KR101811647B1 - 온도조절 장치를 포함하는 나노 마스크 제조방법 - Google Patents

온도조절 장치를 포함하는 나노 마스크 제조방법 Download PDF

Info

Publication number
KR101811647B1
KR101811647B1 KR1020150180043A KR20150180043A KR101811647B1 KR 101811647 B1 KR101811647 B1 KR 101811647B1 KR 1020150180043 A KR1020150180043 A KR 1020150180043A KR 20150180043 A KR20150180043 A KR 20150180043A KR 101811647 B1 KR101811647 B1 KR 101811647B1
Authority
KR
South Korea
Prior art keywords
electrospinning
polymer
unit
nozzle
melting point
Prior art date
Application number
KR1020150180043A
Other languages
English (en)
Other versions
KR20170071871A (ko
Inventor
박종철
Original Assignee
(주)에프티이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티이앤이 filed Critical (주)에프티이앤이
Priority to KR1020150180043A priority Critical patent/KR101811647B1/ko
Publication of KR20170071871A publication Critical patent/KR20170071871A/ko
Application granted granted Critical
Publication of KR101811647B1 publication Critical patent/KR101811647B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • A62B18/025Halfmasks
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 폴리비닐리덴 플루오라이드 나노섬유를 포함하는 마스크의 제조방법을 제공하기 위한 것으로서, 그 기술적 특징은 고융점 폴리비닐리덴 플루오라이드 및 저융점 폴리비닐리덴 플루오라이드를 혼합한 용액을 제 1기재 상에 전기방사하여 나노섬유층을 적층한 후 상기 나노섬유층 상에 제 2기재를 적층하고, 상기 나노섬유층과 제 1기재 및 제 2기재는 저융점 고분자 또는 에폭시 수지-경화제를 전기 방사하여 형성한 접착층을 통해 접착하는 것을 특징으로 한다.

Description

온도조절 장치를 포함하는 나노 마스크 제조방법 {nano mask manufacture method containing temperature control system}
본 발명은 나노섬유를 포함하는 마스크의 제조방법에 관한 것으로, 제 1기재 상에 고융점 폴리비닐리덴 플루오라이드 및 저융점 폴리비닐리덴 플루오라이드를 혼합한 용액을 전기방사한 후 상기 기재의 다른 일면에 제 2기재를 접합하여 제조한 나노섬유를 포함하는 마스크의 제조방법에 관한 것이다.
안면 마스크는 보건위생 상 병균, 먼지 등의 흡입 및 비산을 막기 위하여 코와 입을 가리는 물건이다. 안면 마스크는 1919년 스페인 감기 즉, 인플루엔자가 유행했을 때부터 사용되고 있다. 현재 안면 마스크는 면, 부직포, 종이 등을 소재로 하여 제조되고 있다.
종래의 안면 마스크는 비강이나 구강을 통해 찬공기를 직접 들이마시는 것을 막아 주기 때문에 감기에 걸리는 것을 어느 정도 예방해줄 수 있으나, 보통 0.1㎛ 내지 1.0㎛의 크기를 갖는 세균이나 미세 먼지에 비해 훨씬 큰 기공을 갖는 종래의 안면 마스크로는 세균이나 미세 먼지와 같은 미세 이물질을 차단하기에 한계가 있다.
일반적으로, 나노섬유(Nano Fiber)란, 지름이 수십에서 수백 나노미터에 불과한 초극세사를 지칭하는 것으로서, 나노섬유로 구성된 마스크, 인조 피혁, 인조 스웨이드, 생리대, 의복, 기저귀, 포장재, 잡화용 소재, 각종 필터 소재, 유전자 전달체의 의료용 소재 및 방탄 조끼 등 국방용 소재에 적용되는 등 다양한 분야에서 사용되고 있다.
상술한 바와 같은 나노 마스크는 전기장에 의해 생산된다. 즉, 나노 마스크는 원료인 고분자 물질에 고전압의 전기장을 걸어서 원료인 고분자 물질 내부에 전기적인 반발력을 발생시키고, 이로 인해 분자들이 뭉쳐 나노 크기의 실 형태로 갈라짐으로써 나노섬유를 포함하는 나노 마스크가 제조 및 생산된다.
이때, 전기장이 강할수록 원료인 고분자 물질이 가늘게 찢어지기 때문에 10 내지 1000nm의 가늘기를 갖는 나노섬유를 포함하는 나노 마스크를 얻을 수 있다.
이러한 가늘기의 나노섬유를 갖는 나노 마스크를 제조 및 생산하기 위한 전기방사장치는 방사용액이 내부에 충진되는 방사용액 주탱크, 방사용액의 정량 공급을 위한 계량 펌프, 방사용액을 토출하기 위한 노즐이 다수개 배열설치되는 노즐블록, 노즐 하단에 위치하여 방사되는 섬유들을 집적하는 컬렉터 및 전압을 발생시키는 전압 발생장치를 포함하여 구성된다.
상술한 바와 같은 구조로 이루어지는 전기방사장치는 방사용액이 충진되는 방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수개 배열설치되는 노즐 블록과 상기 노즐의 상단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐에서 일정간격 이격되는 장척시트 및 상기 장척시트에 고전압을 발생시키는 전압 발생장치를 포함하는 유닛으로 구성된다.
이러한 전기방사장치를 통한 나노 마스크의 제조방법은 방사용액이 충진되는 방사용액 주탱크 내의 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 다수의 노즐 내에 연속적으로 정량 공급되고, 노즐로 공급되는 방사용액은 높은 전압이 걸려있는 컬렉터상에 노즐을 통하여 방사, 집속되어 나노섬유층이 형성되되, 상기 전기방사장치의 유닛들로 이송되는 장척시트상에 나노섬유층을 형성한다.
여기서, 전기방사장치는 컬렉터 상의 위치하는 방향에 따라 상향식 전기방사장치, 하향식 전기방사장치 및 수평식 전기방사장치로 나뉜다. 즉, 전기방사장치는 컬렉터가 노즐의 상단에 위치하는 구성으로 이루어지고, 균일하고 상대적으로 가는 나노 멤브레인을 제조할 수 있는 상향식 전기방사장치, 컬렉터가 노즐의 하단에 위치하는 구성으로 이루어지고, 상대적으로 굵은 나노 섬유층을 포함하는 나노 마스크를 제조할 수 있으며, 단위시간 당 나노 마스크의 생산량을 증대시킬 수 있는 하향식 전기방사장치 및 컬렉터와 노즐이 수평방향으로 배열되는 구성으로 이루어지는 수평식 전기방사장치로 나뉜다.
상향식 전기방사장치는 상향 노즐 블록의 노즐을 통하여 방사용액이 분사되고, 분사되는 방사용액이 지지체의 하부면에 적층되면서 나노 마스크를 형성하는 구성으로 이루어진다.
상술한 바와 같은 구성에 의하여 상기 상향식 전기방사장치의 어느 한 유닛 내부에서 노즐을 통하여 방사용액을 분사하여 나노섬유층이 적층형성되는 장척시트는 다른 한 유닛 내부로 이송되고, 다른 한 유닛 내부로 이송되는 장척시트에 노즐을 통하여 방사용액을 분사하여 또 다시 나노 섬유층을 적층형성하는 등 상기한 공정을 반복적으로 수행하면서 나노 마스크를 제조한다.
여기서, 노즐 블록의 노즐을 통하여 분사되는 방사용액은 고분자 폴리머 및 용매를 포함하여 이루어진다.
이때, 전기방사장치 노즐 블록의 노즐을 통하여 방사용액의 방사 시 방사용액에 포함되는 고분자 폴리머 장척시트 상에 적층형성되나, 방사 과정에서 노즐 끝으로 토출된 고분자 폴리머가 섬유화되지 못하고 노즐블록으로 떨어지는 경우가 발생한다. 통상의 전기방사에 있어서 노즐을 통하여 방사되었으나 섬유화되지 못하고 오버플로우되는 고분자 폴리머는 전체 전기방사되는 폴리머 고분자 중 70 내지 90중량%이며, 오버플로우 시스템을 통해 다시 저장탱크로 공급되고, 저장탱크로부터 다시 노즐블록으로 전기방사를 위해 공급되는 구성을 가지는 바 오버플로우된 방사용액을 회수하여 원료로 재사용이 가능하기 때문에, 원료를 절약하게 되고 원료 사용료를 줄일 수 있어 나노 마스크의 제조비용을 절감할 수 있다.
한편, 기존의 전기방사와 관련된 선행문헌들에는 전기방사를 위한 폴리머 용액의 농도를 고정시킨후 전기방사를 실시하였다. 그러나 폴러머 용액의 농도를 고정시키기 위해서는 농도고정을 위한 장치들과 기술적 공정들이 필요하며, 특히 섬유화되지 못하고 노즐블록으로 떨어지는 폴리머 용액을 재사용하는 오버플로우 시스템을 포함하는 전기방사의 경우 희석제등의 사용이 필요하고, 희석제를 추가함으로 인해 발생하는 생산속도의 저하, 폭발의 위험성 및 생산단가의 문제등이 발생한다.
또한, 용융방사가 아닌 전기방사의 특성상 기존 전기방사를 사용하여 나노 마스크를 제조하는 기술분야에서는 일정수준의 용매를 사용하여 농도를 유지하게 된다. 이때, 통상적으로 저농도의 폴리머 용액으로 전기방사를 수행하고, 전기방사시 용매의 사용으로 인해 컬렉터에 집적되는 고형분의 상대적 감소로 생산성이 낮아 목표하는 생산량을 달성하는데 있어 많은 시간을 필요로 한다.
이에 더해, 저농도의 폴리머 용액의 사용으로 인해 발생하는 문제로 컬렉터에 집적되는 나노섬유층에 폴리머 고분자가 아닌 잔존 용매가 비교적 높은 수준으로 남아있어, 나노 마스크의 품질이 떨어지는 문제가 발생한다.
이에 본 발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 오버플로우 시스템이 포함된 전기방사장치에 있어서 나노섬유화 되지 못하고 노즐블럭으로 떨어지는 폴리머 용액을 회수하여 전기방사로 재사용함은 물론, 점도 조절 시스템을 포함함으로써 나노섬유 직경의 굵기가 기존 전기방사를 통한 나노섬유의 직경에 비해 커지지 않으면서도, 오버플로우 시스템을 통해 재사용되는 고농도의 폴리머 용액으로 인해 컬렉터에 집적되는 나노섬유의 생산성이 높고, 컬렉터에 집적되는 나노섬유층의 잔존 용매량의 감소로 인해 우수한 품질의 나노 마스크를 제조할 수 있는 전기방사방법을 제공하는 것을 목적으로 한다.
이에 더해 휘발성이 높고 끓는점이 낮은 희석제를 사용하지 않음으로써 전기방사를 이용한 나노 마스크 제조에 있어 쾌적한 작업환경을 제공하는 것을 목적으로 한다.
본 발명의 적절한 실시형태에 따르면, 폴리머 용액이 저장된 주저장 탱크로부터 폴리머 용액이 노즐블록으로 공급되는 공급단계; 노즐블록에 공급된 폴리머 용액이 노즐을 통해 기재 상에 전기방사하여 나노섬유층을 적층하는 전기방사단계; 상기 전기방사단계에서 나노섬유화 되지 못한 폴리머 용액을 오버플로우 시스템을 통해 재생탱크로 수거 및 수집하는 회수단계; 재생탱크와 주저장 탱크로부터 중간탱크로 폴리머 용액이 유입되는 저장단계; 및 중간탱크로부터 폴리머 용액이 노즐블록으로 재공급되는 재공급단계를 포함하는 나노 마스크의 제조방법에 있어서, 상기 재공급단계에서 폴리머 용액의 점도를 조절하기 위한 온도조절 장치가 설치된 것을 특징으로 하는 나노 마스크 제조방법을 제공한다.
여기서, 상기 온도조절 장치는 오버플로우 시스템을 통해 회수되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 가열장치, 냉각장치, 농도측정장치 및 주제어 장치를 포함하고, 상기 재공급 단계를 거친 후 전기방사되는 폴리머 용액의 농도는 20 내지 40%이며, 점도는 1,000 cps 내지 3,000 cps로 일정하게 조절되며, 상기 온도조절 장치는 수동식 또는 자동식인 것을 특징으로 하는 나노 마스크 제조방법을 제공한다.
또한, 상기 농도측정장치는 중간탱크에 설치되며, 접촉식 또는 비접촉식인것을 특징으로 하고, 상기 가열장치는 전열히터, 온수순환장치 및 온풍순환장치 중 하나이상 선택되는 것을 특징으로 하며, 상기 냉각장치는 칠링(Chilling) 장치인 것을 특징으로 하는 나노 마스크 제조방법을 제공한다.
본 발명에 의하여 제조되는 나노 마스크는 종래의 마스크보다 기재층과 고분자 전기방사층간의 접착이 용이하고 탈리(脫離)가 쉽게 발생되지 않을 뿐만 아니라, 접착층이 기재 상의 특정 영역 및 부분에만 분사됨으로써 저융점 고분자 및 에폭시 수지-경화제의 사용이 감소됨과 동시에 나노섬유 웹에 대한 접착층의 간섭을 최소화하여 나노 마스크의 성능 및 품질을 향상시킬 수 있다.
또한 본 방법에 의하여 제조된 나노 마스크는 여과 효율을 높이며, 마스크의 수명 또한 연장가능하다.
도 1은 본 발명에 의한 전기방사장치를 개략적으로 나타내는 측면도,
도 2는 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록의 노즐을 개략적으로 나타내는 측단면도,
도 3은 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록의 노즐에 따른 다른 실시예를 개략적으로 나타내는 측단면도,
도 4는 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록을 개략적으로 나타내는 평면도,
도 5는 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록에 전열장치가 설치된 모습을 개략적으로 나타내는 정단면도,
도 6은 A-A'선 단면도,
도 7은 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록에 전열장치가 설치된 모습의 다른 실시예를 개략적으로 나타내는 정단면도,
도 8은 B-B'선 단면도,
도 9는 본 발명에 의한 전기방사장치의 각 유닛 내에 설치되는 노즐블록에 전열장치가 설치된 모습의 또 다른 실시예를 개략적으로 나타내는 정단면도,
도 10은 C-C'선 단면도,
도 11은 본 발명에 의한 전기방사장치의 보조 이송장치를 개략적으로 나타내는 도면,
도 12는 본 발명에 의한 전기방사장치의 보조 이송장치의 보조벨트 롤러의 다른 실시예를 개략적으로 나타내는 도면,
도 13 내지 도 16은 본 발명에 의한 전기방사장치의 장척시트 이송속도 조절장치의 동작과정을 개략적으로 나타내는 측면도,
도 17은 본 발명에 의한 마스크의 단면을 나타내는 도면,
도 18은 본 발명에 의한 전기방사장치의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내에 설치되는 노즐블록을 개략적으로 나타내는 사시도,
도 19, 도 20은 도 18과 같은 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내의 노즐블록의 배치를 통해 저융점 고분자 및 고분자 방사용액이 순차적 분사되는 동작과정을 개략적으로 나타내는 평면도,
도 21은 본 발명에 의한 전기방사장치의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내에 설치되는 노즐블록의 또 다른 형태를 개략적으로 나타내는 사시도,
도 22, 도 23은 도 21과 같은 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내의 노즐블록의 배치를 통해 저융점 고분자 및 고분자 방사용액이 순차적 분사되는 동작과정을 개략적으로 나타내는 평면도,
도 24는 본 발명에 의한 전기방사장치의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내에 설치되는 노즐블록의 또 다른 형태를 개략적으로 나타내는 사시도,
도 25, 도 26은 도 24와 같은 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛 내의 노즐블록의 배치를 통해 저융점 고분자 및 고분자 방사용액이 순차적 분사되는 동작과정을 개략적으로 나타내는 평면도.
이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
도 1은 본 발명에 의한 전기방사장치를 개략적으로 나타내는 측면도이다. 도면에서 도시하고 있는 바와 같이, 본 발명에 의한 전기방사장치(1)는 상향식 전기방사장치(1)로 이루어지되, 적어도 하나 이상의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛(10a, 10c(미도시))과 방사용액 유닛(10b)이 일정간격 이격되어 순차적으로 구비되고(10c(미도시)는 미도시), 상기 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛(10a, 10c(미도시))과 방사용액 유닛(10b)은 동일하거나 상이한 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액을 개별적으로 전기방사하여 나노 마스크를 제조한다.
본 발명의 일 실시예에서는 상기 전기방사장치(1)가 상향식 전기방사장치로 이루어져 있으나, 하향식 전기방사장치(미도시)로 이루어지는 것도 가능하다.
상기 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛과 방사용액 유닛은 그 내부에 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액이 내부에 충진되는 주탱크(8)와 상기 주탱크(8) 내에 충진된 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액을 정량으로 공급하기 위한 계량펌프(미도시)와 상기 주탱크(8) 내에 충진된 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(12)이 다수개 배열설치되는 노즐블록(11)과 상기 노즐(12)에서 분사되는 방사용액을 집적하기 위하여 노즐(12)에서 일정간격 이격되는 컬렉터(13) 및 상기 컬렉터(13)에 전압을 발생시키는 전압 발생장치(14a, 14b, 14c)를 포함하는 구성으로 이루어진다.(14c는 미도시)
상기한 바와 같은 구조에 의하여 본 발명에 의한 전기방사장치(1)는 주탱크(8) 내에 충진되는 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액이 계량펌프를 통하여 노즐블록(11)에 형성되는 다수의 노즐(12) 내에 연속적으로 정량 공급되고, 공급되는 저융점 고분자, 에폭시 수지-경화제 또는 고분자 방사용액은 노즐(12)을 통해 높은 전압이 걸려 있는 컬렉터(13) 상에 방사 및 집속되어 컬렉터(13) 상에서 이동되는 장척시트(15) 상에 나노섬유 부직포를 형성하며, 형성되는 나노섬유 부직포는 나노 마스크로 제조된다.
도 18은 본 발명에 의한 전기방사장치의 저융점 고분자 유닛 내에 설치되는 노즐블록을 개략적으로 나타내는 사시도이다. 저융점 고분자 유닛에 배치된 노즐은 기재의 전면부에 도포될 수도 있으나, 필요에 따라 기재의 특정부분에 도포되는 것이 바람직하다. 도 5에서는 노즐을 9개씩 5개의 그룹으로 나누어서 상부에 2개 중앙에 1개 그리고 하부에 2개로 배치되어 있다. 그러나 상기 노즐과 노즐블럭의 배치는 반드시 이에 한정되는 것은 아니고 당업자라면 노즐의 개수와 방사되는 저융점 고분자의 양 등을 고려하여 적절히 설계, 변경하여 배치할 수 있음은 물론이다.
도 21 및 도 24는 본 발명에 의한 전기방사장치의 저융점 고분자 유닛 내에 설치되는 노즐블록이 또 다른 형태로 배치된 상태를 나타낸다. 도 21은 기재의 길이방향에 대향하여 배치되어 있고 도 24은 기재의 너비방향에 대향하여 배치된 형상을 나타낸다.
여기서, 상기 전기방사장치(1)의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛의 전방에는 고분자 방사용액의 분사에 의해 나노섬유 부직포가 적층형성되는 장척시트(15)를 공급하기 위한 공급롤러(3)가 구비되고, 후단에 위치하는 유닛의 후방에는 나노섬유 부직포가 적층형성되는 장척시트(15)를 권취하기 위한 권취롤러(5)가 구비된다.
한편, 상기 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛과 방사용액 유닛을 통과하면서 고분자 방사용액이 적층형성되는 장척시트(15)는 부직포 또는 직물 등으로 이루어지는 것이 바람직하나, 이에 한정하지 아니한다.
상기 전기방사장치(1)의 방사용액 유닛내에서 노즐(12)을 통하여 공급되는 방사용액은 상기 전기방사가 가능한 합성수지 재질인 폴리머를 적당한 용매에 용해시킨 용액으로서, 용매의 종류 또한 폴리머를 용해시킬 수 있는 것이라면 제한되지 않으며, 예를 들면 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴플루라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스, 키토산 등이 있으며, 그 중 폴리프로필렌(PP)재질의 소재와 내열성 고분자 물질인 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리 비스[2-(2-메톡시에톡시)포스파젠]과 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등의 폴리머로 이루어진 군이 상용적으로 사용되는 것이 바람직하다.
또한, 상기 유닛(10a, 10b, 10c(미도시)) 내에서 노즐(12)을 통하여 공급되는 방사용액은 상기 전기방사가 가능한 합성수지 재질인 폴리머를 적당한 용매에 용해시킨 용액으로서, 용매의 종류 또한 폴리머를 용해시킬 수 있는 것이라면 제한되지 않으며, 예를 든다면 페놀, 포름산, 황산, m-크레솔, 티플루오르아세트앤하이드라이드/다이클로로메테인, 물, N-메틸모폴린 N-옥시드, 클로로폼, 테트라히드로푸란과 지방족 케톤군인 메틸이소부틸케톤, 메틸에틸케톤, 지방족 수산기 군인 m-부틸알콜, 이소부틸알콜, 이소프로필알콜, 메틸알콜, 에탄올, 지방족 화합물인 헥산, 테트라클로로에틸렌, 아세톤, 글리콜군으로서 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜, 할로겐 화합물군으로 트리크롤로에틸렌, 다이클로로메테인, 방향족 화합물 군인 톨루엔, 자일렌, 지방족 고리 화합물군으로서 사이클로헥사논, 시클로헥산과 에스테르군으로 n-부틸초산염, 초산에틸, 지방족에테르군으로 부틸셀로살브, 아세트산2-에톡시에탄올, 2-에톡시에탄올, 아미드로 디메틸포름아미드, 디메틸아세트아미드 등을 사용할 수 있으며, 복수 종류의 용매를 혼합하여 이용할 수 있다. 방사용액에는 도전성 향상제 등의 첨가제를 함유하는 것이 바람직하다.
한편, 본 발명에 의한 전기방사장치(1)의 노즐블록(11)에 구비되는 노즐(12)은 도 2에 도시하고 있는 바와 같이, 다중관상노즐(500)로 이루어지며, 2종 이상의 폴리머 방사용액을 동시에 전기방사 할 수 있도록 2개 이상의 내, 외측관(501, 502)들이 시스-코어(Sheath-Core) 형태로 결합된 구조를 갖는다.
여기서, 상기 노즐블록(11)은 시스-코어(Sheath-Core) 형태의 다중관상노즐(500)이 배열된 노즐 플레이트(405)와 상기 노즐 플레이트(405)의 하단에 위치하여 다중관상노즐(500)에 고분자 방사용액(미도시)을 공급하는 2개 이상의 방사용액 저장판(407, 408)과 다중관상노즐(500)을 감싸고 있는 오버플로 제거용 노즐(415)과 상기 오버플로 제거용 노즐(415)에 연결되고, 노즐 플레이트(405)의 직상단에 위치하는 오버플로액 임시 저장판(410) 및 상기 오버플로액 임시 저장판(410)의 직상단에 위치하여 오버플로 제거용 노즐(415)을 지지하는 오버플로 제거용 노즐 지지판(416)을 포함하여 구성된다.
그리고, 상기 다중관상노즐(500)과 오버플로 제거용 노즐(415)들을 감싸고 있는 공기공급용 노즐(404)과 노즐블록(11)의 최상단에 위치하여 공기공급용 노즐(404)을 지지해주는 공기공급용 노즐의 지지판(414)과 공기공급용 노즐의 지지판(414)의 직하단에 위치하여 공기공급용 노즐(404)에 공기를 공급해주는 공기유입구(413) 및 공급된 공기를 저장해주는 공기 저장판(411)을 포함하여 구성된다.
또한, 상기 오버플로 제거용 노즐(415)을 통하여 오버플로액을 외부로 배출하기 위한 오버플로우 배출구(412)가 구비된다.
본 발명에 의한 전기방사장치(1)의 일 실시예에서는 상기 노즐(12)이 원통형상으로 이루어져 있으나, 도 3에서 도시하고 있는 바와 같이, 상기 노즐(12)이 쐐기형상의 원통으로 형성되되, 그 선단부(503)가 축에 5 내지 30°각도인 나팔관 모양으로 형성된다.
여기서, 상기 나팔관 모양으로 형성되는 선단부(503)가 상부에서 하부를 향하여 좁아지는 형태로 형성되어 있으나, 상부에서 하부를 향하여 좁아지는 형태로 형성된다면 기타 다양한 형상으로 형성되는 것도 가능하다.
한편, 본 발명에 의한 전기방사장치(1)에 오버플로우 장치(200)가 구비된다. 즉, 상기 전기방사장치(1)의 각 유닛(10a, 10b)에는 방사용액 주탱크(8)와 제2 이송배관(216)과 제2 이송제어장치(218)와 중간탱크(220) 및 재생탱크(230)를 포함하여 이루어진 오버플로우 장치(200)가 각각 구비된다.
본 발명의 일 실시예에서는 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))에 오버플로우 장치(200)가 각각 구비되어 있으나, 상기 각 유닛(10a, 10b, 10c(미도시)) 중 어느 한 유닛(10a)에 오버플로우 장치(200)가 구비되고, 상기 오버플로우 장치(200)에 후단부에 위치한 유닛(10b, 10c(미도시))이 일체로 연결되는 구조로 이루어지는 것도 가능하다.
상기한 바와 같은 구조에 의하여, 상기 방사용액 주탱크(8)는 나노섬유의 원료가 되는 방사용액을 저장한다. 방사용액 주탱크(8) 내에는 방사용액의 분리나 응고를 방지하기 위한 교반장치(211)를 내부에 구비한다.
상기 제2 이송배관(216)은 상기 방사용액 주탱크(8) 또는 재생탱크(230)에 접속된 파이프와 밸브(212, 213, 214)로 구성되고, 상기 방사용액 주탱크(8) 또는 재생탱크(230)에서 중간탱크(220)로 방사용액을 이송한다.
상기 제2 이송제어장치(218)는 상기 제2 이송배관(216)의 밸브(212, 213, 214)를 제어함으로써, 제2 이송배관(216)의 이송동작을 제어한다. 상기 밸브(212)는 방사용액 주탱크(8)에서 중간탱크(220)로 방사용액의 이송을 제어하며, 상기 밸브(213)는 재생탱크(230)에서 중간탱크(220)로 방사용액의 이송을 제어한다. 상기 밸브(214)는 방사용액 주탱크(8) 및 재생탱크(230)에서 중간탱크(220)로 유입되는 고분자 방사용액의 양을 제어한다.
상기와 같은 제어방법은 후술하는 중간탱크(230)에 구비된 제2 센서(222)로 계측된 방사용액의 액면높이에 따라서 제어된다.
상기 중간탱크(220)는 방사용액 주탱크(8) 또는 재생탱크(230)로부터 공급된 방사용액을 저장하고, 노즐블록(11)으로 상기 방사용액을 공급하며, 공급된 방사용액의 액면높이를 측정하는 제2 센서(222)를 구비하고 있다.
상기 제2 센서(222)는, 액면높이 측정이 가능한 센서면 가능하고, 예를 들면 광센서 혹은 적외선 센서 등으로 이루어지는 것이 바람직하다.
상기 중간탱크(220)의 하부에는 노즐블록(11)으로 방사용액을 공급하는 공급배관(240)과 공급제어밸브(242)가 구비되어 있는데, 상기 공급제어밸브(242)는 상기 공급배관(240)의 공급동작을 제어한다.
상기 재생탱크(230)는 오버플로우되어 회수된 방사용액을 저장하고 방사용액의 분리나 응고를 방지하기 위한 교반장치(231)를 내부에 갖고, 회수된 방사용액의 액면높이를 측정하는 제1 센서(232)를 구비하고 있다.
상기 제1 센서(232)는, 액면높이 측정이 가능한 센서면 가능하고, 예를 들면 광센서 혹은 적외선 센서 등으로 이루어지는 것이 바람직하다.
한편, 노즐블록(11)에서 오버플로우된 방사용액은 노즐블록(11)하부에 구비된 방사용액 회수 경로(250)를 통하여 회수된다. 상기 방사용액 회수 경로(250)는 제1 이송배관(251)을 통해 재생탱크(230)로 방사용액을 회수한다.
그리고, 제1 이송배관(251)은 상기 재생탱크(230)에 접속되는 파이프와 펌프를 구비하고, 상기 펌프의 동력으로 방사용액을 방사용액 회수경로(250)로부터 재생탱크로(230)이송한다.
이때, 재생탱크(230)는 적어도 하나 이상인 것이 바람직하며, 2개 이상인 경우에는 상기 제1 센서(232)와 밸브(233)가 복수개로 구비되는 것도 가능하다.
이어서, 재생탱크(230)가 2개 이상인 경우, 재생탱크(230) 상부에 위치한 밸브(233)도 복수로 구비됨에 따라 제1 이송제어장치(미도시)는 상기 재생탱크(230)에 구비된 상기 제1 센서(232)의 액면높이에 따라서 상부에 위치한 2개 이상의 밸브(233)를 제어하여 방사용액을 복수의 재생탱크(230) 중 어느 하나의 재생탱크(230)로 이송할지 여부를 제어한다.
한편, 상기 전기방사장치(1)에 VOC 재활용 장치(300)가 구비된다. 즉, 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))에 노즐(12)을 통하여 고분자 방사용액의 방사 시 발생되는 VOC(Volatile Organic Compounds : 휘발성 유기 화합물)를 응축하여 액화시키기 위한 응축장치(310)와 상기 응축장치(310)를 통하여 응축된 VOC를 증류하여 액화시키는 증류장치(320) 및 상기 증류장치(320)를 통하여 액화된 용매를 저장하기 위한 용매 저장장치(330)를 포함하는 VOC 재활용 장치(300)가 구비된다.
여기서, 상기 응축장치(310)는 수냉식, 증발식 또는 공냉식 응축장치로 이루어지는 것이 바람직하나, 이에 한정하지 아니한다.
한편, 상기 각 유닛(10a, 10b, 10c(미도시)) 내에서 발생되는 기화상태의 VOC를 응축장치(310)로 유입시키고, 상기 응축장치(310)에서 발생되는 액화상태의 VOC를 용매 저장장치(330)에 저장하기 위한 배관(311, 331)이 각각 연결설치된다.
즉, 상기 각 유닛(10a, 10b, 10c(미도시))과 응축장치(310), 상기 응축장치(310)와 용매 저장장치(330)를 상호 연결하기 위한 배관(311, 331)이 각각 연결설치된다.
본 발명의 일 실시예에서는 상기 응축장치(310)를 통하여 VOC를 응축시킨 후 응축된 액화상태의 VOC가 용매 저장장치(330)로 공급되는 구조로 이루어져 있으나, 상기 응축장치(310)와 용매 저장장치(330) 사이에 증류장치(320)가 구비되어 하나 이상의 용매가 적용될 경우, 각각의 용매를 분리 및 분류하도록 이루어지는 것도 가능하다.
여기서, 상기 증류장치(320)는 응축장치(310)에 연결되어 액화상태의 VOC를 고온의 열로 가열하여 기화시키고, 이를 다시 냉각하여 액화되는 VOC를 용매 저장장치(330)로 공급된다.
이 경우, 상기 VOC 재활용 장치(300)은 각 유닛(10a, 10b, 10c(미도시))을 통하여 배출되는 기화된 VOC에 공기 및 냉각수를 공급하여 응축 및 액화시키는 응축장치(310)와 상기 응축장치(310)를 통하여 응축된 VOC에 열을 가하여 기화상태로 만든 다음, 다시 냉각시켜 액화상태로 만드는 증류장치(320) 및 상기 증류장치(320)를 통하여 액화된 VOC를 저장하기 위한 용매 저장장치(330)를 포함하여 구성된다.
여기서, 상기 증류장치(320)는 분별증류장치로 이루어지는 것이 바람직하나, 이에 한정하지 아니한다.
즉, 상기 각 유닛(10a, 10b, 10c(미도시))과 응축장치(310), 상기 응축장치(310)와 증류장치(320) 및 상기 증류장치(320)와 용매 저장장치(330)를 상호 연결하기 위한 배관(311, 321, 331)이 각각 연결설치된다.
이어서, 오버플로우 되어 상기 재생탱크(230)에 회수된 방사용액에 있어서의 용매의 함유율을 측정한다. 해당 측정은 재생탱크(230) 중에 방사용액의 일부를 샘플로 하여 추출하고, 해당 샘플을 분석함으로 실시할 수 있다. 방사용액의 분석은 이미 알려진 방법으로 행할 수 있다.
상기한 바와 같은 해당 측정결과를 기초로 하여, 필요한 양의 용매는 상기 용매 저장장치(330)에 공급되는 액화상태의 VOC를 배관(332)을 통하여 상기 재생탱크(230)에 공급된다. 즉, 액화된 VOC는 측정결과에 따라 필요한 양만큼 상기 재생탱크(230)에 공급되어 용매로써 재사용 및 재활용이 가능하다.
여기서, 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))을 구성하는 케이스(18)는 도전체로 이루어지는 것이 바람직하나, 상기 케이스(18)가 절연체로 이루어지거나, 상기 케이스(18)가 도전체 및 절연체가 혼용되어 적용되는 것도 가능하고, 기타 다양한 재질로 이루어지는 것도 가능하다.
또한, 상기 케이스(18)의 상부가 절연체로 이루어지고, 그 하부가 도전체로 혼용되어 적용되는 경우에는 절연부재(19)를 삭제하는 것도 가능하다. 이를 위하여 상기 케이스(18)는 도전체로 형성되는 하부와 절연체로 형성되는 상부가 상호 결합되어 하나의 케이스(18)로 형성되는 것이 바람직하나, 이에 한정하지 아니한다.
상기한 바와 같이, 상기 케이스(18)를 도전체 및 절연체로 형성하되, 상기 케이스(18)의 상부를 절연체로 형성함으로써 케이스(18)의 상부 내측면에 컬렉터(13)를 취부하기 위하여 별도로 구비되는 절연부재(19)의 삭제가 가능하며, 이로 인해 장치의 구성을 간소화할 수 있다.
또한, 상기 컬렉터(13)와 케이스(18) 사이의 절연을 최적화할 수 있어 노즐블록(11)과 컬렉터(13) 사이에 35kV를 인가하여 전기방사를 실시할 경우, 상기 컬렉터(13)와 케이스(18) 및 그 외 기타 부재 사이에서 발생될 수 있는 절연파괴를 방지할 수 있다.
더불어, 리크 전류를 소정 범위 내에 멈출 수 있어 전압 발생장치(14a, 14b, 14c)로부터 공급되는 전류의 감시가 가능하고, 전기방사장치(1)의 이상을 조기에 감지할 수 있으며, 이로 인해 전기방사장치(1)의 장시간 연속적인 운전이 가능하고, 요구하는 성능의 나노섬유 제조가 안정적이며, 나노섬유의 대량생산이 가능하다.
여기서, 절연체로 형성되는 상기 케이스(18)의 두께(a)는 "a=8mm"를 만족시키도록 이루어진다.
이로 인해, 상기 노즐블록(11)과 컬렉터(13) 사이에 40kV를 인가하여 전기방사를 실시할 경우, 컬렉터(13)와 케이스(18) 및 그 외 기타 부재 사이에서 발생될 수 있는 절연 파괴를 방지할 수 있으며, 리크 전류를 소정 범위 내로 제한할 수 있다.
또한, 절연체로 형성되는 케이스(18)의 내측면과 컬렉터(13)의 외주면 사이 거리가 케이스(18)의 두께(a)와 케이스(18)의 내측면과 컬렉터(13)의 외측면 사이의 거리(b)는 "a+b=80mm"를 만족시키도록 이루어진다.
이로 인해, 상기 노즐블록(11)과 컬렉터(13) 사이에 40kV를 인가하여 전기방사를 실시할 경우, 컬렉터(13)와 케이스(18) 및 그 외 기타 부재 사이에서 발생될 수 있는 절연 파괴를 방지할 수 있으며, 리크 전류를 소정 범위 내로 제한할 수 있다.
한편, 본 발명에 의한 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시)) 내에 설치되는 노즐블록(11)의 각 관체(40) 내에 온도조절 제어장치(60)가 구비되며 전압 발생장치(14a, 14b, 14c)와 연결되어 있다.
즉, 도 4에서 도시하고 있는 바와 같이, 상기 각 유닛(10a, 10b, 10c(미도시)) 내에 설치되되, 그 상부에 구비되는 다수개의 노즐(12)로 고분자 방사용액이 공급되는 노즐블록(11)의 관체(40)에 온도조절 제어장치(60)가 구비된다.
본 발명의 상기 온도조절 제어장치(60)는 오프라인 상으로 작업자가 중간탱크(220)의 농도를 측정하여 노즐블록(110)이나 주저장탱크(210)의 온도조절을 통해 폴리머 용액의 점도를 제어할 수 있는 수동식이 가능함과 동시에, 온라인상으로 자동제어 시스템을 통해 농도측정에 따라 해당 용액의 온도를 조절할 수 있는 자동식인 것을 포함한다.
여기서, 상기 노즐블록(11) 내의 고분자 방사용액의 흐름은 고분자 방사용액이 저장되는 방사용액 주탱크(8)로부터 용액 유동파이프를 통해 각 관체(40)에 공급된다.
그리고, 상기 각 관체(40)에 공급된 고분자 방사용액은 다수개의 노즐(12)을 통해 토출 및 분사되어 나노섬유의 형태로 장척시트(15)에 집적된다.
이들 각 관체(40)의 상부에 길이 방향으로 다수개의 노즐(12)이 일정간격 이격되어 장착되고, 상기 노즐(12) 및 관체(40)는 도전 부재로 이루어져 전기적으로 접속된 상태로 관체(40)에 장착된다.
여기서, 상기 각 관체(40)로 공급 및 유입되는 고분자 방사용액의 온도조절을 제어하기 위하여 상기 온도조절 제어장치(60)는 관체(40) 내주연에 구비되는 열선(41, 42) 또는 파이프(43)로 이루어진다.
그리고, 상기 다수개의 관체(40)의 온도를 조절하기 위하여 온도조절 제어장치(60)가 구비된다.
이때, 도 5 내지 도 6에서 도시하고 있는 바와 같이, 열선(41) 형태의 온도조절 제어장치(60)가 상기 노즐블록(11)의 관체(40) 내주연에 나선상으로 형성되어 관체(40)로 공급 및 유입되는 고분자 방사용액의 온도를 조절하도록 이루어지는 것이 바람직하다.
본 발명의 일 실시예에서는 상기 노즐블록(11)의 관체(40) 내주연에 열선(41) 형태의 온도조절 제어장치(60) 나선상으로 구비되어 있으나, 도 7 내지 도 8에서 도시하고 있는 바와 같이, 열선(42) 형태의 온도조절 제어장치(60)가 관체(40)의 내주연에 방사상으로 다수개 구비되는 것도 가능하고, 도 9 내지 도 10에서 도시하고 있는 바와 같이, 상기 파이프(43) 형태의 온도조절 제어장치(60)가 관체(40) 내주연에 대략 "C"형태로 구비되는 것도 가능하다.
여기서, 도 11에서 도시하고 있는 바와 같이, 본 발명에 의한 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시)) 내로 인입 및 공급되는 장척시트(15)의 이송속도를 조절하기 위한 보조 이송장치(16)가 구비된다.
상기 보조 이송장치(16)는 각 유닛(10a, 10b, 10c(미도시)) 내에 설치되는 컬렉터(13)에 정전기적 인력으로 부착된 장척시트(15)의 탈착 및 이송이 용이하도록 장척시트(15)의 이송속도에 동기하여 회전하는 보조벨트(16a) 및 상기 보조벨트(16a)를 지지하며 회전시키는 보조벨트 롤러(16b)를 포함하여 구성된다.
상기한 바와 같은 구조에 의하여 상기 보조벨트 롤러(16b)의 회전에 의해 보조벨트(16a)가 회동하고, 상기 보조벨트(16a)의 회동에 의하여 장척시트(15)가 유닛(10a, 10b, 10c(미도시))으로 인입 및 공급되며, 이를 위하여 상기 보조벨트 롤러(16b) 중 어느 한 보조벨트 롤러(16b)는 모터에 회전가능하게 연결된다.
본 발명의 일 실시예에서는 상기 보조벨트(16a)에 보조벨트 롤러(16b)가 5개 구비되고, 모터의 동작에 의해 어느 한 보조벨트 롤러(16b)가 회전됨으로써 보조벨트(16a)가 회동됨과 동시에 나머지 보조벨트 롤러(16b)가 회전되도록 이루어져 있으나, 상기 보조벨트(16a)에 2개 이상의 보조벨트 롤러(16b)가 구비되고, 모터의 동작에 의해 어느 한 보조벨트 롤러(16b)가 회전되고, 이에 따라 보조벨트(16a) 및 나머지 보조벨트 롤러(16b)가 회전되도록 이루어지는 것도 가능하다.
한편, 본 발명의 일 실시예에서는 상기 보조 이송장치(16)가 모터에 의해 구동가능한 보조벨트 롤러(16b) 및 보조벨트(16a)로 이루어져 있으나, 도 12에서 도시하고 있는 바와 같이, 상기 보조벨트 롤러(16b)가 마찰계수가 낮은 롤러로 이루어지는 것도 가능하다.
이때, 상기 보조벨트 롤러(16b)는 마찰계수가 낮은 베어링을 포함하는 롤러로 이루어지는 것이 바람직하다.
본 발명의 일 실시예에서는 상기 보조 이송장치(16)가 보조벨트(16a)와 마찰계수가 낮은 보조벨트 롤러(16b)로 이루어져 있으나, 보조벨트(16a)가 제외된 마찰계수가 낮은 롤러만 구비하여 장척시트(15)의 이송하도록 이루어지는 것도 가능하다.
또한, 본 발명의 일 실시예에서는 상기 보조벨트 롤러(16b)로 마찰계수가 낮은 롤러가 적용되어 있으나, 마찰계수가 낮은 롤러라면 그 형태와 구성에 제한받지 아니하며, 구름베어링, 기름베어링, 볼베어링, 롤러베어링, 미끄럼베어링, 슬리브베어링, 유동압 저널베어링, 유정압 저널베어링, 공기압베어링, 공기동입 베어링, 공기정압 베어링 및 에어베어링과 같은 베어링들이 포함되는 롤러가 적용되는 것도 가능하고, 플라스틱, 유화제 등의 소재 및 첨가제를 포함시켜 마찰계수를 저감시킨 롤러가 적용되는 것도 가능하다.
한편, 본 발명에 의한 전기방사장치(1)에 두께 측정장치(70)가 구비된다. 즉, 도 1에 도시하고 있는 바와 같이, 상기 전기방사장치(1)의 각 유닛(10a, 10b) 사이에 두께 측정장치(70)가 구비되고, 상기 두께 측정장치(70)에 의해 측정된 두께에 따라 이송속도(V) 및 노즐블록(11)을 제어한다.
상기한 바와 같은 구조에 의하여 상기 전기방사장치(1)의 선단부에 위치한 유닛(10a)에서 토출된 나노섬유 부직포의 두께가 편차량보다 얇게 측정될 경우, 다음 유닛(10b, 10c(미도시))의 이송속도(V)를 늦게하거나, 노즐블록(11)의 토출양을 증가시키고, 전압 발생장치(14a, 14b, 14c)의 전압 세기를 조절하여 단위면적당의 나노섬유 부직포의 토출량을 증대시켜 두께를 두껍게 할 수 있다.
또한, 상기 전기방사장치(1)의 선단부에 위치한 유닛(10a)에서 토출된 나노섬유 부직포의 두께가 편차량보다 두껍게 측정될 경우, 다음 유닛(10b, 10c(미도시))의 이송속도(V)를 빠르게 하거나, 노즐블록(11)의 토출양을 작게하고, 전압 발생장치(14a, 14b, 14c) 전압의 세기를 조절하여 단위면적당의 나노섬유 부직포의 토출량을 작게하여 적층량을 줄임으로써 두께를 얇게 할 수 있으며, 이로 인해 균일한 두께를 갖는 나노섬유 부직포를 제조할 수 있다.
여기서, 상기 두께측정장치(9)는 인입 및 공급되는 장척시트(15)를 사이에 두고, 상, 하로 마주보게 배치되며, 초음파 측정방식에 의해 상기 장척시트(15)의 상부 또는 하부까지의 거리를 측정하는 한 쌍의 초음파 종파 횡파 측정방식으로 이루어지는 두께측정부가 구비된다.
이렇게 상기 한 쌍의 초음파 측정장치에 의해 측정된 거리를 기초로 하여 상기 장척시트(15)의 두께를 산출할 수 있다. 즉, 나노섬유 부직포가 적층된 장척시트(15)에 초음파 종파와 횡파를 함께 투사하여 종파와 횡파의 각 초음파 신호가 장척시트(15)에서 왕복 이동하는 시간, 즉 종파와 횡파의 각 전파시간을 측정한 뒤, 상기 측정된 종파와 횡파의 전파시간과 나노섬유 부직포가 적층된 장척시트(15)의 기준온도에서 종파와 횡파의 전파속도, 및 종파와 횡파 전파속도의 온도상수를 이용하는 소정의 연산식으로부터 피검사체의 두께를 계산하는 초음파 종파와 횡파를 이용한 두께측정장치이다.
다시 말하면, 상기 두께 측정장치(70)는 초음파의 종파와 횡파의 각 전파 시간을 측정한 뒤, 상기 측정된 종파와 횡파의 전파시간과, 장척시트(15)의 기준온도에서의 종파와 횡파의 전파속도 및 종파와 횡파 전파속도의 온도상수를 이용하는 소정의 연산식으로부터 나노섬유 부직포가 적층된 장척시트(15)의 두께를 계산함으로써, 내부온도가 분균일한 상태에서도 온도 변화에 따른 전파속도의 변화에 의한 오차를 자체 보상하여 두께를 정밀하게 측정할 수 있고, 나노섬유 부직포 내부에 어떤 형태의 온도 분포가 존재하더라도 정밀한 두께의 측정이 가능하다.
한편, 본 발명에 의한 전기방사장치(1)에 고분자 방사용액이 분사되어 적층된 후 이송되는 장척시트(15)의 나노섬유 부직포의 두께를 측정하여 장척시트(15)의 이송속도 및 노즐블록(11)을 제어하는 두께 측정장치(70)가 구비되어 있으나, 상기 전기방사장치(1)에 장척시트(15)의 이송속도를 조절하기 위한 장척시트 이송속도 조절장치(30)가 더 구비된다.
여기서, 상기 장척시트 이송속도 조절장치(30)는 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시)) 사이에 형성되는 완충구간(31)과 상기 완충구간(31) 상에 구비되어 장척시트(15)를 지지하는 한 쌍의 지지롤러(33, 33') 및 상기 한 쌍의 지지롤러(33, 33') 사이에 구비되는 조절롤러(35)를 포함하여 구성된다.
이때, 상기 지지롤러(33, 33')는 상기 각 유닛(10a, 10b, 10c(미도시)) 내에서 노즐(12)이 분사하는 방사용액에 의해 나노섬유 부직포가 적층형성되는 장척시트(15)의 이송 시 상기 장척시트(15)의 이송을 지지하기 위한 것으로서, 상기 각 유닛(10a, 10b, 10c(미도시)) 사이에 형성되는 완충구간(31)의 선, 후단에 각각 구비된다.
그리고, 상기 조절롤러(35)는 상기 한 쌍의 지지롤러(33, 33') 사이에 구비되되, 상기 장척시트(15)가 권취되고, 상기 조절롤러(35)의 상, 하 이동에 의해 상기 각 유닛(10a, 10b, 10c(미도시))별 장척시트(15a, 15b, 15c(미도시))의 이송속도 및 이동시간이 조절된다.
이를 위하여 상기 각 유닛(10a, 10b, 10c(미도시)) 내 장척시트(15a, 15b, 15c(미도시))의 이송속도를 감지하기 위한 감지센서(미도시)가 구비되고, 상기 감지센서에 의해 감지된 각 유닛(10a, 10b, 10c(미도시)) 내 장척시트(15a, 15b, 15c(미도시))의 이송속도에 따라 조절롤러(35)의 이동을 제어하기 위한 주 제어장치(7)가 구비된다.
본 발명의 일 실시예에서는 상기 각 유닛(10a, 10b, 10c(미도시)) 내에서 장척시트(15a, 15b)의 이송속도를 감지하고, 감지된 장척시트(15a, 15b, 15c(미도시))의 이송속도에 따라 제어부가 조절롤러(35)의 이동을 제어하는 구성으로 이루어져 있으나, 상기 장척시트(15a, 15b, 15c(미도시))를 이송시키기 위해 컬렉터(13)의 외측에 구비되는 보조벨트(16a) 또는 상기 보조벨트(16a)를 구동시키는 보조벨트롤러(16b) 또는 모터(미도시)의 구동속도를 감지하고, 이에 따라 제어부가 조절롤러(35)의 이동을 제어하는 구성으로 이루어지는 것도 가능하다.
상기한 바와 같은 구조에 의하여 상기 감지센서가 각 유닛(10a, 10b, 10c(미도시)) 중 선단에 위치하는 유닛(10a) 내 장척시트(15a)의 이송속도가 그 후단에 위치하는 유닛(10b, 10c(미도시)) 내 장척시트(15b, 15c(미도시))의 이송속도보다 빠르다고 감지할 경우, 도 13 내지 도 14에서 도시하고 있는 바와 같이, 선단에 위치하는 유닛(10a) 내에서 이송되는 장척시트(15a)가 처지는 것을 방지하기 위하여 상기 한 쌍의 지지롤러(33, 33') 사이에 구비되되, 장척시트(15)가 권취되는 조절롤러(35)를 하측으로 이동하면서 선단에 위치하는 유닛(10a) 내에서 그 후단에 위치하는 유닛(10b, 10c(미도시))으로 이송되는 장척시트(15) 중 선단에서 위치하는 유닛(10a) 외부로 이송되어 각 유닛(10a, 10b, 10c(미도시)) 사이에 위치하는 완충구간(31)으로 과다하게 이송되는 장척시트(15a)를 당겨 선단에 위치하는 유닛(10a) 내 장척시트(15a)의 이송속도와 그 후단에 위치하는 유닛(10b, 10c(미도시)) 내 장척시트(15b, 15c(미도시))의 이송속도가 동일해지도록 보정제어하면서 장척시트(15a)의 처짐 및 구겨짐을 방지한다.
한편, 상기 감지센서가 각 유닛(10a, 10b, 10c(미도시)) 중 선단에 위치하는 유닛(10a) 내 장척시트(15a)의 이송속도가 그 후단에 위치하는 유닛(10b, 10c(미도시)) 내 장척시트(15b, 15c(미도시))의 이송속도보다 느리다고 감지할 경우, 도 15 내지 도 16에서 도시하고 있는 바와 같이, 후단에 위치하는 유닛(10b, 10c(미도시)) 내에서 이송되는 장척시트(15b, 15c(미도시))가 찢어지는 것을 방지하기 위하여 상기 한 쌍의 지지롤러(33, 33') 사이에 구비되되, 장척시트(15)가 권취되는 조절롤러(35)를 상측으로 이동하면서 선단에 위치하는 유닛(10a) 내에서 그 후단에 위치하는 유닛(10b, 10c(미도시))으로 이송되는 장척시트(15) 중 선단에서 위치하는 유닛(10a) 외부로 이송되어 각 유닛(10a, 10b, 10c(미도시)) 사이에 위치하는 완충구간(31)에 조절롤러(35)에 의해 권취되어 있는 장척시트(15a)를 후단에 위치하는 유닛(10b, 10c(미도시))에 빠르게 공급하여 선단에 위치하는 유닛(10a) 내 장척시트(15a)의 이송속도와 그 후단에 위치하는 유닛(10b, 10c(미도시)) 내 장척시트(15b, 15c(미도시))의 이송속도가 동일해지도록 보정제어하면서 장척시트(15b, 15c(미도시))의 끊어짐을 방지한다.
상기한 바와 같은 구조에 의하여 상기 각 유닛(10a, 10b, 10c(미도시)) 중 후단에 위치하는 유닛(10b, 10c(미도시)) 내로 이송되는 장척시트(15b, 15c(미도시))의 이송속도를 조절함으로써 상기 각 유닛(10a) 중 후단에 위치하는 유닛(10b, 10c(미도시)) 내의 장척시트(15b, 15c(미도시)) 이송속도가 그 선단에 위치하는 유닛(10a) 내의 장척시트(15a) 이송속도와 동일해지는 효과를 얻을 수 있다.
한편, 본 발명에 의한 전기방사장치(1)에 통기도 계측장치(80)가 구비된다. 즉, 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시)) 중 최후단에 위치하는 유닛(10c)의 후방에 전기방사장치(1)를 통하여 제조된 나노섬유 부직포의 통기도를 측정하기 위한 통기도 계측장치(80)가 구비된다.
상기한 바와 같이, 상기 통기도 계측장치(80)를 통하여 측정된 나노섬유 부직포의 통기도를 기초로 하여 장척시트(15)의 이송속도 및 노즐블록(11)을 제어한다.
이렇게 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))을 통하여 토출된 나노섬유 부직포의 통기도가 크게 계측될 경우, 후단부에 위치하는 유닛( 10b, 10c(미도시))의 이송속도(V)를 늦게하거나, 노즐블록(11)의 토출양을 증가시키고, 전압 발생장치(14a, 14b, 14c(미도시)) 전압의 세기를 조절하여 단위면적당의 나노섬유의 토출량을 증대시켜 통기도를 작게 형성한다.
그리고, 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))을 통하여 토출된 나노섬유 부직포의 통기도가 작게 계측될 경우, 후단부의 위치하는 유닛(10b, 10c(미도시))의 이송속도(V)를 빠르게 하거나, 노즐블록(11)의 토출양을 감소시키고, 전압 발생장치(14a, 14b, 14c(미도시))의 전압의 세기를 조절하여 단위면적당의 나노 섬유의 토출량을 감소시켜 적층량을 줄이게 함으로서 통기도를 크게 형성한다.
상기한 바와 같이, 상기 나노섬유 부직포의 통기도를 계측한 후 통기도에 따라 각 유닛(10a, 10b, 10c(미도시))의 이송속도 및 노즐블록(11)을 제어함으로써 균일한 통기도를 갖는 나노섬유 부직포의 제조가 가능하다.
여기서, 상기 나노섬유 부직포의 통기도 편차량(P)이 소정의 값 미만인 경우에는 이송속도(V)를 초기 값으로부터 변화시키지 않고, 상기 편차량(P)이 소정값 이상인 경우에는 이송속도(V)를 초기 값으로부터 변화시키도록 제어하는 것도 가능하기 때문에, 이송속도(V) 제어장치에 의한 이송속도(V)의 제어를 단순화하는 것이 가능해진다.
또한, 이송속도(V)의 제어 외에도 노즐블록(11)의 토출양 및 전압의 세기 조절이 가능하여 통기도 편차량(P)이 소정의 값 미만인 경우에는 노즐블록(11)의 토출양과 전압의 세기를 초기 값으로부터 변화시키지 않고, 상기 편차량(P)이 소정의 값 이상인 경우에는 노즐블록(11)의 토출양과 전압의 세기를 초기 값으로부터 변화시키도록 제어하여 노즐블록(11)의 토출양과 전압의 세기의 제어를 단순화할 수 있다.
여기서, 상기 전기방사장치(1)에는 주 제어장치(7)가 구비되되, 상기 주 제어장치(7)는 노즐블록(11)과 전압 발생장치(14a, 14b, 14c(미도시))와 두께 측정장치(70)와 장척시트 이송속도 조절장치(30) 및 통기도 계측장치(80)를 제어한다.
한편, 상기 전기방사장치(1)의 각 유닛(10a, 10b, 10c(미도시))을 통하여 전기방사된 나노섬유 부직포를 라미네이팅하기 위한 라미네이팅 장치(90)가 상기 각 유닛(10a, 10b, 10c(미도시)) 중 후단에 위치하는 유닛(10c(미도시))의 후방에 구비되고, 상기 라미네이팅 장치(90)에 의해 전기방사장치(1)를 통하여 전기방사된 나노섬유 부직포의 후공정을 수행한다.
여기서, 본 발명에 의한 전기방사장치(1)의 최후단에 합지장치(100)가 구비된다. 상기 합지장치(100)는 각 유닛(10a, 10b, 10c(미도시))을 통하여 장척시트(15) 상에 고분자 방사용액이 방사된 나노섬유 부직포 상에 기재(미도시)를 접합시킨다.
이때, 상기 합지장치(100)는 상기 나노섬유 부직포의 하부에 구비되되, 상기 합지장치(100)를 통하여 공급되는 기재는 나노섬유 부직포의 하부면에 접합된다.
본 발명의 일 실시예에서는 상기 기재가 나노섬유 부직포의 하부면에 접합되도록 상기 합지장치(100)가 나노섬유 부직포의 하부에 구비되어 있으나, 상기 기재가 나노섬유 부직포의 상부면에 접합되도록 상기 합지장치(100)가 나노섬유 부직포의 상부에 구비되는 것도 가능하다.
또한, 상기 나노섬유 부직포의 상부면 및 하부면에 기재를 접합시키도록 상기 합지장치(100)가 나노섬유 부직포의 상, 하부에 각각 구비되는 것도 가능하다.
이하, 상기 전기방사장치를 이용하여 본 발명의 폴리비닐리덴 플루오라이드 나노섬유를 포함하는 필터의 제조방법을 설명한다.
본 발명에서 장척시트(15)로 사용되는 기재는 셀룰로오스, 이성분계, 폴리에틸렌테레프탈레이트로부터 선택되는 기재를 사용하며, 저융점 고분자 용액으로는 저융점 폴리우레탄, 저융점 폴리에스테르 및 저융점 폴리비닐리덴 플루오라이드를 사용하고, 방사용액의 고분자로는 고융점 폴리비닐리덴 플루오라이드와 저융점 폴리비닐리덴 플루오라이드를 사용한다.
본 발명에 사용되는 셀룰로오스 기재는 구성비가 100% 셀룰로오스로 이루어진 것을 사용하는 것이 바람직하나, 총 질량 대비 셀룰로오스와 폴리에틸렌테레프탈레이트(PET)가 70~90 : 10~30의 질량% 비율로 구성되어 있는 셀룰로오스 기재를 사용하는 것도 가능하며, 셀룰로오스 기재가 방염 코팅되어 있는 것을 사용하는 것도 가능하다.
본 발명에서의 이성분 기재는 용융점이 다른 두가지 성분이 결합된 폴리에틸렌 테레프탈레이트가 가장 바람직하다. 상기 폴리에틸렌 테레프탈레이트 이성분 기재는 시스-코어형(Sheath-Core), 사이드 바이 사이드(Side-by-Side), 씨타입(C-Type) 등으로 구분될 수 있다. 이 중 시스-코어형 이성분 기재의 경우에는 시스 부분이 저융점 폴리에틸렌 테레프탈레이트이며, 코어부분은 일반적인 폴리에틸렌 테레프탈레이트로 구성되어 있다. 여기서 시스부분은 약 10 내지 90 중량%이고, 코어는 약 90 내지 10 중량%로 이루어져있다. 시스 부분은 바인더 섬유의 바깥 표면을 형성하는 열적 결합제로서 작용하며, 약 80 내지 150℃의 융점을 갖고, 코어는 약 160 내지 250℃의 융점을 갖는다. 본 발명에서 일 실시예로 사용되는 시스코어형 이성분 기재는 시스부분에 통상의 융점 분석기기로 융점이 나타나지 않는 비결정성 폴리에스테르 공중합체를 포함하며, 코어성분으로는 바람직하게 상대적으로 고융점 성분을 사용하는 열접착성 복합섬유이다.
시스부분에 포함되는 폴리에스테르 공중합체는 50 내지 70몰%가 폴리에틸렌 테레프탈레이트 단위로 되어 있는 공중합 폴리에스테르이다. 30 내지 50몰%는 공중합 산성분으로는 이소프탈산이 바람직하나, 그 외에도 통상의 디카르복실산은 모두 가능하다.
코어 성분으로 사용하는 고융점 성분으로는 융점이 160℃ 이상인 폴리머가 적합하며, 그 사용가능한 예로는 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리아마이드, 폴리에틸렌 테레프탈레이트 공중합체 및 폴리프로필렌 등이 있다.
상기 이성분 기재의 평량은 10 내지 50g/m2인 것이 바람직하며, 상기 폴리에틸렌 테레프탈레이트 기재의 평량은 50 내지 300g/m2인 것이 바람직하다.
상기 저융점 폴리우레탄은 연화온도가 80-100℃인 저중합도 폴리우레탄을 사용한다.
상기 저융점 폴리에스테르는 테레프탈산, 이소프탈산 및 이들의 혼합물을 사용하는 것이 좋다. 여기에 융점을 더욱 강하시키기 위하여 디올성분으로 에틸렌글리콜(ethylene glycol)을 첨가하는 것도 무방하다.
상기 저융점 폴리비닐리덴 플루오라이드는 중량 평균 분자량 5,000이고 융점 80~160℃인 저융점 폴리비닐리덴 플루오라이드를 사용한다.
상기한 저융점 폴리우레탄, 저융점 폴리에스테르, 저융점 폴리비닐리덴 플루오라이드는 단독 또는 2종 이상을 혼합하여 사용할 수 있음은 물론이다.
또한, 본 발명에서는 접착층 형성시 에폭시 수지-경화제 용액을 사용 할 수 있다.
이때, 상기 에폭시(epoxy) 수지는 열경화성 수지의 중간체로 경화제와의 반응에 의하여 불용/불융의 3차원 망목상 구조를 형성하여 에폭시 고유의 물성을 나타내며, 상기 에폭시 수지는 경화제와의 반응에 의하여 접착성, 기계적 강도, 내열성, 내화학성, 내수성, 전기 절연성, 성형성 및 함침성이 우수해지며, 복합재료의 제조가 용이하며, 경화제의 선택에 따라 다양한 물성의 구현이 가능한 장점이 있다.
이러한 에폭시 수지의 비제한적인 예를 들면, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지 등이 있다.
상기 비스페놀 A형 에폭시 수지는 하기 화학식 1로 나타내며, 가장 일반적으로 사용되는 에폭시 수지로써 제법이 크게 직접법과 간접법이 있다.
[화학식 1]
Figure 112015123321417-pat00001
또한, 상기 비스페놀 F형 에폭시 수지는 하기 화학식 2로 표시되고, 비스페놀 F와 ECH 반응으로 만들어지며, 비스페놀 A형 에폭시 수지와 비교시 점도가 낮으며, 이론상 기계적, 물리적 특성이 다소 떨어지나, 오히려 일반적인 접착 등에서 향상되는 특성을 나타낸다.
[화학식 2]
Figure 112015123321417-pat00002
또한, 상기 비스페놀 S형 에폭시 수지는 하기 화학식 3으로 표시되고, 일반적으로 에폭시 접착제를 빠르게 경화시키는데 사용되며, 중합체 반응에서 반응물로서 사용된다.
[화학식 3]
Figure 112015123321417-pat00003
한편, 상기 경화제는 아민계 경화제, 산무수물계 경화제 및 이미다졸계 경화제로 이루어진 군에서 선택된 1종인 것이 바람직하나, 이에 한정되는 것은 아니다.
상기 아민계 경화제의 비제한적인 예로는, 지방족 폴리아민, 변성 지방족 폴리아민, 방향족 아민, 3차 아민, 2차 아민 등이 있다.
상기 지방족 폴리아민의 예로는, Diethylene Triamine (DETA), Triethylene Tetramine (TETA), Diethylamino propyl amine (DEAPA), Menthane diamine(MDA), N-aminoethyl piperazine (N-AEP), M-xylene diamine (MXDA), Isophorone diamine (IPDA) 등이 있으나, 이에 한정되는 것은 아니다.
상기 변성 지방족 폴리아민의 예로는, Epoxy Polyamine Adduct, Ethylene 또는 Propylene Oxide 와 Polyamine adduct, Cyanoethyl화 Polyamine, Ketone 봉쇄 Polyamine (Ketimine) 등이 있으나, 이에 한정되는 것은 아니다.
상기 방향족 아민의 예로는, Meta phenylene Diamine (MPD), 4.4' Dimethyl aniline (DAM or DDM), Diamino Diphenyl Sulfone (DDS), Aromatic amine adduct 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 산무수물계 경화제의 비제한적인 예로는, 폴리아미드(PA), 4수소무수프탈산(THPA), 메틸4수소무수프탈산(MTHPA), 6수소무수프탈산(HHPA), MNA 등이 있다.
또한, 이미다졸계 경화제의 비제한적인 예로는, 2MZ, 2E4MZ 등이 있다.
또한, 상기 경화제 용액은 경화촉진제를 추가로 더 포함할 수 있다.
본 발명에 있어서 사용되는 경화 촉진제로서는 에폭시 화합물의 경화 촉진에 일반적으로 사용되는 경화 촉진제이면 특별히 제한은 없고, 예를 들면 제3급 아민, 제3급 아민염, 이미다졸류, 유기 인계 화합물, 제4급 암모늄염, 제4급 포스포늄염, 유기 금속염, 붕소 화합물 등을 이용할 수 있다. 경화 촉진제는 1종 단독으로 또는 2종 이상을 조합하여 사용할 수 있다.
제3급 아민으로서는 예를 들면 라우릴디메틸아미노, N,N-디메틸시클로헥실아민, N,N-디메틸벤질아민, N,N-디메틸아닐린, (N,N-디메틸아미노메틸)페놀, 2,4,6-트리스(N,N-디메틸아미노메틸)페놀, 1,8-디아자비시클로[5.4.0]운데센-7(DBU), 1,5-디아자비시클로[4.3.0]노넨-5(DBN) 등을 들 수 있다.
제3급 아민염으로서는 예를 들면 상기 제3급 아민의 카르복실산염, 술폰산염, 무기산염 등을 들 수 있다. 카르복실산염으로서는 옥틸산염 등의 탄소수 1 내지 30(특히, 탄소수 1 내지 10)의 카르복실산의 염(특히, 지방산의염) 등을 들 수 있다. 술폰산염으로서는 p-톨루엔술폰산염, 벤젠술폰산염, 메탄술폰산염, 에탄술폰산염 등을 들 수 있다. 제3급 아민염의 대표적인 예로서 1,8-디아자비시클로[5.4.0]운데센-7(DBU)의 염(예를 들면, p-톨루엔술폰산염, 옥틸산염) 등을 들 수 있다.
금속계 경화 촉진제로서는, 코발트, 구리, 아연, 철, 니켈, 망간, 주석 등의 금속의, 유기 금속 착체 또는 유기 금속염을 들 수 있다. 유기 금속 착체의 구체예로서는, 코발트(II) 아세틸아세토네이트, 코발트(III) 아세틸아세토네이트 등의 유기 코발트 착체, 구리(II) 아세틸아세토네이트 등의 유기 구리 착체, 아연(II) 아세틸아세토네이트 등의 유기 아연 착체, 철(III) 아세틸아세토네이트 등의 유기 철 착체, 니켈(II) 아세틸아세토네이트 등의 유기 니켈 착체, 망간(II) 아세틸아세토네이트 등의 유기 망간 착체 등을 들 수 있다. 유기 금속염으로서는, 옥틸산아연, 옥틸산주석, 나프텐산아연, 나프텐산코발트, 스테아르산주석, 스테아르산아연 등을 들 수 있다. 금속계 경화 촉진제로서는, 경화성, 용제 용해성의 관점에서, 코발트(II) 아세틸아세토네이트, 코발트(III) 아세틸아세토네이트, 아연(II) 아세틸아세토네이트, 나프텐산아연, 철(III) 아세틸아세토네이트가 바람직하고, 특히 코발트(II) 아세틸아세토네이트, 나프텐산아연이 바람직하다. 금속계 경화 촉진제는 1종 또는 2종 이상을 조합하여 사용해도 양호하다.
금속계 경화 촉진제의 첨가량은, 수지 조성물 중의 불휘발분을 100질량%로 한 경우, 금속계 경화 촉진제에 기초하는 금속의 함유량이 25 내지 500ppm, 보다 바람직하게는 40 내지 200ppm이 되는 범위에서 첨가하는 것이 바람직하다. 25ppm 미만이면, 저 조도(粗度)의 절연층 표면으로의 밀착성이 우수한 도체층의 형성이 곤란해지는 경향이 있으며, 500ppm을 초과하면, 수지 조성물의 보존 안정성, 절연성이 저하되는 경향으로 된다.
제4급 암모늄염으로서는 예를 들면 테트라에틸암모늄브로미드, 테트라부틸암모늄브로미드 등을 들 수 있다.
제4급 포스포늄염으로서는 예를 들면 하기 식 (1)
Figure 112015123321417-pat00004
(식중, R1, R2, R3, R4 는 동일 또는 상이하며, 탄소수 1 내지 16의 탄화수소기를 나타내고, X는 카르복실산 또는 유기 술폰산의 음이온 잔기를 나타냄)로 표시되는 화합물 등을 들 수 있다.
상기 탄소수 1 내지 16의 탄화수소기로서는 예를 들면 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, s-부틸, t-부틸, 펜틸, 헥실, 옥틸, 데실, 도데실기 등의 직쇄상 또는 분지쇄상의 알킬기; 비닐, 알릴, 크로틸기 등
의 직쇄상 또는 분지쇄상의 알케닐기; 페닐, 톨루일, 크실릴, 나프틸, 안트릴, 페난트릴기 등의 아릴기; 벤질, 페네틸기 등의 아랄킬기 등을 들 수 있다. 이들 중에서도 탄소수 1 내지 6의 직쇄상 또는 분지쇄상의 알킬기, 특히 부틸기가 바람직하다.
상기 「카르복실산 또는 유기 술폰산의 음이온 잔기」에 있어서의 「카르복실산」으로서는, 예를 들면 옥탄산, 데칸산, 라우르산, 미리스트산, 팔미트산 등의 탄소수 1 내지 20의 지방족 모노 카르복실산; 1,2,4,5-시클로헥산테트라카르복실산, 비시클로[2.2.1]헵탄-2,3-디카르복실산, 메틸비시클로[2.2.1]헵탄-2,3-디카르복실산 등의 지환식 카르복실산(단환의 지환식 모노 또는 폴리카르복실산, 가교환식 모노 또는 폴리카르복실산) 등을 들 수있다. 또한, 지환식 카르복실산의 지환에는 메틸기 등의 탄소수 1 내지 4의 직쇄상 또는 분지쇄상 알킬기, 메톡시기 등의 탄소수 1 내지 4의 알콕시기, 염소 원자 등의 할로겐 원자 등의 치환기가 결합하고 있을 수도 있다. 상기 카르복실산으로서는 그 중에서도 탄소수 10 내지 18의 지방족 모노 카르복실산, 탄소수 8 내지 18의 지환식 폴리카르복실산이 바람직하다.
상기 「카르복실산 또는 유기 술폰산의 음이온 잔기」에 있어서의 「유기 [0033] 술폰산」으로서는, 예를 들면 메탄술폰산, 에탄술폰산, 1-프로판술폰산, 2-프로판술폰산, 1-부탄술폰산, 1-펜탄술폰산, 1-헥산술폰산, 1-옥탄술폰산, 1-데칸술폰산, 1-도데칸술폰산 등의 지방족 술폰산(예를 들면, 탄소수 1 내지 16의 지방족 술폰산 등); 벤젠술폰산, p-톨루엔술폰산, 4-에틸벤젠술폰산, 3-(직쇄상 또는 분지쇄상 옥틸)벤젠술폰산, 4-(직쇄상또는 분지쇄상 옥틸)벤젠술폰산, 3-(직쇄상 또는 분지쇄상 도데실)벤젠술폰산, 4-(직쇄상 또는 분지쇄상도데실)벤젠술폰산, 2,4-디메틸벤젠술폰산, 2,5-디메틸벤젠술폰산, 4-메톡시벤젠술폰산, 4-에톡시벤젠술폰산, 4-클로로벤젠술폰산 등을 들 수 있다.
제4급 포스포늄염의 대표적인 예로서 테트라부틸포스포늄데칸산염, 테트라부틸포스포늄라우르산염, 테트라부틸포스포늄미리스트산염, 테트라부틸포스포늄팔미트산염, 테트라부틸포스포늄 양이온과 비시클로[2.2.1]헵탄-2,3-디카르복실산 및/또는 메틸비시클로[2.2.1]헵탄-2,3-디카르복실산의 음이온의 염, 테트라부틸포스포늄 양이온과 1,2,4,5-시클로헥산테트라카르복실산의 음이온의 염, 테트라부틸포스포늄 양이온과 메탄술폰산의 음이온의 염, 테트라부틸포스포늄 양이온과 벤젠술폰산의 음이온의 염, 테트라부틸포스포늄 양이온과 p-톨루엔술폰산의 음이온의 염, 테트라부틸포스포늄 양이온과 4-클로로벤젠술폰산의 음이온의 염, 테트라부틸포스포늄 양이온과 도데실벤젠술폰산의 음이온의 염 등을 들 수 있다.
붕소 화합물로서는 예를 들면 삼플루오르화붕소, 트리페닐보레이트 등을 들 수 있다.
이미다졸계 경화 촉진제로서는, 2-메틸이미다졸, 2-운데실이미다졸, 2-헵타데실이미다졸, 1,2-디메틸이미다졸, 2-에틸-4-메틸이미다졸, 1,2-디메틸이미다졸, 2-에틸-4-메틸이미다졸, 2-페닐이미다졸, 2-페닐-4-메틸이미다졸, 1-벤질-2-메틸이미다졸, 1-벤질-2-페닐이미다졸, 1-시아노에틸-2-메틸이미다졸, 1-시아노에틸-2-운데실이미다졸, 1-시아노에틸-2-에틸-4-메틸이미다졸, 1-시아노에틸-2-페닐이미다졸, 1-시아노에틸-2-운데실이미다졸륨트리메리테이트, 1-시아노에틸-2-페닐이미다졸륨트리메리테이트, 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진, 2,4-디아미노-6-[2'-운데실이미다졸릴-(1')]-에틸-s-트리아진, 2,4-디아미노-6-[2'-에틸-4'-메틸이미다졸릴-(1')]-에틸-s-트리아진, 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진이소시아눌산 부가물, 2-페닐이미다졸이소시아눌산 부가물, 2-페닐-4,5-디하이드록시메틸이미다졸, 2-페닐-4-메틸-5-하이드록시메틸이미다졸, 2,3-디하이드로-1H-피로로[1,2-a]벤즈이미다졸, 1-도데실-2-메틸-3-벤질이미다졸륨클로라이드, 2-메틸이미다졸린, 2-페닐이미다졸린 등의 이미다졸 화합물 및 이미다졸 화합물과 에폭시 수지와의 부가물을 들 수 있다.
아민계 경화 촉진제로서는, 트리에틸아민, 트리부틸아민 등의 트리알킬아민, 4-디메틸아미노피리딘, 벤질디메틸아민, 2,4,6-트리스(디메틸아미노메틸)페놀, 1,8-디아자비사이클로(5,4,0)-운데센(이하, DBU라고 약기한다.) 등의 아민 화합물 등을 들 수 있다.
본 발명에서는 전기방사장치에서 세 개의 유닛(10a, 10b, 10c(미도시))를 사용한다.
이하 본 발명에서 사용되는 고융점 및 저융점 PVDF에 대해 설명한다.
본 발명에 전기방사에 이용되는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF)는 플루오로 계열의 고분자 중 하나로, 플루오로 수지는 플루오린을 함유하여 열적, 화학적 성질이 우수하다.
Figure 112015123321417-pat00005
(반응식 1) 폴리비닐리덴 플루오라이드의 제조
폴리비닐리덴 플루오라이드는 상기 반응식 1과 같은 과정으로 제조되는데, 비닐리덴 클로라이드 단량체가 유리 라디칼 중합반응(free radical vinyl polymerization)에 의하여 폴리비닐리덴 플루오라이드를 제조한다.
또한 폴리비닐리덴 플루오라이드는 다른 플루오로 수지에 비해 녹는점과 밀도가 낮고, 가격이 저렴하며, 화학적으로 매우 안정되어 전기 절연체, 건물의 외벽을 바르는 고급 페인트 등에 사용된다.
또한 폴리비닐리덴 플루오라이드는 압전성을 나타내는 대표적인 유기물질로 1960년대부터 많은 연구가 진행되어 왔다. 폴리비닐리덴 플루오라이드 고분자 안에는 4가지의 결정이 혼재하고, 이것은 결정형태에 따라 α,β,γ 그리고 δ형의 최소 4가지의 형태로 구분이 된다. 그 중 폴리비닐리덴 플루오라이드의 β형 결정은 트랜스형 분자쇄가 평행으로 충진된 것으로 모노머가 갖는 영구쌍극자가 모두 한 방향으로 배열되어 큰 자발 분극을 나타낸다. 이는 연신을 통하여 폴리비닐리덴 플루오라이드 분자를 규칙적으로 배열하여 집합상태에 이방성을 부여함으로써 압전성을 가질 수 있다는 것을 의미한다. 이러한 압전 특성을 향상시키기 위하여, 폴리비닐리덴 플루오라이드 섬유 내 β형 결정을 증가시키는 다양한 방법들이 연구되고 있다.
본 발명에서 고융점 PVDF는 융점이 160 내지 200℃ 이며, 일반적인 PVDF의 융점에 해당한다. PVDF의 융점은 160 내지 200℃이며, 바람직하게는 170 내지 185℃ 이다. 따라서, 전기방사에 사용되는 고분자 중에서도 고융점 고분자로 분류되며, 본 발명에 있어서는 고융점 PVDF로 정의한다. 상기 고융점 PVDF의 중량평균 분자량은 30,000 내지 500,000이 바람직하다. 중량 평균 분자량이 30,000 미만인 경우 PVDF의 융점이 160℃ 미만이 되어, 본 발명에서 정의하는 고융점 PVDF에 해당하지 않으며, 중량평균 분자량이 500,000을 초과하는 경우 전기방사에 있어 용액 취급이 용이하지 않으며, 공정성이 저하되어 균일한 나노섬유 부직포를 얻기 어렵다.
본 발명에서 사용되는 저융점 PVDF는 융점이 80 내지 160℃ 이다.
PVDF의 융점을 조절하는 방법은 다양한데, 일반적으로 PVDF 공중합체 합성을 조작하는 방법 및 PVDF 중량평균 분자량을 조절하는 방법을 사용한다
저융점 PVDF를 제조하기 위한 방법 중 하나로 공중합체의 합성을 조절하기 위해 공단량체의 함량을 조절하는 것이 바람직하다. 본 발명에서는 특히 상기 폴리불화비닐리덴(PVDF)계 중합체로서, 공단량체의 함량이 5 내지 50 중량%인 폴리불화비닐리덴(PVDF)계 공중합체를 이용하는 것이 바람직하다. 상기 공단량체는 헥사플루오로프로필렌(HFP) 또는 클로로트리플루오로에틸렌(CTFE) 이외에, 테트라플루오로에틸렌(TFE), 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로부틸 에틸렌, 퍼플루오로 프로필 비닐 에테르(PPVE), 퍼플루오로 에틸 비닐 에테르 (PEVE), 퍼플루오로 메틸 비닐 에테르(PMVE), 퍼플루오로-2,2-디메틸-1,3-디옥솔 (PDD) 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란 (PMD) 등을 사용할 수 있으며, 이들 중 바람직하게는 헥사플루오로프로필렌(HFP) 또는 클로로트리플루오로에틸렌(CTFE)을 사용할 수 있지만, 이러한 종류로 한정되는 것은 아니다.
또한, 고분자의 특성상 중량평균 분자량을 조절하여 고분자의 융점을 조절할 수 있는데, 본 발명에 있어서, 융점이 80 내지 160℃인 폴리불화비닐리덴(PVDF)계 중합체의 중량평균 분자량은 3,000 내지 30,000 로 조절하는 것이 바람직하다. 중량평균 분자량이 30,000을 초과하면 융점이 160℃을 초과하며, 3,000 미만인 경우에는 융점이 80℃ 미만이 되는 바 전기방사의 효율이 떨어지게 된다.
저융점 고분자 또는 에폭시 수지-경화제를 용매에 녹여 이를 전기방사장치의 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛(10a, 10c)과 연결된 주탱크(8)에 공급하고, 상기 주탱크(8)에 공급된 저융점 고분자 용액은 계량 펌프(미도시)를 통하여 높은 전압이 부여되는 노즐블록(11)의 다수의 노즐(12) 내에 연속적으로 정량공급된다. 상기 각 노즐(12)로부터 공급되는 저융점 고분자 용액 또는 에폭시 수지-경화제 용액은 노즐(12)을 통해 높은 전압이 걸려있는 컬렉터(13) 상에 위치한 제 1기재 상에 전기방사 및 집속되면서 평량 약 0.1g/m2의 접착층을 형성한다.
다음으로 고융점 폴리비닐리덴 플루오라이드와 저융점 폴리비닐리덴 플루오라이드를 용매에 녹인 고분자 방사용액을 상기 전기방사장치의 방사용액 유닛(10b)과 연결된 주탱크(8)에 공급한다. 상기 방사용액 유닛(10b)와 연결된 주탱크(8)에 공급된 고융점 및 저융점 폴리비닐리덴 플루오라이드 용액은 계량 펌프(미도시)를 통하여 높은 전압이 부여되는 노즐블록(11)을 통해 전기방사되어 상기 접착층위에 나노섬유층을 형성한다.
그런 다음 상기 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛(10c)으로부터 노즐을 통해 저융점 고분자 용액이 토출되면서 상기 나노섬유층위에 또 다른 접착층을 형성하고, 합지 장치를 통해 상기 접착층 상에 제 2기재를 접합한다.
한편 상기 기재는 모터(미도시)의 구동에 의해 동작하는 공급롤러(3) 및 상기 공급롤러(3)의 회전에 의해 구동하는 보조이송장치(16)의 회전에 의해 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛에서 방사용액 유닛으로 이송되고 상기한 공정을 반복하면서 기재 상에 나노섬유층 및 접착층이 전기방사되면서 적층된다.
실시예1
연화온도가 80-100℃인 저중합도 폴리우레탄을 DMAc(N,N-dimethylaceticamide) 용매에 15중량%가 되도록 용해하여 저융점 고분자 용액을 제조하고 전기방사장치의 저융점 고분자 유닛(10a, 10c)의 주탱크에 투입하였다. 또한, 중량평균 분자량(Mw)이 50,000인 고융점 폴리비닐리덴 플루오라이드와 중량평균 분자량(Mw)이 5,000인 저융점 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 방사용액을 제조하고, 이를 방사용액 유닛(10b)와 연결된 주탱크에 투입하였다. 저융점 고분자 유닛 (10a)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압 20kV, 70℃에서 전기방사하여 평량 0.1g/㎡인 접착층을 평량이 30g/m2인 이성분 기재 상에 적층하였고, 이어서 방사용액 유닛(10b)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압 25kV, 70℃에서 전기방사하여 평량 0.5g/㎡인 폴리비닐리덴 플루오라이드 나노섬유층을 적층형성하였다. 상기 나노섬유층 상에 저융점 고분자 유닛(10c)을 통해 동일한 전기방사 조건하에서 또 다른 접착층을 형성하였다. 상기 폴리비닐리덴 플루오라이드 나노섬유층 상에 평량이 150g/m2인 폴리에틸렌 테레프탈레이트 기재를 합지장치를 통해 접합하여 최종적으로 마스크를 제조하였다.
실시예2
평량이 55g/m2인 폴리에틸렌 테레프탈레이트 기재를 사용하고, 접착층 형성시 에폭시 수지 및 아민 경화제를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 제조한 농도가 15중량%인 방사용액을 사용한 것 이외에는 실시예 1과 동일한 조건으로 마스크를 제조하였다.
비교예1
제 1이성분 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하여 나노섬유층을 형성하고 나노 섬유층 상에 제 2이성분 기재를 합지 장치를 통해 접합하고 라미네이팅 장치에서 열융착하여 마스크를 제조하였다.
- 여과효율 측정
상기 제조된 나노섬유 필터의 효율을 측정하기 위해 DOP 시험방법을 이용하였다. DOP 시험방법은 티에스아이 인코퍼레이티드(TSI Incorporated)의 TSI 3160의 자동화 필터 분석기(AFT)로 디옥틸프탈레이트(DOP) 효율을 측정하는 것으로서, 필터 미디어 소재의 통기성, 필터 효율, 차압을 측정할 수 있다.
상기 자동화 분석기는 DOP를 원하는 크기의 입자를 만들어 필터 시트 위에 투과하여 공기의 속도, DOP 여과 효율, 공기 투과도(통기성) 등을 계수법으로 자동으로 측정하는 장치이며 고효율 필터에 아주 중요한 기기이다.
DOP % 효율은 다음과 같이 정의된다:
DOP % 효율 = (1 - (DOP농도 하류/DOP 농도 상류)) × 100
실시예1,2 및 비교예1의 여과 효율을 상기와 같은 방법에 의해 측정하여 표 1에 나타내었다.
실시예1 실시예2 비교예1
0.35㎛ DOP
여과 효율(%)
93 91 63
이와 같이 본 발명의 실시예를 통해 제조된 마스크는 비교예에 비하여 여과효율이 우수함을 알 수 있다.
- 나노섬유 부직포의 탈리여부
상기 제조된 마스크를 ASTM D 2724 방법으로 나노섬유 부직포와 기재의 탈리여부를 측정한 결과, 실시예 1, 2에 의해서 제조된 마스크에서는 나노섬유 부직포의 탈리가 일어나지 않았으나, 비교예 1에 의해서 제조된 마스크는 나노섬유 부직포의 탈리가 발생했다.
따라서, 본 발명의 실시예를 통해 제조된 마스크는 비교예에 비하여 나노섬유 부직포와 기재 사이에 탈리가 잘 발생하지 않음을 알 수 있다.
- 온도조절장치에 의한 점도조절 결과확인
[실시예 3]
중량평균 분자량(Mw)이 50,000인 고융점 폴리비닐리덴 플루오라이드와 중량평균 분자량(Mw)이 5,000인 저융점 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 농도가 10%, 점도 1000cps인 방사용액을 제조하고 주탱크(8)에 구비하였다. 이후 상기 주탱크(8)로부터 방사용액을 노즐블록으로 이동시킨 후 노즐블록과 컬렉터 간의 거리를 40cm, 인가전압 25kV로 전기방사 하였다. 이후 방사공정을 거치며 방사되지 못하고 오버플로우된 고형분이 다시 저장탱크의 하나인 주저장 탱크로 구비되는 과정에서 주탱크내 방사용액의 농도가 15%로 변경되었고, 이에 따라 점도는 2000cps로 변경되었다. 이후 온도조절 장치의 센서에 의해 점도를 1000cps로 낮추기 위해 주탱크의 온도를 70℃로 상승시킨 후 전기방사하여 나노섬유를 얻었다.
[실시예 4]
오버플로우된 고형분에 의해 주탱크(8) 내 방사용액의 농도가 20%로 변경되어 점도가 올라감에 따라, 점도를 1000cps로 유지하기 위해 온도조절 장치에 의해 주탱크(8)의 온도를 65℃로 상승시키는 것을 제외하고는 실시예 3과 같은 공정으로 전기방사를 실시하였다
[실시예 5]
오버플로우된 고형분에 의해 주탱크(8) 내 방사용액의 농도가 25%로 변경되어 점도가 올라감에 따라, 점도를 1000cps로 유지하기 위해 온도조절 장치에 의해 주저장 탱크의 온도를 80℃로 상승시키는 것을 제외하고는 실시예 3과 같은 공정으로 전기방사를 실시하였다.
[실시예 6]
오버플로우된 고형분에 의해 주탱크(8) 내 방사용액의 농도가 30%로 변경되어 점도가 올라감에 따라, 점도를 1000cps로 유지하기 위해 온도조절 장치에 의해 주저장 탱크의 온도를 95℃로 상승시키는 것을 제외하고는 실시예 3과 같은 공정으로 전기방사를 실시하였다.
[비교예 2]
중량평균 분자량(Mw)이 50,000인 고융점 폴리비닐리덴 플루오라이드와 중량평균 분자량(Mw)이 5,000인 저융점 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 농도가 10%, 점도 1000cps인 방사용액을 제조하고 주저장 탱크에 구비하였다. 이후 상기 주저장 탱크로부터 방사용액을 노즐블록으로 이동시킨 후 노즐블록과 컬렉터 간의 거리를 40cm, 인가전압 25kV로 전기방사 하였다. 이후 방사공정을 거치며 방사되지 못하고 오버플로우된 고형분이 다시 주저장 탱크로 구비되는 과정에서 주저장 탱크 내 방사용액의 농도가 20%로 변경되었고, 이에 농도를 다시 10%으로 유지하기 위해 DMAc를 첨가하고, 희석제인 THF를 첨가하여 전기방사를 하였다.
상기 실시예 3~6와 비교예 2에 의하여 제조된 나노섬유의 점도, 나노섬유 생산량이 0.2g/m2 일때의 방사 권취속도를 측정하여 그 결과를 표 2을 통해 나타내었다.
실시예3 실시예4 실시예5 실시예6 비교예2
농도 15% 20% 25% 30% 10%
점도 일정
(1,000cps)
일정
(1,000cps)
일정
(1,000cps)
일정
(1,000cps)
일정
(1,000cps)
권취속도
(m/min)
20 25 30 35 10
[표 2]에 따르면 비교예에 비해 실시예의 농도가 높고, 점도는 일정함에 따라 방사 시 실제 컬렉터 상에 적층되는 고형분 량이 많아짐에 따라 권취속도도 빨라지게 되어 생산량이 증가하는 것을 알 수 있었다. 따라서 실시예는 비교예에 비해 더 효율적인 방사 및 증대된 생산량을 확보할 수 있을 것으로 예상된다.
이상, 본 발명은 특정의 실시예와 관련하여 도시 및 설명하지만, 첨부 특허청구의 범위에 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것은 당업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
1 : 전기방사장치, 3 : 공급롤러,
5 : 권취롤러, 7 : 주 제어장치,
8 : 방사용액 주탱크, 10a : 저융점 고분자 유닛 또는 에폭시 수지-경화제 유닛,
10b : 방사용액 유닛, 11 : 노즐블록, 12 : 노즐,
13 : 컬렉터, 14, 14a, 14b : 전압 발생장치,
15, 15a, 15b : 장척시트, 16 : 보조 이송장치,
16a : 보조벨트, 16b : 보조벨트 롤러,
18 : 케이스, 19 : 절연부재,
30 : 장척시트 이송속도 조절장치, 31 : 완충구간,
33, 33' : 지지롤러, 35 : 조절롤러,
40 : 관체, 41, 42 : 열선,
43 : 파이프, 60 : 온도조절 제어장치,
70 : 두께 측정장치, 80 : 통기도 계측장치,
90 : 라미네이팅 장치, 100 : 합지장치,
200 : 오버플로우 장치, 211, 231 : 교반장치,
212, 213, 214, 233 : 밸브, 216 : 제2 이송배관,
218 : 제2 이송제어장치, 220 : 중간탱크,
222 : 제2 센서, 230 : 재생탱크,
232 : 제1 센서, 240 : 공급배관,
242 : 공급제어밸브, 250 : 방사용액 회수 경로,
251 : 제1 이송배관, 300 : VOC 재활용 장치,
310 : 응축장치, 311, 321, 331, 332 : 배관,
320 : 증류장치, 330 : 용매 저장장치,
404 : 공기 공급용 노즐, 405 : 노즐 플레이트,
407 : 제 1 방사용액 저장판, 408 : 제 2 방사용액 저장판,
410 : 오버플로액 임시저장판, 411 : 공기저장판,
412 : 오버플로 배출구, 413 : 공기유입구,
414 : 공기 공급용 노즐 지지판, 415 : 오버플로 제거용 노즐,
416 : 오버플로 제거용 노즐 지지판, 500 : 다중관상노즐,
501 : 내측관, 502 : 외측관,
503 : 선단부.

Claims (7)

  1. 폴리머 용액이 저장된 주저장 탱크로부터 폴리머 용액이 노즐블록으로 공급되는 공급단계;
    노즐블록에 공급된 폴리머 용액이 노즐을 통해 기재 상에 전기방사하여 나노섬유층을 적층하는 전기방사단계;
    상기 전기방사단계에서 나노섬유화 되지 못한 폴리머 용액을 오버플로우 시스템을 통해 재생탱크로 수거 및 수집하는 회수단계;
    재생탱크와 주저장 탱크로부터 중간탱크로 폴리머 용액이 유입되는 저장단계; 및
    중간탱크로부터 폴리머 용액이 노즐블록으로 재공급되는 재공급단계를 포함하며,
    상기 재공급단계에서 폴리머 용액의 점도를 조절하기 위한 온도조절 장치가 설치된 것을 특징으로 하며,
    상기 재공급단계를 거친 후 전기방사되는 폴리머 용액의 농도는 20 내지 40%, 점도는 1,000cps 내지 3,000cps로 일정하게 조절되는 것을 특징으로 하며,
    상기 온도조절 장치는 수동식 또는 자동식이며, 오버플로우 시스템을 통해 회수되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 가열장치, 냉각장치, 농도측정장치 및 주제어 장치를 포함하고,
    상기 가열장치는 전열히터, 온수순환장치 및 온풍순환장치 중 하나이상 선택되며, 상기 냉각장치는 칠링(Chilling) 장치이며,
    상기 농도측정장치는 중간탱크에 설치되며, 접촉식 또는 비접촉식인것을 특징으로 하는 나노 마스크 제조방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
KR1020150180043A 2015-12-16 2015-12-16 온도조절 장치를 포함하는 나노 마스크 제조방법 KR101811647B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150180043A KR101811647B1 (ko) 2015-12-16 2015-12-16 온도조절 장치를 포함하는 나노 마스크 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150180043A KR101811647B1 (ko) 2015-12-16 2015-12-16 온도조절 장치를 포함하는 나노 마스크 제조방법

Publications (2)

Publication Number Publication Date
KR20170071871A KR20170071871A (ko) 2017-06-26
KR101811647B1 true KR101811647B1 (ko) 2017-12-27

Family

ID=59282340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150180043A KR101811647B1 (ko) 2015-12-16 2015-12-16 온도조절 장치를 포함하는 나노 마스크 제조방법

Country Status (1)

Country Link
KR (1) KR101811647B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116122B1 (ko) * 2018-11-06 2020-05-27 충남대학교산학협력단 정렬된 나노섬유 기반의 미세먼지 차단용 필터 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040059B1 (ko) * 2010-12-06 2011-06-09 신슈 다이가쿠 나노섬유 제조장치 및 나노섬유 제조방법
KR101162033B1 (ko) * 2011-03-20 2012-07-03 신슈 다이가쿠 폴리올레핀제 나노 섬유 부직포의 제조 방법, 폴리올레핀제 나노 섬유 부직포 제조 장치 및 세퍼레이터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040059B1 (ko) * 2010-12-06 2011-06-09 신슈 다이가쿠 나노섬유 제조장치 및 나노섬유 제조방법
KR101162033B1 (ko) * 2011-03-20 2012-07-03 신슈 다이가쿠 폴리올레핀제 나노 섬유 부직포의 제조 방법, 폴리올레핀제 나노 섬유 부직포 제조 장치 및 세퍼레이터

Also Published As

Publication number Publication date
KR20170071871A (ko) 2017-06-26

Similar Documents

Publication Publication Date Title
KR101824491B1 (ko) 폴리우레탄 나노섬유를 포함하는 마스크
KR101811647B1 (ko) 온도조절 장치를 포함하는 나노 마스크 제조방법
KR101824493B1 (ko) 소수성 고분자 나노섬유를 포함하는 마스크
KR101824489B1 (ko) 폴리비닐리덴플루오라이드 나노섬유를 포함하는 마스크
KR101824490B1 (ko) 폴리아미드 나노섬유를 포함하는 마스크
KR101775910B1 (ko) 에폭시-경화제 접착층이 형성된 친수성 폴리우레탄 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775916B1 (ko) 에폭시 수지-경화제 접착층이 형성된 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765171B1 (ko) 에폭시-경화제 접착층이 형성된 친수성 폴리우레탄 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775912B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아미드 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775906B1 (ko) 에폭시-경화제 접착층이 형성된 친수성 폴리우레탄 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775919B1 (ko) 에폭시 수지-경화제 접착층이 형성된 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775907B1 (ko) 에폭시-경화제 접착층이 형성된 폴리비닐알콜 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775918B1 (ko) 에폭시 수지-경화제 접착층이 형성된 친수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101824494B1 (ko) 내열성 고분자 나노섬유를 포함하는 마스크
KR101775911B1 (ko) 에폭시-경화제 접착층이 형성된 폴리비닐알콜 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775909B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아크릴로니트릴 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765163B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아크릴로니트릴 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765166B1 (ko) 에폭시-경화제 접착층이 형성된 친수성 폴리우레탄 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775915B1 (ko) 에폭시 수지-경화제 접착층이 형성된 친수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101771923B1 (ko) 에폭시-경화제 접착층이 형성된 폴리에테르설폰 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765165B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아크릴로니트릴 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775903B1 (ko) 에폭시-경화제 접착층이 형성된 폴리비닐알콜 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765167B1 (ko) 에폭시-경화제 접착층이 형성된 폴리비닐알콜 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101775905B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아미드 나노섬유 및 소수성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법
KR101765164B1 (ko) 에폭시-경화제 접착층이 형성된 폴리아미드 나노섬유 및 내열성 고분자 나노섬유를 포함하는 나노섬유 필터 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant