 및 이를 포함하는 만성신부전에 의한 빈혈, 수술에 따른 빈혈, 암 또는 항암치료에 따른 빈혈 등, 빈혈 예방 및/또는 치료용 약학 조성물이 제공된다.In another embodiment of the invention, the protein is erythropoietin (EPO). At least one of the lysine residues at 47, 72, 79, 124, 143, 167, 179 and 181 from the N-terminus in the erythropoietin amino acid sequence represented by SEQ ID NO: 43 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing and/or treating anemia, such as erythropoietin having an increased half-life and anemia due to chronic renal failure, anemia according to surgery, anemia due to cancer or chemotherapy, etc. including the same.

본 발명의 다른 일 구체예에서, 단백질은 골형성단백질 (BMP2)이다. 서열번호 52으로 표시되는 골형성단백질 아미노산 서열에서 N-말단으로부터 32, 64, 127, 178, 185, 236, 241, 272, 278, 281, 285, 287, 290, 293, 297, 355, 358, 379 및 383 번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 골형성단백질 및 이를 포함하는 빈혈 및 골질환 예방 및/또는 치료용 약학 조성물이 제공된다 (Cell J., 17(2), 193-200, 2015; Clin Orthop Relat Res., 318, 222-230, 1995).In another embodiment of the present invention, the protein is bone morphogenetic protein (BMP2). 32, 64, 127, 178, 185, 236, 241, 272, 278, 281, 285, 287, 290, 293, 297, 355, 358, from the N-terminus in the osteogenic protein amino acid sequence represented by SEQ ID NO: 52 At least one of the 379 and 383 lysine residues is substituted with an arginine residue. Accordingly, there is provided a osteogenic protein having an increased half-life and a pharmaceutical composition for preventing and/or treating anemia and bone disease comprising the same (Cell J., 17(2), 193-200, 2015; Clin Orthop Relat Res., 318, 222-230, 1995).

본 발명의 다른 일 구체예에서, 단백질은 섬유아세포성장인자-1 (FGF-1)이다. 서열번호 61로 표시되는 섬유아세포성장인자-1 아미노산 서열에서 N-말단으로부터 15, 24, 25, 27, 72, 115, 116, 120, 127, 128, 133 및 143번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 섬유아세포성장인자-1 및 이를 포함하는 신경질환 예방 및/또는 치료용 약학 조성물이 제공된다.In another embodiment of the present invention, the protein is fibroblast growth factor-1 (FGF-1). At least one of the 15, 24, 25, 27, 72, 115, 116, 120, 127, 128, 133 and 143 lysine residues from the N-terminus in the fibroblast growth factor-1 amino acid sequence represented by SEQ ID NO: 61 is arginine Is substituted with a residue. Accordingly, there is provided a fibroblast growth factor-1 with an increased half-life and a pharmaceutical composition for preventing and/or treating neurological diseases comprising the same.

본 발명의 다른 일 구체예에서, 단백질은 식욕억제호르몬 (Leptin)이다. 서열번호 66로 표시되는 식욕억제호르몬 (Leptin) 아미노산 서열에서 N-말단으로부터 26, 32, 36, 54, 56, 74 및 115번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 식욕억제호르몬 (Leptin) 및 이를 포함하는 뇌질환 및/또는 심장질환 및/또는 비만 예방 및/또는 치료용 약학 조성물이 제공된다. (Ann N Y Acad Sci., 1243, 1529, 2011; J Neurochem., 128(1), 162-172, 2014; Clin Exp Pharmacol Physiol., 38(12), 905-913, 2011)In another embodiment of the present invention, the protein is an appetite suppressing hormone (Leptin). At least one of the 26, 32, 36, 54, 56, 74, and 115 th lysine residues from the N-terminus in the appetite suppressing hormone (Leptin) amino acid sequence represented by SEQ ID NO: 66 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing and/or treating brain disease and/or heart disease and/or obesity including the appetite suppressing hormone (Leptin) having an increased half-life. (Ann N Y Acad Sci., 1243, 1529, 2011; J Neurochem., 128(1), 162-172, 2014; Clin Exp Pharmacol Physiol., 38(12), 905-913, 2011)

본 발명의 다른 일 구체예에서, 단백질은 혈관내피세포성장인자 A (VEGFA)이다. 서열번호 75로 표시되는 VEGFA 아미노산 서열에서 N-말단으로부터 22, 42, 74, 110, 127, 133, 134, 141, 142, 147, 149, 152, 154, 156, 157, 169, 180, 184, 191 및 206번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 VEGFA 및 이를 포함하는 항-노화, 모발 성장, 상처 치유 및 angiogenesis 관련된 질환의 예방 및/또는 치료용 약학 조성물이 제공된다. In another embodiment of the present invention, the protein is vascular endothelial growth factor A (VEGFA). 22, 42, 74, 110, 127, 133, 134, 141, 142, 147, 149, 152, 154, 156, 157, 169, 180, 184, from the N-terminus in the VEGFA amino acid sequence represented by SEQ ID NO: 75 At least one of the lysine residues at positions 191 and 206 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing and/or treating diseases related to anti-aging, hair growth, wound healing and angiogenesis including VEGFA having an increased half-life and the same.

본 발명의 다른 일 구체예에서, 단백질은 식욕촉진호르몬 전구체이다. 서열번호 80으로 표시되는 식욕촉진호르몬 전구체 아미노산서열에서 N-말단으로부터 39, 42, 43, 47, 85, 100, 111 및 117번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 식욕촉진호르몬 전구체 및 이를 포함하는 비만, 영양 실조 및 거식증을 포함하는 식욕 조절 기능 질환의 예방 및/또는 치료용 약학 조성물이 제공된다.In another embodiment of the present invention, the protein is an appetite promoting hormone precursor. At least one of the 39, 42, 43, 47, 85, 100, 111, and 117th lysine residues from the N-terminus in the appetite promoting hormone precursor amino acid sequence represented by SEQ ID NO: 80 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for preventing and/or treating an appetite control function disease including obesity, malnutrition, and anorexia including an appetite-promoting hormone precursor having an increased half-life.

본 발명의 다른 일 구체예에서, 단백질은 식욕촉진호르몬 (Ghrelin)이다. 서열번호 83로 표시되는 식욕촉진호르몬 (Ghrelin) 아미노산 서열에서 N-말단으로부터 39, 42, 43, 및 47번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 식욕촉진호르몬 (Ghrelin) 및 이를 포함하는 비만, 영양 실조 및 거식증을 포함하는 식욕 조절 기능 질환의 약학 조성물이 제공된다.In another embodiment of the present invention, the protein is an appetite promoting hormone (Ghrelin). At least one of the 39, 42, 43, and 47th lysine residues from the N-terminus in the appetite promoting hormone (Ghrelin) amino acid sequence represented by SEQ ID NO: 83 is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition for an appetite-regulating function disease including obesity, malnutrition and anorexia including the appetite promoting hormone (Ghrelin) having an increased half-life.

본 발명의 다른 일 구체예에서, 단백질은 글루카곤유사펩티드 (GLP-1) 이다. 서열번호 92로 표시되는 글루카곤유사펩티드 (GLP-1) 아미노산서열에서 N-말단으로부터 117 및 125번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 글루카곤유사펩티드 (GLP-1) 및 이를 포함하는 당뇨병의 예방 및/또는 치료용 약학 조성물이 제공된다.In another embodiment of the present invention, the protein is glucagon-like peptide (GLP-1). In the amino acid sequence of a glucagon-like peptide (GLP-1) represented by SEQ ID NO: 92, one or more of the lysine residues 117 and 125 from the N-terminus is substituted with an arginine residue. Accordingly, there is provided a glucagon-like peptide (GLP-1) having an increased half-life and a pharmaceutical composition for preventing and/or treating diabetes including the same.

본 발명의 일 구체예에서, 단백질은 면역글로불린 (IgG)의 중쇄 (HC) 이다. 서열번호 97으로 표시되는 면역글로불린 (IgG)의 중쇄(HC) 아미노산 서열에서 N-말단으로부터 49, 62, 84, 95, 143, 155, 169, 227, 232, 235, 236, 240, 244, 268, 270, 296, 310, 312, 339, 342, 344, 348, 356, 360, 362, 382, 392, 414, 431, 436 및 461 번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 면역글로불린 (IgG) 및 이를 포함하는 다양한 암종의 치료를 위한 IgG 기반의 항체 치료제의 약학 조성물이 제공된다. In one embodiment of the invention, the protein is a heavy chain (HC) of immunoglobulin (IgG). 49, 62, 84, 95, 143, 155, 169, 227, 232, 235, 236, 240, 244, 268 from the N-terminus in the heavy chain (HC) amino acid sequence of immunoglobulin (IgG) represented by SEQ ID NO: 97 , 270, 296, 310, 312, 339, 342, 344, 348, 356, 360, 362, 382, 392, 414, 431, 436 and at least one of the 461 th lysine residues is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition of an immunoglobulin (IgG) having an increased half-life and an IgG-based antibody therapeutic agent for the treatment of various carcinomas including the same.

본 발명의 일 구체예에서, 단백질은 면역글로불린 (IgG)의 경쇄 (LC) 이다. 서열번호 104로 표시되는 면역글로불린 (IgG) 경쇄 (LC)의 아미노산 서열에서 N-말단으로부터 61, 64, 67, 125, 129, 148, 167, 171, 191, 205, 210, 212 및 229번째 라이신 잔기 중 하나 이상이 아르기닌 잔기로 치환된다. 따라서, 반감기가 증가된 면역글로불린 (IgG) 및 이를 포함하는 다양한 암종의 치료를 위한 IgG 기반의 항체 치료제의 약학 조성물이 제공된다. In one embodiment of the invention, the protein is the light chain (LC) of immunoglobulin (IgG). 61, 64, 67, 125, 129, 148, 167, 171, 191, 205, 210, 212 and 229 th lysine from the N-terminus in the amino acid sequence of the immunoglobulin (IgG) light chain (LC) represented by SEQ ID NO: 104 At least one of the residues is substituted with an arginine residue. Accordingly, there is provided a pharmaceutical composition of an immunoglobulin (IgG) having an increased half-life and an IgG-based antibody therapeutic agent for the treatment of various carcinomas including the same.

본 발명에서, 단백질의 아미노산 서열에 존재하는 라이신 잔기를 아르기닌 (arginine, R) 잔기로 치환시키기 위하여 부위특이적 돌연변이유도 (site-directed mutagenesis)를 이용하였다. 이 방법은 특정 돌연변이를 유도할 DNA서열을 이용하여 프라이머를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작한다.In the present invention, site-directed mutagenesis was used to replace a lysine residue in the amino acid sequence of a protein with an arginine (R) residue. In this method, a primer is prepared using a DNA sequence that will induce a specific mutation, and then PCR is performed under specific conditions to produce a plasmid DNA in which a specific amino acid residue is substituted.

본 발명에서, 표적단백질을 면역침강분석법에 의해 세포주 내로 형질감염시키고 침강시켜 유비퀴틴화 정도를 확인하였으며, MG132 (프로테아좀 저해제) 시약을 처리한 결과, 유비퀴틴화 정도가 증가한 것을 통해 표적단백질이 유비퀴틴-프로테아좀에 의한 분해 경로를 거친다는 것을 확인하였다.In the present invention, the target protein was transfected into the cell line by immunoprecipitation assay and sedimented to confirm the degree of ubiquitination, and as a result of treatment with MG132 (proteasome inhibitor) reagent, the target protein was ubiquitinated through an increase in the degree of ubiquitination. -It was confirmed that it goes through the path of degradation by the proteasome.

본 발명에서 약학조성물은 경구 (oral), 경피 (transcutaneous), 피하 (subcutaneous), 정맥내 (intravenous) 또는 근육내 투여를 포함하는 다양한 경로로 체내 전달될 수 있으며, 주사형 제제로 투여될 수 있다. 또한, 본 발명의 약학 조성물은 상기 방법에 따라 투여된 후에 신속한 방출, 지연된 방출 또는 천천히 방출 되도록 당업자에게 잘 알려진 방법에 따라 제형화 될 수 있다. 상기 제형은 정제 (tablet), 알약 (pill), 분말 (powder), 사셰 (sachet), 엘렉시르제 (elixir), 현탁 (suspension), 에멀션 (emulsion), 용액 (solution), 시럽 (syrup), 에어로졸 (aerosol), 소프트 또는 단단한 젤라틴 캡슐 (soft and hard gelatin capsule), 멸균주사용액 (sterile injectable solution), 멸균 팩키지된 분말 등을 포함한다. 적합한 담체, 부형제 및 희석제로는, 락토오스 (lactose), 덱스트로오스 (dextrose), 수크로오스 (sucrose), 만니톨 (mannitol), 자일리톨 (xylitol), 에리스리톨 (erythritol), 말티톨 (maltitol), 탄수화물 (starches), 검 아카시아 (gum acacia), 알지네이트 (alginates), 젤라틴 (gelatin), 인산칼슘 (calcium phosphate), 규산칼슘 (calcium silicate), 셀룰로오스 (cellulose), 메틸셀룰로오스 (methyl cellulose), 마이크로크리스탈린셀룰로오스(microcrystalline cellulose), 폴리비닐 피롤리돈 (polyvinyl pyrrolidone), 물, 메틸히드록시벤조에이트 (methylhydroxybenzoates), 프로필히드록시벤조에이트 (propylhydroxybenzoates), 활석 (talc), 스테아린산마그네슘 (magnesium stearate) 및 미네랄 오일을 포함한다. 또한, 제형은 충진제, 항교착제 (anti-agglutinating agents), 윤활제 (lubricating agents), 습윤제 (wetting agents), 향미료 (flavoring agents), 유화제 (emulsifiers), 보존제 (preservative) 등을 추가로 포함할 수 있다. In the present invention, the pharmaceutical composition may be delivered to the body by various routes including oral, transcutaneous, subcutaneous, intravenous or intramuscular administration, and may be administered as an injection formulation. . In addition, the pharmaceutical composition of the present invention may be formulated according to a method well known to those skilled in the art so as to be rapidly released, delayed or slowly released after being administered according to the above method. The formulation is a tablet, a pill, a powder, a sachet, an elixir, a suspension, an emulsion, a solution, a syrup, These include aerosols, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders. Suitable carriers, excipients and diluents include lactose, dextrose, sucrose, mannitol, xylitol, erythritol, maltitol, carbohydrates. , Gum acacia, alginates, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose cellulose), polyvinyl pyrrolidone, water, methylhydroxybenzoates, propylhydroxybenzoates, talc, magnesium stearate, and mineral oil. . In addition, the formulation may further contain fillers, anti-agglutinating agents, lubricating agents, wetting agents, flavoring agents, emulsifiers, preservatives, etc. have.

본 발명에서, 단수형태는 달리 명확하게 기술하지 않는 한 복수형태를 포함한다. 또한, 본 발명에서 구성된, 갖는 이루어진 과 같은 용어는 “포함하는”과 유사한 의미를 갖는 것으로 해석된다. 본 발명에서, “생리활성 (폴리)펩타이드 또는 단백질”은 인간을 포함하는 포유동물에 투여되었을 때 유용한 생물학적 활성을 나타내는 (폴리)펩타이드 또는 단백질을 의미한다. In the present invention, the singular form includes the plural form unless clearly stated otherwise. In addition, terms such as constituted or constituted in the present invention are interpreted as having a similar meaning to “including”. In the present invention, “bioactive (poly) peptide or protein” refers to a (poly) peptide or protein that exhibits useful biological activity when administered to a mammal, including humans.

이하, 실시예에 의거하여 본 발명을 보다 더 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것을 뿐, 본 발명이 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples. The following examples are for illustrative purposes only, and the present invention is not limited by the following examples.

실시 예 1: β-트로핀 단백질의 유비퀴틴화 분석 및 반감기 증가 확인과 세포 내 신호 전달 확인Example 1: Analysis of ubiquitination of β-tropine protein and confirmation of half-life increase and intracellular signal transduction

1. 발현 벡터로의 클로닝 및 단백질 발현 확인1. Cloning into an expression vector and confirmation of protein expression

(1) 발현 벡터 클로닝(1) Cloning of expression vector

β-트로핀을 클로닝하기 위해 HepG2 세포 (ATCC, HB-8065)에서 Trizol과 클로로포름을 이용하여 정제된 RNA를 추출하였다. 다음 SuperScript™ First-Strand cDNA Synthesis System (Invitrogen, Grand Island, NY)을 이용하여 단일가닥 cDNA를 합성하였다. 합성된 cDNA를 템플릿 (template)으로 중합효소연쇄 반응을 통해 β-트로핀을 증폭하였다. β-트로핀 DNA 증폭 산물과 pcDNA3-myc (5.6kb)를 제한효소인 BamHI과 EcoRI로 절편을 만든 후 접합하여 클로닝하고 (도 1, β-트로핀 아미노산 서열: SEQ No. 1) 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 2). 또한 도 1의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 확인하고자 중합효소연쇄 반응을 통해 확인 시 사용된 프라이머세트이며, 그 결과 또한 아가로즈젤 전기영동을 통해 확인하였다 (도 2). 중합효소연쇄 반응 조건은 다음과 같았다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 (denature) 반응을 위한 94℃에서 30초, 어닐링 (annealing) 반응을 위한 58℃에서 30초, 연장 (extention) 반응을 위한 72℃에서 1분을 25 사이클 반복하여 수행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 1의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블로팅 (Western blot)을 통해 그 발현을 확인하였다. 이를 통해 myc에 결합된 β-트로핀 단백질이 잘 발현 된 것을 확인하였으며 액틴 (actin)으로 확인한 블롯 (blot)을 통해 정량이 로딩 (loading)된 것을 확인하였다 (도 3).In order to clone β-tropin, purified RNA was extracted from HepG2 cells (ATCC, HB-8065) using Trizol and chloroform. Next, single-stranded cDNA was synthesized using SuperScript™ First-Strand cDNA Synthesis System (Invitrogen, Grand Island, NY). The synthesized cDNA was used as a template to amplify β-tropine through polymerase chain reaction. The β-tropine DNA amplification product and pcDNA3-myc (5.6kb) were fragmented with restriction enzymes BamHI and EcoRI, conjugated and cloned (Fig. 1, β-tropine amino acid sequence: SEQ No. 1), and restriction enzyme digestion. Then, it was confirmed through agarose gel electrophoresis (Fig. 2). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 1 is a primer set used when confirming through the polymerase chain reaction to reconfirm the cloned site, and the result was also confirmed through agarose gel electrophoresis ( Fig. 2). Polymerase chain reaction conditions were as follows; After reacting the initial denaturation at 94°C for 3 minutes, 30 seconds at 94°C for denature reaction, 30 seconds at 58°C for annealing reaction, 1 at 72°C for extension reaction Minutes were repeated for 25 cycles, and then reacted at 72° C. for 10 minutes. Western blotting of myc present in the pcDNA3-myc vector shown in the map of FIG. 1 using an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody in order to confirm whether the thus prepared DNA is properly expressed as a protein. The expression was confirmed through (Western blot). Through this, it was confirmed that the β-tropin protein bound to myc was well expressed, and it was confirmed that the quantification was loaded through a blot confirmed with actin (FIG. 3).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌 (Arginine, R)으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (β-트로핀 K62R FP 5'-AGGGACGGCTGACAAGGGCCAGGAA- 3' (SEQ No. 2), RP 5'-CCAGGCTGTTCCTGGCCCTTGTCAGC-3' (SEQ No. 3); β-트로핀 K124R FP 5'-GGCACAGAGGGTGCTACGGGACAGC-3' (SEQ No. 4), RP 5'-C GTAGCACCCTCTGTGCCTGGGCCA-3' (SEQ No. 5); β-트로핀 K153R FP 5'-GAATTTG AGGTCTTAAGGGCTCACGC-3' (SEQ No. 6), RP 5'-CTTGTCAGCGTGAGCCCTTAAGAC CTC-3' (SEQ No. 7); β-트로핀 K158R FP 5'-GCTCACGCTGACAGGCAGAGCCACAT-3' (SEQ No. 8), RP 5'-CCATAGGATGTGGCTCTGCCTGTCAGC-3' (SEQ No. 9)를 제작한 후, PCR을 수행하여 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-β-트로핀을 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 4개의 플라스미드 DNA를 제작하였다 (표 1). The lysine residue was replaced with arginine (R) using site-directed mutagenesis, and the primer (β-tropine K62R FP 5'-AGGGACGGCTGACAAGGGCCAGGAA-) was used to induce a specific mutation. 3'(SEQ No. 2), RP 5'-CCAGGCTGTTCCTGGCCCTTGTCAGC-3' (SEQ No. 3); β-tropine K124R FP 5'-GGCACAGAGGGTGCTACGGGACAGC-3' (SEQ No. 4), RP 5'-C GTAGCACCCTCTGTGCCTGGGCCA -3' (SEQ No. 5); β-tropin K153R FP 5'-GAATTTG AGGTCTTAAGGGCTCACGC-3' (SEQ No. 6), RP 5'-CTTGTCAGCGTGAGCCCTTAAGAC CTC-3' (SEQ No. 7); β-tro After making pins K158R FP 5'-GCTCACGCTGACAGGCAGAGCCACAT-3' (SEQ No. 8), RP 5'-CCATAGGATGTGGCTCTGCCTGTCAGC-3' (SEQ No. 9), PCR was performed to prepare plasmid DNA in which specific amino acid residues were substituted. Using pcDNA3-myc-β-tropine as a template, four plasmid DNAs in which lysine residues were substituted with arginine (K→R) were prepared (Table 1).

Lysine(K) residue siteLysine(K) residue site Lysine (K)이 Arginine (R)로 치환된 β-trophin 작제물Β-trophin construct in which Lysine (K) is substituted with Arginine (R) 6262 pcDNA3-myc-β-trophin (K62R)pcDNA3-myc-β-trophin (K62R) 124124 pcDNA3-myc-β-trophin (K124R)pcDNA3-myc-β-trophin (K124R) 153153 pcDNA3-myc-β-trophin (K153R)pcDNA3-myc-β-trophin (K153R) 158158 pcDNA3-myc-β-trophin (K158R)pcDNA3-myc-β-trophin (K158R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-β-트로핀 WT과 pMT123-HA-유비퀴틴 (J Biol Chem., 279(4), 2368-2376, 2004; Cell Research, 22, 873885, 2012; Oncogene, 22, 12731280, 2003; Cell, 78, 787-798, 1994)을 코딩하는 플라스미드를 이용하여 HEK 293T 세포 (ATCC, CRL-3216)를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-β-트로핀 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 (co-transfection)시키고 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역 침강 분석을 실시하였다 (도 4). 또한 각각 pcDNA3-myc-β-트로핀 WT, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R), pcDNA3-myc-β-트로핀 치환체 (K153R) 및 pcDNA3-myc-β-트로핀 치환체 (K158R)를 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 형질감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-β-트로핀 WT, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R), pcDNA3-myc-β-트로핀 치환체 (K153R) 및 pcDNA3-myc-β-트로핀 치환체 (K158R)를 각 2㎍을 pMT123-HA-유비퀴틴 DNA 1 ㎍과 함게 세포에 공동형질감염 (co-transfection)시키고 24시간 후에 면역침강분석을 실시하였다 (도 5). pcDNA3-myc-β-tropine WT and pMT123-HA-ubiquitin (J Biol Chem., 279(4), 2368-2376, 2004; Cell Research, 22, 873885, 2012; Oncogene, 22, 12731280, 2003; Cell , 78, 787-798, 1994) were used to infect HEK 293T cells (ATCC, CRL-3216). To confirm the degree of ubiquitination, 2 μg of pcDNA3-myc-β-tropine WT and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells and 24 hours later, MG132 (proteasome inhibitor, 5 Μg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 4). In addition, pcDNA3-myc-β-tropine WT, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K124R), pcDNA3-myc-β-tropine substituent (K153R), respectively. And a plasmid encoding the pcDNA3-myc-β-tropine substituent (K158R) to transfect HEK 293T cells. To confirm the degree of ubiquitination, pcDNA3-myc-β-tropine WT, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K124R), pcDNA3-myc-β-tro Cells were co-transfected (co-transfection) with 2 μg of each of the pin substituents (K153R) and pcDNA3-myc-β-trophin substituents (K158R) with 1 μg of pMT123-HA-ubiquitin DNA, and immunoprecipitation analysis after 24 hours Was carried out (Fig. 5).

면역침강을 위해 얻은 단백질 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체 (Santa Cruz Biotechnology, sc-40)와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 다음, 용해완충액으로 2회 세척하였다. 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인 (Millipore)으로 옮긴 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1,000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-β-트로핀 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 (smear) 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 4, 레인 3과 4). 또한, MG132 (프로테아좀 억제제, 5 ㎍/㎖)을 6시간 동안 처리한 경우, 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 4, 레인 4). 이러한 결과는 β-트로핀이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화 되는 것을 제시한다. 또한 pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K153R), 및 pcDNA3-myc-β-트로핀 치환체 (K158R)의 경우, WT보다 밴드가 연하게 나타났다. 이는 이들 치환체에 유비퀴틴이 결합하지 못하여 유비퀴틴이 적게 검출된 것을 나타낸다 (도 5, 레인 3, 5 및 6). Protein samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10) primary antibody ( Santa Cruz Biotechnology, sc-40) and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology). The protein samples were washed twice with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was polyvinylidene difluoride (PVDF). ) After transfer to the membrane (Millipore), anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778 ) In a weight ratio of 1:1,000 and an anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pcDNA3-myc-β-tropine WT to form polyubiquitination. Smear ubiquitin was detected and the band appeared dark (Fig. 4, lanes 3 and 4) In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, polyubiquitination was formed. Is increased so that the band in which ubiquitin is detected is more It appeared very dark (Fig. 4, lane 4). These results suggest that β-tropine binds to ubiquitin and becomes polyubiquitinated through the ubiquitin-proteasome system. In addition, in the case of pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K153R), and pcDNA3-myc-β-tropine substituent (K158R), the band was softer than WT. . This indicates that less ubiquitin was detected because ubiquitin could not bind to these substituents (FIG. 5, lanes 3, 5 and 6).

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 β-트로핀의 반감기 확인3. Confirmation of the half-life of β-tropine by the protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-β-트로핀 WT, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R), pcDNA3-myc-β-트로핀 치환체 (K153R), 및 pcDNA3-myc-β-트로핀 치환체 (K158R)을 각각 2 ㎍씩 HEK 293T 세포에 형질감염 (transfection)시켰다. 형질감염 48시간 후, 단백질생성 저해제 시클로헥사미드 (cycloheximide) (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 20분, 40분 및 60분에 걸쳐서 반감기를 측정하였다. 그 결과, 인간 β-트로핀의 분해가 억제되는 것을 확인하였다 (도 6). 인간 β-트로핀의 반감기는 1시간 이내인 반면 인간 β-트로핀 치환(변이)체 (K62R)과 β-트로핀 치환체 (K158R)의 반감기는 1시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 6).pcDNA3-myc-β-tropine WT, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K124R), pcDNA3-myc-β-tropine substituent (K153R), and The pcDNA3-myc-β-tropine substituent (K158R) was transfected into HEK 293T cells at 2 μg each. 48 hours after transfection, the protein production inhibitor cycloheximide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and half-life was measured over 20 minutes, 40 minutes and 60 minutes. As a result, it was confirmed that the decomposition of human β-tropin was suppressed (FIG. 6). The half-life of human β-tropine is less than 1 hour, whereas the half-life of human β-tropine substitution (variant) (K62R) and β-tropine substitution (K158R) is 1 hour or longer than that of WT. It is represented by (Fig. 6).

4. 세포 내에서의 β-트로핀과 β-트로핀 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by β-tropine and β-tropine substituents in cells

β-트로핀이 마우스 간에서 일시적으로 발현이 되면 췌장-베타 세포의 증식이 촉진된다는 것이 보고되었다 (Cell, 153, 747-758, 2013). 본 실시예는, 세포 내에서 β-트로핀과 β-트로핀 치환체들에 의한 신호전달 과정을 확인하였다. 먼저 PANC-1 세포 (ATCC, CRL-1469)를 PBS로 7차례 씻어낸 후, pcDNA3-myc-β-트로핀 WT, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R), pcDNA3-myc-β-트로핀 치환체 (K153R) 및 pcDNA3-myc-β-트로핀 치환체 (K158R)를 각각 3 ㎍씩 이용하여, PANC-1 세포를 형질감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 수행하였다. 이를 위해, 각각 pcDNA3-myc-β-트로핀 WT, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R), pcDNA3-myc-β-트로핀 치환체 (K153R) 및 pcDNA3-myc-β-트로핀 치환체 (K158R)으로 감염된 PANC-1 세포에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 옮긴 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-β-트로핀 치환체 (K62R), pcDNA3-myc-β-트로핀 치환체 (K124R) 및 pcDNA3-myc-β-트로핀 치환체 (K153R)은 PANC-1 세포 내에서 pcDNA3-myc-β-트로핀 WT과 동일하거나 증가된 phospho-STAT3 신호전달을 보였다 (도 7). It has been reported that transient expression of β-tropin in mouse liver promotes the proliferation of pancreatic-beta cells (Cell, 153, 747-758, 2013). In this example, the signal transduction process by β-tropine and β-tropine substituents in the cell was confirmed. First, PANC-1 cells (ATCC, CRL-1469) were washed 7 times with PBS, and then pcDNA3-myc-β-tropine WT, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β- PANC-1 cells were transfected using 3 μg each of the tropine substituent (K124R), the pcDNA3-myc-β-tropine substituent (K153R), and the pcDNA3-myc-β-tropine substituent (K158R). After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. To this end, pcDNA3-myc-β-tropine WT, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K124R), pcDNA3-myc-β-tropine substituent ( K153R) and pcDNA3-myc-β-tropine substituents (K158R)-infected PANC-1 cells were transferred to a polyvinylidene difluoride (PVDF) membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) 1 : A blocking solution containing at a weight ratio of 1000 and anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody. As a result, pcDNA3-myc-β-tropine substituent (K62R), pcDNA3-myc-β-tropine substituent (K124R), and pcDNA3-myc-β-tropine substituent (K153R) were pcDNA3- It showed the same or increased phospho-STAT3 signaling as that of myc-β-tropin WT (Fig. 7).

실시 예 2: 성장호르몬 단백질의 유비퀴틴화 분석 및 반감기 증가 확인과 세포 내 신호전달 확인Example 2: Analysis of ubiquitination of growth hormone protein and confirmation of half-life increase and intracellular signal transduction

1. 발현 벡터로의 클로닝 및 단백질 발현 확인1. Cloning into an expression vector and confirmation of protein expression

(1) 발현 벡터 클로닝(1) Cloning of expression vector

중합효소연쇄 반응을 통해 증폭된 성장호르몬 (GH)과 pCS4-flag (4.3 kb, Oncotarget., 7(12), 14441-14457, 2016)를 제한효소인 EcoRI로 절편을 만든 후 접합하여 클로닝하였으며 (도 8, GH 아미노산 서열: SEQ No.10), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 9). 또한 도 8의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인 시 사용된 프라이머세트이며, 그 결과 또한 아가로즈젤 전기영동을 통해 확인하였다 (도 9). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 60℃에서 30초, 연장 반응을 위한 72℃에서 30초를 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 8의 맵에 표시된 pCS4-flag 벡터에 존재하는 flag을 항-flag (Sigma-aldrich, F3165) 항체를 이용하여 웨스턴블롯팅을 수행하였다. 그 결과 flag에 결합된 성장호르몬 단백질이 잘 발현되는 것이 확인되었고, 액틴으로 확인한 블롯팅은 정량 로딩된 것을 나타냈다 (도 10). Growth hormone (GH) amplified through polymerase chain reaction and pCS4-flag (4.3 kb, Oncotarget., 7(12), 14441-14457, 2016) were fragmented with EcoRI, a restriction enzyme, and then conjugated and cloned ( Figure 8, GH amino acid sequence: SEQ No. 10), the results were confirmed through agarose gel electrophoresis after digestion of restriction enzymes (Fig. 9). In addition, the portion indicated in bold and underlined on the nucleotide sequence of FIG. 8 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is also confirmed through agarose gel electrophoresis. (Fig. 9). Polymerase chain reaction conditions are as follows; After the initial denaturation was reacted at 94° C. for 3 minutes, 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 60° C. for the annealing reaction, and 30 seconds at 72° C. for the extension reaction were repeated in 25 cycles, Then, it was reacted at 72°C for 10 minutes. In order to confirm whether the thus-produced DNA was properly expressed as a protein, Western blotting was performed using an anti-flag (Sigma-aldrich, F3165) antibody on the flag present in the pCS4-flag vector indicated in the map of FIG. 8. As a result, it was confirmed that the growth hormone protein bound to the flag was well expressed, and the blotting confirmed by actin was quantitatively loaded (FIG. 10).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (GH K67R FP 5'-CCAAAGGAACAGAGGTATTCATTC-3' (SEQ No. 11), RP 5'-CAGGAATGAATACCTCTGTTCCTT-3' (SEQ No. 12); GH K141R FP 5'-GA CCTCCTAAGGGACCTAGAG-3' (SEQ No. 13), RP 5'-CTCTAGGTCCCTTAGGAGGTC-3' (SEQ No. 14); GH K166R FP 5'-CAGATCTTCAGGCAGACCTAC-3' (SEQ No. 15), RP 5'- GTAGGTCTGCCTGAAGATCTG-3' (SEQ No. 16)를 제작한 후, 특정 조건에서 PCR을 수행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-성장호르몬을 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 2).The lysine residue was replaced with arginine using site-directed mutagenesis, and the primer (GH K67R FP 5'-CCAAAGGAACAGAGGTATTCATTC-3' (SEQ No. 11) was used with the DNA sequence to induce specific mutations). , RP 5'-CAGGAATGAATACCTCTGTTCCTT-3' (SEQ No. 12); GH K141R FP 5'-GA CCTCCTAAGGGACCTAGAG-3' (SEQ No. 13), RP 5'-CTCTAGGTCCCTTAGGAGGTC-3' (SEQ No. 14); GH Plasmid DNA in which specific amino acid residues were substituted by PCR under specific conditions after making K166R FP 5'-CAGATCTTCAGGCAGACCTAC-3' (SEQ No. 15), RP 5'-GTAGGTCTGCCTGAAGATCTG-3' (SEQ No. 16) Using pcDNA3-myc-growth hormone as a template, plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 2).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 GH 작제물GH construct in which Lysine (K) is substituted with Arginine (R) 6767 pCS4-flag-GH (K67R)pCS4-flag-GH (K67R) 141141 pCS4-flag-GH (K141R)pCS4-flag-GH (K141R) 166166 pCS4-flag-GH (K166R)pCS4-flag-GH (K166R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pCS4-flag-성장호르몬 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCS4-flag-성장호르몬 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 (co-transfection) 시켰다. 형질감염 24시간 후, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 다음, 면역침강분석을 수행하였다 (도 11). 또한 pCS4-flag-성장호르몬 WT, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R), pCS4-flag-성장호르몬 치환체 (K166R) 및 pMT123-HA-유비퀴틴 DNA를 각각 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 되는 정도를 확인하기 위하여 pCS4-flag-성장호르몬 WT, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R) 및 pCS4-flag-성장호르몬 치환체 (K166R) 각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 12). HEK 293T cells were infected with a plasmid encoding pCS4-flag-growth hormone WT and pMT123-HA-ubiquitin DNA. In order to confirm the degree of ubiquitination, 2 µg of pCS4-flag-growth hormone WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. 24 hours after transfection, MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 11). In addition, pCS4-flag-growth hormone WT, pCS4-flag-growth hormone substitute (K67R), pCS4-flag-growth hormone substitute (K141R), pCS4-flag-growth hormone substitute (K166R), and pMT123-HA-ubiquitin DNA were respectively used. HEK 293T cells were infected using the encoding plasmid. To confirm the degree of ubiquitination, pCS4-flag-growth hormone WT, pCS4-flag-growth hormone substituent (K67R), pCS4-flag-growth hormone substituent (K141R), and pCS4-flag-growth hormone substituent (K166R) each 2 Μg and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (Fig. 12).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-flag (Sigma-aldrich, F3165) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 옮긴 다음, 항-flag (Sigma-aldrich, F3165), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-flag (Sigma-aldrich, F3165) 1 After mixing with the primary antibody, it was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. For immunoblotting, a protein sample was mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was separated by a polyvinylidene difluoride (PVDF) membrane. And then anti-flag (Sigma-aldrich, F3165), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000. The blocking solution and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody were used to develop the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). .

그 결과, 항-flag (Sigma-aldrich, F3165)으로 면역침강을 실시한 경우, pCS4-flag-성장호르몬 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 11, 레인 2과 3). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 11, 레인 3). 또한 pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R), pCS4-flag-성장호르몬 치환체 (K166R)의 경우, WT보다 밴드가 연하였으며, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R), 및pCS4-flag-성장호르몬 치환체 (K166R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 12, 레인 3-5). 이러한 결과는 성장호르몬이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다. As a result, when immunoprecipitation was performed with anti-flag (Sigma-aldrich, F3165), ubiquitin in pCS4-flag-growth hormone WT was bound to polyubiquitin, resulting in the formation of polyubiquitin. 11, lanes 2 and 3). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 11, lane 3). In addition, in the case of pCS4-flag-growth hormone substituent (K67R), pCS4-flag-growth hormone substituent (K141R), and pCS4-flag-growth hormone substituent (K166R), the band was softer than WT, and pCS4-flag-growth hormone substituent (K67R), pCS4-flag-growth hormone substituent (K141R), and pCS4-flag-growth hormone substituent (K166R) were unable to bind to ubiquitin, and thus, less ubiquitin was detected (FIG. 12, lanes 3-5). These results show that growth hormone binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질생성 저해제 cycloheximide(CHX)에 의한 성장호르몬의 반감기 확인3. Confirmation of half-life of growth hormone by protein production inhibitor cycloheximide (CHX)

pCS4-flag-성장호르몬 WT, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R), pCS4-flag-성장호르몬 치환체 (K166R)를 2 ㎍씩 HEK 293T 세포에 형질감염 (transfection) 시켰다. 형질감염 48시간 후, 단백질생성 저해제 cycloheximide(CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 1시간, 2시간, 4시간, 및 8시간에 걸쳐서 반감기를 측정하였다. 그 결과, 인간 성장호르몬의 분해가 억제되는 것을 확인하였다 (도 13). 인간 성장호르몬의 반감기는 2시간 이내인 반면 인간 pCS4-flag-성장호르몬 치환체 (K141R)의 반감기는 8시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 13).2 µg of pCS4-flag-growth hormone WT, pCS4-flag-growth hormone substitute (K67R), pCS4-flag-growth hormone substitute (K141R), and pCS4-flag-growth hormone substitute (K166R) were transfected into HEK 293T cells by 2 µg. (transfection). 48 hours after transfection, the protein production inhibitor cycloheximide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and half-life was measured over 1 hour, 2 hours, 4 hours, and 8 hours. As a result, it was confirmed that the decomposition of human growth hormone was suppressed (FIG. 13). The half-life of human growth hormone was less than 2 hours, whereas the half-life of human pCS4-flag-growth hormone substituent (K141R) was longer than WT by more than 8 hours, and this result is shown in a graph (FIG. 13).

4. 세포 내에서의 성장호르몬과 성장호르몬 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by growth hormone and growth hormone substitutes in cells

성장호르몬은 STAT (signal transducers and activators of transcription) 단백질의 유전자 수준에서의 전사를 조절한다는 것이 보고되었다 (Oncogene, 19, 2585-2597, 2000). 이에 본 실시예에서는, 세포 내에서 성장호르몬과 성장호르몬 치환체들에 의한 신호전달 과정을 확인하였다. pCS4-flag-성장호르몬 WT, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R) 및 pCS4-flag-성장호르몬 치환체 (K166R)를 각각 3 ㎍씩 이용하여 HEK293 세포를 감염시켰다. 감염 1일 경과한 후, 세포에서 소니케이터 (sonicator)를 이용하여 용해시킨 후, 수득한 단백질을 PBS로 7차례 세척한 PANC-1 세포에 처리하여 감염시키고, 2일 경과 후 PANC-1 세포에서 단백질을 추출하여 각각 정량하였다. 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 각각의 pCS4-flag-성장호르몬 WT, pCS4-flag-성장호르몬 치환체 (K67R), pCS4-flag-성장호르몬 치환체 (K141R) 및 pCS4-flag-성장호르몬 치환체 (K166R)으로 감염된 PANC-1 세포에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, Cell Signaling Technology, 9131S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pCS4-flag-성장호르몬 치환체 (K141R)는 PANC-1 세포 내에서 pCS4-flag-성장호르몬 WT과 동일하거나 증가된 phospho-STAT3 신호전달을 보였고, pCS4-flag-성장호르몬 치환체 (K67R)는 대조군보다 증가된 phospho-STAT3 신호전달을 보였다 (도 14). It has been reported that growth hormone regulates the transcription of STAT (signal transducers and activators of transcription) proteins at the gene level (Oncogene, 19, 2585-2597, 2000). Accordingly, in this example, the signal transduction process by growth hormone and growth hormone substitutes in the cell was confirmed. HEK293 cells were prepared by using 3 μg each of pCS4-flag-growth hormone WT, pCS4-flag-growth hormone substitute (K67R), pCS4-flag-growth hormone substitute (K141R), and pCS4-flag-growth hormone substitute (K166R). Infected. After 1 day of infection, the cells were lysed using a sonicator, and the obtained protein was treated with PANC-1 cells washed 7 times with PBS to infect, and after 2 days, PANC-1 cells Protein was extracted from and quantified respectively. Western blotting was performed to confirm the intracellular signal transduction process. PANC-1 infected with each of the pCS4-flag-growth hormone WT, pCS4-flag-growth hormone substituent (K67R), pCS4-flag-growth hormone substituent (K141R) and pCS4-flag-growth hormone substituent (K166R) in this process Protein isolated from cells was transferred to a polyvinylidene difluoride (PVDF) membrane, and then anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, Cell Signaling Technology, 9131S). ) And anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti -Mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody. As a result, pCS4-flag-growth hormone substitute (K141R) showed the same or increased phospho-STAT3 signaling as pCS4-flag-growth hormone WT in PANC-1 cells, and pCS4-flag-growth hormone substitute (K67R) Showed increased phospho-STAT3 signaling than the control group (Fig. 14).

실시 예 3: 인슐린 단백질의 유비퀴틴화 분석 및 반감기 증가 확인과 세포 내 신호 전달 확인Example 3: Ubiquitination analysis of insulin protein and confirmation of half-life increase and intracellular signal transduction

1. 발현 벡터로의 클로닝 및 단백질 발현 확인1. Cloning into an expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 인슐린 DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 BamHI과 EcoRI으로 절편을 만든 후 접합하여 클로닝하였다 (도 15, 인슐린 아미노산 서열: SEQ No. 17). 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 16). 또한 도 15의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 16). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성반응을 위한 94℃에서 30초, 어닐링반응을 위한 60℃에서 30초, 연장반응을 위한 72℃에서 30초를 25 주기로 반복하여 진행하였고, 이후 72℃에서 10분간 반응하였다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 15의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. myc에 결합된 인슐린 단백질이 잘 발현되는 것을 확인하였고, 액틴으로 확인한 블롯을 통해 정량 로딩된 것을 나타냈다 (도 17).The insulin DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with restriction enzymes BamHI and EcoRI, and then conjugated and cloned (FIG. 15, insulin amino acid sequence: SEQ No. 17). The results were confirmed through restriction enzyme digestion and agarose gel electrophoresis (FIG. 16). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 15 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 16). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by repeating 25 cycles of 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 60° C. for the annealing reaction, and 30 seconds at 72° C. for the extension reaction. Then, the reaction was performed at 72°C for 10 minutes. Western blotting of myc present in the pcDNA3-myc vector shown in the map of FIG. 15 using an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody in order to confirm whether the thus prepared DNA is properly expressed as a protein. Expression was confirmed through. It was confirmed that the insulin protein bound to myc was well expressed, and quantitatively loaded through a blot confirmed with actin (FIG. 17).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (insulin K53R FP 5'-GGCTTCTTCTACACACCCAGGACCC-3' (SEQ No. 18), RP 5'-CTCCCGGCGGGTCCTGGGTGTGTA-3' (SEQ No. 19); insulin K88R FP 5'-TCCCTGCAGAGGCGTGGCATTGT-3' (SEQ No. 20), RP 5'-TTGTTCCACAATGCCA CGCCTCTGCAG-3' (SEQ No. 21)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-인슐린을 템플릿으로 사용하고, 2개의 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 3).The lysine residue was replaced with arginine using site-directed mutagenesis, and a primer (insulin K53R FP 5'-GGCTTCTTCTACACACCCAGGACCC-3' (SEQ No. 18)) was used to induce a specific mutation. , RP 5'-CTCCCGGCGGGTCCTGGGTGTGTA-3' (SEQ No. 19); insulin K88R FP 5'-TCCCTGCAGAGGCGTGGCATTGT-3' (SEQ No. 20), RP 5'-TTGTTCCACAATGCCA CGCCTCTGCAG-3' (SEQ No. 21) was prepared. After that, PCR was performed under specific conditions to prepare a plasmid DNA in which a specific amino acid residue was substituted.PCDNA3-myc-insulin was used as a template, and a plasmid DNA in which two lysine residues were substituted with arginine (K→R) was used. Was produced (Table 3).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 insulin 작제물Insulin construct in which Lysine (K) is substituted for Arginine (R) 5353 pcDNA3-myc-insulin (K53R)pcDNA3-myc-insulin (K53R) 8888 pcDNA3-myc-insulin (K88R)pcDNA3-myc-insulin (K88R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-인슐린 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-인슐린 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 (co-transfection) 시켰다. 형질감염 24시간 후, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강분석을 수행하였다 (도 18). 또한 각각 pcDNA3-myc-인슐린 WT, pcDNA3-myc-인슐린 치환체 (K53R), pcDNA3-myc-인슐린 치환체 (K88R) 및 pMT123-HA-유비퀴틴 DNA를 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위해, pcDNA3-myc-인슐린 WT, pcDNA3-myc-인슐린 치환체 (K53R) 및 pcDNA3-myc-인슐린 치환체 (K88R)각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍로 세포를 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 19). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-insulin WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-insulin WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 18). In addition, HEK 293T cells were infected using a plasmid encoding pcDNA3-myc-insulin WT, pcDNA3-myc-insulin substituent (K53R), pcDNA3-myc-insulin substituent (K88R), and pMT123-HA-ubiquitin DNA, respectively. To confirm the degree of ubiquitination, the cells were co-coated with pcDNA3-myc-insulin WT, pcDNA3-myc-insulin substituent (K53R), and pcDNA3-myc-insulin substituent (K88R), respectively, 2 μg and 1 μg of pMT123-HA-ubiquitin DNA. Immunoprecipitation analysis was performed 24 hours after transfection (FIG. 19).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 멤브레인으로 옮긴 다음, 항-myc (9E10, sc-40), 항-HA (sc-7392) 및 항-β-actin (sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806)를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. And incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. The silver protein sample was mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was transferred to a polyvinylidenedifluoride membrane, followed by anti-myc (9E10, sc-40), anti-HA (sc-7392) and anti-β-actin (sc-47778) in a weight ratio of 1:1000 and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+) L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-인슐린 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 18, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 18, 레인 4). 또한 pcDNA3-myc-인슐린 치환체 (K53R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-인슐린 치환체 (K53R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 19, 레인 3). 이상의 결과는 인슐린이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to pcDNA3-myc-insulin WT to form polyubiquitin. It appeared dark (Fig. 18, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 18, lane 4). In addition, in the case of the pcDNA3-myc-insulin substituent (K53R), the band was softer than that of WT, and the pcDNA3-myc-insulin substituent (K53R) was unable to bind to ubiquitin, so less ubiquitin was detected (FIG. 19, lane 3). The above results show that insulin binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질생성저해제 cycloheximide(CHX)에 의한 인슐린의 반감기 확인3. Confirmation of half-life of insulin by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-인슐린 WT, pcDNA3-myc-인슐린 치환체 (K53R) 및 pcDNA3-myc-인슐린 치환체 (K88R)를 각각 2 ㎍씩 HEK293T 세포에 형질감염시켰다. 형질감염 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간, 및 8시간에 걸쳐서 반감기를 측정해본 결과, 인간 인슐린의 분해가 억제되는 것을 확인하였다 (도 20). 결과적으로, 인간 인슐린의 반감기는 30분 이내인 반면, 인간 pcDNA3-myc-인슐린 치환체 (K53R)의 반감기는 1시간 이상으로 WT보다 길어졌으며 이 결과를 그래프로 나타내었다 (도 20).pcDNA3-myc-insulin WT, pcDNA3-myc-insulin substitutent (K53R), and pcDNA3-myc-insulin substitutent (K88R) were transfected into HEK293T cells at 2 µg each. 48 hours after transfection, the protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 2 hours, 4 hours, and 8 hours, as a result of decomposition of human insulin. It was confirmed that is suppressed (FIG. 20). As a result, the half-life of human insulin is within 30 minutes, whereas the half-life of human pcDNA3-myc-insulin substituent (K53R) is longer than WT by 1 hour or more, and this result is shown in a graph (FIG. 20).

4. 세포 내에서의 인슐린과 인슐린 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by insulin and insulin substitutes in cells

인슐린은 간에서 STAT3의 인산화를 자극하여 결과적으로 간에서의 glucose 항상성을 조절한다는 것이 보고되었다 (Cell Metab., 3, 267275, 2006). 본 실시예에서는, 세포 내에서 인슐린과 인슐린 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, pcDNA3-myc-인슐린 WT, pcDNA3-myc-인슐린 치환체 (K53R), 및 pcDNA3-myc-인슐린 치환체 (K88R)를 각각 3 ㎍씩 이용하여 PBS로 7차례씩 씻어낸 PANC-1과 HepG2 (ATCC, AB-8065)를 감염시켰다. 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량 한 다음, 세포 내 신호전달 과정을 확인하고자 웨스턴 블롯팅을 실시하였다. 이 과정에서 각각 pcDNA3-myc-인슐린 WT, pcDNA3-myc-인슐린 치환체 (K53R) 및 pcDNA3-myc-인슐린 치환체 (K88R)로 감염시킨 PANC-1과 HepG2 (ATCC, AB-8065) 세포에서 분리한 단백질을 PVDF 멤브레인으로 옮긴 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, Cell Signaling 9131S) 및 항-β-액틴 (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-인슐린 치환체 (K53R)은 PANC-1과 HepG2 (ATCC, AB-8065) 세포 내에서 pcDNA3-myc-인슐린 WT과 비슷하거나 증가된 phospho-STAT3 신호전달을 보였다 (도 21). It has been reported that insulin stimulates the phosphorylation of STAT3 in the liver and consequently regulates glucose homeostasis in the liver (Cell Metab., 3, 267275, 2006). In this example, the signal transduction process by insulin and insulin substitutes in the cell was confirmed. First, the pcDNA3-myc-insulin WT, pcDNA3-myc-insulin substituent (K53R), and pcDNA3-myc-insulin substituent (K88R) were each used 3 μg each, and PANC-1 and HepG2 (ATCC) washed 7 times with PBS using 3 μg each. , AB-8065). After 2 days, proteins were extracted from the cells and quantified, and then Western blotting was performed to confirm the intracellular signal transduction process. In this process, proteins isolated from PANC-1 and HepG2 (ATCC, AB-8065) cells infected with pcDNA3-myc-insulin WT, pcDNA3-myc-insulin substituent (K53R) and pcDNA3-myc-insulin substituent (K88R), respectively. Transferred to PVDF membrane, then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, Cell Signaling 9131S) and anti- Blocking solution containing β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000, anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004, and anti-mouse (Peroxidase -labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody. As a result, pcDNA3-myc-insulin substituent (K53R) showed similar or increased phospho-STAT3 signaling to pcDNA3-myc-insulin WT in PANC-1 and HepG2 (ATCC, AB-8065) cells (FIG. 21 ). .

실시예 4: 인터페론-α 단백질의 유비퀴틴화 분석 및 반감기 증가 확인과 세포 내 신호전달 확인Example 4: Analysis of ubiquitination of interferon-α protein and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 인터페론-α DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 EcoRI으로 절편을 만든 후 접합하여 클로닝하였으며 (도 22, 인터페론-α 아미노산 서열: SEQ No. 22), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 23). 또한 도 22의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝 된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 23). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 1분을 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 22의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였으며, 이를 통해 myc에 결합된 인터페론-α 단백질이 잘 발현되는 것을 확인하였고 액틴으로 확인한 블롯을 통해 정량 로딩된 것을 확인히였다 (도 24).Interferon-α DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with EcoRI, a restriction enzyme, and then conjugated and cloned (FIG. 22, interferon-α amino acid sequence: SEQ No. 22), The results were confirmed through restriction enzyme digestion and agarose gel electrophoresis (FIG. 23). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 22 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. Was done (Fig. 23). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by repeating 25 cycles of 94° C. for the denaturation reaction for 30 seconds, 58° C. for the annealing reaction for 30 seconds, and 1 minute at 72° C. for the extension reaction. Then, it was reacted at 72°C for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pcDNA3-myc vector shown in the map of FIG. 22 was expressed through western blotting using an anti-myc (9E10, sc-40) antibody. It was confirmed, and through this, it was confirmed that the interferon-α protein bound to myc was well expressed, and it was confirmed that it was quantitatively loaded through a blot confirmed with actin (FIG. 24).

(2) 라이신 (Lysine, K) 잔기의 치환 (2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (IFN-α K93R FP 5'-CTTCAGCACAAGGGACTCATC-3' (SEQ No. 23), RP 5'-CAGATGAGTCCCTTGTGCTGA-3' (SEQ No. 24); IFN-α K106R FP 5'-CTCCTAGAC AGATTCTACACT-3' (SEQ No. 25), RP 5'-AGTGTAGAATCTGTCTAGGAG-3' (SEQ No. 26); IFN-α K144R FP 5'-GCTGTGAGGAGATACTTCCAA-3' (SEQ No. 27), RP 5'-TT GGAAGTATCTCCTCACAGC-3' (SEQ No. 28); IFN-α K154R FP 5'-CTCTATCTGAGAGAG AAGAAA-3' (SEQ No. 29), RP 5'-TTTCTTCTCTCTCAGATAGAG-3' (SEQ No. 30)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-인터페론-α를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 4개의 플라스미드 DNA를 제작하였다 (표 4).The lysine residue was replaced with arginine using site-directed mutagenesis, and a primer (IFN-α K93R FP 5'-CTTCAGCACAAGGGACTCATC-3' (SEQ No. 23), RP 5'-CAGATGAGTCCCTTGTGCTGA-3' (SEQ No. 24); IFN-α K106R FP 5'-CTCCTAGAC AGATTCTACACT-3' (SEQ No. 25), RP 5'-AGTGTAGAATCTGTCTAGGAG-3' (SEQ No. 26); IFN-α K144R FP 5'-GCTGTGAGGAGATACTTCCAA-3' (SEQ No. 27), RP 5'-TT GGAAGTATCTCCTCACAGC-3' (SEQ No. 28); IFN-α K154R FP 5'-CTCTATCTGAGAGAG AAGAAA-3 '(SEQ No. 29), RP 5'-TTTCTTCTCTCTCAGATAGAG-3' (SEQ No. 30) was prepared, and then PCR was performed under specific conditions to prepare plasmid DNA in which specific amino acid residues were substituted. Interferon-α was used as a template, and four plasmid DNAs in which the lysine residue was substituted with arginine (K→R) were prepared (Table 4).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R )로 치환된 IFN-α 작제물IFN-α construct in which Lysine (K) is substituted with Arginine (R) 9393 pcDNA3-myc-IFN-α (K93R)pcDNA3-myc-IFN-α (K93R) 106106 pcDNA3-myc-IFN-α (K106R)pcDNA3-myc-IFN-α (K106R) 144144 pcDNA3-myc-IFN-α (K144R)pcDNA3-myc-IFN-α (K144R) 154154 pcDNA3-myc-IFN-α (K154R)pcDNA3-myc-IFN-α (K154R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-인터페론-α WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-인터페론-α WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 다음, 면역침강 분석을 실시하였다 (도 25). 또한 각각 pcDNA3-myc-인터페론-α WT, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R), pcDNA3-myc-인터페론-α 치환체 (K154R), 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-인터페론-α WT, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R) 및 pcDNA3-myc-인터페론-α 치환체 (K154R) 각각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염시키고 24시간 후에 면역침강분석을 실시하였다 (도 26). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-interferon-α WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-interferon-α WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 25). In addition, pcDNA3-myc-interferon-α WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R), pcDNA3-myc respectively -Interferon-α substituent (K154R), and a plasmid encoding pMT123-HA-ubiquitin DNA were used to infect HEK 293T cells. To confirm the degree of ubiquitination, pcDNA3-myc-interferon-α WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R) ) And pcDNA3-myc-interferon-α substituent (K154R), respectively, 2 μg and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 26 ).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 옮긴 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다.Samples obtained for immunoprecipitation were dissolved in a lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. It was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. Protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and separated by performing SDS-PAGE After transferring the separated protein to a PVDF membrane, anti-myc (9E10, Santa Cruz Biotechnology, sc- 40), a blocking solution containing an anti-HA (Santa Cruz Biotechnology, sc-7392) and an anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and an anti-mouse (Peroxidase-labeled antibody) to mouse IgG (H+L), KPL, 074-1806) was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-인터페론-α WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 25, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 25, 레인 4). 또한 pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R) 및 pcDNA3-myc-인터페론-α 치환체 (K154R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R) 및 pcDNA3-myc-인터페론-α 치환체 (K154R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 26, 레인 3 및 6). 이상의 결과는 인터페론-α이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화 되어 분해됨을 보여준다. As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pcDNA3-myc-interferon-α WT to form polyubiquitin. (Figure 25, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 25, lane 4). In addition, in the case of pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R) and pcDNA3-myc-interferon-α substituent (K154R) , The band was softer than WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R) and pcDNA3-myc-interferon- Since the α substituent (K154R) could not bind to ubiquitin, less ubiquitin was detected (FIG. 26, lanes 3 and 6). The above results show that interferon-α binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질생성저해제 cycloheximide(CHX)에 의한 인터페론-α의 반감기 확인3. Confirmation of half-life of interferon-α by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-인터페론-α WT, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R) 및 pcDNA3-myc-인터페론-α 치환체 (K154R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 시켰다. 형질감염 48시간 후, 단백질 생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 1일, 2일에 걸쳐서 반감기를 측정해본 결과, 인간 인터페론-α의 분해가 억제되는 것을 확인하였다 (도 27). 인간 인터페론-α의 반감기는 1일 이내인 반면, 인간 pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K144R) 및 pcDNA3-myc-인터페론-α 치환체 (K154R)의 반감기는 2일 이상으로 WT보다 길어졌으며, 이 결과는 그래프로 나타내었다 (도 27).pcDNA3-myc-interferon-α WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R) and pcDNA3-myc-interferon The -α substituent (K154R) was transfected into HEK 293T cells by 2 µg each. 48 hours after transfection, the protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 1 and 2 days. As a result, degradation of human interferon-α was inhibited. It was confirmed that it became (FIG. 27). The half-life of human interferon-α is within 1 day, while that of human pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K144R) and pcDNA3-myc-interferon-α substituent (K154R). The half-life was longer than that of WT by more than 2 days, and this result was shown as a graph (FIG. 27).

4. 세포 내에서의 인터페론-α와 인터페론-α 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by interferon-α and interferon-α substituents in cells

인터페론-α는 STAT-1, -2와 -3를 증가시킨다는 것이 보고되었고 (J Immunol., 187, 2578-2585, 2011), melanoma 세포에서는 인터페론-α에 의해 성장을 촉진하는 STAT3 단백질을 활성화한다는 것이 보고되었다 (Eur J Cancer, 45, 1315-1323, 2009). 본 실시예에서는 세포 내에서 인터페론-α와 인터페론-α 치환체들에 의한 신호전달 과정을 확인하였다. THP-1 세포 (ATCC, TIB-202)를 PBS로 7차례 씻어낸 후, pcDNA3-myc-인터페론-α WT, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R), 및 pcDNA3-myc-인터페론-α 치환체 (K154R)를 각각 3 ㎍씩 이용하여 THP-1 세포 를 감염시킨 다음 1일과 2일 경과 후 순차적으로 세포에서 단백질을 추출하여 각 정량 후, 세포 내 신호전달 과정을 확인하고자 Western blot을 실시하였다. 이 과정에서 pcDNA3-myc-인터페론-α WT, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R), pcDNA3-myc-인터페론-α 치환체 (K154R)으로 감염된 THP-1 세포에서 분리된 단백질을 PVDF 멤브레인으로 옮긴 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-인터페론-α 치환체 (K93R), pcDNA3-myc-인터페론-α 치환체 (K106R), pcDNA3-myc-인터페론-α 치환체 (K144R), pcDNA3-myc-인터페론-α 치환체 (K154R)은 THP-1 세포 (ATCC, TIB-202) 내에서 pcDNA3-myc-인터페론-α WT과 동일하거나 증가된 phospho-STAT3 신호전달을 보였다 (도 28). It has been reported that interferon-α increases STAT-1, -2 and -3 (J Immunol., 187, 2578-2585, 2011), and in melanoma cells, interferon-α activates STAT3 protein, which promotes growth. Has been reported (Eur J Cancer, 45, 1315-1323, 2009). In this example, the signaling process by interferon-α and interferon-α substituents in the cell was confirmed. After washing THP-1 cells (ATCC, TIB-202) 7 times with PBS, pcDNA3-myc-interferon-α WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent ( K106R), pcDNA3-myc-interferon-α substituent (K144R), and pcDNA3-myc-interferon-α substituent (K154R) were each used in 3 μg each to infect THP-1 cells and then sequentially after 1 and 2 days. After each quantification by extracting the protein from the cells, Western blot was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-interferon-α WT, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R), pcDNA3- After transferring the protein isolated from THP-1 cells infected with the myc-interferon-α substituent (K154R) to the PVDF membrane, anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc -21876), anti-phospho-STAT3 (Y705, cell signaling 9131S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and a blocking solution containing anti-rabbit (goat anti- rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using ECL system (Western blot detection kit , ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-interferon-α substituent (K93R), pcDNA3-myc-interferon-α substituent (K106R), pcDNA3-myc-interferon-α substituent (K144R), pcDNA3-myc-interferon-α substituent (K154R) Showed the same or increased phospho-STAT3 signaling as pcDNA3-myc-interferon-α WT in THP-1 cells (ATCC, TIB-202) (FIG. 28 ).

실시 예 5: Example 5: 과립구집락Granulocyte colony 자극인자Stimulus factor (G- (G- CSFCSF ) 단백질의 ) Of protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 과립구집락 자극인자 (G-CSF) DNA 증폭 산물과 pcDNA3-myc (5.6kb)를 제한효소인 EcoRI으로 절편을 만든 후 접합하여 클로닝하였으며 (도 29, G-CSF 아미노산 서열: SEQ No.31), 그 결과는 제한효소 절단 후, 아가로즈젤 전기 영동을 통해 확인하였다 (도 30). 또한 도 29의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머센트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 30). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장반응을 위한 72℃에서 1분을 25 주기로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 29의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. myc에 결합된 과립구집락 자극인자(G-CSF) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량이 로딩된 것으로 나타났다 (도 31). Granulocyte colony stimulating factor (G-CSF) DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with EcoRI, a restriction enzyme, and then conjugated and cloned (Figure 29, G-CSF amino acid sequence: SEQ No. 31), the results were confirmed through agarose gel electrophoresis after digestion with restriction enzymes (FIG. 30). In addition, the portion marked in bold and underlined on the nucleotide sequence of FIG. 29 is the primer cent used when confirming through the polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 30). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by repeating 25 cycles of 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 58° C. for the annealing reaction, and 1 minute at 72° C. for the extension reaction. Then, it was reacted at 72° C. for 10 minutes. Western blotting of myc present in the pcDNA3-myc vector shown in the map of FIG. 29 using an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody in order to confirm whether the thus produced DNA is properly expressed as a protein. Expression was confirmed through. It was confirmed that the granulocyte colony stimulating factor (G-CSF) protein bound to myc was well expressed and quantitatively loaded through a blot confirmed with actin (FIG. 31).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (G-CSF K46R FP 5'-AGCTTCCTGCTCAGGTGCTTAGAG-3' (SEQ No. 32), RP 5'-TTGCTCTAAGCACCTGAGCAGGAA-3' (SEQ No. 33), G-CSF K73R FP 5'- TGTGCCACCTACAGGCTGTGCCAC-3' (SEQ No. 34), RP 5'-GGGGTGGCACAGCCTGTA GGTGGC-3' (SEQ No. 35)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-과립구집락 자극인자(G-CSF)를 템플릿으로 사용하고, Lysine 잔기가 아르기닌으로 치환 (K→R)된 2개의 플라스미드 DNA를 제작하였다 (표 5).The lysine residue was replaced with arginine using site-directed mutagenesis, and a primer (G-CSF K46R FP 5'-AGCTTCCTGCTCAGGTGCTTAGAG-3' (SEQ No. 32), RP 5'-TTGCTCTAAGCACCTGAGCAGGAA-3' (SEQ No. 33), G-CSF K73R FP 5'- TGTGCCACCTACAGGCTGTGCCAC-3' (SEQ No. 34), RP 5'-GGGGTGGCACAGCCTGTA GGTGGC-3' (SEQ No. 35) was prepared, and then PCR was performed under specific conditions to prepare a plasmid DNA in which a specific amino acid residue was substituted. Two plasmid DNAs substituted (K→R) were prepared (Table 5).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 G-CSF 작제물G-CSF construct in which Lysine (K) is substituted with Arginine (R) 4646 pcDNA3-myc-G-CSF (K46R)pcDNA3-myc-G-CSF (K46R) 7373 pcDNA3-myc-G-CSF (K73R)pcDNA3-myc-G-CSF (K73R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT과 pMT123-HA-유비퀴틴 DNA 을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 감염 24시간 경과 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강분석을 실시하였다 (도 32). 또한 각각 pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT, pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K46R), pcDNA3-myc-과립구집락 자극인자 (G-CSF) (K73R)과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-과립구집락 자극인자(G-CSF) WT, pcDNA3-myc-과립구집락 자극인자(G-CSF) 치환체 (K46R), pcDNA3-myc-과립구집락 자극인자 (G-CSF) (K73R)를 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 수행하였다 (도 33). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-granular colony stimulating factor (G-CSF) WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-granular colony stimulating factor (G-CSF) WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of infection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 32). In addition, pcDNA3-myc-granular colony stimulating factor (G-CSF) WT, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R), pcDNA3-myc-granular colony stimulating factor (G-CSF) (K73R) ) And the plasmid encoding pMT123-HA-ubiquitin DNA were used to infect HEK 293T cells. To confirm the degree of ubiquitination, pcDNA3-myc-granular colony stimulating factor (G-CSF) WT, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R), pcDNA3-myc-granular colony stimulating factor (G -CSF) (K73R) was co-transfected into cells with 2 µg, respectively, and 1 µg of pMT123-HA-ubiquitin DNA, and immunoprecipitation analysis was performed 24 hours later (Fig. 33).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열 한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다.Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. And incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. The silver protein sample was mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 blocking solution and anti-mouse (Peroxidase- Labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 32, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 32, 레인 4). 또한 pcDNA3-myc-과립구집락 자극인자(G-CSF) (K73R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-과립구집락 자극인자 (G-CSF) (K73R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 33, 레인 4). 이상의 결과는 과립구집락 자극인자(G-CSF)이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to the pcDNA3-myc-granular colony stimulating factor (G-CSF) WT and spread as polyubiquitin was formed. Shaped ubiquitin was detected and the band appeared dark (FIG. 32, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 32, lane 4). In addition, in the case of pcDNA3-myc-granular colony stimulating factor (G-CSF) (K73R), the band was softer than that of WT, and pcDNA3-myc-granular colony stimulating factor (G-CSF) (K73R) was unable to bind to ubiquitin. Less of this was detected (Fig. 33, lane 4). The above results show that the granulocyte colony stimulating factor (G-CSF) binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질생성 저해제 cycloheximide (CHX)에 의한 과립구집락 자극인자 (G-CSF)의 반감기 확인3. Confirmation of half-life of granulocyte colony stimulating factor (G-CSF) by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT, pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K46R), pcDNA3-myc-과립구집락 자극인자 (G-CSF) (K73R)를 2 ㎍씩 HEK 293T 세포에 형질감염 (transfection)시켰다. 형질감염 48시간 후, 단백질 생성 저해제 cycloheximide (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 4시간, 8시간 및 16시간에 걸쳐서 반감기를 측정하였다. 그 결과, 인간 과립구집락 자극인자 (G-CSF)의 분해가 억제되는 것을 확인하였다 (도 34). 인간 과립구집락 자극인자 (G-CSF)의 반감기는 4시간인데 반면 인간 pcDNA3-myc-과립구집락 자극인자 (G-CSF) (K73R)의 반감기는 16시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 34). pcDNA3-myc-granular colony stimulating factor (G-CSF) WT, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R), pcDNA3-myc-granular colony stimulating factor (G-CSF) (K73R) Each 2 μg of HEK 293T cells were transfected. 48 hours after transfection, the protein production inhibitor cycloheximide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 4 hours, 8 hours and 16 hours. As a result, it was confirmed that the decomposition of the human granulocyte colony stimulating factor (G-CSF) was inhibited (FIG. 34). The half-life of human granulocyte colony stimulating factor (G-CSF) was 4 hours, whereas the half-life of human pcDNA3-myc-granular colony stimulating factor (G-CSF) (K73R) was 16 hours or longer than that of WT. Shown (Fig. 34).

4. 세포 내에서의 4. In the cell 과립구집락Granulocyte colony 자극인자Stimulus factor (G- (G- CSFCSF )와 )Wow 과립구집락Granulocyte colony 자극인자Stimulus factor (G- (G- CSFCSF ) 치환체들에 의한 신호전달 확인) Confirmation of signal transmission by substituents

과립구집락 자극인자 (G-CSF)는 신경교종 (glioma) 세포에서 STAT3를 활성화시키고 이를 통해서 신경교종 증식에 관여한다는 것이 보고되었으며 (Cancer Biol Ther., 13(6), 389-400, 2012), 난소 상피 암세포에서 발현된다는 것과 JAK2/STAT3 경로를 조절함에 따라 여성 자궁암의 병리학적 관련성이 있다는 것이 보고되었다 (Br J Cancer, 110, 133-145, 2014). 본 실시예에서는, 세포 내에서 과립구집락 자극인자 (G-CSF)와 과립구집락 자극인자 (G-CSF) 치환체들에 의한 신호전달 과정을 확인하였다. 먼저 THP-1 세포 (ATCC, TIB-202)를 PBS로 7차례 씻어낸 후, pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT, pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K46R) 및 pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K73R)를 각각 3 ㎍씩 이용하여 THP-1 세포 (ATCC, TIB-202) 를 감염시켰다. 감염 1일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT, pcDNA3-myc-과립구집락 자극인자(G-CSF) 치환체 (K46R), pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K73R)으로 감염된 THP-1 세포 (ATCC, TIB-202)에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1,000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K46R), pcDNA3-myc-과립구집락 자극인자 (G-CSF) 치환체 (K73R)은 THP-1 세포 (ATCC, TIB-202) 내에서 pcDNA3-myc-과립구집락 자극인자 (G-CSF) WT과 동일하거나 증가된 phospho-STAT3 신호전달을 보였다 (도 35).Granulocyte colony stimulating factor (G-CSF) has been reported to activate STAT3 in glioma cells and thereby participate in glioma proliferation (Cancer Biol Ther., 13(6), 389-400, 2012), It has been reported that it is expressed in ovarian epithelial cancer cells and that there is a pathological association of female uterine cancer by regulating the JAK2/STAT3 pathway (Br J Cancer, 110, 133-145, 2014). In this example, the signaling process by the granulocyte colony stimulating factor (G-CSF) and granulocyte colony stimulating factor (G-CSF) substituents was confirmed in the cell. First, THP-1 cells (ATCC, TIB-202) were washed 7 times with PBS, and then pcDNA3-myc-granular colony stimulating factor (G-CSF) WT, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R) and pcDNA3-myc-granular colony stimulating factor (G-CSF) substituents (K73R) were used to infect THP-1 cells (ATCC, TIB-202) using 3 µg each. After 1 day of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-granular colony stimulating factor (G-CSF) WT, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R), pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K73R)-infected THP-1 cells (ATCC, TIB-202) were transferred to a polyvinylidene difluoride (PVDF) membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc). -40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1,000 Blocking solution and anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) The secondary antibody was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K46R), pcDNA3-myc-granular colony stimulating factor (G-CSF) substituent (K73R) is THP-1 cells (ATCC, TIB-202) Within the pcDNA3-myc-granulocyte colony stimulating factor (G-CSF) WT showed the same or increased phospho-STAT3 signaling (FIG. 35).

실시 예 6: 인터페론-β 단백질의 유비퀴틴화 분석 및 반감기 증가 확인과 세포 내 신호전달 확인Example 6: Analysis of ubiquitination of interferon-β protein and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 인터페론-β DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 EcoRI으로 절편을 만든 후 접합하여 클로닝하였으며 (도 36, 인터페론-β 아미노산 서열: SEQ No. 36), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 37). 또한 도 36의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 37). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 50초를 25 사이클 반복하여 진행하였고, 이후 72℃도에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 36의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였으며, 이를 통해 myc에 결합된 인터페론-β 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량이 로딩된 것으로 나타났다 (도 38). 또한 인터페론-β의 경우 세포 내에서 글라이코실레이션 (glycosylation)에 의해 두 종류의 발현 밴드가 나타났으며 이 과정을 차단하는 PNGase F (New England Biolabs Inc., P0704S) 500 unit을 37℃에서 한 시간 동안 처리한 후, 한 종류의 발현 밴드만 보이는 것을 확인하였다 (도 38).Interferon-β DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with EcoRI, a restriction enzyme, and then cloned by conjugation (FIG. 36, interferon-β amino acid sequence: SEQ No. 36), The results were confirmed through restriction enzyme digestion and agarose gel electrophoresis (FIG. 37). In addition, the portion marked in bold and underlined on the nucleotide sequence of FIG. 36 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 37). Polymerase chain reaction conditions are as follows; After reacting the initial denaturation at 94° C. for 3 minutes, 25 cycles were repeated for 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 58° C. for the annealing reaction, and 50 seconds at 72° C. for the extension reaction. After that, it was reacted for 10 minutes at 72°C. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pcDNA3-myc vector shown in the map of FIG. 36 was expressed through western blotting using an anti-myc (9E10, sc-40) antibody. It was confirmed, and through this, it was confirmed that the interferon-β protein bound to myc was well expressed, and it was found that the quantification was loaded through the blot confirmed with actin (FIG. 38). In addition, in the case of interferon-β, two types of expression bands appeared due to glycosylation in cells, and 500 units of PNGase F (New England Biolabs Inc., P0704S) blocking this process were added at 37°C. After treatment for a period of time, it was confirmed that only one type of expression band was visible (FIG. 38).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌 (Arginine, R)으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (IFN-β K40R FP 5'-CAGTGTCAGAGGCTCCTGTGG-3' (SEQ No. 37), RP 5'- CCACAGGAGCCTCTGACACTG-3' (SEQ No. 38); IFN-β K126R FP 5'-CT GGAAGAAAGACTGGAGAAA-3' (SEQ No. 39), RP 5'-TTTCTCCAGTCTTTCTTCCAG-3' (SEQ No. 40); IFN-β K155R FP 5'-CATTACCTGAGGGCCAAGGAG-3' (SEQ No. 41), RP 5'-CTCCTTGGCCCTCAGGTAATG-3' (SEQ No. 42)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-인터페론-β를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 6).The lysine residue was replaced with arginine (R) using site-directed mutagenesis, and the primer (IFN-β K40R FP 5'-CAGTGTCAGAGGCTCCTGTGG-3) was used to induce a specific mutation. '(SEQ No. 37), RP 5'-CCACAGGAGCCTCTGACACTG-3' (SEQ No. 38); IFN-β K126R FP 5'-CT GGAAGAAAGACTGGAGAAA-3' (SEQ No. 39), RP 5'-TTTCTCCAGTCTTTCTTCCAG-3 '(SEQ No. 40); IFN-β K155R FP 5'-CATTACCTGAGGGCCAAGGAG-3' (SEQ No. 41), RP 5'-CTCCTTGGCCCTCAGGTAATG-3' (SEQ No. 42) was prepared, and then PCR under specific conditions. Plasmid DNA in which a specific amino acid residue was substituted was prepared by using pcDNA3-myc-interferon-β as a template, and plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 6).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 IFN-β 작제물IFN-β construct in which Lysine (K) is substituted with Arginine (R) 4040 pcDNA3-myc-IFN-β (K40R)pcDNA3-myc-IFN-β (K40R) 126126 pcDNA3-myc-IFN-β (K126R)pcDNA3-myc-IFN-β (K126R) 155155 pcDNA3-myc-IFN-β (K155R)pcDNA3-myc-IFN-β (K155R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-인터페론-β WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-인터페론-β WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역 침강 분석을 실시하였다 (도 39). 또한 pcDNA3-myc-인터페론-β WT, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R) 및 pMT123-HA-유비퀴틴 DNA를 각각 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-인터페론-β WT, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)를 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 40). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-interferon-β WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-interferon-β WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 39). In addition, pcDNA3-myc-interferon-β WT, pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), pcDNA3-myc-interferon-β substituent (K155R) and pMT123-HA- HEK 293T cells were infected using plasmids each encoding ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-interferon-β WT, pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), pcDNA3-myc-interferon-β substituent (K155R) ), respectively, 2 μg and 1 μg of pMT123-HA-ubiquitin DNA were cotransfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 40).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후, 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in a lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. It was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. Protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 blocking solution and anti-mouse (Peroxidase- Labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-인터페론-β WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 39, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 39, 레인 4). 또한 pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 40, 레인 3 및 5). 이상의 결과는 인터페론-β이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pcDNA3-myc-interferon-β WT to form polyubiquitin. (Figure 39, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 39, lane 4). In addition, in the case of pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), and pcDNA3-myc-interferon-β substituent (K155R), the band was softer than WT, and pcDNA3-myc- Interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), and pcDNA3-myc-interferon-β substituent (K155R) were unable to bind to ubiquitin, resulting in less ubiquitin detection (Fig. 40, lanes 3 and 5). ). The above results show that interferon-β binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질생성저해제 cycloheximide(CHX)에 의한 인터페론-β의 반감기 확인3. Confirmation of half-life of interferon-β by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-인터페론-β WT, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 시켰다. 형질감염 48시간 후, 단백질 생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 4시간, 8시간에 걸쳐서 반감기를 측정하였다. 그 결과, 인간 인터페론-β의 분해가 억제되는 것을 확인하였다 (도 41). 인간 인터페론-β의 반감기는 4시간인 반면 인간 pcDNA3-myc-인터페론-β 치환체 (K126R) 및 pcDNA3-myc-인터페론-β 치환체 (K155R)의 반감기는 8시간으로 WT보다 길어졌으며, 이 결과는 그래프로 나타내었다 (도 41).pcDNA3-myc-interferon-β WT, pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), pcDNA3-myc-interferon-β substituent (K155R) in HEK by 2 μg each 293T cells were transfected. 48 hours after transfection, the protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 4 hours and 8 hours. As a result, it was confirmed that the decomposition of human interferon-β was suppressed (Fig. 41). The half-life of human interferon-β is 4 hours, whereas the half-life of human pcDNA3-myc-interferon-β substituent (K126R) and pcDNA3-myc-interferon-β substituent (K155R) is 8 hours, which is longer than that of WT. It is represented by (Fig. 41).

4. 세포내에서의 인터페론-β와 인터페론-β 치환체들에 의한 신호전달 확인4. Confirmation of signaling by interferon-β and interferon-β substituents in cells

세포 내에 인터페론을 처리하게 되면 AKT를 포함하는 신호전달 과정들의 활성이 유도된다는 것이 보고되었다 (Pharmaceuticals (Basel), 3, 994-1015, 2010). 본 실시예에서는, 세포 내에서 인터페론-β와 인터페론-β 치환체들에 의한 신호전달 과정을 확인하였다. pcDNA3-myc-인터페론-β WT, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)를 각각 3 ㎍씩 이용하여 HEK293 세포를 감염시켰다. 감염 1일 경과한 후, 세포에서 소니케이터를 이용하여 용해시킨 후, 수득한 단백질을 PBS로 7차례 씻어낸 HepG2 세포 (ATCC, AB-8065)에 처리하여 감염시키고, 2일이 지난 후 HepG2 세포 에서 단백질을 추출하여 각각 정량 하였다. 세포 내 신호전달 과정을 확인하고자 Western blot을 실시하였다. 이 과정에서 각각 pcDNA3-myc-인터페론-β WT, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R) 및 pcDNA3-myc-인터페론-β 치환체 (K155R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S), 항-AKT (H-136, Santa Cruz Biotechnology, sc-8312), 항-phospho-AKT (S473, cell signaling 9271S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-인터페론-β 치환체 (K40R), pcDNA3-myc-인터페론-β 치환체 (K126R), pcDNA3-myc-인터페론-β 치환체 (K155R)은 HepG2 세포 내에서 pcDNA3-myc-인터페론-β WT과 동일하거나 증가된 phospho-AKT 신호전달을 보였다 (도 42). It has been reported that treatment of interferon in cells induces the activity of signaling processes including AKT (Pharmaceuticals (Basel), 3, 994-1015, 2010). In this example, the signaling process by interferon-β and interferon-β substituents in the cell was confirmed. pcDNA3-myc-interferon-β WT, pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), pcDNA3-myc-interferon-β substituent (K155R) were each used by 3 μg. To infect HEK293 cells. After 1 day of infection, the cells were lysed using a sonicator, and the obtained protein was treated with HepG2 cells (ATCC, AB-8065) washed 7 times with PBS to infect, and after 2 days, HepG2 Proteins were extracted from the cells and quantified respectively. Western blot was performed to confirm the intracellular signal transduction process. In this process, they were infected with pcDNA3-myc-interferon-β WT, pcDNA3-myc-interferon-β substituent (K40R), pcDNA3-myc-interferon-β substituent (K126R), and pcDNA3-myc-interferon-β substituent (K155R), respectively. After moving the protein isolated from HepG2 cells to the PVDF membrane, anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S), anti-AKT (H-136, Santa Cruz Biotechnology, sc-8312), anti-phospho-AKT (S473, cell signaling 9271S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 blocking solution and anti-rabbit ( goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-interferon-β substituents (K40R), pcDNA3-myc-interferon-β substituents (K126R), and pcDNA3-myc-interferon-β substituents (K155R) are pcDNA3-myc-interferon-β in HepG2 cells. It showed the same or increased phospho-AKT signaling as WT (Fig. 42).

실시 예 7: 에리트로포이에틴 단백질의 Example 7: of erythropoietin protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인 1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 에리트로포이에틴 DNA 증폭산물과 pcDNA3-myc 발현 벡터 (5.6kb)를 제한효소인 EcoRI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 43, 에리트로포이에틴 아미노산 서열: SEQ No. 43), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 44). 또한 도 43의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 44). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃도에서 1분을 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 43의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 수행하였다. 그 결과 myc에 결합된 에리트로포이에틴 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량이 로딩된 것으로 나타났다 (도 45).The erythropoietin DNA amplification product by polymerase chain reaction and the pcDNA3-myc expression vector (5.6 kb) were fragmented with EcoRI, a restriction enzyme, and then conjugated and cloned (Fig. 43, erythropoietin amino acid sequence: SEQ No. 43). ), the result was confirmed through agarose gel electrophoresis after digestion of the restriction enzyme (FIG. 44). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 43 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 44). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by 25 cycles of 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 58° C. for the annealing reaction, and 1 minute at 72° C. for the extension reaction. Then, it was reacted at 72° C. for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, western blotting of myc present in the pcDNA3-myc vector shown in the map of FIG. 43 was performed using an anti-myc (9E10, sc-40) antibody. As a result, it was confirmed that the erythropoietin protein bound to myc was well expressed, and it was found that the quantification was loaded through the blot confirmed with actin (FIG. 45).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (EPO K124R FP 5'-GCATGTGGATAGAGCCGTCAGTGC-3' (SEQ No. 44), RP 5'-GCACTGACGGCTCTATCCACATGC-3' (SEQ No. 45); EPO K167R FP 5'-T GACACTTTCCGCAGACTCTTCCGAGTCTAC-3' (SEQ No. 46), RP 5'-GTAGACTCGGAAG AGTCTGCGGAAAGTGTCA-3' (SEQ No. 47); EPO K179R FP 5'-CTCCGGGGAAGGCTG AAGCTG-3' (SEQ No. 48), RP 5'-CAGCTTCAGCCTTCCCCGGAG-3' (SEQ No. 49); EPO K181R FP 5'-GGAAAGCTGAGGCTGTACACAGG-3' (SEQ No. 50), RP 5'-CCTGTGTACAG CCTCAGCTTTCC-3' (SEQ No. 51)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-에리트로포이에틴을 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 7).The lysine residue was replaced with arginine using site-directed mutagenesis, and a primer (EPO K124R FP 5'-GCATGTGGATAGAGCCGTCAGTGC-3' (SEQ No. 44) using the DNA sequence to induce a specific mutation) was used. , RP 5'-GCACTGACGGCTCTATCCACATGC-3' (SEQ No. 45); EPO K167R FP 5'-T GACACTTTCCGCAGACTCTTCCGAGTCTAC-3' (SEQ No. 46), RP 5'-GTAGACTCGGAAG AGTCTGCGGAAAGTGTCA-3' (SEQ No. 47); EPO K179R FP 5'-CTCCGGGGAAGGCTG AAGCTG-3' (SEQ No. 48), RP 5'-CAGCTTCAGCCTTCCCCGGAG-3' (SEQ No. 49); EPO K181R FP 5'-GGAAAGCTGAGGCTGTACACAGG-3' (SEQ No. 50), After preparing RP 5'-CCTGTGTACAG CCTCAGCTTTCC-3' (SEQ No. 51), PCR was performed under specific conditions to produce plasmid DNA in which specific amino acid residues were substituted.PCDNA3-myc-erythropoietin was used as a template. Then, plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 7).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 EPO 작제물EPO construct in which Lysine (K) is substituted with Arginine (R) 124124 pcDNA3-myc-EPO (K124R)pcDNA3-myc-EPO (K124R) 167167 pcDNA3-myc-EPO (K167R)pcDNA3-myc-EPO (K167R) 179179 pcDNA3-myc-EPO (K179R)pcDNA3-myc-EPO (K179R) 181181 pcDNA3-myc-EPO (K181R)pcDNA3-myc-EPO (K181R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-에리트로포이에틴 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 되는 정도를 확인하기 위하여 pcDNA3-myc-에리트로포이에틴 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 (co-transfection)시키고 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강분석을 실시하였다 (도 46). 또한 각각 pcDNA3-myc-에리트로포이에틴 WT, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), pcDNA3-myc-에리트로포이에틴 치환체 (K181R) 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-에리트로포이에틴 WT, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), pcDNA3-myc-에리트로포이에틴 치환체 (K181R) 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강 분석을 실시하였다 (도 47). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-erythropoietin WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 μg of pcDNA3-myc-erythropoietin WT and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours, MG132 (proteasome inhibitor, 5 Μg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 46). In addition, pcDNA3-myc-erythropoietin WT, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R), pcDNA3-myc-erythropoietin substituent (K179R), pcDNA3-myc HEK 293T cells were infected with a plasmid encoding -erythropoietin substituent (K181R) and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-erythropoietin WT, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R), pcDNA3-myc-erythropoietin substituent (K179R) ), pcDNA3-myc-erythropoietin substituent (K181R), respectively, 2 μg, and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 47).

면역침강을 위해 얻은 샘플은 용해 완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-에리트로포이에틴 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 46, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 46, 레인 4). 또한 pcDNA3-myc-에리트로포이에틴 치환체 (K181R)은 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 47, 레인 6). 이상의 결과는 에리트로포이에틴이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. And incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. Silver protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 containing a blocking solution and anti-mouse secondary antibody Using the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), pcDNA3-myc-erythro As ubiquitin binds to poietin WT and polyubiquitinization is formed, ubiquitin in a smeared shape is detected, and the band is dark (Fig. 46, lanes 3 and 4) In addition, MG132 (proteasome inhibitor, 5 µg/ml) was used. In the case of treatment for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected became more intense (Fig. 46, lane 4) In addition, the pcDNA3-myc-erythropoietin substituent (K181R) was unable to bind to ubiquitin and thus ubiquitin Little was detected (Fig. 47, lane 6). It is shown that poietin binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질생성 저해제 cycloheximide(CHX)에 의한 에리트로포이에틴의 반감기확인3. Confirmation of half-life of erythropoietin by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-에리트로포이에틴 WT, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), pcDNA3-myc-에리트로포이에틴 치환체 (K181R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 시켰다. 48시간 후, 단백질생성 저해제 시클로헥사미드(CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간, 8시간에 걸쳐서 반감기를 측정한 결과, 인간 에리트로포이에틴의 분해가 억제되는 것을 확인하였다 (도 48). 결과적으로 인간 에리트로포이에틴의 반감기는 4시간 이내인 반면 인간 pcDNA3-myc-에리트로포이에틴 치환체 (K124R)의 반감기는 8시간으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 48).pcDNA3-myc-erythropoietin WT, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R), pcDNA3-myc-erythropoietin substituent (K179R), pcDNA3-myc-erythro The poietin substitute (K181R) was transfected into HEK 293T cells by 2 µg each. After 48 hours, the protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 2 hours, 4 hours, and 8 hours. As a result, the degradation of human erythropoietin was It was confirmed that it was suppressed (FIG. 48). As a result, the half-life of human erythropoietin was within 4 hours, whereas the half-life of human pcDNA3-myc-erythropoietin substitute (K124R) was longer than WT at 8 hours, and this result is shown in a graph (FIG. 48).

4. 세포 내에서의 에리트로포이에틴과 에리트로포이에틴 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by erythropoietin and erythropoietin substituents in cells

에리트로포이에틴은 폐암이나 혈액암에서 증가되며 에리트로포이에틴을 투여하게 될 경우 Erk1/2의 인산화에 의해 세포 주기 진행을 조절하여 저산소증에서 효과가 증가된다는 것이 보고되었다 (J Hematol Oncol., 6, 65, 2013). 본 실시예에서는, 세포 내에서 에리트로포이에틴과 에리트로포이에틴 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pcDNA3-myc-에리트로포이에틴 WT, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), pcDNA3-myc-에리트로포이에틴 치환체 (K181R)을 각각 3 ㎍씩 이용하여 HepG2세포를 감염시켰다. 감염 2일이 지난 후 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 각각 pcDNA3-myc-에리트로포이에틴 WT, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), 및 pcDNA3-myc-에리트로포이에틴 치환체 (K181R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-Erk1/2 (9B3, Abfrontier LF-MA0134), 항-phospho-Erk1/2 (Thr202/Tyr204, Abfrontier LF-PA0090) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-에리트로포이에틴 치환체 (K124R), pcDNA3-myc-에리트로포이에틴 치환체 (K167R), pcDNA3-myc-에리트로포이에틴 치환체 (K179R), pcDNA3-myc-에리트로포이에틴 치환체 (K181R)은 HepG2 세포 내에서 pcDNA3-myc-에리트로포이에틴 WT과 동일하거나 증가된 phospho-Erk1/2 신호전달을 보였다 (도 49). It has been reported that erythropoietin is increased in lung or blood cancer, and that when erythropoietin is administered, the effect in hypoxia is increased by controlling cell cycle progression by phosphorylation of Erk1/2 (J Hematol Oncol., 6, 65). , 2013). In this example, the signal transduction process by erythropoietin and erythropoietin substituents in the cell was confirmed. First, after starving HepG2 (ATCC, AB-8065) cells for 8 hours, pcDNA3-myc-erythropoietin WT, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R) , pcDNA3-myc-erythropoietin substitutent (K179R) and pcDNA3-myc-erythropoietin substitutent (K181R) were respectively used to infect HepG2 cells using 3 µg. After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-erythropoietin WT, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R), pcDNA3-myc-erythropoietin substituent (K179R), and The protein isolated from HepG2 cells infected with pcDNA3-myc-erythropoietin substituent (K181R) was transferred to the PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-Erk1/2 (9B3, Abfrontier LF-MA0134), anti-phospho-Erk1/2 (Thr202/Tyr204, Abfrontier LF-PA0090) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and a blocking solution containing Using anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibodies It was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-erythropoietin substituent (K124R), pcDNA3-myc-erythropoietin substituent (K167R), pcDNA3-myc-erythropoietin substituent (K179R), pcDNA3-myc-erythropoietin substituent (K181R) Showed the same or increased phospho-Erk1/2 signaling with pcDNA3-myc-erythropoietin WT in HepG2 cells (FIG. 49).

실시 예 8: Example 8: 골형성단백질Bone morphogenetic protein ( ( BMP2BMP2 )의 )of 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호 전달 확인 Analysis and confirmation of increased half-life and intracellular signal transduction

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 골형성단백질 (BMP2) DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 EcoRI과 XhoI으로 절편을 만든 후 접합하여 클로닝하였으며 (도 50, BMP2 아미노산 서열: SEQ No.52), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 51). 또한, 도 50의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 51). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 1분 30초를 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 50의 맵에 표시된 pcDNA3-myc vector에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 골형성 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로팅된 것으로 나타났다 (도 52).The bone morphogenetic protein (BMP2) DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with restriction enzymes EcoRI and XhoI, and then conjugated and cloned (FIG. 50, BMP2 amino acid sequence: SEQ No. 52), the results were confirmed through agarose gel electrophoresis after digestion with restriction enzymes (FIG. 51). In addition, the portion indicated in bold and underlined on the nucleotide sequence of FIG. 50 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is through agarose gel electrophoresis. Confirmed (Fig. 51). Polymerase chain reaction conditions are as follows; After reacting the initial denaturation at 94°C for 3 minutes, repeating 25 cycles for 30 seconds at 94°C for the denaturation reaction, 30 seconds at 58°C for the annealing reaction, and 1 minute 30 seconds at 72°C for the extension reaction Then, it was reacted at 72° C. for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pcDNA3-myc vector shown in the map of FIG. 50 was expressed through western blotting using an anti-myc (9E10, sc-40) antibody. Confirmed. Through this, it was confirmed that the bone-forming protein bound to myc was well expressed, and it was found that it was quantified through a blot confirmed with actin (FIG. 52).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도 (site-directed mutagenesis)를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (BMP2 K293R FP 5'-GAAACGCCTTAGGTCCAGCTGTAAGAGAC-3' (SEQ No. 53), RP 5'-GTCTCTTACAGCTGGACCTAAGGCGTTTC-3' (SEQ No. 54); BMP2 K297R FP 5'-TTAAGTCCAGCTGTAGGAGACACCCTTTGT-3' (SEQ No. 55), RP 5'-ACAAAGGGTGTCTCCTACAGCTGGACTTAA-3' (SEQ No. 56); BMP2 K355R FP 5'-GTTAACTCTAGGATTCCTAAGGC-3' (SEQ No. 57), RP 5'-GC CTTAGGAATCCTAGAGTTAAC-3' (SEQ No. 58); BMP2 K383R FP 5'- GGTTGTATTAAGGAACTATCAGGAC-3' (SEQ No. 59), RP 5'-GTCCTGATAGTTCCTTAAT ACAACC-3' (SEQ No. 60)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-골형성단백질(BMP2)을 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 8).The lysine residue was replaced with arginine using site-directed mutagenesis, and the primer (BMP2 K293R FP 5'-GAAACGCCTTAGGTCCAGCTGTAAGAGAC-3' (SEQ No. 53) was used using the DNA sequence to induce a specific mutation. , RP 5'-GTCTCTTACAGCTGGACCTAAGGCGTTTC-3' (SEQ No. 54); BMP2 K297R FP 5'-TTAAGTCCAGCTGTAGGAGACACCCTTTGT-3' (SEQ No. 55), RP 5'-ACAAAGGGTGTCTCCTACAGCTGGACTTAA-3' (SEQ No. 56); FP 5'-GTTAACTCTAGGATTCCTAAGGC-3' (SEQ No. 57), RP 5'-GC CTTAGGAATCCTAGAGTTAAC-3' (SEQ No. 58); BMP2 K383R FP 5'- GGTTGTATTAAGGAACTATCAGGAC-3' (SEQ No. 59), RP 5 After making'-GTCCTGATAGTTCCTTAAT ACAACC-3' (SEQ No. 60), PCR was performed under specific conditions to produce plasmid DNA in which specific amino acid residues were substituted, pcDNA3-myc-osteogenesis protein (BMP2) as a template. Was used, and a plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 8).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 BMP2 작제물BMP2 construct in which Lysine (K) is substituted with Arginine (R) 293293 pcDNA3-myc-BMP2 (K293R)pcDNA3-myc-BMP2 (K293R) 297297 pcDNA3-myc-BMP2 (K297R)pcDNA3-myc-BMP2 (K297R) 355355 pcDNA3-myc-BMP2 (K355R)pcDNA3-myc-BMP2 (K355R) 383383 pcDNA3-myc-BMP2 (K383R)pcDNA3-myc-BMP2 (K383R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-골형성단백질 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-골형성단백질 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강 분석을 실시하였다 (도 53). 또한 각각의 pcDNA3-myc-골형성단백질 WT, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R), pcDNA3-myc-골형성단백질 치환체 (K383R) 및 pMT123-HA-유비퀴틴 DNA 를 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-골형성단백질 WT, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R), pcDNA3-myc-골형성단백질 치환체 (K383R) 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역 침강 분석을 실시하였다 (도 54). 면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역 침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열 한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-osteogenic protein WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-osteogenic protein WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 53). In addition, each pcDNA3-myc-osteoplastic protein WT, pcDNA3-myc-osteoplastic protein substitute (K293R), pcDNA3-myc-osteoplastic protein substitute (K297R), pcDNA3-myc-osteoplastic protein substitute (K355R), pcDNA3- HEK 293T cells were infected with a plasmid encoding myc-osteogenic protein substitute (K383R) and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-osteogenesis protein WT, pcDNA3-myc-osteogenesis protein substitutent (K293R), pcDNA3-myc-osteogenesis protein substitutent (K297R), pcDNA3-myc-osteogenesis protein substitutent (K355R) ), pcDNA3-myc-osteoplastic protein substitute (K383R), respectively, 2 μg, and 1 μg of pMT123-HA-ubiquitin DNA were cotransfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 54). Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, Santa Cruz Biotechnology, sc -40) Mixed with the primary antibody and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology). For immunoblotting, protein samples were mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane and then anti- Blocking comprising myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 Solution and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody was used to develop with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-골형성단백질 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 53, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 53, 레인 4). 또한 pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 54, 레인 3 및 5). 이상의 결과는 골형성단백질이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin in the pcDNA3-myc-osteogenesis protein WT was combined with ubiquitin to form polyubiquitin, resulting in a smeared ubiquitin. The band appeared dark (FIG. 53, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 53, lane 4). In addition, in the case of pcDNA3-myc-bone morphogenetic protein substituent (K293R), pcDNA3-myc-bone morphogenetic protein substituent (K297R), and pcDNA3-myc-bone morphogenetic protein substituent (K355R), the band was softer than WT, and pcDNA3-myc- The bone morphogenetic protein substituent (K293R), pcDNA3-myc-bone morphogenetic protein substituent (K297R), and pcDNA3-myc-bone morphogenetic protein substituent (K355R) were unable to bind to ubiquitin, and thus less ubiquitin was detected (Fig. 54, lanes 3 and 5). ). The above results show that the osteogenic protein binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 골형성단백질의 반감기 확인3. Confirmation of half-life of bone morphogenetic protein by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-골형성단백질 WT, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R), pcDNA3-myc-골형성단백질 치환체 (K383R)를 각각 2 ㎍씩 HEK 293T 세포에 형질 감염 (transfection) 시켰다. 형질감염 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정하였다. 그 결과, 인간 골형성단백질의 분해가 억제되는 것을 확인하였다 (도 55). 인간 골형성단백질의 반감기는 2시간 이내인 반면 인간 pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R)의 반감기는 4시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 55).pcDNA3-myc-osteoplastic protein WT, pcDNA3-myc-osteoplastic protein substitute (K293R), pcDNA3-myc-osteoplastic protein substitute (K297R), pcDNA3-myc-osteoplastic protein substitute (K355R), pcDNA3-myc-bone HEK 293T cells were transfected with 2 µg each of the forming protein substitutes (K383R). 48 hours after transfection, the protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and half-life was measured over 2 hours, 4 hours and 8 hours. As a result, it was confirmed that the decomposition of human bone morphogenetic protein was suppressed (FIG. 55). The half-life of human bone morphogenetic protein is within 2 hours, whereas the half-life of human pcDNA3-myc-bone morphogenetic protein substituent (K297R) and pcDNA3-myc-bone morphogenetic protein substitute (K355R) is more than 4 hours, which is longer than that of WT. It is shown as a graph (FIG. 55).

4. 세포 내에서의 골형성단백질과 골형성단백질 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by bone morphogenetic protein and bone morphogenetic protein substitutes in cells

골형성단백질은 다양한 골수종 세포에서 STAT3의 비활성을 초래하여 세포사멸을 초래한다는 것이 보고되었다 (Blood, 96, 2005-2011, 2000). 본 실시예에서는, 세포 내에서 골형성단백질과 골형성단백질 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pcDNA3-myc-골형성단백질 WT, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R), pcDNA3-myc-골형성단백질 치환체 (K383R)을 각각 3 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 수행하였다. 이 과정에서 각각 pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R) 및 pcDNA3-myc-골형성단백질 치환체 (K383R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 옮긴 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗과 항-마우스 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-골형성단백질 치환체 (K293R), pcDNA3-myc-골형성단백질 치환체 (K297R), pcDNA3-myc-골형성단백질 치환체 (K355R), pcDNA3-myc-골형성단백질 치환체 (K383R)은 HepG2 세포 내에서 pcDNA3-myc-골형성단백질 WT과 동일하게 대조군에 비해 감소된 phospho-STAT3 신호전달을 보였다 (도 56). It has been reported that osteogenic proteins cause apoptosis by inactivating STAT3 in various myeloma cells (Blood, 96, 2005-2011, 2000). In this example, the signal transduction process by the osteogenic protein and the osteogenic protein substitutes in the cell was confirmed. First, after starving HepG2 (ATCC, AB-8065) cells for 8 hours, pcDNA3-myc-osteoplastic protein WT, pcDNA3-myc-osteoplastic protein substitute (K293R), pcDNA3-myc-osteoplastic protein substitute (K297R) , pcDNA3-myc-osteoplastic protein substitutent (K355R) and pcDNA3-myc-osteoplastic protein substitutent (K383R) were each used to infect HepG2 cells using 3 µg each. After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-osteogenesis protein substituent (K293R), pcDNA3-myc-osteogenesis protein substituent (K297R), pcDNA3-myc-osteogenesis protein substituent (K355R) and pcDNA3-myc-osteogenesis protein substituent (K383R), respectively. ), and then transfer the protein isolated from the infected HepG2 cells to the PVDF membrane, and then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 ( Y705, cell signaling 9131S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) using a blocking solution containing a weight ratio of 1:1000 and anti-rabbit and anti-mouse secondary antibodies (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-osteogenesis protein substituent (K293R), pcDNA3-myc-osteogenesis protein substituent (K297R), pcDNA3-myc-osteogenesis protein substituent (K355R), pcDNA3-myc-osteogenesis protein substituent (K383R) Showed reduced phospho-STAT3 signaling in HepG2 cells compared to the control group in the same manner as pcDNA3-myc-osteogenic protein WT (FIG. 56).

실시 예 9: 섬유아세포성장인자-1(Example 9: Fibroblast growth factor-1 ( FGFFGF -1) 단백질의 -1) of protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 섬유아세포성장인자-1 DNA 증폭 산물과 pCMV3-C-myc (6.1kb)를 제한효소인 KpnI과 XbaI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 57, 섬유아세포성장인자-1 아미노산 서열: SEQ No.61), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 58). 또한 도 57의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 58). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 30초를 25 주기로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 57의 맵에 표시된 pCMV3-C-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. myc에 결합된 섬유아세포성장인자-1 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯팅을 통해 정량이 로딩된 것으로 나타났다 (도 59).The fibroblast growth factor-1 DNA amplification product by polymerase chain reaction and pCMV3-C-myc (6.1 kb) were fragmented with restriction enzymes KpnI and XbaI, then conjugated and cloned (Fig. 57, fibroblast growth factor- 1 amino acid sequence: SEQ No. 61), the result was confirmed through agarose gel electrophoresis after digestion with restriction enzymes (FIG. 58). In addition, the portions marked in bold and underlined on the nucleotide sequence of FIG. 57 are primer sets used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Figure 58). Polymerase chain reaction conditions are as follows; After the initial denaturation was reacted at 94°C for 3 minutes, 30 seconds at 94°C for the denaturation reaction, 30 seconds at 58°C for the annealing reaction, and 30 seconds at 72°C for the extension reaction were repeated in 25 cycles, Then, it was reacted at 72°C for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, myc present in the pCMV3-C-myc vector shown in the map of FIG. 57 was subjected to western blotting using an anti-myc (9E10, sc-40) antibody. Expression was confirmed. It was confirmed that the fibroblast growth factor-1 protein bound to myc was well expressed and quantitatively loaded through blotting confirmed with actin (FIG. 59).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (FGF-1 K27R FP 5'-AAGAAGCCCAGACTCCTCTAC-3' (SEQ No. 62), RP 5'-GTAGAGGAGTCTGGGCTTCT T-3' (SEQ No. 63); FGF-1 K120R FP 5'-CAT GCAGAGAGGAATTGGTTT-3' (SEQ No. 64), RP 5'-AAACCAATTCCTCTCTGCATG-3' (SEQ No. 65)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pCMV3-C-myc-FGF-1 DNA를 템플릿으로 사용하고, Lysine 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 9).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (FGF-1 K27R FP 5'-AAGAAGCCCAGACTCCTCTAC-3' (SEQ No. 62), RP 5') using the DNA sequence to induce specific mutations. -GTAGAGGAGTCTGGGCTTCT T-3' (SEQ No. 63); FGF-1 K120R FP 5'-CAT GCAGAGAGGAATTGGTTT-3' (SEQ No. 64), RP 5'-AAACCAATTCCTCTCTGCATG-3' (SEQ No. 65) was prepared. After that, PCR was performed under specific conditions to prepare a plasmid DNA in which a specific amino acid residue was substituted, using pCMV3-C-myc-FGF-1 DNA as a template, and a plasmid in which the Lysine residue was substituted with arginine (K→R). DNA was prepared (Table 9).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 FGF-1 작제물FGF-1 construct in which Lysine (K) is substituted with Arginine (R) 2727 pCMV3-C-myc-FGF-1 (K27R)pCMV3-C-myc-FGF-1 (K27R) 120120 pCMV3-C-myc-FGF-1 (K120R)pCMV3-C-myc-FGF-1 (K120R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pCMV3-C-myc-섬유아세포성장인자-1 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-섬유아세포성장인자-1 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강 분석을 실시하였다 (도 60). 또한 각각 pCMV3-C-myc-섬유아세포성장인자-1 WT, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R), pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-섬유아세포성장인자-1 WT, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 (K120R) 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 61). HEK 293T cells were infected with a plasmid encoding pCMV3-C-myc-fibroblast growth factor-1 WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pCMV3-C-myc-fibroblast growth factor-1 WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of infection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 60). In addition, pCMV3-C-myc-fibroblast growth factor-1 WT, pCMV3-C-myc-fibroblast growth factor-1 substituent (K27R), pCMV3-C-myc-fibroblast growth factor-1 substituent (K120R), respectively, HEK 293T cells were infected with a plasmid encoding pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pCMV3-C-myc-fibroblast growth factor-1 WT, pCMV3-C-myc-fibroblast growth factor-1 substitute (K27R), pCMV3-C-myc-fibroblast growth factor-1 (K120R) 2 μg, respectively, and 1 μg of pMT123-HA-ubiquitin DNA were cotransfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 61).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다.Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, Santa Cruz Biotechnology, sc -40) Mixed with the primary antibody and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology). For immunoblotting, protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane and then anti- Blocking comprising myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 The solution and anti-mouse secondary antibody were used to develop with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pCMV3-C-myc-섬유아세포성장인자-1 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 60, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 60, 레인 4). 또한 pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)의 경우, WT보다 밴드가 연하였으며, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 61, 레인 3, 4). 이상의 결과는 섬유아세포성장인자-1이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to pCMV3-C-myc-fibroblast growth factor-1 WT, resulting in the formation of polyubiquitination. The ubiquitin of was detected and the band appeared dark (FIG. 60, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 60, lane 4). In addition, in the case of pCMV3-C-myc-fibroblast growth factor-1 substituent (K27R) and pCMV3-C-myc-fibroblast growth factor-1 substituent (K120R), the band was softer than that of WT, and pCMV3-C-myc- The fibroblast growth factor-1 substituent (K27R) and the pCMV3-C-myc-fibroblast growth factor-1 substituent (K120R) were unable to bind to ubiquitin, and thus less ubiquitin was detected (FIG. 61, lanes 3 and 4). The above results show that fibroblast growth factor-1 binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 섬유아세포성장인자-1의 반감기 확인3. Confirmation of the half-life of fibroblast growth factor-1 by the protein production inhibitor cycloheximide (CHX)

pCMV3-C-myc-섬유아세포성장인자-1 WT, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)를 각각 2㎍씩 HEK 293T 세포에 형질감염 시키고 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 24시간 및 36시간에 걸쳐서 반감기를 측정한 결과, 인간 섬유아세포성장인자-1의 분해가 억제되는 것을 확인하였다 (도 62). 인간 섬유아세포성장인자-1의 반감기는 1일 이내인 반면 인간 pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)의 반감기는 1일 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 62). pCMV3-C-myc-fibroblast growth factor-1 WT, pCMV3-C-myc-fibroblast growth factor-1 substitution (K27R), pCMV3-C-myc-fibroblast growth factor-1 substitution (K120R) respectively After 48 hours of transfection into HEK 293T cells by μg, the protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 24 hours and 36 hours. It was confirmed that the degradation of fibroblast growth factor-1 was inhibited (FIG. 62). The half-life of human fibroblast growth factor-1 is within 1 day, whereas that of human pCMV3-C-myc-fibroblast growth factor-1 substituent (K27R) and pCMV3-C-myc-fibroblast growth factor-1 substituent (K120R). The half-life was longer than that of WT by more than 1 day, and this result was shown as a graph (FIG. 62).

4. 세포 내에서의 섬유아세포성장인자-1과 섬유아세포성장인자-1 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by fibroblast growth factor-1 and fibroblast growth factor-1 substituents in cells

재조합 섬유아세포성장인자-1을 HEK293 세포에 처리하게 되면 Erk 1/2 인산화가 증가한다는 것이 보고되었다 (Nature, 513(7518), 436-439, 2014). 본 실시예에서는, 세포 내에서 섬유아세포성장인자-1과 섬유아세포성장인자-1 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 ?E긴 한 후, pCMV3-C-myc-섬유아세포성장인자-1 WT, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)를 각각 3 ㎍씩 이용하여 HepG2 세포를 감염시켜 2일이 지난 후 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨[스턴블롯팅을 수행하였다. 이 과정에서 pCMV3-C-myc-섬유아세포성장인자-1 WT, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-Erk1/2 (9B3, Abfrontier LF-MA0134), 항-phospho-Erk1/2 (Thr202/Tyr204, Abfrontier LF-PA0090) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K27R), pCMV3-C-myc-섬유아세포성장인자-1 치환체 (K120R)은 HepG2 세포 내에서 pCMV3-C-myc-섬유아세포성장인자-1 WT과 동일하거나 증가된 phospho-ERK1/2 신호전달을 보였다 (도 63). It has been reported that treatment with recombinant fibroblast growth factor-1 on HEK293 cells increases Erk 1/2 phosphorylation (Nature, 513(7518), 436-439, 2014). In this example, the signal transduction process by fibroblast growth factor-1 and fibroblast growth factor-1 substituents in the cell was confirmed. First, HepG2 (ATCC, AB-8065) cells were long ?E for 8 hours, then pCMV3-C-myc-fibroblast growth factor-1 WT, pCMV3-C-myc-fibroblast growth factor-1 substitution (K27R) ), pCMV3-C-myc-fibroblast growth factor-1 substitution (K120R) was infected with HepG2 cells using 3 µg each, and after 2 days, proteins were extracted from the cells and quantified respectively, and intracellular signal transduction process Western blotting was performed to confirm. In this process, pCMV3-C-myc-fibroblast growth factor-1 WT, pCMV3-C-myc-fibroblast growth factor-1 substitution (K27R), pCMV3-C-myc-fibroblast growth factor-1 substitution (K120R) The protein isolated from the infected HepG2 cells was transferred to the PVDF membrane, and then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-Erk1/2 (9B3, Abfrontier LF-MA0134), and anti-phospho-Erk1 A blocking solution containing /2 (Thr202/Tyr204, Abfrontier LF-PA0090) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and anti-rabbit IgG-HRP , Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) using secondary antibody ECL system (Western blot detection kit, ABfrontier, Seoul) , Korea). As a result, pCMV3-C-myc-fibroblast growth factor-1 substitute (K27R) and pCMV3-C-myc-fibroblast growth factor-1 substitute (K120R) were used to grow pCMV3-C-myc-fibroblasts in HepG2 cells. It showed the same or increased phospho-ERK1/2 signaling as factor-1 WT (Fig. 63).

실시 예 10: 식욕억제호르몬 (Example 10: Appetite suppressing hormone ( LeptinLeptin ) 단백질의 ) Of protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 식욕억제호르몬 (Leptin) DNA 증폭산물과 pCMV3-C-myc (6.1kb)를 제한효소인 KpnI과 XbaI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 64, 렙틴 아미노산 서열: SEQ No. 66), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 65). 또한 도 64의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 65). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 45초를 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 64의 맵에 표시된 pCMV3-C-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. myc에 결합된 식욕억제호르몬 (Leptin) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 66).Appetite suppressing hormone (Leptin) by polymerase chain reaction The DNA amplification product and pCMV3-C-myc (6.1 kb) were fragmented with restriction enzymes KpnI and XbaI, then conjugated and cloned (FIG. 64, leptin amino acid sequence: SEQ No. 66), and the result was after restriction enzyme digestion. , It was confirmed through agarose gel electrophoresis (FIG. 65). In addition, the portion marked in bold and underlined on the nucleotide sequence of FIG. 64 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Figure 65). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by 25 cycles of 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 58° C. for the annealing reaction, and 45 seconds at 72° C. for the extension reaction. Then, it was reacted at 72° C. for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, myc present in the pCMV3-C-myc vector shown in the map of FIG. 64 is subjected to western blotting using an anti-myc (9E10, sc-40) antibody. Expression was confirmed. Appetite suppressing hormone (Leptin) bound to myc It was confirmed that the protein was well expressed, and it was found that it was quantitatively loaded through a blot confirmed with actin (FIG. 66).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (Leptin K26R FP 5'-CCCATCCAAAAGGTCCAAGAT-3' (SEQ No. 67), RP 5'- ATCTTGGACCTTTTGGATGGG-3' (SEQ No. 68); Leptin K32R FP 5'-GA TGACACCAAGACCCTCATC-3' (SEQ No. 69), RP 5'-GATGAGGGTCTTGGTGTCATC-3' (SEQ No. 70); Leptin K36R FP 5'-ACCCTCATCAGGACAATTGTC-3' (SEQ No. 71), RP 5'-GACAATTGTCCTGATGAGGGT-3' (SEQ No. 72); Leptin K74R FP 5'-ACCTTATCCAG GATGGACCAG-3' (SEQ No. 73), RP 5'-CTGGTCCATCCTGGATAAGGT-3' (SEQ No. 74)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pCMV3-C-myc-식욕억제호르몬(Leptin) DNA를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 10).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (Leptin K26R FP 5'-CCCATCCAAAAGGTCCAAGAT-3' (SEQ No. 67), RP 5'-ATCTTGGACCTTTTGGATGGG) using the DNA sequence to induce specific mutations. -3' (SEQ No. 68); Leptin K32R FP 5'-GA TGACACCAAGACCCTCATC-3' (SEQ No. 69), RP 5'-GATGAGGGTCTTGGTGTCATC-3' (SEQ No. 70); Leptin K36R FP 5'-ACCCTCATCAGGACAATTGTC -3' (SEQ No. 71), RP 5'-GACAATTGTCCTGATGAGGGT-3' (SEQ No. 72); Leptin K74R FP 5'-ACCTTATCCAG GATGGACCAG-3' (SEQ No. 73), RP 5'-CTGGTCCATCCTGGATAAGGT-3 '(SEQ No. 74) was prepared, and then PCR was performed under specific conditions to prepare a plasmid DNA in which a specific amino acid residue was substituted. pCMV3-C-myc-appetite suppressing hormone (Leptin) DNA was used as a template, and plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 10).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 Leptin 작제물Leptin construct in which Lysine (K) is substituted with Arginine (R) 2626 pCMV3-C-myc-Leptin (K26R)pCMV3-C-myc-Leptin (K26R) 3232 pCMV3-C-myc-Leptin (K32R)pCMV3-C-myc-Leptin (K32R) 3636 pCMV3-C-myc-Leptin (K36R)pCMV3-C-myc-Leptin (K36R) 7474 pCMV3-C-myc-Leptin (K74R)pCMV3-C-myc-Leptin (K74R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pCMV3-C-myc-식욕억제단백질 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 되는 정도를 확인하기 위하여 pCMV3-C-myc-식욕억제단백질 WT 6 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시키고 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 다음, 면역침강분석을 실시하였다 (도 67). 또한 각각 pCMV3-C-myc-식욕억제단백질 WT, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 되는 정도를 확인하기 위하여 pCMV3-C-myc-식욕억제단백질 WT, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R) 각각 6 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 68). HEK 293T cells were infected with a plasmid encoding pCMV3-C-myc-appetite suppressing protein WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 6 µg of pCMV3-C-myc-appetite suppressing protein WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and 24 hours later, MG132 (proteasome inhibitor, 5 µg/ml). ) Was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 67). In addition, pCMV3-C-myc-appetite suppressing protein WT, pCMV3-C-myc-appetite suppressing protein substitute (K26R), pCMV3-C-myc-appetite suppressing protein substitute (K32R), pCMV3-C-myc-appetite suppressing protein, respectively HEK 293T cells were infected using a plasmid encoding a substituent (K36R), pCMV3-C-myc-appetite suppressing protein substituent (K74R), and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pCMV3-C-myc-appetite suppressing protein WT, pCMV3-C-myc-appetite suppressing protein substitute (K26R), pCMV3-C-myc-appetite suppressing protein substitute (K32R), pCMV3-C -myc-appetite suppressing protein substitute (K36R), pCMV3-C-myc-appetite suppressing protein substitute (K74R) 6 µg, and pMT123-HA-ubiquitin DNA 1 µg were co-transfected into cells, and immunoprecipitation analysis 24 hours later Was carried out (FIG. 68).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then mixed with anti-myc (9E10) primary antibody. And incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. Silver protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 blocking solution and anti-mouse (Peroxidase- Labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pCMV3-C-myc-식욕억제단백질 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 67, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 67, 레인 4). 또한 pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)의 경우, WT보다 밴드가 연하였으며, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 68, 레인 3, 5 및 6). 이상의 결과는 식욕억제단백질이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin in pCMV3-C-myc-appetite suppressing protein WT was bound to form polyubiquitin, resulting in ubiquitin in a smeared shape. It appeared dark (Fig. 67, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 67, lane 4). In addition, pCMV3-C-myc-appetite-suppressing protein substituent (K26R), pCMV3-C-myc-appetite-suppressing protein substituent (K36R), and pCMV3-C-myc-appetite-suppressing protein substituent (K74R) have a longer band than WT. And pCMV3-C-myc-appetite suppressing protein substitutent (K26R), pCMV3-C-myc-appetite suppressing protein substitutent (K36R), and pCMV3-C-myc-appetite suppressing protein substitutent (K74R) failed to bind to ubiquitin. Less of this was detected (Figure 68, lanes 3, 5 and 6). The above results show that the appetite suppressing protein binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질생성 저해제 cycloheximide(CHX)에 의한 식욕억제단백질 (Leptin)의 반감기 확인3. Confirmation of half-life of appetite suppressing protein (Leptin) by protein production inhibitor cycloheximide (CHX)

pCMV3-C-myc-식욕억제단백질 WT, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)를 각각 6 ㎍씩 HEK 293T세포에 형질감염 시키고 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리한 다음, 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정한 결과, 인간 식욕억제단백질의 분해가 억제되는 것을 확인하였다 (도 69). 결과적으로 인간 식욕억제단백질의 반감기는 4시간인데 반면 인간 pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R)의 반감기는 8시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 69).pCMV3-C-myc-appetite suppressing protein WT, pCMV3-C-myc-appetite suppressing protein substitutent (K26R), pCMV3-C-myc-appetite suppressing protein substitutent (K32R), pCMV3-C-myc-appetite suppressing protein substitutent ( K36R), pCMV3-C-myc-appetite suppressing protein substitute (K74R) was transfected into HEK 293T cells at 6 μg each, and 48 hours later, protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ Ml), and then measuring the half-life over 2 hours, 4 hours and 8 hours, it was confirmed that the decomposition of the human appetite suppressing protein was suppressed (FIG. 69). As a result, the half-life of human appetite suppressing protein was 4 hours, whereas the half-life of human pCMV3-C-myc-appetite suppressing protein substitute (K26R) and pCMV3-C-myc-appetite suppressing protein substitute (K36R) was more than 8 hours. It was lengthened, and this result was shown graphically (Fig. 69).

4. 세포 내에서의 식욕억제단백질와 식욕억제단백질 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by appetite-suppressing protein and appetite-suppressing protein substitutes in cells

식욕억제단백질은 유방암 세포에서 AKT의 인산화를 증가시킨다는 것이 보고되었으며 (Cancer Biol Ther., 16(8), 1220-1230, 2015), 자궁암에서는 PI3K/AKT 신호전달 과정에 의해 암 세포 성장을 자극시킨다는 것이 보고되었다 (Int J Oncol., 49(2), 847, 2016). 본 실시예에서는, 세포 내에서 식욕억제단백질과 식욕억제단백질 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pCMV3-C-myc-식욕억제단백질 WT, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)를 각각 6 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 Western blot을 실시하였다. 이 과정에서 각각 pCMV3-C-myc-식욕억제단백질 WT, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R) 및 pCMV3-C-myc-식욕억제단백질 치환체 (K74R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, sc-40), 항-AKT (H-136, Santa Cruz Biotechnology, sc-8312), 항-phospho-AKT (S473, Cell Signaling 9271S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗과 항-마우스 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pCMV3-C-myc-식욕억제단백질 치환체 (K26R), pCMV3-C-myc-식욕억제단백질 치환체 (K32R), pCMV3-C-myc-식욕억제단백질 치환체 (K36R), pCMV3-C-myc-식욕억제단백질 치환체 (K74R)은 HepG2 세포내에서 pCMV3-C-myc-식욕억제단백질 WT과 동일하게 대조군에 비해서 현저하게 증가된 phospho-AKT 신호전달을 보였다 (도 70).It has been reported that appetite suppressing proteins increase the phosphorylation of AKT in breast cancer cells (Cancer Biol Ther., 16(8), 1220-1230, 2015). In uterine cancer, it is said that it stimulates cancer cell growth by PI3K/AKT signaling. Has been reported (Int J Oncol., 49(2), 847, 2016). In this example, the signaling process by the appetite-suppressing protein and the appetite-suppressing protein substitutes in the cell was confirmed. First, after starving HepG2 (ATCC, AB-8065) cells for 8 hours, pCMV3-C-myc-appetite suppressing protein WT, pCMV3-C-myc-appetite suppressing protein substitute (K26R), pCMV3-C-myc-appetite HepG2 cells were infected with 6 μg each of the inhibitory protein substituents (K32R), pCMV3-C-myc-appetite suppressing protein substituents (K36R), and pCMV3-C-myc-appetite suppressing protein substituents (K74R). After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blot was performed to confirm the intracellular signal transduction process. In this process, pCMV3-C-myc-appetite suppressing protein WT, pCMV3-C-myc-appetite suppressing protein substituent (K26R), pCMV3-C-myc-appetite suppressing protein substituent (K32R), pCMV3-C-myc-appetite, respectively. Protein isolated from HepG2 cells infected with inhibitory protein substituent (K36R) and pCMV3-C-myc-appetite suppressing protein substituent (K74R) was transferred to PVDF membrane, followed by anti-myc (9E10, sc-40), anti-AKT (H-136, Santa Cruz Biotechnology, sc-8312), anti-phospho-AKT (S473, Cell Signaling 9271S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 Blocking solution and anti-rabbit and anti-mouse secondary antibodies were used and developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pCMV3-C-myc-appetite suppressing protein substitutent (K26R), pCMV3-C-myc-appetite suppressing protein substitutent (K32R), pCMV3-C-myc-appetite suppressing protein substitutent (K36R), pCMV3-C-myc -Appetite suppressing protein substitute (K74R) showed remarkably increased phospho-AKT signaling in HepG2 cells compared to the control group in the same manner as pCMV3-C-myc-appetite suppressing protein WT (FIG. 70).

실시 예 11: Example 11: 혈관내피생성인자Vascular endothelial factor A ( A ( VEGFAVEGFA ) 단백질의 ) Of protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현 벡터로의 클로닝 및 단백질 발현 확인1. Cloning into an expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 혈관내피생성인자 A DNA 증폭산물과 pCMV3-C-myc (6.1 kb)를 제한효소인 KpnI과 XbaI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 71, 혈관내피생성인자 A 아미노산 서열: SEQ No. 75), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 72). 또한 도 71의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 72). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 1분을 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 71의 맵에 표시된 pCMV3-C-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 VEGFA 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 73).The vascular endothelial factor A DNA amplification product by polymerase chain reaction and pCMV3-C-myc (6.1 kb) were fragmented with restriction enzymes KpnI and XbaI, and then conjugated and cloned (Fig. 71, vascular endothelial factor A amino acid). Sequence: SEQ No. 75), the result was confirmed through agarose gel electrophoresis after digestion with restriction enzymes (FIG. 72). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 71 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 72). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by repeating 25 cycles of 94° C. for the denaturation reaction for 30 seconds, 58° C. for the annealing reaction for 30 seconds, and 1 minute at 72° C. for the extension reaction. Then, it was reacted at 72°C for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pCMV3-C-myc vector shown in the map of FIG. 71 was westernized using an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody. Expression was confirmed through blotting. Through this, it was confirmed that the VEGFA protein bound to myc was well expressed, and it was found that it was quantitatively loaded through a blot confirmed with actin (FIG. 73).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (VEGFA K127R FP 5'-TACAGCACAACAGATGTGAATGCAGACC-3' (SEQ No. 76), RP 5'-GGTCTGCATTCA CATCTGTTGTGCTGTA-3' (SEQ No. 77); VEGFA K180R FP 5'-ATCCGCAGACGTGTAG ATGTTCCTGCA-3' (SEQ No. 78), RP 5'-TG CAGGAACATCTACACGTCTGCGGAT-3' (SEQ No. 79)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pCMV3-C-myc-VEGFA DNA를 템플릿으로 사용하고, Lysine 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 11).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (VEGFA K127R FP 5'-TACAGCACAACAGATGTGAATGCAGACC-3' (SEQ No. 76), RP 5'-GGTCTGCATTCA) using the DNA sequence to induce specific mutations. After making CATCTGTTGTGCTGTA-3' (SEQ No. 77); VEGFA K180R FP 5'-ATCCGCAGACGTGTAG ATGTTCCTGCA-3' (SEQ No. 78), RP 5'-TG CAGGAACATCTACACGTCTGCGGAT-3' (SEQ No. 79), and then specific Plasmid DNA in which a specific amino acid residue was substituted was prepared by performing PCR under the conditions.PCMV3-C-myc-VEGFA DNA was used as a template, and a plasmid DNA in which the Lysine residue was substituted with arginine (K→R) was prepared ( Table 11).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 VEGFA 작제물VEGFA construct in which Lysine (K) is substituted with Arginine (R) 127127 pCMV3-C-myc-VEGFA (K127R)pCMV3-C-myc-VEGFA (K127R) 180180 pCMV3-C-myc-VEGFA (K180R)pCMV3-C-myc-VEGFA (K180R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pCMV3-C-myc-VEGFA WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-VEGFA WT 6 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강 분석을 실시하였다 (도 74). 또한 각각 pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA 치환체 (K127R), pCMV3-C-myc-VEGFA 치환체 (K180R)과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA 치환체 (K127R) 및 pCMV3-C-myc-VEGFA 치환체 (K180R) 각각 6 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 75). HEK 293T cells were infected with a plasmid encoding pCMV3-C-myc-VEGFA WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 6 µg of pCMV3-C-myc-VEGFA WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (Fig. 74). In addition, HEK 293T using a plasmid encoding pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA substituent (K127R), pCMV3-C-myc-VEGFA substituent (K180R) and pMT123-HA-ubiquitin DNA, respectively. The cells were infected. To confirm the degree of ubiquitination, pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA substituent (K127R) and pCMV3-C-myc-VEGFA substituent (K180R) 6 μg, respectively, and pMT123-HA-ubiquitin DNA 1 µg was co-transfected into cells and immunoprecipitation analysis was performed 24 hours later (Fig. 75).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열 한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in a lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, sc-40) primary It was mixed with the antibody and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with a lysis buffer. For immunoblotting, protein samples were mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 containing a blocking solution and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pCMV3-C-myc-VEGFA WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 74, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 74, 레인 4). 또한 pCMV3-C-myc-VEGFA 치환체 (K127R), pCMV3-C-myc-VEGFA 치환체 (K180R)의 경우, WT보다 밴드가 연하였으며, pCMV3-C-myc-VEGFA 치환체 (K127R), pCMV3-C-myc-VEGFA 치환체 (K180R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 75, 레인 3, 4). 이상의 결과는 VEGFA이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pCMV3-C-myc-VEGFA WT to form polyubiquitin. (Fig. 74, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected became more intense (FIG. 74, lane 4). In addition, in the case of pCMV3-C-myc-VEGFA substituent (K127R) and pCMV3-C-myc-VEGFA substituent (K180R), the band was softer than WT, and pCMV3-C-myc-VEGFA substituent (K127R), pCMV3-C- The myc-VEGFA substituent (K180R) was unable to bind to ubiquitin, so less ubiquitin was detected (FIG. 75, lanes 3 and 4). The above results show that VEGFA binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 VEGFA의 반감기 확인3. Confirmation of the half-life of VEGFA by the protein production inhibitor cycloheximide (CHX)

pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA 치환체 (K127R), pCMV3-C-myc-VEGFA 치환체 (K180R)를 각각 6 ㎍씩 HEK 293T 세포에 형질감염 (transfection)시켰다. 형질감염 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간, 및 8시간에 걸쳐서 반감기를 측정한 결과, 인간 VEGFA의 분해가 억제되는 것을 확인하였다 (도 76). 인간 VEGFA의 반감기는 2시간 이내인 반면, 인간 pCMV3-C-myc-VEGFA 치환체 (K127R), pCMV3-C-myc-VEGFA 치환체 (K180R)의 반감기는 4시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 76). The pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA substituent (K127R), and pCMV3-C-myc-VEGFA substituent (K180R) were each transfected into HEK 293T cells by 6 μg. 48 hours after transfection, the protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and half-life was measured over 2 hours, 4 hours, and 8 hours. As a result, degradation of human VEGFA It was confirmed that is suppressed (Fig. 76). The half-life of human VEGFA was within 2 hours, whereas the half-life of human pCMV3-C-myc-VEGFA substituent (K127R) and pCMV3-C-myc-VEGFA substituent (K180R) was longer than WT by more than 4 hours. It is represented by (Fig. 76).

4. 세포 내에서의 VEGFA와 VEGFA 치환체들에 의한 신호전달 확인4. Confirmation of signal transduction by VEGFA and VEGFA substituents in cells

VEGFA는 내피세포의 성장, 증식과 관련해서 중요한 인자로써 암세포에서 신생 혈관 생성에 작용을 하게 되는데 이 때 PI3K/Akt/HIF-1α 신호전달 과정이 관여한다는 것이 보고되었다 (Carcinogenesis, 34, 426-435, 2013). 또한 VEGF는 AKT 인산화를 유도한다는 것이 보고되었다 (Kidney Int., 68, 1648-1659, 2005). 본 실시예에서는, 세포 내에서 VEGFA와 VEGFA 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA 치환체 (K127R) 및 pCMV3-C-myc-VEGFA 치환체 (K180R)를 각각 6 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 수행하였다. 이 과정에서 각각 pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA 치환체 (K127R), 및 pCMV3-C-myc-VEGFA 치환체 (K180R)으로 감염된 HepG2 세포에서 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S), 항-AKT (H-136, Santa Cruz Biotechnology, sc-8312), 항-phospho-AKT (S473, cell signaling 9271S) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pCMV3-C-myc-VEGFA 치환체 (K127R) 및 pCMV3-C-myc-VEGFA 치환체 (K180R)은 HepG2 세포 내에서 pCMV3-C-myc-VEGFA WT과 동일하거나 증가된 phospho-STAT3와 phospho-AKT 신호전달을 보였다 (도 77). VEGFA is an important factor related to endothelial cell growth and proliferation, and it has been reported that PI3K/Akt/HIF-1α signaling is involved in the formation of angiogenesis in cancer cells (Carcinogenesis, 34, 426-435. , 2013). It has also been reported that VEGF induces AKT phosphorylation (Kidney Int., 68, 1648-1659, 2005). In this example, the signaling process by VEGFA and VEGFA substituents in the cell was confirmed. First, after starving HepG2 (ATCC, AB-8065) cells for 8 hours, pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA substituent (K127R) and pCMV3-C-myc-VEGFA substituent (K180R) HepG2 cells were infected with each of 6 μg. After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, proteins isolated from HepG2 cells infected with pCMV3-C-myc-VEGFA WT, pCMV3-C-myc-VEGFA substituent (K127R), and pCMV3-C-myc-VEGFA substituent (K180R) were transferred to the PVDF membrane, respectively. Then, anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S), anti-AKT (H- 136, Santa Cruz Biotechnology, sc-8312), anti-phospho-AKT (S473, cell signaling 9271S) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and Using anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibodies It was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pCMV3-C-myc-VEGFA substituent (K127R) and pCMV3-C-myc-VEGFA substituent (K180R) were the same or increased phospho-STAT3 and phospho- as pCMV3-C-myc-VEGFA WT in HepG2 cells. It showed AKT signaling (Fig. 77).

실시 예 12: 식욕촉진호르몬 전구체 (Example 12: Appetite promoting hormone precursor ( GhrelinGhrelin // ObestatinObestatin PreprohormonePreprohormone ; ; preproprepro -- GHRLGHRL )에서의 In) 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현 벡터로의 클로닝 및 단백질 발현 확인 1. Cloning into an expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 식욕촉진호르몬 전구체 (Ghrelin/Obestatin Preprohormone; prepro-GHRL) DNA 증폭산물과 pCMV3-C-myc (6.1kb)를 제한효소인 KpnI과 XbaI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 78, prepro-GHRL 아미노산 서열: SEQ No. 80), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 79). 또한 도 78의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트로 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 79). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 30초를 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 78의 맵에 표시된 pCMV3-C-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 Western blot을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 식욕촉진호르몬 전구체 (Ghrelin/Obestatin Preprohormone; prepro-GHRL) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 80).Appetite-promoting hormone precursor by polymerase chain reaction (Ghrelin/Obestatin Preprohormone; prepro-GHRL) The DNA amplification product and pCMV3-C-myc (6.1 kb) were fragmented with restriction enzymes KpnI and XbaI, and then conjugated and cloned (Fig. 78, prepro-GHRL amino acid sequence: SEQ No. 80), and the result is a restriction enzyme. After cutting, it was confirmed through agarose gel electrophoresis (FIG. 79). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 78 is a primer set used when confirming through the polymerase chain reaction to confirm the cloned site once again, and the result was confirmed through agarose gel electrophoresis. (Fig. 79). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94° C. for 3 minutes, followed by 25 cycles of 30 seconds at 94° C. for the denaturation reaction, 30 seconds at 58° C. for the annealing reaction, and 30 seconds at 72° C. for the extension reaction. Then, it was reacted at 72° C. for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pCMV3-C-myc vector shown in the map of FIG. 78 was used as an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody. Expression was confirmed through blot. Through this, it was confirmed that an appetite-promoting hormone precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) protein bound to myc was well expressed, and it was found that the protein was quantitatively loaded through a blot confirmed with actin (FIG. 80).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (prepro-GHRL K100R FP 5'-GCCCTGGGGAGGTTTCTTCAG-3' (SEQ No. 81), RP 5'-CTGAAGAAACCTCCCCAGGGC-3' (SEQ No. 82)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환 시킨 플라스미드 DNA를 제작하였다. pCMV3-C-myc-식욕촉진호르몬 precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) DNA를 템플릿으로 사용하고, Lysine 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 12).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (prepro-GHRL K100R FP 5'-GCCCTGGGGAGGTTTCTTCAG-3' (SEQ No. 81), RP 5') using the DNA sequence to induce specific mutations. -CTGAAGAAACCTCCCCAGGGC-3' (SEQ No. 82) was prepared, and then PCR was performed under specific conditions to produce plasmid DNA in which specific amino acid residues were replaced: pCMV3-C-myc-appetite promoting hormone precursor (Ghrelin/Obestatin Preprohormone) ; prepro-GHRL) DNA was used as a template, and a plasmid DNA in which the Lysine residue was substituted with arginine (K→R) was prepared (Table 12).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 Ghrelin 작제물Ghrelin construct in which Lysine (K) is substituted with Arginine (R) 100100 pCMV3-C-myc-prepro-GHRL (K100R)pCMV3-C-myc-prepro-GHRL (K100R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pCMV3-C-myc-prepro-GHRL WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-prepro-GHRL WT 6 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강분석을 실시하였다 (도 81). 각각 pCMV3-C-myc-prepro-GHRL WT, pCMV3-C-myc-prepro-GHRL 치환체 (K100R) 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pCMV3-C-myc-prepro-GHRL WT, 및 pCMV3-C-myc-prepro-GHRL 치환체 (K100R) 각각 6 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 82). HEK 293T cells were infected with a plasmid encoding pCMV3-C-myc-prepro-GHRL WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 6 µg of pCMV3-C-myc-prepro-GHRL WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 81). HEK 293T cells were infected with a plasmid encoding pCMV3-C-myc-prepro-GHRL WT, pCMV3-C-myc-prepro-GHRL substituent (K100R) and pMT123-HA-ubiquitin DNA, respectively. To confirm the degree of ubiquitination, pCMV3-C-myc-prepro-GHRL WT, and pCMV3-C-myc-prepro-GHRL substituent (K100R), respectively, 6 μg, and pMT123-HA-ubiquitin DNA 1 μg were co-transformed into cells. Immunoprecipitation analysis was performed 24 hours after infection (FIG. 82).

면역침강을 위해 얻은 샘플은 용해 완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역 블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 PVDF 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, sc-40) 1 After mixing with the primary antibody, it was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. For immunoblotting, protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was transferred to a PVDF membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 containing a blocking solution and anti- Mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody.

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pCMV3-C-myc-prepro-GHRL WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 (smear) 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 81, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 81, 레인 4). 또한 pCMV3-C-myc-prepro-GHRL 치환체 (K100R)의 경우, WT보다 밴드가 연하였으며, pCMV3-C-myc-prepro-GHRL 치환체 (K100R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 82, 레인 3). 이상의 결과는 식욕촉진단백질이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to pCMV3-C-myc-prepro-GHRL WT to form polyubiquitination, resulting in smear (smear). ) Ubiquitin was detected and the band appeared dark (FIG. 81, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 81, lane 4). In addition, in the case of the pCMV3-C-myc-prepro-GHRL substituent (K100R), the band was softer than that of WT, and pCMV3-C-myc-prepro-GHRL Since the substituent (K100R) could not bind to ubiquitin, less ubiquitin was detected (Fig. 82, lane 3). The above results show that the appetite promoting protein binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 식욕촉진단백질(Ghrelin)의 반감기 확인3. Confirmation of the half-life of the appetite promoting protein (Ghrelin) by the protein production inhibitor cycloheximide (CHX)

pCMV3-C-myc-prepro-GHRL WT, pCMV3-C-myc-prepro-GHRL 치환체 (K100R)를 각각 6 ㎍씩 HEK 293T 세포에 형질감염 시켰다. 형질감염 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정해본 결과, 인간 식욕촉진단백질의 분해가 억제되는 것을 확인하였다 (도 83). 결과적으로 인간 식욕촉진호르몬 전구체 (Ghrelin/Obestatin Preprohormone; prepro-GHRL)의 반감기는 2시간 이내인데 반면 인간 pCMV3-C-myc-prepro-GHRL 치환체 (K100R)의 반감기는 2시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 83). The pCMV3-C-myc-prepro-GHRL WT and pCMV3-C-myc-prepro-GHRL substituents (K100R) were transfected into HEK 293T cells at 6 μg each. 48 hours after transfection, the protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and the half-life was measured over 2 hours, 4 hours and 8 hours. It was confirmed that decomposition was inhibited (FIG. 83). As a result, the half-life of the human appetite-promoting hormone precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) is within 2 hours, whereas the half-life of the human pCMV3-C-myc-prepro-GHRL substituent (K100R) is more than 2 hours, which is longer than WT. This result is shown in a graph (FIG. 83).

4. 세포 내에서의 식욕촉진호르몬 전구체 (4. Appetite-promoting hormone precursor in cells ( GhrelinGhrelin // ObestatinObestatin PreprohormonePreprohormone ; ; preproprepro -- GHRLGHRL )과 식욕촉진호르몬 전구체 (Ghrelin/Obestatin Preprohormone; prepro-GHRL) 치환체들에 의한 신호전달 확인) And appetite promoting hormone precursors (Ghrelin/Obestatin Preprohormone; prepro-GHRL)

식욕촉진호르몬은 성장호르몬분비수용체 (the growth hormone secretagogue receptor; GHS-R)를 통해서 세포 성장을 조절하며, 체내 칼슘 조절을 통해서 STAT3를 증가시킨다는 것이 보고되었다 (Mol Cell Endocrinol., 285, 19-25, 2008). 본 실시예에서는 세포 내에서 식욕촉진호르몬 precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL)과 식욕촉진호르몬 precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) 치환체들에 의한 신호전달 과정을 확인하였다. 먼저, HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pCMV3-C-myc-prepro-GHRL WT, pCMV3-C-myc-prepro-GHRL 치환체 (K100R)을 각각 6 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량한 다음, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 pCMV3-C-myc-prepro-GHRL WT, pCMV3-C-myc-prepro-GHRL 치환체 (K100R)로 감염된 HepG2 (ATCC, AB-8065) 세포에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S), 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pCMV3-C-myc-prepro-GHRL 치환체 (K100R)은 HepG2 세포 내에서 pCMV3-C-myc-prepro-GHRL WT과 동일하거나 증가된 phospho-STAT3 신호전달을 보였다 (도 84). It has been reported that appetite-stimulating hormone regulates cell growth through the growth hormone secretagogue receptor (GHS-R) and increases STAT3 through calcium regulation in the body (Mol Cell Endocrinol., 285, 19-25). , 2008). In this example, the signaling process by the appetite-promoting hormone precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) and the appetite-promoting hormone precursor (Ghrelin/Obestatin Preprohormone; prepro-GHRL) substituents was confirmed in the cells. First, HepG2 (ATCC, AB-8065) cells were starved for 8 hours, and then pCMV3-C-myc-prepro-GHRL WT and pCMV3-C-myc-prepro-GHRL substituents (K100R) were each used by 6 μg of HepG2. The cells were infected. After 2 days of infection, proteins were extracted from the cells and quantified, and then Western blotting was performed to confirm the intracellular signal transduction process. In this process, the protein isolated from HepG2 (ATCC, AB-8065) cells infected with pCMV3-C-myc-prepro-GHRL WT and pCMV3-C-myc-prepro-GHRL substituent (K100R) was converted to polyvinylidenedifluoride ( polyvinylidene difluoride, PVDF) membrane, anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S) ), and a blocking solution containing an anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 and an anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) Anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) was developed with an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea) using a secondary antibody. As a result, pCMV3-C-myc-prepro-GHRL substituent (K100R) showed the same or increased phospho-STAT3 signaling as pCMV3-C-myc-prepro-GHRL WT in HepG2 cells (FIG. 84).

실시 예 13: 식욕촉진호르몬 (Example 13: Appetite promoting hormone ( GhrelinGhrelin )에서의 In) 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 식욕촉진호르몬 (Ghrelin) DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 BamHI과 XhoI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 85, Ghrelin 아미노산 서열: SEQ No. 83), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 86). 또한 도 85의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 한 번 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 86). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 20초를 25 사이클로 반복하여 진행하였고, 이후 72℃에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 85의 맵에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 식욕촉진호르몬 (Ghrelin) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 87).Appetite-promoting hormone (Ghrelin) by polymerase chain reaction The DNA amplification product and pcDNA3-myc (5.6kb) were fragmented with restriction enzymes BamHI and XhoI, and then conjugated and cloned (Fig. 85, Ghrelin amino acid sequence: SEQ No. 83). It was confirmed through rose gel electrophoresis (FIG. 86). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 85 is a primer set used when confirming through polymerase chain reaction to confirm the cloned site once again, and the result is confirmed through agarose gel electrophoresis. (Fig. 86). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94°C for 3 minutes, followed by repeating 25 cycles of 30 seconds at 94°C for the denaturation reaction, 30 seconds at 58°C for the annealing reaction, and 20 seconds at 72°C for the extension reaction. Then, it was reacted at 72° C. for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pcDNA3-myc vector shown in the map of FIG. 85 was expressed through western blotting using an anti-myc (9E10, sc-40) antibody. Confirmed. Through this, an appetite promoting hormone (Ghrelin) bound to myc It was confirmed that the protein was well expressed, and it was found that the protein was quantitatively loaded through a blot confirmed with actin (FIG. 87).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (Ghrelin K39R FP 5'-AGTCCAGCAGAGAAGGGAGTCGAAGAAGCCA-3' (SEQ No. 84), RP 5'-TGGCTTCTTCGACTCCCTTCTCTGCTGGACT-3' (SEQ No. 85); Ghrelin K42R FP 5'-AGAAAGGAGTCGAGGAAGCCACCAGCCAAGC-3' (SEQ No. 86), RP 5'-GCTTGGCTGGTGGCTTCCTCGACTCCTTTCT-3' (SEQ No. 87); Ghrelin K43R FP 5'-AGAAAGGAGTCGAAGAGGCCACCAGCCAAGC-3' (SEQ No. 88), RP 5'-GC TTGGCTGGTGGCCTCTTCGACTCCTTTCT-3' (SEQ No. 89) ; Ghrelin K47R FP 5'-AAGA AGCCACCAGCCAGGCTGCAGCCCCGA-3' (SEQ No. 90), RP 5'-TCGGGGCTGCAGCCT GGCTGGTGGCTTCTT-3' (SEQ No. 91)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-식욕촉진호르몬 (Ghrelin) DNA를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 13).The lysine residue was substituted with arginine using site-specific mutagenesis, and primers (Ghrelin K39R FP 5'-AGTCCAGCAGAGAAGGGAGTCGAAGAAGCCA-3' (SEQ No. 84), RP 5'-TGGCTTCTTCGACTCCCTTCTCTGCTGGACT) using the DNA sequence to induce specific mutations. -3' (SEQ No. 85); Ghrelin K42R FP 5'-AGAAAGGAGTCGAGGAAGCCACCAGCCAAGC-3' (SEQ No. 86), RP 5'-GCTTGGCTGGTGGCTTCCTCGACTCCTTTCT-3' (SEQ No. 87); Ghrelin K43R FP 5'-AGGCCAAGGAGTCGAAG 3'(SEQ No. 88), RP 5'-GC TTGGCTGGTGGCCTCTTCGACTCCTTTCT-3' (SEQ No. 89); Ghrelin K47R FP 5'-AAGA AGCCACCAGCCAGGCTGCAGCCCCGA-3' (SEQ No. 90), RP 5'-TCGGGGCTGCAGCCT GGCTGGTGGCTTCTT After preparing 3'(SEQ No. 91), a plasmid DNA was prepared in which a specific amino acid residue was substituted by performing PCR under specific conditions: pcDNA3-myc-appetite promoting hormone (Ghrelin) DNA was used as a template, and plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 13).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 Ghrelin 작제물Ghrelin construct in which Lysine (K) is substituted with Arginine (R) 3939 pcDNA3-myc-Ghrelin (K39R)pcDNA3-myc-Ghrelin (K39R) 4242 pcDNA3-myc-Ghrelin (K42R)pcDNA3-myc-Ghrelin (K42R) 4343 pcDNA3-myc-Ghrelin (K43R)pcDNA3-myc-Ghrelin (K43R) 4747 pcDNA3-myc-Ghrelin (K47R)pcDNA3-myc-Ghrelin (K47R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-식욕촉진호르몬 WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-식욕촉진호르몬 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 다음, 면역침강 분석을 실시하였다 (도 88). 또한 각각 pcDNA3-myc-식욕촉진호르몬 WT, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R) 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-식욕촉진호르몬 WT, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R) 각각 2 ㎍, 및 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강 분석을 실시하였다 (도 89). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-appetite promoting hormone WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 ㎍ of pcDNA3-myc-appetite promoting hormone WT and 1 ㎍ of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 88). In addition, pcDNA3-myc-appetite promoting hormone WT, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone (K43R), pcDNA3-myc- HEK 293T cells were infected using a plasmid encoding an appetite promoting hormone substitute (K47R) and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-appetite promoting hormone WT, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone substituent (K43R) ), pcDNA3-myc-appetite promoting hormone substitute (K47R), respectively, 2 μg, and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 89 ).

면역침강을 위해 얻은 샘플은 용해 완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해 완충액으로 2회 세척하였다. 면역블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM phenylmethanesulfonyl fluoride), and then anti-myc (9E10, Santa Cruz Biotechnology, sc -40) Mixed with the primary antibody and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology). For immunoblotting, protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE. , PVDF) membrane, then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778 ) In a weight ratio of 1:1000 and an anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-식욕촉진단백질 WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 (smear) 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 88, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 88, 레인 4). 또한 pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 89, 레인 3 및 6). 이상의 결과는 식욕촉진호르몬이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다.As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pcDNA3-myc-appetite promoting protein WT to form polyubiquitin, resulting in smear ubiquitin being detected. Appeared dark (Fig. 88, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 88, lane 4). In addition, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone substituent (K43R), pcDNA3-myc-appetite promoting hormone substituent (K47R) , The band was softer than WT, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone substituent (K43R), pcDNA3-myc-appetite promoting The hormone substitutent (K47R) was unable to bind to ubiquitin, so less ubiquitin was detected (FIG. 89, lanes 3 and 6). The above results show that the appetite promoting hormone binds to ubiquitin and is polyubiquitinated and decomposed through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 식욕촉진호르몬 (Ghrelin)의 반감기 확인3. Confirmation of the half-life of the appetite promoting hormone (Ghrelin) by the protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-식욕촉진호르몬 WT, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 시키고 48시간 후, 단백질 생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ug/㎖)을 처리하고 12시간, 24시간, 36시간에 걸쳐서 반감기를 측정한 결과, 인간 식욕촉진호르몬의 분해가 억제되는 것을 확인하였다 (도 90). 결과적으로 인간 식욕촉진호르몬 (Ghrelin) 반감기는 15시간 이내인데 반면 인간 pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 (K47R)의 반감기는 36시간 이상으로 WT보다 길어졌으며 이 결과는 그래프로 나타내었다 (도 90). pcDNA3-myc-appetite promoting hormone WT, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone substituent (K43R), pcDNA3-myc-appetite HEK 293T cells were transfected with 2 µg each of the promoting hormone substitutes (K47R), and 48 hours later, protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 ug/ml) was treated, followed by 12 hours and 24 hours. , As a result of measuring the half-life over 36 hours, it was confirmed that the decomposition of human appetite promoting hormone was suppressed (FIG. 90). As a result, the half-life of human appetite-promoting hormone (Ghrelin) was less than 15 hours, whereas the half-life of human pcDNA3-myc-appetite-promoting hormone substitute (K39R) and pcDNA3-myc-appetite-promoting hormone (K47R) was longer than WT. This result is shown in a graph (FIG. 90).

4. 세포 내에서의 식욕촉진호르몬 (4. Appetite promoting hormone in cells ( GhrelinGhrelin )과 식욕촉진호르몬 () And appetite promoting hormone ( GhrelinGhrelin ) 치환체들에 의한 신호전달 확인) Confirmation of signal transmission by substituents

식욕촉진호르몬은 성장호르몬 분비 수용체 (the growth hormone secretagogue receptor; GHS-R)를 통해서 세포 성장을 조절하며, 체내 칼슘 조절을 통해서 STAT3를 증가시킨다는 것이 보고되었다 (Mol Cell Endocrinol., 285, 19-25, 2008). 본 실시예에서는 세포 내에서 식욕촉진호르몬 (Ghrelin)과 식욕촉진호르몬 (Ghrelin) 치환체들에 의한 신호전달 과정을 확인하였다. 먼저 HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pcDNA3-myc-식욕촉진호르몬 WT, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), pcDNA3-myc-식욕촉진호르몬 치환체 (K47R)를 각각 3 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일 경과 후, 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 각각 pcDNA3-myc-식욕촉진호르몬 WT, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R), pcDNA3-myc-식욕촉진호르몬 치환체 (K42R), pcDNA3-myc-식욕촉진호르몬 치환체 (K43R), 및 pcDNA3-myc-식욕촉진호르몬 치환체 (K47R)으로 감염된 HepG2 세포에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S), 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-식욕촉진호르몬 치환체 (K39R)는 HepG2 세포 내에서 pcDNA3-myc-식욕촉진호르몬 WT보다 증가된 phospho-STAT3 신호전달을 보였다 (도 91). It has been reported that appetite-stimulating hormone regulates cell growth through the growth hormone secretagogue receptor (GHS-R) and increases STAT3 through the regulation of calcium in the body (Mol Cell Endocrinol., 285, 19-25). , 2008). In this example, the signal transduction process by the appetite-promoting hormone (Ghrelin) and the appetite-promoting hormone (Ghrelin) substituents was confirmed in the cell. First, after starving HepG2 (ATCC, AB-8065) cells for 8 hours, pcDNA3-myc-appetite-promoting hormone WT, pcDNA3-myc-appetite-promoting hormone substitute (K39R), pcDNA3-myc-appetite-promoting hormone substitute (K42R), HepG2 cells were infected with 3 μg each of pcDNA3-myc-appetite-promoting hormone substitute (K43R) and pcDNA3-myc-appetite-promoting hormone substitute (K47R). After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-appetite promoting hormone WT, pcDNA3-myc-appetite promoting hormone substituent (K39R), pcDNA3-myc-appetite promoting hormone substituent (K42R), pcDNA3-myc-appetite promoting hormone substituent (K43R), and The protein isolated from HepG2 cells infected with pcDNA3-myc-appetite promoting hormone substitute (K47R) was transferred to a polyvinylidene difluoride (PVDF) membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc- 40), anti-STAT3 (Santa Cruz Biotechnology, sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S), and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 Blocking solution and anti-rabbit (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) The secondary antibody was developed with the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, pcDNA3-myc-appetite-promoting hormone substitute (K39R) showed increased phospho-STAT3 signaling in HepG2 cells than pcDNA3-myc-appetite-promoting hormone WT (FIG. 91).

실시 예 14: Example 14: 글루카곤유사펩티드Glucagon-like peptide (GLP-1) 단백질의 (GLP-1) protein 유비퀴틴화Ubiquitination 분석 및 반감기 증가 확인과 세포 내 신호전달 확인 Analysis and confirmation of half-life increase and intracellular signaling

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

중합효소 연쇄반응에 의한 글루카곤유사펩티드 (GLP-1) DNA 증폭산물과 pcDNA3-myc (5.6kb)를 제한효소인 BamHI과 XhoI으로 절편을 만든 후 접합하여 클로닝 하였으며 (도 92, GLP-1 아미노산 서열: SEQ No. 92), 그 결과는 제한효소 절단 후, 아가로즈젤 전기영동을 통해 확인하였다 (도 93). 또한 도 92의 염기서열 상에 밑줄과 굵은 글씨체로 표시된 부분은 클로닝된 부위를 다시 확인하고자 중합효소연쇄 반응을 통해 확인할 때 사용된 프라이머세트이며, 그 결과는 아가로즈젤 전기영동을 통해 확인하였다 (도 93). 중합효소연쇄 반응 조건은 다음과 같다; 초기 변성을 94℃에서 3분 동안 반응시킨 후, 변성 반응을 위한 94℃에서 30초, 어닐링 반응을 위한 58℃에서 30초, 연장 반응을 위한 72℃에서 20초를 25 사이클로 반복하여 진행하였고, 이후 72℃도에서 10분간 반응시켰다. 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 92의 맵에 표시된 pcDNA3-myc vector에 존재하는 myc을 항-myc (9E10, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 글루카곤유사펩티드 (GLP-1) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 94).Glucagon-like peptide (GLP-1) DNA amplification product by polymerase chain reaction and pcDNA3-myc (5.6 kb) were fragmented with restriction enzymes BamHI and XhoI, and then conjugated and cloned (Fig. 92, GLP-1 amino acid sequence : SEQ No. 92), the result was confirmed through agarose gel electrophoresis after digestion with restriction enzymes (FIG. 93). In addition, the part marked in bold and underlined on the nucleotide sequence of FIG. 92 is a primer set used when confirming through the polymerase chain reaction to reconfirm the cloned site, and the result was confirmed through agarose gel electrophoresis ( Figure 93). Polymerase chain reaction conditions are as follows; The initial denaturation was reacted at 94°C for 3 minutes, followed by 25 cycles of 30 seconds at 94°C for the denaturation reaction, 30 seconds at 58°C for the annealing reaction, and 20 seconds at 72°C for the extension reaction. Then, it was reacted at 72°C for 10 minutes. In order to confirm whether the thus-produced DNA is properly expressed as a protein, the myc present in the pcDNA3-myc vector shown in the map of FIG. 92 was expressed through western blotting using an anti-myc (9E10, sc-40) antibody. Confirmed. Through this, it was confirmed that the glucagon-like peptide (GLP-1) protein bound to myc was well expressed, and it was found that it was quantitatively loaded through a blot confirmed with actin (FIG. 94).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (GLP-1 K117R FP 5'-AAGCTGCCAGGGAATTCA-3' (SEQ No. 93), RP 5'-TGAATTCCCTGGCAGCTT-3' (SEQ No. 94); GLP-1 K125R FP 5'-TTGGC TGGTGAGAGGCC-3' (SEQ No. 95), RP 5'-GGCCTCTCACCAGCCAA-3' (SEQ No. 96)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환 시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-글루카곤유사펩티드 (GLP-1) DNA를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 14).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (GLP-1 K117R FP 5'-AAGCTGCCAGGGAATTCA-3' (SEQ No. 93), RP 5') using the DNA sequence to induce specific mutations. -TGAATTCCCTGGCAGCTT-3' (SEQ No. 94); GLP-1 K125R FP 5'-TTGGC TGGTGAGAGGCC-3' (SEQ No. 95), RP 5'-GGCCTCTCACCAGCCAA-3' (SEQ No. 96) , Plasmid DNA was prepared in which specific amino acid residues were substituted by performing PCR under specific conditions, pcDNA3-myc-glucagon-like peptide (GLP-1) DNA was used as a template, and lysine residues were substituted with arginine (K→R) Plasmid DNA was prepared (Table 14).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 GLP-1 작제물GLP-1 construct in which Lysine (K) is substituted with Arginine (R) 117117 pcDNA3-myc-GLP-1 (K117R)pcDNA3-myc-GLP-1 (K117R) 125125 pcDNA3-myc-GLP-1 (K125R)pcDNA3-myc-GLP-1 (K125R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 (co-transfection) 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 다음, 면역침강 분석을 실시하였다 (도 95). 또한 각각 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R), pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R) 각각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍를 세포에 공동형질감염 시키고 24시간 후에 면역침강분석을 실시하였다 (도 96). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-glucagon-like peptide (GLP-1) WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of pcDNA3-myc-glucagon-like peptide (GLP-1) WT and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 95). In addition, pcDNA3-myc-glucagon-like peptide (GLP-1) WT, pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R), pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K125R), respectively, HEK 293T cells were infected with a plasmid encoding pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-glucagon-like peptide (GLP-1) WT, pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R), pcDNA3-myc-glucagon-like peptide (GLP-1) Substituents (K125R) 2 μg and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 96).

면역침강을 위해 얻은 샘플은 용해완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, Santa Cruz Biotechnology, sc -40) Mixed with the primary antibody and incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology). For immunoblotting, protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE. , PVDF) membrane, then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778 ) In a weight ratio of 1:1000 and an anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using an ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 95, 레인 3과 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 95, 레인 4). 또한 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 96, 레인 3, 4). 이상의 결과는 글루카곤유사펩티드 (GLP-1)이 유비퀴틴과 결합하고 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다. As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to pcDNA3-myc-glucagon-like peptide (GLP-1) WT, resulting in the formation of polyubiquitination. The ubiquitin of was detected and the band appeared dark (FIG. 95, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 95, lane 4). In addition, in the case of pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R) and pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K125R), the band was softer than WT, and pcDNA3-myc-glucagon-like Peptide (GLP-1) substituent (K117R), pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K125R) was unable to bind to ubiquitin, and thus less ubiquitin was detected (FIG. 96, lanes 3 and 4). The above results show that glucagon-like peptide (GLP-1) binds to ubiquitin and is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 글루카곤유사펩티드 (GLP-1)의 반감기 확인3. Confirmation of half-life of glucagon-like peptide (GLP-1) by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 (transfection) 시켰다. 형질감염 48시간 후, 단백질 생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정한 결과, 인간 글루카곤유사펩티드 (GLP-1)의 분해가 억제되는 것을 확인하였다 (도 97). 결과적으로 인간 글루카곤유사펩티드 (GLP-1)의 반감기는 2시간인데 반면 인간 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)의 반감기는 4시간 이상으로 WT보다 길었고 이와 같은 결과를 그래프로 비교하였다 (도 97). pcDNA3-myc-glucagon-like peptide (GLP-1) WT, pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R), pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K125R) respectively. Each μg was transfected into HEK 293T cells. 48 hours after transfection, the protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and half-life was measured over 2 hours, 4 hours and 8 hours. As a result, human glucagon-like peptide ( It was confirmed that the decomposition of GLP-1) was inhibited (FIG. 97). As a result, the half-life of human glucagon-like peptide (GLP-1) is 2 hours, whereas human pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R), pcDNA3-myc-glucagon-like peptide (GLP-1) substituent ( K125R) had a half-life of 4 hours or longer than that of WT, and these results were compared graphically (FIG. 97).

4. 세포 내에서의 4. In the cell 글루카곤유사펩티드Glucagon-like peptide (GLP- (GLP- 1)와1) and 글루카곤유사펩티드Glucagon-like peptide (GLP-1) 치환체들에 의한 신호전달 확인 Confirmation of signal transduction by (GLP-1) substituents

글루카곤유사펩티드 (GLP-1)는 글루코오스 항상성을 조절하며 인슐린 저항성에 중요한 역할을 하기 때문에 현재 당뇨 치료제로 사용되며 STAT3 활성을 유도한다는 것이 보고되었다 (Biochem Biophys Res Commun., 425(2), 304-308, 2012). 본 실시예에서는 세포 내에서 글루카곤유사펩티드 (GLP-1)과 글루카곤유사펩티드 (GLP-1) 치환체들에 의한 신호전달 과정을 확인하였다. 먼저 HepG2 (ATCC, AB-8065) 세포를 8시간 동안 굶긴 후, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R), pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)를 각각 6 ㎍씩 이용하여 HepG2 세포를 감염시켰다. 감염 2일이 지난 후 세포에서 단백질을 추출하여 각각 정량하고, 세포 내 신호전달 과정을 확인하고자 웨스턴블롯팅을 실시하였다. 이 과정에서 각각 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R) 및 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K125R)으로 감염된 HepG2 세포에서 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-STAT3 (Santa Cruz Biotechnology, sc-21876), 항-phospho-STAT3 (Y705, cell signaling 9131S), 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-레빗 (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004)과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. 그 결과, pcDNA3-myc-글루카곤유사펩티드 (GLP-1) 치환체 (K117R)는 HepG2 (ATCC, AB-8065) 세포 내에서 pcDNA3-myc-글루카곤유사펩티드 (GLP-1) WT과 동일하게 대조군보다 증가된 phospho-STAT3 신호전달을 보였다 (도 98). Since glucagon-like peptide (GLP-1) regulates glucose homeostasis and plays an important role in insulin resistance, it is currently used as a diabetes treatment and has been reported to induce STAT3 activity (Biochem Biophys Res Commun., 425(2), 304- 308, 2012). In this example, the signaling process by the glucagon-like peptide (GLP-1) and glucagon-like peptide (GLP-1) substituents in the cell was confirmed. First, HepG2 (ATCC, AB-8065) cells were starved for 8 hours, then pcDNA3-myc-glucagon-like peptide (GLP-1) WT, pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R), pcDNA3- HepG2 cells were infected with 6 μg each of the myc-glucagon-like peptide (GLP-1) substituents (K125R). After 2 days of infection, proteins were extracted from the cells and quantified, respectively, and Western blotting was performed to confirm the intracellular signal transduction process. In this process, pcDNA3-myc-glucagon-like peptide (GLP-1) WT, pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R) and pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K125R), respectively. ), the protein isolated from the infected HepG2 cells was transferred to a polyvinylidene difluoride (PVDF) membrane, followed by anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-STAT3 (Santa Cruz Biotechnology). , sc-21876), anti-phospho-STAT3 (Y705, cell signaling 9131S), and anti-β-actin (Santa Cruz Biotechnology, sc-47778) in a weight ratio of 1:1000 containing a blocking solution and anti-rabbit ( goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, sc-2004) and anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody using ECL system (Western blot detection kit, ABfrontier, Seoul, Korea). As a result, the pcDNA3-myc-glucagon-like peptide (GLP-1) substituent (K117R) was increased in HepG2 (ATCC, AB-8065) cells compared to the control group in the same manner as pcDNA3-myc-glucagon-like peptide (GLP-1) WT. Showed phospho-STAT3 signaling (Fig. 98).

실시 예 15: 면역글로불린 (IgG) 중쇄 (HC)의 유비퀴틴화 분석 및 반감기 증가 확인 Example 15: Analysis of ubiquitination of immunoglobulin (IgG) heavy chain (HC) and confirmation of half-life increase

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

면역글로불린 (IgG) 중쇄 (HC)은 Roche에서 보유했던 특허 중 권리 만료된 Herceptin이라는 유방암치료제에 대한 특허 명세서 (특허번호 EP1308455 B9, 특허 명칭: A composition comprising anti-HER2 antibodies, p. 24)를 참조하여 포유동물세포에서 단백질 발현이 잘 되도록 코돈 최적화 (codon optimization)을 수행하여 본 연구에 사용된 고유의 DNA 서열을 합성하였고 이후 제한효소인 EcoRI과 XhoI을 이용하여 절편을 만들어 pcDNA3-myc (5.6kb)의 EcoRI과 XhoI를 이용한 절편과 접합하여 클로닝하였으며 (도 99, 면역글로불린 (IgG) 중쇄 아미노산 서열: SEQ No. 97), 이 과정을 통한 산물은 제한효소 절단 후, 아가로즈젤 전기영동을 통해 재확인하였다 (도 100). 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 99의 map에 표시된 pcDNA3-myc 벡터에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 면역글로불린 (IgG)의 중쇄 (HC) 단백질이 잘 발현되는 것을 확인하였고, 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 101).For the immunoglobulin (IgG) heavy chain (HC), refer to the patent specification (Patent No. EP1308455 B9, Patent Name: A composition comprising anti-HER2 antibodies, p. 24) for a breast cancer treatment called Herceptin that has expired among patents held by Roche. In order to facilitate protein expression in mammalian cells, codon optimization was performed to synthesize the unique DNA sequence used in this study. After that, a fragment was made using the restriction enzymes EcoRI and XhoI to produce pcDNA3-myc (5.6kb). ) Of EcoRI and XhoI were conjugated and cloned (FIG. 99, immunoglobulin (IgG) heavy chain amino acid sequence: SEQ No. 97), and the product through this process was digested with restriction enzymes, followed by agarose gel electrophoresis. It was confirmed again (FIG. 100). Western blotting of myc present in the pcDNA3-myc vector shown in the map of FIG. 99 using an anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody in order to confirm whether the thus prepared DNA is properly expressed as a protein. Expression was confirmed through. Through this, it was confirmed that the heavy chain (HC) protein of immunoglobulin (IgG) bound to myc was well expressed, and it was found that it was quantitatively loaded through a blot confirmed with actin (FIG. 101).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (IgG HC K235R FP 5'-ACAAAGGTGGACAGGAAGGTGGAGCCCAAG-3' (SEQ No. 98), RP 5'-CTTGGGCTCC ACCTTCCTGTCCACCTTTGT-3' (SEQ No. 99); IgG HC K344R FP 5'-GAGTATAAGTGC AGGGTGTCCAATAAGGCCCTGC-3' (SEQ No. 100), RP 5'-GCAGGGCCTTATTGGACAC CCTGCACTTATACTC-3' (SEQ No. 101); IgG HC K431R FP 5'-CTTTCTGTATAGCAGG CTGACCGTGGATAAGTCC-3' (SEQ No. 102), RP 5'-GGACTTATCCACGGTCAGCCTGC TATACAGAAAG-3' (SEQ No. 103)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-IgG HC DNA를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 15).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (IgG HC K235R FP 5'-ACAAAGGTGGACAGGAAGGTGGAGCCCAAG-3' (SEQ No. 98), RP 5'-) using the DNA sequence to induce specific mutations. CTTGGGCTCC ACCTTCCTGTCCACCTTTGT-3' (SEQ No. 99); IgG HC K344R FP 5'-GAGTATAAGTGC AGGGTGTCCAATAAGGCCCTGC-3' (SEQ No. 100), RP 5'-GCAGGGCCTTATTGGACAC CCTGCACTTATACTC-3' (SEQ No. 101); IgG HC K431R After making FP 5'-CTTTCTGTATAGCAGG CTGACCGTGGATAAGTCC-3' (SEQ No. 102), RP 5'-GGACTTATCCACGGTCAGCCTGC TATACAGAAAG-3' (SEQ No. 103), a plasmid in which a specific amino acid residue was substituted by performing PCR under specific conditions DNA was prepared: pcDNA3-myc-IgG HC DNA was used as a template, and plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 15).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 IgG HC 작제물IgG HC construct in which Lysine (K) is substituted with Arginine (R) 235235 pcDNA3-myc-IgG HC (K235R)pcDNA3-myc-IgG HC (K235R) 344344 pcDNA3-myc-IgG HC (K344R)pcDNA3-myc-IgG HC (K344R) 431431 pcDNA3-myc-IgG HC (K431R)pcDNA3-myc-IgG HC (K431R)

2. 생체 내 2. In vivo 유비퀴틴화Ubiquitination 분석 analysis

pcDNA3-myc-면역글로불린 (IgG)-HC WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-면역글로불린(IgG)-HC의 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시키고 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역침강분석을 실시하였다 (도 102). 또한 각각 pcDNA3-myc-면역글로불린(IgG)-HC WT, pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K235R), pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K344R), pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R) 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-면역글로불린(IgG)-HC WT, pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K235R), pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K344R), pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R) 각각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시키고 24시간 후에 면역침강 분석을 실시하였다 (도 103). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-immunoglobulin (IgG)-HC WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, 2 µg of WT of pcDNA3-myc-immunoglobulin (IgG)-HC and 1 µg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and 24 hours later, MG132 (proteasome inhibitor, 5 µg /Ml) was treated for 6 hours, and then immunoprecipitation analysis was performed (FIG. 102). In addition, pcDNA3-myc-immunoglobulin (IgG)-HC WT, pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K235R), pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K344R), pcDNA3-myc, respectively. HEK 293T cells were infected with a plasmid encoding -immunoglobulin (IgG)-HC substituent (K431R) and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-immunoglobulin (IgG)-HC WT, pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K235R), pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K344R) ), pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K431R), respectively, 2 μg and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 103 ).

면역침강을 위해 얻은 샘플은 용해 완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역 블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 가열 한 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다. Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, sc-40) 1 After mixing with the primary antibody, it was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. For immunoblotting, a protein sample was mixed with 2X SDS buffer, heated at 100° C. for 7 minutes, and then separated by performing SDS-PAGE The separated protein was separated by a polyvinylidene difluoride (PVDF) membrane. And then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) 1: Using a blocking solution containing a weight ratio of 1000 and an anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody, the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, sc-40)으로 면역침강을 실시한 경우, pcDNA3-myc-면역글로불린(IgG)-HC WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 (smear) 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 102, 레인 3, 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 102, 레인 4). 또한 pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 103, 레인 5). 이상의 결과는 면역글로불린(IgG)-HC이 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다. As a result, when immunoprecipitation was performed with anti-myc (9E10, sc-40), ubiquitin was bound to pcDNA3-myc-immunoglobulin (IgG)-HC WT to form polyubiquitin, resulting in smear ubiquitin. Was detected, and the band appeared dark (FIG. 102, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 102, lane 4). In addition, in the case of pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K431R), the band was softer than that of WT, and pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K431R) could not bind ubiquitin and thus had less ubiquitin. Was detected (FIG. 103, lane 5). The above results show that immunoglobulin (IgG)-HC is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 면역글로불린(IgG)-HC의 반감기 확인3. Identification of half-life of immunoglobulin (IgG)-HC by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-면역글로불린(IgG)-HC WT, pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K235R), pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K344R), 및 pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R)를 각각 2 ㎍씩 HEK 293T 세포에 형질감염 시키고 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리한 다음, 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정한 결과, 인간 면역글로불린(IgG)-HC의 분해가 억제되는 것을 확인하였다 (도 104). 결과적으로 인간 면역글로불린(IgG)-HC의 반감기는 2시간 이내인 반면 인간 pcDNA3-myc-면역글로불린(IgG)-HC 치환체 (K431R)의 반감기는 4시간 정도로 WT보다 길었고 이와 같은 결과는 그래프로 나타냈다 (도 104). pcDNA3-myc-immunoglobulin (IgG)-HC WT, pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K235R), pcDNA3-myc-immunoglobulin (IgG)-HC substituent (K344R), and pcDNA3-myc- Immunoglobulin (IgG)-HC substituent (K431R) was transfected into HEK 293T cells at 2 μg each, and 48 hours later, protein production inhibitor cyclohexamide (CHX) (Sigma-Aldrich) (100 μg/ml) was treated. Next, as a result of measuring the half-life over 2 hours, 4 hours and 8 hours, it was confirmed that the degradation of human immunoglobulin (IgG)-HC was suppressed (FIG. 104). As a result, the half-life of human immunoglobulin (IgG)-HC is less than 2 hours, whereas the half-life of human pcDNA3-myc-immunoglobulin (IgG)-HC substitute (K431R) is about 4 hours longer than that of WT. (Figure 104).

실시 예 16: 면역글로불린 (IgG) 경쇄 (LC)의 유비퀴틴화 분석 및 반감기 증가 확인 Example 16: Analysis of ubiquitination of immunoglobulin (IgG) light chain (LC) and confirmation of half-life increase

1. 발현벡터로의 클로닝 및 단백질 발현 확인1. Cloning into expression vector and confirmation of protein expression

(1) 발현벡터 클로닝(1) Cloning of expression vector

면역글로불린 (IgG)의 경쇄 (LC)은 Roche에서 보유했던 특허 중 권리 만료된 Herceptin이라는 유방암치료제에 대한 특허명세서 (특허번호 EP1308455 B9, 특허 명칭: A composition comprising anti-HER2 antibodies, p. 23)를 참조하여 포유동물 세포에서 단백질 발현이 잘 되도록 코돈 최적화를 수행하여 본 연구에 사용된 고유의 DNA 서열을 합성하였고 이후 제한효소인 EcoRI과 XhoI을 이용하여 절편을 만들어 pcDNA3-myc (5.6kb)의 EcoRI과 XhoI를 이용한 절편과 접합하여 클로닝하였으며 (도 105, 면역글로불린 (IgG)의 경쇄 (LC) 아미노산 서열: SEQ No. 104), 이 과정을 통한 산물은 제한효소 절단 후, 아가로즈젤 전기영동을 통해 재확인하였다 (도 106). 이와 같이 제작된 DNA가 단백질로 제대로 발현하는지를 확인하기 위하여 도 105의 맵에 표시된 pcDNA3-myc vector에 존재하는 myc을 항-myc (9E10, Santa Cruz Biotechnology, sc-40) 항체를 이용하여 웨스턴블롯팅을 통해 발현을 확인하였다. 이를 통해 myc에 결합된 면역글로불린 (IgG)의 경쇄 (LC) 단백질이 잘 발현되는 것을 확인하였으며 액틴으로 확인한 블롯을 통해 정량 로딩된 것으로 나타났다 (도 107).The light chain (LC) of immunoglobulin (IgG) is a patent specification (patent number EP1308455 B9, patent name: A composition comprising anti-HER2 antibodies, p. 23) for a breast cancer treatment called Herceptin that has expired among patents held by Roche. For reference, codon optimization was performed to facilitate protein expression in mammalian cells to synthesize the unique DNA sequence used in this study. After that, a fragment was made using the restriction enzymes EcoRI and XhoI, and the EcoRI of pcDNA3-myc (5.6kb). And a fragment using XhoI and cloned (Fig. 105, light chain (LC) amino acid sequence of immunoglobulin (IgG): SEQ No. 104), and the product through this process was digested with restriction enzymes, followed by agarose gel electrophoresis. It was reconfirmed through (FIG. 106). Western blotting using anti-myc (9E10, Santa Cruz Biotechnology, sc-40) antibody to myc present in the pcDNA3-myc vector shown in the map of FIG. 105 in order to confirm whether the thus produced DNA is properly expressed as a protein. Expression was confirmed through. Through this, it was confirmed that the light chain (LC) protein of immunoglobulin (IgG) bound to myc was well expressed, and it was found that it was quantitatively loaded through a blot confirmed with actin (FIG. 107).

(2) 라이신 (Lysine, K) 잔기의 치환(2) Substitution of lysine (K) residues

부위 특이적 돌연변이유도를 이용하여 라이신 잔기를 아르기닌으로 치환하였으며, 특정 돌연변이를 유도할 DNA 서열을 이용하여 프라이머 (IgG LC K67R FP 5'-CCTGGCAAGGCCCCAAGGCTGCTGATCTAC-3' (SEQ No. 105), RP 5'-GTAGATCAG CAGCCTTGGGGCCTTGCCAGG-3' (SEQ No. 106); IgG LC K129R FP 5'-ACAAAGGT GGAGATCAGGAGGACCGTGGCC-3' (SEQ No. 107), RP 5'-GGCCACGGTCCTCCTGAT CTCCACCTTTGT-3' (SEQ No. 108); IgG LC K171R FP 5'-GCCAAGGTGCAGTGGAGG GTGGATAACGCC-3' (SEQ No. 109), RP 5'-GGCGTTATCCACCCTCCACTGCACCTTGG C-3' (SEQ No. 110)를 제작한 후, 특정조건에서 PCR을 진행함으로써 특정 아미노산 잔기를 치환 시킨 플라스미드 DNA를 제작하였다. pcDNA3-myc-IgG LC DNA를 템플릿으로 사용하고, 라이신 잔기가 아르기닌으로 치환 (K→R)된 플라스미드 DNA를 제작하였다 (표 16).The lysine residue was replaced with arginine using site-specific mutagenesis, and primers (IgG LC K67R FP 5'-CCTGGCAAGGCCCCAAGGCTGCTGATCTAC-3' (SEQ No. 105), RP 5'- using the DNA sequence to induce a specific mutation), RP 5'- GTAGATCAG CAGCCTTGGGGCCTTGCCAGG-3' (SEQ No. 106); IgG LC K129R FP 5'-ACAAAGGT GGAGATCAGGAGGACCGTGGCC-3' (SEQ No. 107), RP 5'-GGCCACGGTCCTCCTGAT CTCCACCTTTGT-3' (SEQ No. 108); IgG LC K171R After making FP 5'-GCCAAGGTGCAGTGGAGG GTGGATAACGCC-3' (SEQ No. 109), RP 5'-GGCGTTATCCACCCTCCACTGCACCTTGG C-3' (SEQ No. 110), a plasmid in which a specific amino acid residue was substituted by performing PCR under specific conditions DNA was prepared Using pcDNA3-myc-IgG LC DNA as a template, plasmid DNA in which the lysine residue was substituted with arginine (K→R) was prepared (Table 16).

Lysine (K) 잔기 위치Lysine (K) residue position Lysine (K)이 Arginine (R)로 치환된 IgG LC 작제물IgG LC construct in which Lysine (K) is substituted with Arginine (R) 6767 pcDNA3-myc-IgG LC (K67R)pcDNA3-myc-IgG LC (K67R) 129129 pcDNA3-myc-IgG LC (K129R)pcDNA3-myc-IgG LC (K129R) 171171 pcDNA3-myc-IgG LC (K171R)pcDNA3-myc-IgG LC (K171R)

2. 생체 내 유비퀴틴화 분석2. In vivo ubiquitination assay

pcDNA3-myc-면역글로불린(IgG)-LC WT과 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 정도를 확인하기 위하여 pcDNA3-myc-면역글로불린(IgG)-LC의 WT 2 ㎍과 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시켰다. 형질감염 24시간 후에 MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 후, 면역 침강 분석을 실시하였다 (도 108). 또한 각각 pcDNA3-myc-면역글로불린(IgG)-LC WT, pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K67R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K129R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R) 및 pMT123-HA-유비퀴틴 DNA을 코딩하는 플라스미드를 이용하여 HEK 293T 세포를 감염시켰다. 유비퀴틴화 되는 정도를 확인하기 위하여 pcDNA3-myc-면역글로불린(IgG)-LC WT, pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K67R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K129R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R) 각각 2 ㎍와 pMT123-HA-유비퀴틴 DNA 1 ㎍을 세포에 공동형질감염 시키고 24시간 후에 면역 침강 분석을 실시하였다 (도 109). HEK 293T cells were infected with a plasmid encoding pcDNA3-myc-immunoglobulin (IgG)-LC WT and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, cells were co-transfected with 2 μg of WT of pcDNA3-myc-immunoglobulin (IgG)-LC and 1 μg of pMT123-HA-ubiquitin DNA. After 24 hours of transfection, MG132 (proteasome inhibitor, 5 µg/ml) was treated for 6 hours, followed by immunoprecipitation analysis (FIG. 108). In addition, pcDNA3-myc-immunoglobulin (IgG)-LC WT, pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K67R), pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K129R), pcDNA3-myc, respectively. HEK 293T cells were infected with a plasmid encoding -immunoglobulin (IgG)-LC substituent (K171R) and pMT123-HA-ubiquitin DNA. To confirm the degree of ubiquitination, pcDNA3-myc-immunoglobulin (IgG)-LC WT, pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K67R), pcDNA3-myc-immunoglobulin (IgG)-LC substituent ( K129R), pcDNA3-myc-immunoglobulin (IgG)-LC substitute (K171R), respectively, 2 μg and 1 μg of pMT123-HA-ubiquitin DNA were co-transfected into cells, and immunoprecipitation analysis was performed 24 hours later (FIG. 109 ). .

면역침강을 위해 얻은 샘플은 용해 완충액 (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 및 1 mM PMSF (phenylmethanesulfonyl fluoride)으로 용해한 후, 항-myc (9E10, sc-40) 1차 항체와 혼합하고 4℃에서 하룻밤 동안 배양하였다. 면역 침강체는 단백질 A/G 비드 (Santa Cruz Biotechnology)를 이용하여 4℃에서 2시간 동안 반응시켜 분리하였다. 이후, 용해완충액으로 2회 세척하였다. 면역 블롯팅은 단백질 샘플을 2X SDS 완충액과 혼합한 후 100℃에서 7분간 끓이고 난 후, SDS-PAGE를 실시하여 분리하였다. 분리된 단백질을 폴리비닐리덴다이플로라이드 (polyvinylidene difluoride, PVDF) 멤브레인으로 이동시킨 다음, 항-myc (9E10, Santa Cruz Biotechnology, sc-40), 항-HA (Santa Cruz Biotechnology, sc-7392) 및 항-β-actin (Santa Cruz Biotechnology, sc-47778)을 1:1000의 중량비로 포함하는 블로킹 용액과 항-마우스 (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) 2차 항체를 사용하여 ECL 시스템 (Western blot detection kit, ABfrontier, Seoul, Korea)으로 현상하였다.Samples obtained for immunoprecipitation were dissolved in lysis buffer (1% Triton X, 150 mM NaCl, 50 mM Tris-HCl, pH 8 and 1 mM PMSF (phenylmethanesulfonyl fluoride)), and then anti-myc (9E10, sc-40) 1 After mixing with the secondary antibody, it was incubated overnight at 4° C. The immunoprecipitates were separated by reacting for 2 hours at 4° C. using protein A/G beads (Santa Cruz Biotechnology), and then washed twice with lysis buffer. For immunoblotting, protein samples were mixed with 2X SDS buffer, boiled for 7 minutes at 100° C., and then separated by performing SDS-PAGE The separated protein was separated by polyvinylidene difluoride (PVDF) membrane. And then anti-myc (9E10, Santa Cruz Biotechnology, sc-40), anti-HA (Santa Cruz Biotechnology, sc-7392) and anti-β-actin (Santa Cruz Biotechnology, sc-47778) 1: Using a blocking solution containing a weight ratio of 1000 and an anti-mouse (Peroxidase-labeled antibody to mouse IgG (H+L), KPL, 074-1806) secondary antibody, the ECL system (Western blot detection kit, ABfrontier, Seoul, Korea).

그 결과, 항-myc (9E10, Santa Cruz Biotechnology, sc-40)으로 면역 침강을 실시한 경우, pcDNA3-myc-면역글로불린(IgG)-LC WT에는 유비퀴틴이 결합하여 폴리유비퀴틴화가 형성됨에 따라 번진 모양의 유비퀴틴이 탐지되어 밴드가 진하게 나타났다 (도 108, 레인 3, 4). 또한, MG132 (프로테아좀 저해제, 5 ㎍/㎖)을 6시간 동안 처리한 경우에서는 폴리유비퀴틴화 형성이 증가되어 유비퀴틴이 탐지되는 밴드가 더욱 진하게 나타났다 (도 108, 레인 4). 또한 pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R)의 경우, WT보다 밴드가 연하였으며, pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R)이 유비퀴틴과 결합하지 못하여 유비퀴틴이 적게 검출되었다 (도 109, 레인 5). 이상의 결과는 면역글로불린(IgG)-LC가 유비퀴틴-프로테아좀 시스템을 통해 폴리유비퀴틴화되어 분해됨을 보여준다. As a result, when immunoprecipitation was performed with anti-myc (9E10, Santa Cruz Biotechnology, sc-40), ubiquitin was bound to pcDNA3-myc-immunoglobulin (IgG)-LC WT to form polyubiquitination. Ubiquitin was detected and the band appeared dark (Fig. 108, lanes 3 and 4). In addition, when MG132 (proteasome inhibitor, 5 μg/ml) was treated for 6 hours, the formation of polyubiquitin was increased, and the band in which ubiquitin was detected was more intense (FIG. 108, lane 4). In addition, in the case of pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K171R), the band was softer than that of WT, and pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K171R) did not bind to ubiquitin, resulting in less ubiquitin. Was detected (Fig. 109, lane 5). The above results show that immunoglobulin (IgG)-LC is polyubiquitinated and degraded through the ubiquitin-proteasome system.

3. 단백질 생성 저해제 cycloheximide(CHX)에 의한 면역글로불린(IgG)-LC의 반감기 확인3. Confirmation of half-life of immunoglobulin (IgG)-LC by protein production inhibitor cycloheximide (CHX)

pcDNA3-myc-면역글로불린(IgG)-LC WT, pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K67R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K129R), pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R)를 각각 2㎍씩 HEK 293T 세포에 형질감염 시키고 48시간 후, 단백질생성 저해제 시클로헥사미드 (CHX) (Sigma-Aldrich) (100 ㎍/㎖)을 처리하고 2시간, 4시간 및 8시간에 걸쳐서 반감기를 측정한 결과, 인간 면역글로불린(IgG)-LC의 분해가 억제되는 것을 확인하였다 (도 110). 결과적으로 인간 면역글로불린(IgG)-LC의 반감기는 1시간 이내인 반면 인간 pcDNA3-myc-면역글로불린(IgG)-LC 치환체 (K171R)의 반감기는 2시간 이상으로 WT보다 길었고, 이와 같은 결과를 그래프로 나타냈다 (도 110). pcDNA3-myc-immunoglobulin (IgG)-LC WT, pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K67R), pcDNA3-myc-immunoglobulin (IgG)-LC substituent (K129R), pcDNA3-myc-immunity Globulin (IgG)-LC substituent (K171R) was transfected into HEK 293T cells at 2 μg each, and 48 hours later, protein production inhibitor cyclohexamid (CHX) (Sigma-Aldrich) (100 μg/ml) was treated and 2 As a result of measuring the half-life over time, 4 hours and 8 hours, it was confirmed that the degradation of human immunoglobulin (IgG)-LC was suppressed (FIG. 110). As a result, the half-life of human immunoglobulin (IgG)-LC was less than 1 hour, whereas the half-life of human pcDNA3-myc-immunoglobulin (IgG)-LC substitute (K171R) was 2 hours or longer than that of WT. Represented by (Fig. 110).

본 발명에 따르면, 반감기가 증가된 단백질 또는 (폴리)펩타이드가 제공된다. 따라서 본 발명은 치료제로서 이용될 수 있는 단백질 또는 (폴리)펩타이드에 관한 것으로서, 제약 산업에서 유용하게 이용될 수 있을 것이다. According to the present invention, a protein or (poly) peptide with an increased half-life is provided. Accordingly, the present invention relates to a protein or (poly) peptide that can be used as a therapeutic agent, and may be usefully used in the pharmaceutical industry.

<110> UbiProtein. Corp <120> A method for extending half-life of a protein <130> UBPRN16P02KR <150> KR 10-2015-0160728 <151> 2015-11-16 <160> 110 <170> KoPatentIn 3.0 <210> 1 <211> 198 <212> PRT <213> Artificial Sequence <220> <223> Human beta trophin <400> 1 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr 1 5 10 15 Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His 20 25 30 Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala 35 40 45 Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu Thr Lys Ala Arg 50 55 60 Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu 65 70 75 80 Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu 85 90 95 Glu Thr Gln Met Glu Glu Asp Ile Leu Gln Leu Gln Ala Glu Ala Thr 100 105 110 Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp 115 120 125 Ser Val Gln Arg Leu Glu Val Gln Leu Arg Ser Ala Trp Leu Gly Pro 130 135 140 Ala Tyr Arg Glu Phe Glu Val Leu Lys Ala His Ala Asp Lys Gln Ser 145 150 155 160 His Ile Leu Trp Ala Leu Thr Gly His Val Gln Arg Gln Arg Arg Glu 165 170 175 Met Val Ala Gln Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His 180 185 190 Thr Ala Ala Leu Pro Ala 195 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 2 agggacggct gacaagggcc aggaa 25 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 3 ccaggctgtt cctggccctt gtcagc 26 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 4 ggcacagagg gtgctacggg acagc 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 5 cgtagcaccc tctgtgcctg ggcca 25 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 6 gaatttgagg tcttaagggc tcacgc 26 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 7 cttgtcagcg tgagccctta agacctc 27 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 8 gctcacgctg acaggcagag ccacat 26 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 9 ccataggatg tggctctgcc tgtcagc 27 <210> 10 <211> 217 <212> PRT <213> Artificial Sequence <220> <223> Human growth hormone <400> 10 Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu 1 5 10 15 Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 20 25 30 Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln 35 40 45 Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys 50 55 60 Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe 65 70 75 80 Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys 85 90 95 Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp 100 105 110 Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140 Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160 Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175 His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 185 190 Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 195 200 205 Arg Ser Val Glu Gly Ser Cys Gly Phe 210 215 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 11 ccaaaggaac agaggtattc attc 24 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 12 caggaatgaa tacctctgtt cctt 24 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 13 gacctcctaa gggacctaga g 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 14 ctctaggtcc cttaggaggt c 21 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 15 cagatcttca ggcagaccta c 21 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 16 gtaggtctgc ctgaagatct g 21 <210> 17 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> Human insulin <400> 17 Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu 1 5 10 15 Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 20 25 30 Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 35 40 45 Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly 50 55 60 Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu 65 70 75 80 Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys 85 90 95 Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 100 105 110 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 18 ggcttcttct acacacccag gaccc 25 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 19 ctcccggcgg gtcctgggtg tgta 24 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 20 tccctgcaga ggcgtggcat tgt 23 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 21 ttgttccaca atgccacgcc tctgcag 27 <210> 22 <211> 188 <212> PRT <213> Artificial Sequence <220> <223> Human interferon alpha <400> 22 Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys 1 5 10 15 Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30 Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45 Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60 Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His 65 70 75 80 Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser 85 90 95 Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr 100 105 110 Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115 120 125 Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys 130 135 140 Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro 145 150 155 160 Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu 165 170 175 Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 185 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 23 cttcagcaca agggactcat c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 24 cagatgagtc ccttgtgctg a 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 25 ctcctagaca gattctacac t 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 26 agtgtagaat ctgtctagga g 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 27 gctgtgagga gatacttcca a 21 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 28 ttggaagtat ctcctcacag c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 29 ctctatctga gagagaagaa a 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 30 tttcttctct ctcagataga g 21 <210> 31 <211> 207 <212> PRT <213> Artificial Sequence <220> <223> Human G-CSF <400> 31 Met Ala Gly Pro Ala Thr Gln Ser Pro Met Lys Leu Met Ala Leu Gln 1 5 10 15 Leu Leu Leu Trp His Ser Ala Leu Trp Thr Val Gln Glu Ala Thr Pro 20 25 30 Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu 35 40 45 Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys 50 55 60 Leu Val Ser Glu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu 65 70 75 80 Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser 85 90 95 Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His 100 105 110 Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile 115 120 125 Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala 130 135 140 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala 145 150 155 160 Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala 165 170 175 Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser 180 185 190 Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 195 200 205 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 32 agcttcctgc tcaggtgctt agag 24 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 33 ttgctctaag cacctgagca ggaa 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 34 tgtgccacct acaggctgtg ccac 24 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 35 ggggtggcac agcctgtagg tggc 24 <210> 36 <211> 187 <212> PRT <213> Artificial Sequence <220> <223> Human interferon beta <400> 36 Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser 1 5 10 15 Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg 20 25 30 Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 45 Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu 50 55 60 Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile 65 70 75 80 Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 90 95 Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 105 110 Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 115 120 125 Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 130 135 140 Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 145 150 155 160 His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 165 170 175 Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn 180 185 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 37 cagtgtcaga ggctcctgtg g 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 38 ccacaggagc ctctgacact g 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 39 ctggaagaaa gactggagaa a 21 <210> 40 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 40 tttctccagt ctttcttcca g 21 <210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 41 cattacctga gggccaagga g 21 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 42 ctccttggcc ctcaggtaat g 21 <210> 43 <211> 193 <212> PRT <213> Artificial Sequence <220> <223> Human erythropoietin <400> 43 Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15 Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115 120 125 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 130 135 140 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170 175 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180 185 190 Arg <210> 44 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 44 gcatgtggat agagccgtca gtgc 24 <210> 45 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 45 gcactgacgg ctctatccac atgc 24 <210> 46 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 46 tgacactttc cgcagactct tccgagtcta c 31 <210> 47 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 47 gtagactcgg aagagtctgc ggaaagtgtc a 31 <210> 48 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 48 ctccggggaa ggctgaagct g 21 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 49 cagcttcagc cttccccgga g 21 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 50 ggaaagctga ggctgtacac agg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 51 cctgtgtaca gcctcagctt tcc 23 <210> 52 <211> 396 <212> PRT <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 52 Met Val Ala Gly Thr Arg Cys Leu Leu Ala Leu Leu Leu Pro Gln Val 1 5 10 15 Leu Leu Gly Gly Ala Ala Gly Leu Val Pro Glu Leu Gly Arg Arg Lys 20 25 30 Phe Ala Ala Ala Ser Ser Gly Arg Pro Ser Ser Gln Pro Ser Asp Glu 35 40 45 Val Leu Ser Glu Phe Glu Leu Arg Leu Leu Ser Met Phe Gly Leu Lys 50 55 60 Gln Arg Pro Thr Pro Ser Arg Asp Ala Val Val Pro Pro Tyr Met Leu 65 70 75 80 Asp Leu Tyr Arg Arg His Ser Gly Gln Pro Gly Ser Pro Ala Pro Asp 85 90 95 His Arg Leu Glu Arg Ala Ala Ser Arg Ala Asn Thr Val Arg Ser Phe 100 105 110 His His Glu Glu Ser Leu Glu Glu Leu Pro Glu Thr Ser Gly Lys Thr 115 120 125 Thr Arg Arg Phe Phe Phe Asn Leu Ser Ser Ile Pro Thr Glu Glu Phe 130 135 140 Ile Thr Ser Ala Glu Leu Gln Val Phe Arg Glu Gln Met Gln Asp Ala 145 150 155 160 Leu Gly Asn Asn Ser Ser Phe His His Arg Ile Asn Ile Tyr Glu Ile 165 170 175 Ile Lys Pro Ala Thr Ala Asn Ser Lys Phe Pro Val Thr Arg Leu Leu 180 185 190 Asp Thr Arg Leu Val Asn Gln Asn Ala Ser Arg Trp Glu Ser Phe Asp 195 200 205 Val Thr Pro Ala Val Met Arg Trp Thr Ala Gln Gly His Ala Asn His 210 215 220 Gly Phe Val Val Glu Val Ala His Leu Glu Glu Lys Gln Gly Val Ser 225 230 235 240 Lys Arg His Val Arg Ile Ser Arg Ser Leu His Gln Asp Glu His Ser 245 250 255 Trp Ser Gln Ile Arg Pro Leu Leu Val Thr Phe Gly His Asp Gly Lys 260 265 270 Gly His Pro Leu His Lys Arg Glu Lys Arg Gln Ala Lys His Lys Gln 275 280 285 Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg His Pro Leu Tyr Val Asp 290 295 300 Phe Ser Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr 305 310 315 320 His Ala Phe Tyr Cys His Gly Glu Cys Pro Phe Pro Leu Ala Asp His 325 330 335 Leu Asn Ser Thr Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val 340 345 350 Asn Ser Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala 355 360 365 Ile Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn 370 375 380 Tyr Gln Asp Met Val Val Glu Gly Cys Gly Cys Arg 385 390 395 <210> 53 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 53 gaaacgcctt aggtccagct gtaagagac 29 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 54 gtctcttaca gctggaccta aggcgtttc 29 <210> 55 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 55 ttaagtccag ctgtaggaga caccctttgt 30 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 56 acaaagggtg tctcctacag ctggacttaa 30 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 57 gttaactcta ggattcctaa ggc 23 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 58 gccttaggaa tcctagagtt aac 23 <210> 59 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 59 ggttgtatta aggaactatc aggac 25 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 60 gtcctgatag ttccttaata caacc 25 <210> 61 <211> 155 <212> PRT <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 61 Met Ala Glu Gly Glu Ile Thr Thr Phe Thr Ala Leu Thr Glu Lys Phe 1 5 10 15 Asn Leu Pro Pro Gly Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser 20 25 30 Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly 35 40 45 Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu 50 55 60 Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr Leu 65 70 75 80 Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn Glu 85 90 95 Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr Tyr 100 105 110 Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys 115 120 125 Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala 130 135 140 Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 145 150 155 <210> 62 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 62 aagaagccca gactcctcta c 21 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 63 gtagaggagt ctgggcttct t 21 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 64 catgcagaga ggaattggtt t 21 <210> 65 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 65 aaaccaattc ctctctgcat g 21 <210> 66 <211> 167 <212> PRT <213> Artificial Sequence <220> <223> Human Leptin <400> 66 Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu 1 5 10 15 Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys 20 25 30 Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr 35 40 45 Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro 50 55 60 Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala 65 70 75 80 Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln 85 90 95 Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala 100 105 110 Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu 115 120 125 Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val 130 135 140 Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln 145 150 155 160 Leu Asp Leu Ser Pro Gly Cys 165 <210> 67 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 67 cccatccaaa aggtccaaga t 21 <210> 68 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 68 atcttggacc ttttggatgg g 21 <210> 69 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 69 gatgacacca agaccctcat c 21 <210> 70 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 70 gatgagggtc ttggtgtcat c 21 <210> 71 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 71 accctcatca ggacaattgt c 21 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 72 gacaattgtc ctgatgaggg t 21 <210> 73 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 73 accttatcca ggatggacca g 21 <210> 74 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 74 ctggtccatc ctggataagg t 21 <210> 75 <211> 209 <212> PRT <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 75 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu 1 5 10 15 Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly 20 25 30 Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln 35 40 45 Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu 50 55 60 Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu 65 70 75 80 Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro 85 90 95 Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His 100 105 110 Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys 115 120 125 Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Lys Ser Val 130 135 140 Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Lys Ser Arg Pro 145 150 155 160 Cys Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln Asp Pro 165 170 175 Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys Lys Ala 180 185 190 Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys Pro Arg 195 200 205 Arg <210> 76 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 76 tacagcacaa cagatgtgaa tgcagacc 28 <210> 77 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 77 ggtctgcatt cacatctgtt gtgctgta 28 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 78 atccgcagac gtgtagatgt tcctgca 27 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 79 tgcaggaaca tctacacgtc tgcggat 27 <210> 80 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 80 Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met Leu 1 5 10 15 Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro Glu His 20 25 30 Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro Ala Lys Leu 35 40 45 Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu Asp Gly Gly Gln 50 55 60 Ala Glu Gly Ala Glu Asp Glu Met Glu Val Arg Phe Asn Ala Pro Phe 65 70 75 80 Asp Val Gly Ile Lys Leu Ser Gly Val Gln Tyr Gln Gln His Ser Gln 85 90 95 Ala Leu Gly Lys Phe Leu Gln Asp Ile Leu Trp Glu Glu Ala Lys Glu 100 105 110 Ala Pro Ala Asp Lys 115 <210> 81 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 81 gccctgggga ggtttcttca g 21 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 82 ctgaagaaac ctccccaggg c 21 <210> 83 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 83 Gly Ser Ser Phe Leu Ser Pro Glu His Gln Arg Val Gln Gln Arg Lys 1 5 10 15 Glu Ser Lys Lys Pro Pro Ala Lys Leu Gln Pro Arg 20 25 <210> 84 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 84 agtccagcag agaagggagt cgaagaagcc a 31 <210> 85 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 85 tggcttcttc gactcccttc tctgctggac t 31 <210> 86 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 86 agaaaggagt cgaggaagcc accagccaag c 31 <210> 87 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 87 gcttggctgg tggcttcctc gactcctttc t 31 <210> 88 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 88 agaaaggagt cgaagaggcc accagccaag c 31 <210> 89 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 89 gcttggctgg tggcctcttc gactcctttc t 31 <210> 90 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 90 aagaagccac cagccaggct gcagccccga 30 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 91 tcggggctgc agcctggctg gtggcttctt 30 <210> 92 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 92 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 25 30 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 93 aagctgccag ggaattca 18 <210> 94 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 94 tgaattccct ggcagctt 18 <210> 95 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 95 ttggctggtg agaggcc 17 <210> 96 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 96 ggcctctcac cagccaa 17 <210> 97 <211> 470 <212> PRT <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 97 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gln Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile 35 40 45 Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn 85 90 95 Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 145 150 155 160 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 165 170 175 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 180 185 190 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 195 200 205 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 210 215 220 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 225 230 235 240 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 245 250 255 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 260 265 270 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 275 280 285 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 290 295 300 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 305 310 315 320 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 325 330 335 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 340 345 350 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 355 360 365 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 370 375 380 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 385 390 395 400 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 405 410 415 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 420 425 430 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 435 440 445 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 450 455 460 Leu Ser Pro Gly Leu Glu 465 470 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 98 acaaaggtgg acaggaaggt ggagcccaag 30 <210> 99 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 99 cttgggctcc accttcctgt ccacctttgt 30 <210> 100 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 100 gagtataagt gcagggtgtc caataaggcc ctgc 34 <210> 101 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 101 gcagggcctt attggacacc ctgcacttat actc 34 <210> 102 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 102 ctttctgtat agcaggctga ccgtggataa gtcc 34 <210> 103 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 103 ggacttatcc acggtcagcc tgctatacag aaag 34 <210> 104 <211> 238 <212> PRT <213> Artificial Sequence <220> <223> Human IgG light chain <400> 104 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser 20 25 30 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 35 40 45 Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys 50 55 60 Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val 65 70 75 80 Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr 85 90 95 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln 100 105 110 His Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 115 120 125 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 130 135 140 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 145 150 155 160 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu 165 170 175 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp 180 185 190 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr 195 200 205 Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser 210 215 220 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys Leu Glu 225 230 235 <210> 105 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 105 cctggcaagg ccccaaggct gctgatctac 30 <210> 106 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 106 gtagatcagc agccttgggg ccttgccagg 30 <210> 107 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 107 acaaaggtgg agatcaggag gaccgtggcc 30 <210> 108 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 108 ggccacggtc ctcctgatct ccacctttgt 30 <210> 109 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 109 gccaaggtgc agtggagggt ggataacgcc 30 <210> 110 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 110 ggcgttatcc accctccact gcaccttggc 30 <110> UbiProtein. Corp <120> A method for extending half-life of a protein <130> UBPRN16P02KR <150> KR 10-2015-0160728 <151> 2015-11-16 <160> 110 <170> KoPatentIn 3.0 <210> 1 <211> 198 <212> PRT <213> Artificial Sequence <220> <223> Human beta trophin <400> 1 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr 1 5 10 15 Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His 20 25 30 Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala 35 40 45 Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu Thr Lys Ala Arg 50 55 60 Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu 65 70 75 80 Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu 85 90 95 Glu Thr Gln Met Glu Glu Asp Ile Leu Gln Leu Gln Ala Glu Ala Thr 100 105 110 Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp 115 120 125 Ser Val Gln Arg Leu Glu Val Gln Leu Arg Ser Ala Trp Leu Gly Pro 130 135 140 Ala Tyr Arg Glu Phe Glu Val Leu Lys Ala His Ala Asp Lys Gln Ser 145 150 155 160 His Ile Leu Trp Ala Leu Thr Gly His Val Gln Arg Gln Arg Arg Glu 165 170 175 Met Val Ala Gln Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His 180 185 190 Thr Ala Ala Leu Pro Ala 195 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 2 agggacggct gacaagggcc aggaa 25 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 3 ccaggctgtt cctggccctt gtcagc 26 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 4 ggcacagagg gtgctacggg acagc 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 5 cgtagcaccc tctgtgcctg ggcca 25 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 6 gaatttgagg tcttaagggc tcacgc 26 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 7 cttgtcagcg tgagccctta agacctc 27 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 8 gctcacgctg acaggcagag ccacat 26 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human beta trophin <400> 9 ccataggatg tggctctgcc tgtcagc 27 <210> 10 <211> 217 <212> PRT <213> Artificial Sequence <220> <223> Human growth hormone <400> 10 Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu 1 5 10 15 Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 20 25 30 Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln 35 40 45 Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys 50 55 60 Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe 65 70 75 80 Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys 85 90 95 Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp 100 105 110 Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140 Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160 Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175 His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 185 190 Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 195 200 205 Arg Ser Val Glu Gly Ser Cys Gly Phe 210 215 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 11 ccaaaggaac agaggtattc attc 24 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 12 caggaatgaa tacctctgtt cctt 24 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 13 gacctcctaa gggacctaga g 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 14 ctctaggtcc cttaggaggt c 21 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 15 cagatcttca ggcagaccta c 21 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human growth hormone <400> 16 gtaggtctgc ctgaagatct g 21 <210> 17 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> Human insulin <400> 17 Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu 1 5 10 15 Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 20 25 30 Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 35 40 45 Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly 50 55 60 Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu 65 70 75 80 Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys 85 90 95 Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 100 105 110 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 18 ggcttcttct acacacccag gaccc 25 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 19 ctcccggcgg gtcctgggtg tgta 24 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 20 tccctgcaga ggcgtggcat tgt 23 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human insulin <400> 21 ttgttccaca atgccacgcc tctgcag 27 <210> 22 <211> 188 <212> PRT <213> Artificial Sequence <220> <223> Human interferon alpha <400> 22 Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys 1 5 10 15 Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30 Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45 Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60 Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His 65 70 75 80 Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser 85 90 95 Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr 100 105 110 Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115 120 125 Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys 130 135 140 Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro 145 150 155 160 Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu 165 170 175 Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 185 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 23 cttcagcaca agggactcat c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 24 cagatgagtc ccttgtgctg a 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 25 ctcctagaca gattctacac t 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 26 agtgtagaat ctgtctagga g 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 27 gctgtgagga gatacttcca a 21 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 28 ttggaagtat ctcctcacag c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 29 ctctatctga gagagaagaa a 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon alpha <400> 30 tttcttctct ctcagataga g 21 <210> 31 <211> 207 <212> PRT <213> Artificial Sequence <220> <223> Human G-CSF <400> 31 Met Ala Gly Pro Ala Thr Gln Ser Pro Met Lys Leu Met Ala Leu Gln 1 5 10 15 Leu Leu Leu Trp His Ser Ala Leu Trp Thr Val Gln Glu Ala Thr Pro 20 25 30 Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu 35 40 45 Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys 50 55 60 Leu Val Ser Glu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu 65 70 75 80 Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser 85 90 95 Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His 100 105 110 Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile 115 120 125 Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala 130 135 140 Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala 145 150 155 160 Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala 165 170 175 Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser 180 185 190 Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 195 200 205 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 32 agcttcctgc tcaggtgctt agag 24 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 33 ttgctctaag cacctgagca ggaa 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 34 tgtgccacct acaggctgtg ccac 24 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human G-CSF <400> 35 ggggtggcac agcctgtagg tggc 24 <210> 36 <211> 187 <212> PRT <213> Artificial Sequence <220> <223> Human interferon beta <400> 36 Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser 1 5 10 15 Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg 20 25 30 Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 45 Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu 50 55 60 Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile 65 70 75 80 Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 90 95 Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 105 110 Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 115 120 125 Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 130 135 140 Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 145 150 155 160 His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 165 170 175 Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn 180 185 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 37 cagtgtcaga ggctcctgtg g 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 38 ccacaggagc ctctgacact g 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 39 ctggaagaaa gactggagaa a 21 <210> 40 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 40 tttctccagt ctttcttcca g 21 <210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 41 cattacctga gggccaagga g 21 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human interferon beta <400> 42 ctccttggcc ctcaggtaat g 21 <210> 43 <211> 193 <212> PRT <213> Artificial Sequence <220> <223> Human erythropoietin <400> 43 Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 15 Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 50 55 60 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 115 120 125 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 130 135 140 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170 175 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180 185 190 Arg <210> 44 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 44 gcatgtggat agagccgtca gtgc 24 <210> 45 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 45 gcactgacgg ctctatccac atgc 24 <210> 46 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 46 tgacactttc cgcagactct tccgagtcta c 31 <210> 47 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 47 gtagactcgg aagagtctgc ggaaagtgtc a 31 <210> 48 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 48 ctccggggaa ggctgaagct g 21 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 49 cagcttcagc cttccccgga g 21 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 50 ggaaagctga ggctgtacac agg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human erythropoietin <400> 51 cctgtgtaca gcctcagctt tcc 23 <210> 52 <211> 396 <212> PRT <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 52 Met Val Ala Gly Thr Arg Cys Leu Leu Ala Leu Leu Leu Pro Gln Val 1 5 10 15 Leu Leu Gly Gly Ala Ala Gly Leu Val Pro Glu Leu Gly Arg Arg Lys 20 25 30 Phe Ala Ala Ala Ser Ser Gly Arg Pro Ser Ser Gln Pro Ser Asp Glu 35 40 45 Val Leu Ser Glu Phe Glu Leu Arg Leu Leu Ser Met Phe Gly Leu Lys 50 55 60 Gln Arg Pro Thr Pro Ser Arg Asp Ala Val Val Pro Pro Tyr Met Leu 65 70 75 80 Asp Leu Tyr Arg Arg His Ser Gly Gln Pro Gly Ser Pro Ala Pro Asp 85 90 95 His Arg Leu Glu Arg Ala Ala Ser Arg Ala Asn Thr Val Arg Ser Phe 100 105 110 His His Glu Glu Ser Leu Glu Glu Leu Pro Glu Thr Ser Gly Lys Thr 115 120 125 Thr Arg Arg Phe Phe Phe Asn Leu Ser Ser Ile Pro Thr Glu Glu Phe 130 135 140 Ile Thr Ser Ala Glu Leu Gln Val Phe Arg Glu Gln Met Gln Asp Ala 145 150 155 160 Leu Gly Asn Asn Ser Ser Phe His His Arg Ile Asn Ile Tyr Glu Ile 165 170 175 Ile Lys Pro Ala Thr Ala Asn Ser Lys Phe Pro Val Thr Arg Leu Leu 180 185 190 Asp Thr Arg Leu Val Asn Gln Asn Ala Ser Arg Trp Glu Ser Phe Asp 195 200 205 Val Thr Pro Ala Val Met Arg Trp Thr Ala Gln Gly His Ala Asn His 210 215 220 Gly Phe Val Val Glu Val Ala His Leu Glu Glu Lys Gln Gly Val Ser 225 230 235 240 Lys Arg His Val Arg Ile Ser Arg Ser Leu His Gln Asp Glu His Ser 245 250 255 Trp Ser Gln Ile Arg Pro Leu Leu Val Thr Phe Gly His Asp Gly Lys 260 265 270 Gly His Pro Leu His Lys Arg Glu Lys Arg Gln Ala Lys His Lys Gln 275 280 285 Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg His Pro Leu Tyr Val Asp 290 295 300 Phe Ser Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr 305 310 315 320 His Ala Phe Tyr Cys His Gly Glu Cys Pro Phe Pro Leu Ala Asp His 325 330 335 Leu Asn Ser Thr Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val 340 345 350 Asn Ser Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala 355 360 365 Ile Ser Met Leu Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys Asn 370 375 380 Tyr Gln Asp Met Val Val Glu Gly Cys Gly Cys Arg 385 390 395 <210> 53 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 53 gaaacgcctt aggtccagct gtaagagac 29 <210> 54 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 54 gtctcttaca gctggaccta aggcgtttc 29 <210> 55 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 55 ttaagtccag ctgtaggaga caccctttgt 30 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 56 acaaagggtg tctcctacag ctggacttaa 30 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 57 gttaactcta ggattcctaa ggc 23 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 58 gccttaggaa tcctagagtt aac 23 <210> 59 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 59 ggttgtatta aggaactatc aggac 25 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Human bone morphogenetic protein-2 <400> 60 gtcctgatag ttccttaata caacc 25 <210> 61 <211> 155 <212> PRT <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 61 Met Ala Glu Gly Glu Ile Thr Thr Phe Thr Ala Leu Thr Glu Lys Phe 1 5 10 15 Asn Leu Pro Pro Gly Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser 20 25 30 Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly 35 40 45 Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu 50 55 60 Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr Leu 65 70 75 80 Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn Glu 85 90 95 Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr Tyr 100 105 110 Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys 115 120 125 Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala 130 135 140 Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 145 150 155 <210> 62 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 62 aagaagccca gactcctcta c 21 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 63 gtagaggagt ctgggcttct t 21 <210> 64 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 64 catgcagaga ggaattggtt t 21 <210> 65 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human fibroblast growth factor-1 <400> 65 aaaccaattc ctctctgcat g 21 <210> 66 <211> 167 <212> PRT <213> Artificial Sequence <220> <223> Human Leptin <400> 66 Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu 1 5 10 15 Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys 20 25 30 Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr 35 40 45 Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro 50 55 60 Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala 65 70 75 80 Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln 85 90 95 Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala 100 105 110 Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu 115 120 125 Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val 130 135 140 Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln 145 150 155 160 Leu Asp Leu Ser Pro Gly Cys 165 <210> 67 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 67 cccatccaaa aggtccaaga t 21 <210> 68 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 68 atcttggacc ttttggatgg g 21 <210> 69 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 69 gatgacacca agaccctcat c 21 <210> 70 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 70 gatgagggtc ttggtgtcat c 21 <210> 71 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 71 accctcatca ggacaattgt c 21 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 72 gacaattgtc ctgatgaggg t 21 <210> 73 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 73 accttatcca ggatggacca g 21 <210> 74 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human Leptin <400> 74 ctggtccatc ctggataagg t 21 <210> 75 <211> 209 <212> PRT <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 75 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu 1 5 10 15 Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly 20 25 30 Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln 35 40 45 Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu 50 55 60 Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu 65 70 75 80 Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro 85 90 95 Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His 100 105 110 Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys 115 120 125 Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Lys Ser Val 130 135 140 Arg Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Lys Ser Arg Pro 145 150 155 160 Cys Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln Asp Pro 165 170 175 Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys Lys Ala 180 185 190 Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys Pro Arg 195 200 205 Arg <210> 76 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 76 tacagcacaa cagatgtgaa tgcagacc 28 <210> 77 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 77 ggtctgcatt cacatctgtt gtgctgta 28 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 78 atccgcagac gtgtagatgt tcctgca 27 <210> 79 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Human vascular endothelial growth factor A <400> 79 tgcaggaaca tctacacgtc tgcggat 27 <210> 80 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 80 Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met Leu 1 5 10 15 Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro Glu His 20 25 30 Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro Ala Lys Leu 35 40 45 Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu Asp Gly Gly Gln 50 55 60 Ala Glu Gly Ala Glu Asp Glu Met Glu Val Arg Phe Asn Ala Pro Phe 65 70 75 80 Asp Val Gly Ile Lys Leu Ser Gly Val Gln Tyr Gln Gln His Ser Gln 85 90 95 Ala Leu Gly Lys Phe Leu Gln Asp Ile Leu Trp Glu Glu Ala Lys Glu 100 105 110 Ala Pro Ala Asp Lys 115 <210> 81 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 81 gccctgggga ggtttcttca g 21 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Human prepro-GHRL <400> 82 ctgaagaaac ctccccaggg c 21 <210> 83 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 83 Gly Ser Ser Phe Leu Ser Pro Glu His Gln Arg Val Gln Gln Arg Lys 1 5 10 15 Glu Ser Lys Lys Pro Pro Ala Lys Leu Gln Pro Arg 20 25 <210> 84 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 84 agtccagcag agaagggagt cgaagaagcc a 31 <210> 85 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 85 tggcttcttc gactcccttc tctgctggac t 31 <210> 86 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 86 agaaaggagt cgaggaagcc accagccaag c 31 <210> 87 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 87 gcttggctgg tggcttcctc gactcctttc t 31 <210> 88 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 88 agaaaggagt cgaagaggcc accagccaag c 31 <210> 89 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 89 gcttggctgg tggcctcttc gactcctttc t 31 <210> 90 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 90 aagaagccac cagccaggct gcagccccga 30 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human appetite stimulating hormone (Ghrelin) <400> 91 tcggggctgc agcctggctg gtggcttctt 30 <210> 92 <211> 31 <212> PRT <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 92 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 25 30 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 93 aagctgccag ggaattca 18 <210> 94 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 94 tgaattccct ggcagctt 18 <210> 95 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 95 ttggctggtg agaggcc 17 <210> 96 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Human glucagon-like peptide-1 (GLP-1) <400> 96 ggcctctcac cagccaa 17 <210> 97 <211> 470 <212> PRT <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 97 Met Asp Trp Thr Trp Arg Phe Leu Phe Val Val Ala Ala Ala Thr Gly 1 5 10 15 Val Gln Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile 35 40 45 Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn 85 90 95 Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 145 150 155 160 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 165 170 175 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 180 185 190 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 195 200 205 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 210 215 220 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 225 230 235 240 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 245 250 255 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 260 265 270 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 275 280 285 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 290 295 300 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 305 310 315 320 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 325 330 335 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 340 345 350 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 355 360 365 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 370 375 380 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 385 390 395 400 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 405 410 415 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 420 425 430 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 435 440 445 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 450 455 460 Leu Ser Pro Gly Leu Glu 465 470 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 98 acaaaggtgg acaggaaggt ggagcccaag 30 <210> 99 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 99 cttgggctcc accttcctgt ccacctttgt 30 <210> 100 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 100 gagtataagt gcagggtgtc caataaggcc ctgc 34 <210> 101 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 101 gcagggcctt attggacacc ctgcacttat actc 34 <210> 102 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 102 ctttctgtat agcaggctga ccgtggataa gtcc 34 <210> 103 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Human IgG heavy chain <400> 103 ggacttatcc acggtcagcc tgctatacag aaag 34 <210> 104 <211> 238 <212> PRT <213> Artificial Sequence <220> <223> Human IgG light chain <400> 104 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp 1 5 10 15 Leu Ser Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser 20 25 30 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 35 40 45 Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys 50 55 60 Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val 65 70 75 80 Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr 85 90 95 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln 100 105 110 His Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 115 120 125 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 130 135 140 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 145 150 155 160 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu 165 170 175 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp 180 185 190 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr 195 200 205 Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser 210 215 220 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys Leu Glu 225 230 235 <210> 105 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 105 cctggcaagg ccccaaggct gctgatctac 30 <210> 106 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 106 gtagatcagc agccttgggg ccttgccagg 30 <210> 107 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 107 acaaaggtgg agatcaggag gaccgtggcc 30 <210> 108 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 108 ggccacggtc ctcctgatct ccacctttgt 30 <210> 109 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 109 gccaaggtgc agtggagggt ggataacgcc 30 <210> 110 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Human IgG light chain <400> 110 ggcgttatcc accctccact gcaccttggc 30

Claims (5)

서열번호: 17을 갖는 인슐린의 N-말단으로부터 53째 위치의 라이신 잔기가 아르기닌으로 치환된 것인, 증가된 반감기를 갖는 인슐린. An insulin with an increased half-life, wherein the lysine residue at position 53 from the N-terminus of the insulin having SEQ ID NO: 17 is substituted with arginine. 삭제delete 제 1항의 인슐린 및 약제학적으로 허용되는 부형제를 포함하는, 당뇨병을 예방, 치료, 또는 예방 및 치료하기 위한 약학조성물. A pharmaceutical composition for preventing, treating, or preventing and treating diabetes, comprising the insulin of claim 1 and a pharmaceutically acceptable excipient. (a) 프로모터; (b) 제 1항의 인슐린을 엔코딩 하는 염기서열; 및 임의의 링커를 포함하는 발현벡터로서, 상기 프로모터와 염기서열이 작동적으로 연결된 것인, 발현벡터.(a) a promoter; (b) a nucleotide sequence encoding the insulin of claim 1; And an optional linker, wherein the promoter and the base sequence are operatively linked. 제 4항의 발현벡터를 포함하는 숙주세포.
A host cell comprising the expression vector of claim 4.
KR1020170033827A 2017-03-17 2017-03-17 A method for extending half-life of a protein KR101816812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170033827A KR101816812B1 (en) 2017-03-17 2017-03-17 A method for extending half-life of a protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170033827A KR101816812B1 (en) 2017-03-17 2017-03-17 A method for extending half-life of a protein

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160152381A Division KR101747964B1 (en) 2015-11-16 2016-11-16 A method for extending half-life of a protein

Publications (1)

Publication Number Publication Date
KR101816812B1 true KR101816812B1 (en) 2018-01-09

Family

ID=61000279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170033827A KR101816812B1 (en) 2017-03-17 2017-03-17 A method for extending half-life of a protein

Country Status (1)

Country Link
KR (1) KR101816812B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Elvira Pequeno Leites, Coimbra University 학위논문 (2014.).*

Similar Documents

Publication Publication Date Title
KR101747964B1 (en) A method for extending half-life of a protein
KR101927735B1 (en) A method for extending half-life of a protein
KR101816812B1 (en) A method for extending half-life of a protein
KR101812212B1 (en) A method for extending half-life of a protein
KR101812207B1 (en) A method for extending half-life of a protein
KR101812330B1 (en) A method for extending half-life of a protein
KR101861513B1 (en) A method for extending half-life of a protein
KR101861517B1 (en) A method for extending half-life of a protein
KR101816499B1 (en) A method for extending half-life of a protein
KR101893403B1 (en) A method for extending half-life of a protein
KR101923896B1 (en) A method for extending half-life of a protein
KR101927738B1 (en) A method for extending half-life of a protein
KR101934367B1 (en) A method for extending half-life of a protein
KR101889743B1 (en) A method for extending half-life of a protein
KR101955884B1 (en) A method for extending half-life of a protein
KR20180055648A (en) A method for extending half-life of a protein

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant