KR101814162B1 - Formic acid dehydrogenation catalyst and method of manufacturing the same - Google Patents

Formic acid dehydrogenation catalyst and method of manufacturing the same Download PDF

Info

Publication number
KR101814162B1
KR101814162B1 KR1020150137857A KR20150137857A KR101814162B1 KR 101814162 B1 KR101814162 B1 KR 101814162B1 KR 1020150137857 A KR1020150137857 A KR 1020150137857A KR 20150137857 A KR20150137857 A KR 20150137857A KR 101814162 B1 KR101814162 B1 KR 101814162B1
Authority
KR
South Korea
Prior art keywords
nitrogen
carbon
support
formic acid
dehydrogenation catalyst
Prior art date
Application number
KR1020150137857A
Other languages
Korean (ko)
Other versions
KR20170038457A (en
Inventor
양석란
김의현
최미화
유영성
김경숙
진현진
윤창원
한종희
최선희
김진영
Original Assignee
한국전력공사
한국남부발전 주식회사
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 한국남부발전 주식회사, 한국과학기술연구원 filed Critical 한국전력공사
Priority to KR1020150137857A priority Critical patent/KR101814162B1/en
Publication of KR20170038457A publication Critical patent/KR20170038457A/en
Application granted granted Critical
Publication of KR101814162B1 publication Critical patent/KR101814162B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명의 일 구현예는 탄소계 지지체에 질소(N)를 도핑하여 질소-탄소 담체를 제조하는 단계; 및 상기 질소-탄소 담체 상에 팔라듐(Pd) 나노입자를 담지하여 담지촉매를 제조하는 단계; 를 포함하는 포름산 탈수소화 촉매 제조방법 및 이와 같은 방법으로 제조된 포름산 탈수소화 촉매에 관한 것이다. 이를 통해, 본 발명은 저온에서의 활성이 우수하고, 전환빈도(TOF, Trunover Frequency)가 높으면서도, 촉매 안정성이 우수하고, 대량생산이 가능하며, 반응혼합물과의 분리가 용이한 포름산 탈수소화 촉매 및 이의 제조방법을 제공할 수 있다.One embodiment of the present invention is a method of manufacturing a carbon-based support, comprising: preparing a nitrogen-carbon support by doping a carbon-based support with nitrogen (N); And supporting a palladium (Pd) nanoparticle on the nitrogen-carbon support to form a supported catalyst; And a formic acid dehydrogenation catalyst prepared by such a method. Accordingly, it is an object of the present invention to provide a formic acid dehydrogenation catalyst which is excellent in activity at low temperature, high in TOF (Trunover Frequency), excellent in catalyst stability, mass-producible, And a process for producing the same.

Description

포름산 탈수소화 촉매 및 이의 제조방법{FORMIC ACID DEHYDROGENATION CATALYST AND METHOD OF MANUFACTURING THE SAME}FORMIC ACID DEHYDROGENATION CATALYST AND METHOD OF MANUFACTURING THE SAME Field of the Invention < RTI ID = 0.0 >

본 발명은 포름산 탈수소화 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a formic acid dehydrogenation catalyst and a process for its preparation.

최근 에너지 및 환경 문제의 해결을 위해 신규 저탄소에너지 개발을 위한 노력이 이어지고 있다. 이러한 저탄소 에너지 기술 중 하나로 연료전지 이용기술이 제안되고 있다. 이러한 연료전지 이용기술은 연료를 산화 또는 탈수소화하는 과정에서 발생하는 전위차를 이용하여 전기를 생산한다.Recently, efforts are being made to develop new low-carbon energy for solving energy and environmental problems. As one of such low-carbon energy technologies, fuel cell utilization technology has been proposed. This fuel cell technology utilizes the potential difference generated during the oxidation or dehydrogenation of fuel to produce electricity.

이러한 연료전지에 사용되는 연료의 대표적인 예로는 포름산이 있다. 포름산은 상온에서 53 g/L의 우수한 부피 대비 수소저장밀도를 가지는데, 이는 기존 350 bar의 압축수소가스가 함유하고 있는 14.7 g/L의 수소저장밀도보다 월등한 수소저장용량이다. 이러한 포름산은 직접 포름산 연료전지 (Direct Formic Acid Fuel Cell, DFAFC) 혹은 고분자전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등에서 연료로 사용되어, 친환경 에너지 발생원으로 사용된다. 예를 들면, 포름산을 고분자전해질 연료전지(PEMFC)의 연료로 사용할 경우 포름산 탈수소 촉매를 이용하여 포름산으로부터 상온에서 고순도의 수소를 생산하며, 이와 같이 생산된 수소를 연료전지와 연계하여 휴대용, 비상전원용, 정치형 발전 등 다양한 분야에 적용할 수 있다. A typical example of the fuel used in such a fuel cell is formic acid. Formic acid has a good hydrogen storage density of 53 g / L at room temperature, which is superior to the existing hydrogen storage gas of 14.7 g / L at 350 bar of compressed hydrogen gas. Such formic acid is used as a fuel in direct formic acid fuel cell (DFAFC) or polymer electrolyte membrane fuel cell (PEMFC), and is used as an environmentally friendly energy source. For example, when formic acid is used as a fuel for a PEMFC, formate hydrogen is produced from formic acid at room temperature using formic acid dehydrogenation catalyst. In connection with the fuel cell, , Political development, and so on.

종래에는 포름산 탈수소화 촉매로 백금(Pt)촉매를 사용하고 있으나, 백금은 반응중간체인 일산화탄소(CO)에 의해 피독되어 성능이 저하되기 쉽고, 고가인 단점이 있어, 백금보다 가격이 저렴한 재료를 사용하여 포름산 산화능력이 우수한 촉매를 개발하는 것이 포름산 수소화의 상용화에 매우 중요하다. 특히, 고가의 백금을 대체하기 위해 팔라듐(Pd)을 사용하는 방법이 제안되고 있으나, 팔라듐은 안정성이 낮아 활성을 오랜기간 유지하기 어렵고, 고활성을 구현하기 어렵다.Conventionally, a platinum (Pt) catalyst is used as a formic acid dehydrogenation catalyst, but platinum is poisoned by carbon monoxide (CO), which is a reaction intermediate, and is easily degraded in performance. To develop a catalyst having excellent formic acid oxidation ability is very important for the commercialization of formic acid hydrogenation. Particularly, a method of using palladium (Pd) for replacing expensive platinum has been proposed, but palladium has low stability, so it is difficult to maintain its activity for a long time and it is difficult to realize high activity.

이에 따라, 가격이 저렴한 재료를 사용하면서도 포름산 산화능력이 우수하고, 안정성이 높은 촉매에 대한 요구가 증가하고 있다.Accordingly, there is an increasing demand for a catalyst having excellent formic acid oxidizing ability and high stability while using a material having a low cost.

본 발명의 하나의 목적은 저온에서의 활성이 우수하고, 전환빈도(TOF, Trunover Frequency)가 높으면서도, 촉매 안정성이 우수하고, 대량생산이 가능하며, 반응혼합물과의 분리가 용이한 포름산 탈수소화 촉매 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a process for producing a catalyst which is excellent in activity at low temperature, has high TOF (Trunover Frequency), excellent catalyst stability, mass production, Catalyst and a method for producing the same.

본 발명의 일 구현예는 탄소계 지지체에 질소(N)를 도핑하여 질소-탄소 담체를 제조하는 단계; 및 상기 질소-탄소 담체 상에 팔라듐(Pd) 나노입자를 담지하여 담지촉매를 제조하는 단계; 를 포함하는 포름산 탈수소화 촉매 제조방법에 관한 것이다.One embodiment of the present invention is a method of manufacturing a carbon-based support, comprising: preparing a nitrogen-carbon support by doping a carbon-based support with nitrogen (N); And supporting a palladium (Pd) nanoparticle on the nitrogen-carbon support to form a supported catalyst; To a process for preparing a formic acid dehydrogenation catalyst.

상기 질소-탄소 담체를 제조하는 단계는 아민계 작용기를 다공성 탄소계 지지체에 흡착시키고, 다공성 탄소계 지지체의 구조 내에 질소 원자를 도핑하는 것을 포함할 수 있다.The step of preparing the nitrogen-carbon support may include adsorbing the amine-based functional groups on the porous carbon-based support and doping the nitrogen atoms into the structure of the porous carbon-based support.

상기 질소-탄소 담체를 제조하는 단계는 질소전구체 수용액와 다공성 탄소계 지지체를 반응시킨 후 수분을 제거하여 질소 전구체가 흡착된 탄소계 지지체를 제조하는 것을 포함할 수 있다.The step of preparing the nitrogen-carbon support may include reacting the aqueous solution of the nitrogen precursor with the porous carbon-based support, and then removing water to prepare the carbon-based support on which the nitrogen precursor is adsorbed.

상기 질소-탄소 담체를 제조하는 단계는 상기 질소 전구체가 흡착된 탄소계 지지체를 500℃ 내지 600℃의 온도에서 열분해하여, 탄소계 지지체의 구조 내에 질소원자를 도핑하는 것을 포함할 수 있다.The step of preparing the nitrogen-carbon support may include pyrolyzing the carbon-based support on which the nitrogen precursor has been adsorbed at a temperature of 500 ° C to 600 ° C, and doping nitrogen atoms in the structure of the carbon-based support.

상기 담지촉매를 제조하는 단계는 팔라듐 전구체 수용액와 질소-탄소 담체를 반응시킨 후, 상기 질소-탄소 담체 상에 담지된 팔라듐 나노입자를 환원시키는 것을 포함할 수 있다.The step of preparing the supported catalyst may include reacting the palladium precursor aqueous solution with the nitrogen-carbon support, and then reducing the palladium nanoparticles supported on the nitrogen-carbon support.

상기 질소-탄소 담체는 중공(hollow) 구조로 제어될 수 있다. The nitrogen-carbon support may be controlled to have a hollow structure.

상기 팔라듐 나노입자는 평균입경이 2nm 내지 7nm로 제어될 수 있다.The average particle size of the palladium nanoparticles can be controlled to 2 nm to 7 nm.

본 발명의 다른 구현예는 질소(N)원자가 도핑된 질소-탄소 담체; 및 상기 질소-탄소 담체 상에 담지된 팔라듐(Pd) 나노입자를 포함하는 포름산 탈수소화 촉매에 관한 것이다.Another embodiment of the present invention is a nitrogen-carbon support doped with nitrogen (N) atoms; And a palladium (Pd) nanoparticle supported on the nitrogen-carbon support.

상기 포름산 탈수소화 촉매는 도핑된 질소원자의 함량이 3 중량% 내지 9 중량%일 수 있다.The formic acid dehydrogenation catalyst may have a doped nitrogen atom content of 3 wt% to 9 wt%.

상기 포름산 탈수소화 촉매는 담지된 팔라듐 나노입자의 함량이 1 중량% 내지 9 중량%일 수 있다.The formic acid dehydrogenation catalyst may have a content of supported palladium nanoparticles of 1 wt% to 9 wt%.

상기 질소-탄소 담체는 중공(hollow) 구조를 가질 수 있다.The nitrogen-carbon support may have a hollow structure.

상기 팔라듐 나노입자는 평균입경이 2nm 내지 7nm 일 수 있다.The palladium nanoparticles may have an average particle diameter of 2 nm to 7 nm.

본 발명의 또 다른 구현예는 전술한 포름산 탈수소화 촉매를 포함하는 연료전지에 관한 것이다.Another embodiment of the present invention is directed to a fuel cell comprising a formic acid dehydrogenation catalyst as described above.

본 발명의 또 다른 구현예는 전술한 포름산 탈수소화 촉매를 포함하는 수소발생기에 관한 것이다.Another embodiment of the present invention relates to a hydrogen generator comprising a formic acid dehydrogenation catalyst as described above.

본 발명은 저온에서의 활성이 우수하고, 전환빈도(TOF, Trunover Frequency)가 높으면서도, 촉매 안정성이 우수하고, 대량생산이 가능하며, 반응혼합물과의 분리가 용이한 포름산 탈수소화 촉매 및 이의 제조방법을 제공할 수 있다.The present invention relates to a formic acid dehydrogenation catalyst which is excellent in activity at a low temperature and has a high conversion frequency (TOF, Trunover Frequency), excellent catalyst stability, mass production, Method can be provided.

도 1은 본 발명 실시예 1의 포름산 탈수소화 촉매를 촬영한 투과전자현미경(TEM) 사진이다.
도 2는 본 발명 실시예 1의 포름산 탈수소화 촉매를 촬영한 주사투과전자현미경(STEM) 사진이다.
도 3은 본 발명 실시예 1의 포름산 탈수소화 촉매를 고각 환형 암시야 주사투과현미경(HADDF- STEM)으로 맵핑(element mapping) 분석한 결과를 나타내는 사진이다.
도 4는 본 발명 실시예 1의 X-선 회절분석 결과를 나타낸 그래프이다.
도 5는 본 발명 실시예 1의 포름산 탈수소화 촉매의 수소발생정도를 나타낸 그래프이다.
도 6은 본 발명 실시예 1 및 비교예 1 내지 2의 포름산 분해활성 평가 결과를 나타낸 그래프이다.
도 7은 본 발명 실시예 1 및 비교예 1 내지 2의 전환빈도(TOF) 평가 결과를 나타낸 그래프이다.
1 is a transmission electron microscope (TEM) photograph of a formic acid dehydrogenation catalyst of Example 1 of the present invention.
2 is a scanning transmission electron microscope (STEM) photograph of the formic acid dehydrogenation catalyst of Example 1 of the present invention.
3 is a photograph showing the result of element mapping analysis of the formic acid dehydrogenation catalyst of Example 1 of the present invention with a high-angle annular night-light scanning transmission microscope (HADDF-STEM).
4 is a graph showing the results of X-ray diffraction analysis of Example 1 of the present invention.
5 is a graph showing the degree of hydrogen generation in the formic acid dehydrogenation catalyst of Example 1 of the present invention.
6 is a graph showing the evaluation results of formic acid decomposition activity of Example 1 of the present invention and Comparative Examples 1 and 2.
7 is a graph showing the conversion frequency (TOF) evaluation results of Example 1 of the present invention and Comparative Examples 1 and 2. FIG.

본 발명의 일 구현예는 탄소계 지지체에 질소(N)를 도핑하여 질소-탄소 담체를 제조하는 단계; 및 상기 질소-탄소 담체 상에 팔라듐(Pd) 나노입자를 담지하여 담지촉매를 제조하는 단계; 를 포함하는 포름산 탈수소화 촉매 제조방법에 관한 것이다. 이를 통해, 본 발명은 저온에서의 활성이 우수하고, 전환빈도(TOF, Trunover Frequency)가 높으면서도, 촉매 안정성이 우수하고, 대량생산이 가능하며, 반응혼합물과의 분리가 용이한 포름산 탈수소화 촉매의 제조방법을 제공할 수 있다. 이러한 방법을 통해 제조된 포름산 탈수소화 촉매는 질소 도핑을 통해 팔라듐(Pd) 원자의 전자밀도를 증가시킴으로써 팔라듐(Pd) 나노입자의 촉매적 성능을 향상시키고, 촉매의 열적 안정성을 향상시키며, 팔라듐 나노촉매 입자 간의 응집을 억제하여 우수한 활성과 동시에 고내구성의 장점을 동시에 구현할 수 있다. 또한, 균일계 촉매 및 불균일계 촉매의 장점을 동시에 구현할 수 있다.One embodiment of the present invention is a method of manufacturing a carbon-based support, comprising: preparing a nitrogen-carbon support by doping a carbon-based support with nitrogen (N); And supporting a palladium (Pd) nanoparticle on the nitrogen-carbon support to form a supported catalyst; To a process for preparing a formic acid dehydrogenation catalyst. Accordingly, it is an object of the present invention to provide a formic acid dehydrogenation catalyst which is excellent in activity at low temperature, high in TOF (Trunover Frequency), excellent in catalyst stability, mass-producible, Can be provided. The formic acid dehydrogenation catalysts prepared by this method can enhance the catalytic performance of palladium (Pd) nanoparticles by increasing the electron density of palladium (Pd) atoms through nitrogen doping, improve the thermal stability of the catalyst, It is possible to suppress the agglomeration between the catalyst particles and simultaneously realize the advantages of excellent activity and high durability. In addition, the advantages of homogeneous catalysts and heterogeneous catalysts can be achieved at the same time.

일 실시예의 포름산 탈수소화 촉매 제조방법은 먼저 탄소계 지지체에 질소(N)를 도핑하여 질소-탄소 담체를 제조하는 단계를 포함한다. 상기 질소-탄소 담체를 제조하는 단계는 탄소계 지지체의 구조 내에 질소원자를 도핑함으로써, 포름산 탈수소화 촉매를 안정화시키는 동시에 저온 활성을 높일 수 있다. The process for preparing a formic acid dehydrogenation catalyst of one embodiment comprises first preparing a nitrogen-carbon support by doping nitrogen (N) on a carbon-based support. The step of preparing the nitrogen-carbon support can stabilize the formic acid dehydrogenation catalyst and enhance the low-temperature activity by doping nitrogen atoms into the structure of the carbon-based support.

상기 탄소계 지지체는 구체적으로 카본블랙, 활성탄소체, 카본나노튜브, 탄소섬유, 플러렌 및 그래핀 중 1종 이상을 포함할 수 있다. 이들은 1종을 단독으로 사용하거나, 2종 이상을 혼합하여 사용할 수 있다. 이러한 탄소계 지지체를 사용하는 경우, 질소-탄소 담체가 불균일계 담체로 작용하여 포름산 탈수소화 촉매의 제조 후, 반응 부산물과 제조된 촉매를 분리하기에 더욱 유리한 효과를 구현할 수 있다. 또한, 이러한 탄소계 지지체는 공급원이 안정적이기 때문에 경제성이 우수하다. The carbon-based support may specifically include at least one of carbon black, activated carbon, carbon nanotube, carbon fiber, fullerene, and graphene. These may be used singly or in combination of two or more. When such a carbon-based support is used, the nitrogen-carbon support serves as a heterogeneous carrier, and a more advantageous effect can be obtained in separating the reaction by-product and the produced catalyst after the production of the formic acid dehydrogenation catalyst. Further, such a carbon-based scaffold is excellent in economical efficiency because the supply source is stable.

상기 탄소계 지지체는 더욱 구체적으로 다공성 탄소계 지지체인 카본블랙을 사용할 수 있다. 이러한 경우, 질소원자를 탄소계 지지체에 도핑하기에 유리하고, 대량생산에 유리하며, 표면적이 넓어 촉매의 활성을 더욱 향상시킬 수 있다. 예를 들면, 상기 다공성 탄소계 지지체인 카본블랙은 케첸블랙(ketjen black)일 수 있다. 이러한 경우, 탄소계 지지체는 표면적이 더욱 우수하고, 더욱 안정화된 포름산 탈수소화 촉매를 제공할 수 있다.More specifically, the carbon-based support may be carbon black, which is a porous carbon-based support. In this case, it is advantageous to dope the nitrogen atom into the carbon-based support, which is advantageous for mass production, and the surface area can be widened to further improve the activity of the catalyst. For example, the carbon black that is the porous carbon-based support may be ketjen black. In this case, the carbon-based support can provide a more stable and more stable formic acid dehydrogenation catalyst with a better surface area.

상기 질소-탄소 담체를 제조하는 단계는 아민계 작용기를 다공성 탄소계 지지체에 흡착시키고, 흡착된 아민계 작용기를 이용하여 다공성 탄소계 지지체 구조 내의 일부 탄소 원자를 질소 원자로 치환하는 것을 포함할 수 있다. 이러한 경우, 다공성 탄소계 지지체의 구조 내에 질소 원자를 균일하게 효율적으로 도핑할 수 있으며, 팔라듐 나노입자와 질소-탄소 담체의 고정력을 향상시킬 수 있다.The step of preparing the nitrogen-carbon support may include adsorbing the amine-based functional groups on the porous carbon-based support and substituting nitrogen atoms for some carbon atoms in the porous carbon-based support structure using adsorbed amine-based functional groups. In this case, nitrogen atoms can be uniformly and efficiently doped into the structure of the porous carbon-based support, and the fixing power of the palladium nanoparticles and the nitrogen-carbon support can be improved.

상기 질소-탄소 담체를 제조하는 단계는 질소 전구체 수용액와 다공성 탄소계 지지체를 반응시킨 후 수분을 제거하여 질소 전구체가 흡착된 탄소계 지지체를 제조하는 것을 포함할 수 있다.The step of preparing the nitrogen-carbon support may include reacting the aqueous solution of the nitrogen precursor with the porous carbon-based support, and then removing water to prepare the carbon-based support on which the nitrogen precursor is adsorbed.

구체적으로, 상기 질소-탄소 담체를 제조하는 단계는 질소 전구체 수용액에 다공성 탄소계 지지체를 투입한 후, 50℃ 내지 70℃의 온도에서 교반하여 질소 전구체가 흡착된 탄소계 지지체를 제조하는 것을 포함할 수 있다. 상기 교반은 수분이 모두 증발될 때까지 수행될 수 있다. 이러한 경우, 질소 전구체가 흡착된 탄소계 지지체는 구조 내에 도핑된 질소의 분산도 및 균일성을 향상시킬 수 있고, 질소의 도핑량을 조절하기에 유리하다.Specifically, the step of preparing the nitrogen-carbon support may include adding a porous carbon-based support to an aqueous solution of nitrogen precursor, and then stirring the solution at a temperature of 50 ° C to 70 ° C to prepare a carbon-based support on which a nitrogen precursor is adsorbed . The stirring can be performed until all of the water is evaporated. In this case, the carbon-based support on which the nitrogen precursor is adsorbed can improve the dispersion and homogeneity of the doped nitrogen in the structure, and is advantageous for controlling the doping amount of nitrogen.

상기 질소-탄소 담체를 제조하는 단계는 상기 질소 전구체가 흡착된 탄소계 지지체를 500℃ 내지 600℃의 온도 및 질소(N) 가스 분위기하에서 열처리하여, 탄소계 지지체의 구조 내에 질소 원자를 도핑하는 것을 포함할 수 있다. 이러한 경우, 도핑된 질소 원자는 탄소계 지지체 내의 탄소 원자와 새로운 결합을 형성하는 동시에, 팔라듐 나노입자와 상호작용이 가능한 반응자리를 생성할 수 있다. 이를 통해, 반응속도가 우수하고, 저온활성이 더욱 향상된 포름산 탈수소화 촉매를 제공할 수 있다.The step of preparing the nitrogen-carbon support may include heat treating the carbon-based support on which the nitrogen precursor has been adsorbed at a temperature of 500 ° C to 600 ° C and a nitrogen (N) gas atmosphere to thereby form a nitrogen- . In this case, the doped nitrogen atom can form a new bond with the carbon atoms in the carbon-based support, while at the same time producing a reaction site capable of interacting with the palladium nanoparticles. As a result, it is possible to provide a formic acid dehydrogenation catalyst having an excellent reaction rate and further improved low-temperature activity.

상기 질소-탄소 담체를 제조하는 단계를 통해 제조된 질소-탄소 담체는 예를 들면, 중공(hollow) 구조를 포함할 수 있다. 이러한 경우, 질소-탄소 담체는 표면적이 더욱 향상되어 촉매활성이 더욱 우수할 수 있다. The nitrogen-carbon support prepared through the step of producing the nitrogen-carbon support may include, for example, a hollow structure. In this case, the nitrogen-carbon support may have a further improved surface area and thus a better catalytic activity.

상기 질소-탄소 담체를 제조하는 단계는 도핑된 질소의 함량을 3 중량% 내지 9 중량%로 제어하는 것을 포함할 수 있다. 상기 범위 내에서, 팔라듐의 안정성이 더욱 향상되고, 포름산 탈수소화 촉매의 활성이 더욱 우수할 수 있다. The step of preparing the nitrogen-carbon support may include controlling the content of doped nitrogen to 3 wt% to 9 wt%. Within the above range, the stability of the palladium can be further improved, and the activity of the formic acid dehydrogenation catalyst can be further improved.

상기 포름산 탈수소화 촉매 제조방법은 상기 팔라듐 나노입자를 상기 질소-탄소 담체에 담지하여 담지촉매를 제조한다. 이러한 경우, 팔라듐 나노입자와 질소-탄소 담체가 복합적으로 상호작용하여 질소원자에서 팔라듐으로 전자밀도를 이동시키기에 더욱 유리한 효과가 있다. 이를 통해, 팔라듐 나노입자를 안정화시킬 수 있으며, 팔라듐 나노입자 또는 촉매 입자 간의 응집력을 낮추어 촉매의 활성을 향상시킨다. The method for producing a formic acid dehydrogenation catalyst comprises carrying the palladium nano-particles on the nitrogen-carbon support to prepare a supported catalyst. In this case, the palladium nanoparticles and the nitrogen-carbon carrier interact to each other to have a more advantageous effect of shifting the electron density from the nitrogen atom to the palladium. This can stabilize the palladium nanoparticles and improve the activity of the catalyst by lowering the cohesive force between the palladium nanoparticles or the catalyst particles.

상기 담지촉매를 제조하는 단계는 팔라듐 전구체 수용액와 질소-탄소 담체를 반응시킨 후, 상기 질소-탄소 담체 상에 담지된 팔라듐 나노입자를 환원시키는 것을 포함할 수 있다. 이러한 경우, 상기 담지촉매는 팔라듐 나노입자를 통해 균일계 촉매와 유사한 역할을 수행하여 고활성을 구현함과 동시에, 반응 후 회수성을 더욱 향상시킬 수 있다.The step of preparing the supported catalyst may include reacting the palladium precursor aqueous solution with the nitrogen-carbon support, and then reducing the palladium nanoparticles supported on the nitrogen-carbon support. In this case, the supported catalyst plays a role similar to the homogeneous catalyst through the palladium nanoparticles, realizing high activity and further improving the recoverability after the reaction.

상기 담지촉매를 제조하는 단계는 담지된 팔라듐 나노입자의 함량을 1 중량% 내지 9 중량%로 제어하는 것을 포함할 수 있다. 상기 범위 내에서, 포름산 탈수소화 촉매의 안정성 및 활성이 더욱 우수할 수 있다. The step of preparing the supported catalyst may include controlling the content of the supported palladium nanoparticles to 1 wt% to 9 wt%. Within the above range, the stability and activity of the formic acid dehydrogenation catalyst can be more excellent.

상기 포름산 탈수소화 촉매 제조방법은 상기 팔라듐 나노입자의 평균입경을 2nm 내지 7nm로 제어하는 것을 포함할 수 있다. 이러한 경우, 팔라듐 나노입자와 도핑된 질소 원자가 상호작용하여 반응자리를 생성하는 것을 더욱 촉진시킬 수 있다.The method for preparing the formic acid dehydrogenation catalyst may include controlling the average particle diameter of the palladium nanoparticles to 2 nm to 7 nm. In this case, the palladium nanoparticles and the doped nitrogen atoms can further promote interaction sites to generate reaction sites.

본 발명의 다른 구현예는 질소(N)원자가 도핑된 질소-탄소 담체; 및 상기 질소-탄소 담체 상에 담지된 팔라듐(Pd) 나노입자를 포함하는 포름산 탈수소화 촉매에 관한 것이다. 이러한 구현예의 포름산 탈수소화 촉매는 전술한 제조방법에 의해 제조될 수 있다. 또한, 이러한 구현예의 포름산 탈수소화 촉매는 대량생산이 가능하고, 저온에서의 포름산 탈수소화 활성이 우수하며, 전환빈도(TOF, Trunover Frequency)가 높으면서도, 촉매 안정성이 우수하다. 특히, 균일계 촉매와 유사하게 고활성을 구현하는 동시에, 반응 후 분리 정도가 불균일계 촉매와 동등한 수준으로 유리한 효과를 구현할 수 있다.Another embodiment of the present invention is a nitrogen-carbon support doped with nitrogen (N) atoms; And a palladium (Pd) nanoparticle supported on the nitrogen-carbon support. The formic acid dehydrogenation catalyst of this embodiment can be prepared by the above-described preparation method. In addition, the formic acid dehydrogenation catalyst of this embodiment is capable of mass production, has excellent formic acid dehydrogenation activity at a low temperature, has high TOF (Trunover Frequency), and is excellent in catalyst stability. In particular, it is possible to realize a high activity similar to a homogeneous catalyst, and at the same level of degree of separation after the reaction as the heterogeneous catalyst, an advantageous effect can be realized.

상기 포름산 탈수소화 촉매는 도핑된 질소원자의 함량이 3 중량% 내지 9 중량%일 수 있다. 상기 범위 내에서, 팔라듐의 안정성이 더욱 향상되고, 포름산 탈수소화 촉매의 활성이 더욱 우수할 수 있다. The formic acid dehydrogenation catalyst may have a doped nitrogen atom content of 3 wt% to 9 wt%. Within the above range, the stability of the palladium can be further improved, and the activity of the formic acid dehydrogenation catalyst can be further improved.

상기 포름산 탈수소화 촉매는 담지된 팔라듐 나노입자의 함량이 1 중량% 내지 9 중량%일 수 있다. 상기 범위 내에서, 포름산 탈수소화 촉매의 안정성 및 활성이 더욱 우수할 수 있다. The formic acid dehydrogenation catalyst may have a content of supported palladium nanoparticles of 1 wt% to 9 wt%. Within the above range, the stability and activity of the formic acid dehydrogenation catalyst can be more excellent.

상기 질소-탄소 담체는 중공(hollow) 구조를 갖고, 상기 팔라듐 나노입자는 평균입경이 2nm 내지 7nm 일 수 있다. 이러한 경우, 포름산 탈수소화 촉매는 도핑된 질소 원자와 팔라듐 나노입자의 반응자리 생성이 촉진되고, 안정성 및 활성이 더욱 향상될 수 있다.The nitrogen-carbon support may have a hollow structure, and the palladium nanoparticles may have an average particle diameter of 2 nm to 7 nm. In this case, the formic acid dehydrogenation catalyst can promote the reaction site formation of the doped nitrogen atom and the palladium nanoparticles, and the stability and activity can be further improved.

본 발명의 또 다른 구현예는 전술한 포름산 탈수소화 촉매를 포함하는 연료전지에 관한 것이다.Another embodiment of the present invention is directed to a fuel cell comprising a formic acid dehydrogenation catalyst as described above.

본 발명의 또 다른 구현예는 전술한 포름산 탈수소화 촉매를 포함하는 수소발생기에 관한 것이다.Another embodiment of the present invention relates to a hydrogen generator comprising a formic acid dehydrogenation catalyst as described above.

이러한 본 발명의 포름산 탈수소화 촉매를 포함하는 연료전지 또는 수소발생기는 저온에서의 활성이 우수하고, 촉매의 전환빈도(TOF, Trunover Frequency)가 높아 발전 또는 수소발생의 효율이 높으며, 내구성이 장기간 유지될 수 있다.The fuel cell or the hydrogen generator including the formic acid dehydrogenation catalyst of the present invention is excellent in activity at low temperature and high in conversion efficiency (TOF, Trunover Frequency) of the catalyst, so that power generation efficiency or hydrogen generation efficiency is high and durability is maintained for a long time .

실시예Example

이하에서는, 본 발명의 실시예 및 비교예를 대비하여 나타낸다. 그러나 이들은 본 발명을 상세히 설명하기 위한 것으로 제공되는 것일 뿐 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention will be described. It should be understood, however, that these examples are provided for illustration only and are not intended to limit the scope of the present invention.

실시예Example 1 One

질소 전구체 dicyandiamide 10 g을 증류수 100ml에 용해시킨 후, 상온에서 교반하여 질소 전구체 수용액을 제조하였다. 상기 질소 전구체 수용액에 5 g의 ketjen black을 첨가하여 완전히 분산시킨 후, 100℃의 온도를 유지하면서 4시간 동안 교반하여 질소전구체와 ketjen black을 반응시켰다. 이후, 약 60 ℃의 온도에서 증류수를 모두 증발할 때까지 약 24시간 동안 교반하여 질소 전구체가 흡착된 탄소 지지체를 제조하였다. 이와 같이 제조된 질소 전구체가 흡착된 탄소 지지체를 550℃의 질소 분위기에서 4시간 동안 열분해(pyrolysis)시켜, 탄소계 지지체의 구조 내에 질소 도핑층이 형성된 질소-탄소 담체를 제조하였다.10 g of the nitrogen precursor dicyandiamide was dissolved in 100 ml of distilled water and stirred at room temperature to prepare a nitrogen precursor aqueous solution. 5 g of ketjen black was added to the nitrogen precursor aqueous solution to completely disperse the nitrogen precursor solution. The nitrogen precursor and ketjen black were reacted with stirring for 4 hours while maintaining the temperature at 100 ° C. Thereafter, the mixture was stirred at a temperature of about 60 캜 for about 24 hours until all of the distilled water was evaporated to prepare a carbon precursor-adsorbed carbon support. The nitrogen precursor adsorbed carbon support thus obtained was pyrolysed in a nitrogen atmosphere at 550 캜 for 4 hours to prepare a nitrogen-carbon support having a nitrogen-doped layer in the structure of the carbon-based support.

팔라듐 전구체 Pd(NO3)2·2H2O을 1 g 취하여 증류수 25ml에 용해시켜 팔라듐 전구체 수용액을 제조하였다. 상기 팔라듐 전구체 수용액에 앞서 제조한 질소 도핑층이 형성된 질소-탄소 담체 4 g을 첨가 후 교반하여 상온에서 잘 분산시켰다. 이후 10 당량의 NaBH4를 첨가하고 1시간 동안 교반하여 환원반응을 진행하였다. 상기 환원반응이 완료된 후, 혼합물을 여과하고 물과 에탄올로 반복하여 세척한 후 약 60 ℃의 온도에서 증류수를 모두 증발할 때까지 약 24시간 동안 건조하여 질소-탄소 담체 상에 팔라듐 나노입자가 담지된 포름산 탈수소화 촉매 4.58g을 제조하였다.1 g of a palladium precursor Pd (NO 3 ) 2 .2H 2 O was dissolved in 25 ml of distilled water to prepare a palladium precursor aqueous solution. 4 g of the nitrogen-carbon support formed with the nitrogen-doped layer prepared above was added to the Pd precursor aqueous solution, followed by stirring and dispersing well at room temperature. Then, 10 equivalents of NaBH 4 was added and the mixture was stirred for 1 hour to carry out a reduction reaction. After completion of the reduction reaction, the mixture was filtered, repeatedly washed with water and ethanol, and dried at about 60 ° C. for about 24 hours until all of the distilled water was evaporated to carry palladium nanoparticles on the nitrogen- 4.58 g of formic acid dehydrogenation catalyst was prepared.

비교예Comparative Example 1 One

팔라듐 전구체 Pd(NO3)2·2H2O을 1 g 취하여 증류수 25ml에 용해시켜 팔라듐 전구체 수용액을 제조하였다. 상기 팔라듐 전구체 수용액에 ketjen black 4g을 첨가 후 교반하여 상온에서 잘 분산시켰다. 이후 10 당량의 NaBH4를 첨가하고 1시간 동안 교반하여 환원반응을 진행하였다. 상기 환원반응이 완료된 후, 혼합물을 여과하고 물과 에탄올로 반복하여 세척한 후 약 60 ℃의 온도에서 증류수를 모두 증발할 때까지 약 24시간 동안 건조하여 탄소계 지지체에 팔라듐이 담지된 비교예 1의촉매를 제조하였다.1 g of a palladium precursor Pd (NO 3 ) 2 .2H 2 O was dissolved in 25 ml of distilled water to prepare a palladium precursor aqueous solution. 4 g of ketjen black was added to the palladium precursor aqueous solution, followed by stirring and dispersing well at room temperature. Then, 10 equivalents of NaBH 4 was added and the mixture was stirred for 1 hour to carry out a reduction reaction. After completion of the reduction reaction, the mixture was filtered, repeatedly washed with water and ethanol, and then dried at about 60 ° C for about 24 hours until all the distilled water was evaporated to obtain palladium on the carbon-based support. Was prepared.

비교예Comparative Example 2 2

상기 팔라듐 전구체 수용액에 ketjen black 4g을 첨가하는 대신, 산화 알루미늄 담체(Al203) 4g을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 실시하여, 산화 알루미늄 지지체에 팔라듐이 담지된 비교에 2의 촉매를 제조하였다.The procedure of Comparative Example 1 was repeated except that 4 g of aluminum oxide carrier (Al 2 O 3 ) was used instead of 4 g of ketjen black in the aqueous solution of palladium precursor, Was prepared.

<특성분석><Characteristic Analysis>

1. 촉매의 구조분석1. Structure analysis of catalyst

(1) 분석방법: 실시예 1에서 제조된 포름산 탈수소화 촉매에 대하여 전자투과현미경(transmission electron microscopy, TEM), 주사투과전자현미경(scanning Transmission Electron Microscopy, STEM) 및 고각 환형 암시야 주사투과현미경(high-angle annular dark-field scanning transmission electron microscopy, HAADF-STEM) 이미지를 촬영하여 구조를 확인하였다. (1) Analysis method: The formic acid dehydrogenation catalyst prepared in Example 1 was analyzed by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and high-angle annular dark- field scanning transmission electron microscopy (HAADF-STEM) images.

(2) 분석결과: 실시예 1의 투과전자현미경(TEM) 이미지를 도 1에, 주사투과전자현미경(STEM) 이미지를 도 2에, 고각 환형 암시야 주사투과현미경 이미지를 도 3에 나타내었다. 도 1 및 도 3을 분석하여 실시예 1의 질소-탄소 담체가 hollow 형태의 구조를 갖는 것을 확인하였다. (2) Results of analysis: The transmission electron microscope (TEM) image of Example 1 is shown in FIG. 1, the scanning electron microscope (STEM) image is shown in FIG. 2, and the high angle annular night vision scanning transmission microscope image is shown in FIG. 1 and 3, it was confirmed that the nitrogen-carbon support of Example 1 had a hollow structure.

도 1의 결과를 통해 실시예 1의 포름산 탈수소화 촉매는 질소-탄소 담체 상에 평균입경 5 nm 의 팔라듐 나노입자들이 고르게 분산되어 있음을 확인하였다.From the results of FIG. 1, it was confirmed that the formic acid dehydrogenation catalyst of Example 1 uniformly dispersed the palladium nanoparticles having an average particle diameter of 5 nm on the nitrogen-carbon support.

도 3의 element mapping 분석 결과를 통해, 질소-탄소 담체 상에 질소 도핑층이 균일하게 형성되었음을 확인하였다. From the result of the element mapping analysis of FIG. 3, it was confirmed that the nitrogen-doped layer was uniformly formed on the nitrogen-carbon support.

2. 팔라듐 나노입자 2. Palladium nanoparticles 담지의Bearing 확인 Confirm

(1) 분석방법: 실시예 1에서 제조된 포름산 탈수소화 촉매에 대하여 X-선 회절분석(X-ray diffraction spectroscopy, XRD), 에너지분산형 X-선 분석기(EDX) 및 유도결합플라즈마분광광도계(ICP-OES)를 이용한 분석을 수행하였다.(1) Analysis method: X-ray diffraction spectroscopy (XRD), energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma spectrophotometer (ICP-OES) were used for the formic acid dehydrogenation catalyst prepared in Example 1 Analysis was performed.

(2) 분석결과: 실시예 1의 X-선 회절분석(X-ray diffraction spectroscopy, XRD) 결과를 도 4에 나타내었다. 도 4를 통해 질소-탄소 담체와 동일 영역에 형성된 탄소 결정 피크와, 독립적으로 형성된 팔라듐(Pd) 결정 피크를 확인하였다. 이를 통해, 질소-탄소 담체 상에 팔라듐 나노입자가 잘 부착되었음을 확인하였다. (2) Analysis result: X-ray diffraction spectroscopy (XRD) results of Example 1 are shown in FIG. 4, a carbon crystal peak formed in the same region as the nitrogen-carbon support and an independently formed palladium (Pd) crystal peak were identified. It was confirmed that the palladium nanoparticles were well adhered on the nitrogen-carbon support.

또한, 에너지분산형 X-선 분석기(EDX) 및 유도결합플라즈마분광광도계(ICP-OES)를 이용하여 실시예 1의 포름산 탈수소화 촉매를 분석한 결과 7.3 wt%의 팔라듐이 담지되어 있음을 확인하였다. Analysis of the formic acid dehydrogenation catalyst of Example 1 using an energy dispersive X-ray analyzer (EDX) and an inductively coupled plasma spectrophotometer (ICP-OES) revealed that 7.3 wt% of palladium was supported .

3. 촉매의 안정성 평가3. Evaluation of stability of catalyst

(1) 분석방법 : 실시예 1에서 제조된 포름산 탈수소화 촉매 1 g을 반응기에 투입하고, sodium formate (0.05 mol)수용액을 첨가하였다. 이후, 상기 반응기에 syringe pump를 이용해 6.0 mL/h의 속도로 포름산을 3시간 동안 지속적으로 공급하면서, 수소가 발생되는 정도를 측정하여 안정성을 평가하였다.(1) Analytical method: 1 g of the formic acid dehydrogenation catalyst prepared in Example 1 was added to the reactor, and an aqueous solution of sodium formate (0.05 mol) was added. Then, formic acid was continuously supplied to the reactor at a rate of 6.0 mL / h using a syringe pump for 3 hours, and the degree of hydrogen evolution was measured to evaluate the stability.

(2) 분석결과: 실시예 1에서 제조된 포름산 탈수소화 촉매의 수소 발생 정도를 측정한 결과를 도 5에 나타내었다. 도 5를 통해, 분당 평균 40 mL의 수소 기체가 일정하게 발생하는 것을 확인하였다. 이를 통해, 실시예 1에서 제조된 포름산 탈수소화 촉매가 3시간 동안 포름산을 지속적으로 공급해 주었을 때 반응성의 감소가 거의 일어나지 않고 반응이 지속되어 촉매의 안정성이 매우 높은 것을 확인하였다.(2) Analysis result: The hydrogen production degree of the formic acid dehydrogenation catalyst prepared in Example 1 was measured, and the result is shown in FIG. 5, it was confirmed that an average of 40 mL of hydrogen gas was generated constantly per minute. As a result, when the formic acid dehydration catalyst prepared in Example 1 continuously supplied formic acid for 3 hours, it was confirmed that the stability of the catalyst was very high because the reaction did not decrease and the reaction continued.

3. 촉매의 활성 3. Catalytic activity 및 전환빈도(TOF)And switching frequency (TOF) 평가 evaluation

(1) 분석방법 : 실시예 1 및 비교예 1 내지 2에서 제조된 촉매의 분해 성능을 확인하기 위하여 포름산 분해반응 정도 및 전환빈도 측정 평가를 수행하였다. 먼저, 실시예 1 및 비교예 1 내지 2의 촉매를 팔라듐(Pd)이 0.1 mol%가 되는 정도의 양을 덜어, 상온의 1 M 포름산 수용액에 투입하였다. 이후, 교반을 수행하면서 투입 후 경과 시간에 따른 기체 발생량 및 전환빈도를 측정하였다.(1) Analytical method: In order to confirm the decomposition performance of the catalyst prepared in Example 1 and Comparative Examples 1 and 2, degree of decomposition of formic acid and conversion frequency were measured and evaluated. First, the catalyst of Example 1 and Comparative Examples 1 and 2 was added to a 1 M aqueous solution of formic acid at room temperature while reducing the amount of palladium (Pd) to 0.1 mol%. Then, the amount of gas generation and the conversion frequency were measured according to the elapsed time after the agitation.

(2) 분석결과: 실시예 1 및 비교예 1 내지 2에서 제조된 포름산 탈수소화 촉매의 수소 발생 정도를 측정한 결과를 도 6에, 전환빈도 측정 결과를 도 7에 나타내었다. (2) Results of analysis: The degree of hydrogen evolution of the formic acid dehydrogenation catalyst prepared in Example 1 and Comparative Examples 1 and 2 was measured, and the results of the conversion frequency measurement are shown in FIG.

도 6을 통해, 본 발명 실시예 1의 촉매가 동일한 조건 하에서 포름산 분해 반응에 대한 활성이 더욱 우수하고, 높은 반응성을 구현함을 확인하였다. 실시예 1의 촉매는 비교예 1의 촉매보다 1.5배 이상 반응성이 향상되었다.6, it was confirmed that the catalyst of Example 1 of the present invention exhibited excellent activity for the decomposition reaction of formic acid under the same conditions and achieved high reactivity. The catalyst of Example 1 was 1.5 times more reactive than the catalyst of Comparative Example 1.

또한, 도 7을 통해 본 발명 실시예 1의 촉매가 동일한 조건 하에서 전환빈도가 더욱 우수하고, 높은 반응성을 구현함을 확인하였다. 실시예 1의 촉매는 비교예 1의 촉매보다 전환빈도가 약 25% 정도 향상되었음을 확인할 수 있었다.Also, it was confirmed through FIG. 7 that the catalyst of Example 1 of the present invention had a higher conversion frequency and higher reactivity under the same conditions. It was confirmed that the conversion of the catalyst of Example 1 was improved by about 25% as compared with the catalyst of Comparative Example 1.

이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.While the present invention has been described in connection with what is presently considered to be fictitious by those skilled in the art, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. It will be understood that various modifications and changes may be made in the present invention. Accordingly, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.

101: 질소-탄소 담체 결정의 피크 분석 결과
102: 포름산 탈수소화 촉매의 결정 피크 분석 결과
101: Peak analysis results of nitrogen-carbon support crystals
102: Crystal peak analysis result of formic acid dehydrogenation catalyst

Claims (14)

탄소계 지지체에 질소 전구체를 흡착 시킨 후 열분해하여, 도핑된 질소 원자가 탄소계 지지체 내의 탄소 원자와 결합을 형성한 형태의 질소-탄소 담체를 제조하는 단계; 및
상기 질소-탄소 담체 상에 팔라듐(Pd) 나노입자를 담지하여 담지촉매를 제조하는 단계; 를 포함하는 포름산 탈수소화 촉매 제조방법.
Carbon support by adsorbing a nitrogen precursor on the carbon-based support followed by pyrolysis to form a nitrogen-carbon support in the form of a doped nitrogen atom forming a bond with carbon atoms in the carbon-based support; And
Supporting palladium (Pd) nanoparticles on the nitrogen-carbon support to produce a supported catalyst; Lt; RTI ID = 0.0 &gt; of &lt; / RTI &gt; formic acid dehydrogenation catalyst.
제1항에 있어서,
상기 질소-탄소 담체를 제조하는 단계는 아민계 작용기를 다공성 탄소계 지지체에 흡착시키고, 다공성 탄소계 지지체의 구조 내에 질소 원자를 도핑하는 것을 포함하는 탈수소화 촉매 제조방법.
The method according to claim 1,
Wherein the step of preparing the nitrogen-carbon support comprises adsorbing an amine-based functional group on a porous carbon-based support and doping a nitrogen atom in the structure of the porous carbon-based support.
제1항에 있어서,
상기 질소-탄소 담체를 제조하는 단계는 질소전구체 수용액와 다공성 탄소계 지지체를 반응시킨 후 수분을 제거하여 질소 전구체가 흡착된 탄소계 지지체를 제조하는 것을 포함하는 탈수소화 촉매 제조방법.
The method according to claim 1,
The step of preparing the nitrogen-carbon support comprises reacting a nitrogen precursor aqueous solution with a porous carbon-based support, and then removing moisture to prepare a carbon-based support having the nitrogen precursor adsorbed thereon.
제3항에 있어서,
상기 질소-탄소 담체를 제조하는 단계는 상기 질소 전구체가 흡착된 탄소계 지지체를 500℃ 내지 600℃의 온도에서 열분해하여, 탄소계 지지체의 구조 내에 질소원자를 도핑하고, 도핑된 질소 원자와 탄소계 지지체 내의 탄소 원자가 새로운 결합을 형성하는 동시에, 팔라듐 나노입자와 상호작용이 가능한 반응자리를 생성하는 것을 포함하는 것을 포함하는 탈수소화 촉매 제조방법.
The method of claim 3,
The step of preparing the nitrogen-carbon support comprises pyrolyzing the carbon-based support on which the nitrogen precursor is adsorbed at a temperature of 500 ° C to 600 ° C, doping nitrogen atoms into the structure of the carbon-based support, Wherein the carbon atoms in the support form a new bond while simultaneously forming a reaction site capable of interacting with the palladium nanoparticles.
제1항에 있어서,
상기 담지촉매를 제조하는 단계는 팔라듐 전구체 수용액와 질소-탄소 담체를 반응시킨 후, 상기 질소-탄소 담체 상에 담지된 팔라듐 나노입자를 환원시키는 것을 포함하는 탈수소화 촉매 제조방법.
The method according to claim 1,
The step of preparing the supported catalyst comprises reacting a palladium precursor aqueous solution with a nitrogen-carbon support, and then reducing the palladium nanoparticles supported on the nitrogen-carbon support.
제1항에 있어서,
상기 질소-탄소 담체는 중공(hollow) 구조를 갖는 포름산 탈수소화 촉매 제조방법.
The method according to claim 1,
Wherein the nitrogen-carbon support has a hollow structure.
제1항에 있어서,
상기 팔라듐 나노입자는 평균입경이 2nm 내지 7nm 인 포름산 탈수소화 촉매 제조방법.
The method according to claim 1,
Wherein the palladium nanoparticles have an average particle diameter of 2 nm to 7 nm.
질소(N)원자가 도핑되고, 상기 도핑된 질소 원자와 탄소계 지지체 내의 탄소 원자와 새로운 결합을 형성한 형태의 질소-탄소 담체; 및 상기 질소-탄소 담체 상에 담지된 팔라듐(Pd) 나노입자를 포함하는 포름산 탈수소화 촉매.
A nitrogen-carbon support doped with nitrogen (N) atoms and forming a new bond with the doped nitrogen atoms and carbon atoms in the carbon-based support; And palladium (Pd) nanoparticles carried on the nitrogen-carbon support.
제8항에 있어서,
상기 포름산 탈수소화 촉매는 도핑된 질소원자의 함량이 3 중량% 내지 9 중량%인 포름산 탈수소화 촉매.
9. The method of claim 8,
Wherein the formic acid dehydrogenation catalyst is a formate dehydrogenation catalyst having a doped nitrogen atom content of 3 wt% to 9 wt%.
제8항에 있어서,
상기 포름산 탈수소화 촉매는 담지된 팔라듐 나노입자의 함량이 1 중량% 내지 9 중량%인 포름산 탈수소화 촉매.
9. The method of claim 8,
Wherein the formic acid dehydrogenation catalyst is a formate dehydrogenation catalyst wherein the content of supported palladium nanoparticles is 1 wt% to 9 wt%.
제8항에 있어서,
상기 질소-탄소 담체는 중공(hollow) 구조를 갖는 포름산 탈수소화 촉매.
9. The method of claim 8,
The nitrogen-carbon support has a hollow structure.
제8항에 있어서,
상기 팔라듐 나노입자는 평균입경이 2nm 내지 7nm 인 포름산 탈수소화 촉매.
9. The method of claim 8,
Wherein the palladium nanoparticles have an average particle diameter of 2 nm to 7 nm.
제8항 내지 제12항 중 어느 한 항의 포름산 탈수소화 촉매를 포함하는 연료전지.
A fuel cell comprising the formic acid dehydrogenation catalyst according to any one of claims 8 to 12.
제8항 내지 제12항 중 어느 한 항의 포름산 탈수소화 촉매를 포함하는 수소발생기.A hydrogen generator comprising the formic acid dehydrogenation catalyst of any one of claims 8 to 12.
KR1020150137857A 2015-09-30 2015-09-30 Formic acid dehydrogenation catalyst and method of manufacturing the same KR101814162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150137857A KR101814162B1 (en) 2015-09-30 2015-09-30 Formic acid dehydrogenation catalyst and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150137857A KR101814162B1 (en) 2015-09-30 2015-09-30 Formic acid dehydrogenation catalyst and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20170038457A KR20170038457A (en) 2017-04-07
KR101814162B1 true KR101814162B1 (en) 2018-01-02

Family

ID=58583377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150137857A KR101814162B1 (en) 2015-09-30 2015-09-30 Formic acid dehydrogenation catalyst and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101814162B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924975B1 (en) 2003-11-27 2009-11-04 네스테 오일 오와이제이 Catalyst and method for the preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924975B1 (en) 2003-11-27 2009-11-04 네스테 오일 오와이제이 Catalyst and method for the preparation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Qifeng Tian et al. Ionics, 2015, vol.21, pp.1693-1701.*
R.Imran Jafri et al. International Journal of Hydrogen Energy, 2015, vo.40, pp.4337-4348.

Also Published As

Publication number Publication date
KR20170038457A (en) 2017-04-07

Similar Documents

Publication Publication Date Title
Zan et al. Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction
JP6174790B2 (en) Nitrogen-doped porous carbon electrode catalyst and method for producing the same
Geng et al. Building MoS2/S-doped g-C3N4 layered heterojunction electrocatalysts for efficient hydrogen evolution reaction
Chen et al. Electrospinning synthesis of bimetallic nickel–iron oxide/carbon composite nanofibers for efficient water oxidation electrocatalysis
Ren et al. Ruthenium supported on nitrogen-doped ordered mesoporous carbon as highly active catalyst for NH3 decomposition to H2
KR101150843B1 (en) Preparing method of cathode catalyst comprising carbon nitride and conductive carbon support for pemfc, cathode catalyst for pemfc, electrode for pemfc and pemfc
US8969235B2 (en) WC/CNT, WC/CNT/Pt composite material and preparation process therefor and use thereof
Zhang et al. A feasible synthesis of Mn3 (PO4) 2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst
Liu et al. Nitrogen-doped ordered mesoporous carbons as electrocatalysts for methanol-tolerant oxygen reduction in acid solution
Lou et al. Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation
CN110152712B (en) Ru-based hydrogen evolution catalyst and preparation method and application thereof
Huang et al. Preparation of nitrogen-doped carbon materials based on polyaniline fiber and their oxygen reduction properties
CN112647095B (en) Atomically dispersed bimetallic site anchored nitrogen-doped carbon material and preparation and application thereof
US20230082237A1 (en) Heteroelement-doped high-graphite porous carbon body, catalyst comprising same, and method for producing same
KR102381910B1 (en) Porous n-doped graphitic carbon, a catalyst including the same and method for preparing the same
CN108579718B (en) Preparation method and application of indium-doped nano porous carbon material
Shen et al. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel
Ojeda-López et al. On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications
JP2019169289A (en) Air electrode catalyst for fuel cell, manufacturing method of the same, and fuel cell using fuel cell air electrode catalyst
CN110055556A (en) Evolving hydrogen reaction catalyst and its preparation method and application
Gavrilov et al. Nanodispersed platinum on chemically treated nanostructured carbonized polyaniline as a new PEMFC catalysts
Xu et al. C60 and Derivatives Boost Electrocatalysis and Photocatalysis: Electron Buffers to Heterojunctions
KR101814162B1 (en) Formic acid dehydrogenation catalyst and method of manufacturing the same
CN112779553B (en) Composite material, preparation method and application thereof
KR20140121718A (en) In the form of a hybrid fuel cell electrode catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant