KR101810161B1 - Preparation method of supporting particle - Google Patents

Preparation method of supporting particle Download PDF

Info

Publication number
KR101810161B1
KR101810161B1 KR1020160115103A KR20160115103A KR101810161B1 KR 101810161 B1 KR101810161 B1 KR 101810161B1 KR 1020160115103 A KR1020160115103 A KR 1020160115103A KR 20160115103 A KR20160115103 A KR 20160115103A KR 101810161 B1 KR101810161 B1 KR 101810161B1
Authority
KR
South Korea
Prior art keywords
particles
carrier
carbon atoms
antioxidant
tert
Prior art date
Application number
KR1020160115103A
Other languages
Korean (ko)
Inventor
양영근
민지영
진숙영
채병훈
박세호
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020160115103A priority Critical patent/KR101810161B1/en
Application granted granted Critical
Publication of KR101810161B1 publication Critical patent/KR101810161B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a method for preparing supporting particles. According to the method for preparing supporting particles, it is possible to provide a carrier particle containing an antioxidant and sufficiently satisfying the particle characteristics required for use as a spherical carrier for an olefin polymerization catalyst. The carrier particles contain an antioxidant but do not affect the activity of the olefin polymerization catalyst. Therefore, when such carrier particles are used, in an olefin polymerization process and/or an extrusion process of an olefin polymer, even when no antioxidants are used or when antioxidants are used even in a very small amount, it is possible to efficiently provide the olefin polymer which can be extruded and molded without deterioration of physical properties or discoloration due to oxidation.

Description

담체 입자의 제조 방법{PREPARATION METHOD OF SUPPORTING PARTICLE}TECHNICAL FIELD [0001] The present invention relates to a method for preparing a carrier particle,

본 발명은 담체 입자의 제조 방법에 관한 것이다. The present invention relates to a method for producing carrier particles.

에틸렌, 프로필렌과 같은 올레핀을 중합하기 위해 지글러-나타형 촉매가 사용되고 있다. 지글러-나타형 촉매를 사용하여 중합한 중합체의 모양과 크기는 사용된 촉매의 모양과 크기에 직접적인 영향을 받는다. 따라서, 생산성을 높이고 중합체의 입자 크기를 균일하게 하며 제품성형에 유리한 중합체를 제조하기 위해서는 촉매의 크기 분포를 조절하는 기술이 매우 중요한데 이것은 담체의 크기 분포와 직접적으로 관련이 있다. 이에 따라, 좁은 입자 크기 분포를 가지며, 단단한 구형의 담체 입자를 제조하는 것이 매우 중요하다. Ziegler-Natta catalysts have been used to polymerize olefins such as ethylene and propylene. The shape and size of the polymers polymerized using Ziegler-Natta catalysts are directly influenced by the shape and size of the catalyst used. Therefore, in order to increase the productivity, to make the particle size of the polymer uniform, and to produce a polymer favorable for product molding, the technique of controlling the size distribution of the catalyst is very important, which is directly related to the size distribution of the carrier. Accordingly, it is very important to produce a carrier particle having a narrow particle size distribution and a solid spherical shape.

이러한 담체를 제조하는 방법으로 재결정법, 스프레이건조법 및 침전법 등이 현재까지 널리 사용되고 있다. 그러나, 스프레이건조법의 경우 생산 소요 시간이 매우 길고 생산 비용이 많이 들며, 침전법의 경우 제조과정에서 수소가 대량 발생되는 문제점이 있다. 또한, 재결정법의 경우 입자 크기 분포가 넓게 형성되어 제조 후 원하는 크기의 입자를 얻기 위해 분급과 같은 2차 공정이 필수적으로 요구되는 문제점이 있다. As a method of producing such a carrier, recrystallization, spray drying and precipitation are widely used. However, in the case of the spray drying method, the production time is very long and the production cost is high. In the case of the precipitation method, a large amount of hydrogen is generated during the manufacturing process. Further, in the case of the recrystallization method, a particle size distribution is widely formed, and a secondary process such as classification is essentially required to obtain particles having a desired size after the production.

한편, 이러한 촉매를 사용하여 중합한 중합체는 압출 과정에서 산화로 인하여 변색되거나 물리적 성질이 달라질 수 있다. 이에, 중합체를 제조하거나 중합체를 압출하는 과정에서 산화방지제를 첨가하여 중합체의 변색을 억제하고 물리적 성질을 보호하고 있다. 하지만, 중합체를 제조하는 과정에 산화방지제를 첨가할 경우 올레핀 중합 촉매의 활성을 약화시켜 중합체의 생산량이 감소되는 문제점이 있다. 또한, 중합체를 압출하는 과정에서는 산화방지제가 중합체에 잘 분산되지 않아 중합체의 산화 방지 효과를 위해 과량의 산화방지제를 첨가해야 하는 문제점이 있다. On the other hand, polymers polymerized using such catalysts may be discolored due to oxidation during the extrusion process, or their physical properties may be changed. Thus, antioxidants are added in the course of preparing polymers or extruding polymers to suppress discoloration of polymers and to protect their physical properties. However, when an antioxidant is added to the polymer in the course of preparing the polymer, the activity of the olefin polymerization catalyst is weakened and the production amount of the polymer is decreased. Further, in the process of extruding the polymer, the antioxidant is not well dispersed in the polymer, so that an excessive amount of antioxidant must be added to prevent oxidation of the polymer.

본 발명은 산화방지제를 포함하면서 좁은 입자 크기 분포 및 구형을 가지는 담체 입자를 제조하는 방법을 제공하기 위한 것이다. The present invention is intended to provide a method for producing carrier particles having a narrow particle size distribution and a spherical shape while containing an antioxidant.

발명의 일 구현예에 따르면, 40 ℃에서 3 내지 100 cSt의 점도를 갖는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하되, 마그네슘 할라이드 1 mol에 대하여 탄소수 1 내지 5의 알코올을 1.5 내지 5 mol로 혼합하여 균질 용액을 제조하는 제 1 단계; 및 상기 제 1 단계에서 수득한 균질 용액을 600 내지 10,000 rpm으로 교반한 후 탄소수 6 이상의 탄화수소 용매 존재 하에서 냉각하여 담체 입자를 제조하는 제 2 단계를 포함하는 담체 입자의 제조 방법이 제공된다. According to an embodiment of the present invention, an oil having a viscosity of 3 to 100 cSt at 40 DEG C, a magnesium halide, an alcohol having 1 to 5 carbon atoms and an antioxidant are mixed, and an alcohol having 1 to 5 carbon atoms is added to 1 mol of the magnesium halide 1.5 to 5 mol to prepare a homogeneous solution; And a second step of stirring the homogeneous solution obtained in the first step at 600 to 10,000 rpm and cooling in the presence of a hydrocarbon solvent having 6 or more carbon atoms to prepare carrier particles.

제 1 단계에서는 마그네슘 할라이드 1 mol에 대하여 탄소수 1 내지 5의 알코올을 2.0 내지 3.5 mol로 혼합할 수 있다. In the first step, an alcohol having 1 to 5 carbon atoms may be mixed in an amount of 2.0 to 3.5 mol based on 1 mol of the magnesium halide.

상기 마그네슘 할라이드로는 염화마그네슘, 브롬화마그네슘 및 요오드화마그네슘으로 구성되는 군에서 선택된 1 종 이상이 사용될 수 있다. 그리고, 상기 탄소수 1 내지 5의 알코올로는 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 이소펜탄올, 네오펜탄올 및 시클로펜탄올로 구성되는 군에서 선택된 1 종 이상이 사용될 수 있다. The magnesium halide may be at least one selected from the group consisting of magnesium chloride, magnesium bromide, and magnesium iodide. The alcohols having 1 to 5 carbon atoms may be selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, neopentanol and cyclopentanol One or more species may be used.

상기 산화방지제로는 하기 화학식 1로 표시되는 구조를 포함하는 화합물이 사용될 수 있다. As the antioxidant, a compound having a structure represented by the following formula (1) may be used.

[화학식 1][Chemical Formula 1]

Figure 112016087370758-pat00001
Figure 112016087370758-pat00001

상기 화학식 1에서, In Formula 1,

n은 1 내지 4의 정수이며, n is an integer of 1 to 4,

R은 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 6 내지 30의 아릴기, 탄소수 6 내지 30의 아릴옥시기, 탄소수 7 내지 35의 아릴알킬기, 탄소수 7 내지 35의 알킬아릴기, 탄소수 8 내지 40의 아릴알케닐기, 탄소수 5 내지 30의 헤테로아릴기, 탄소수 6 내지 30의 아릴아민기, 탄소수 5 내지 30의 헤테로아릴아민기 또는 상기 치환기 중 1 종 이상이 -O-, -S-, -CONH-, -COO- 또는 -OCO-를 매개로 결합된 탄소수 1 내지 5의 알킬기이고, R is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 35 carbon atoms, An alkylaryl group having 7 to 35 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, an arylamine group having 6 to 30 carbon atoms, a heteroarylamine group having 5 to 30 carbon atoms, Is an alkyl group having 1 to 5 carbon atoms bonded through the intermediacy of -O-, -S-, -CONH-, -COO- or -OCO-,

n이 2 내지 4의 정수일 때 복수의 R은 동일하거나 상이하며, R로 치환되지 않은 탄소에는 수소가 결합한다. When n is an integer of 2 to 4, a plurality of Rs may be the same or different, and a carbon which is not substituted with R is bonded to hydrogen.

구체적으로, 상기 산화방지제로는 상기 화학식 1의 n이 2이며, R이 서로 동일하거나 상이하며 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, sec-부틸기 또는 tert-부틸기인 구조를 포함하는 화합물이 사용될 수 있다. Specifically, examples of the antioxidant include n in the formula (1), R is the same as or different from each other, and each independently represents a methyl group, ethyl group, n-propyl group, isopropyl group, n- Or a tert-butyl group can be used.

보다 구체적으로, 상기 산화방지제로는 2,2-디-tert-부틸-4-메틸페놀(2,2-di-tert-butyl-4-methylphenol; BHT), 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트](pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트(methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀)(2,2-methylenebis(4-methyl-6-tert-butylphenol)), 스테아릴-β-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트(stearyl- β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-하이드록시벤질)벤젠(1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), 3,5-비스(1,1-디메틸에틸)-4-하이드록시벤젠프로피온산 티오디-2,1-에탄디일 에스터(3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropanoic acid thiodi-2,1-ethanediyl ester), N,N'-프로판-1,3-디일비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드](N,N'-propane-1,3-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide]), 4-하이드록시-3,5-디-tert-부틸페닐프로피온산(4-hydroxy-3,5-di-tert-butylphenylpropionic acid), 1,1-비스(3,5-디-tert-부틸-2-하이드록시페닐)에탄(1,1-Bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane), 4,4'-메틸렌비스(2,6-디-tert-부틸페놀)(4,4'-methylenebis(2,6-di-tert-butylphenol)), 트리에틸렌 글리콜 비스(3-tert-부틸-4-하이드록시-5-메틸페닐)프로피오네이트(triethylene glycol bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate), 1,2-비스(3,5-디-tert-부틸-4-하이드록시하이드로신나모일)하이드라진(1,2-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, 2,2'-티오비스(6-tert-부틸-p-크레졸)(2,2'-thiobis(6-tert-butyl-p-cresol)), 디에틸 3,5-디-tert-부틸-4-하이드록시벤질 포스페이트(diethyl 3,5-di-tert-butyl-4-hydroxybenzyl phosphate) 및 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-하이드록시벤질)벤젠(1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene)으로 구성된 군에서 선택된 1 종 이상이 사용될 수 있다. More specifically, examples of the antioxidant include 2,2-di-tert-butyl-4-methylphenol (BHT), pentaerythritol tetrakis [3- , 3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), methyl 3- (3-tert-butylphenyl) propionate, pentaerythritol- Butyl-4-hydroxyphenyl) propionate, methyl 2,2-methylenebis (4-methyl Butyl-4-hydroxyphenyl) -6-tert-butylphenol), 2,2-methylenebis (4-methyl- Tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5- 3,5-di-tert-butyl-4-hydroxybenzyl) benzene), 3,5-bis (1,1- -Dimethylethyl) -4-hydroxybenzenepropionic acid thio-2,1-ethanediyl ester (3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropano N, N'-propane-1,3-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide] , N'-propane-1,3-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], 4-hydroxy- Butyl 3,5-di-tert-butylphenylpropionic acid, 1,1-bis (3,5-di-tert- di-tert-butyl-2-hydroxyphenyl) ethane, 4,4'-methylenebis (2,6-di- tert-butylphenol) Triethylene glycol bis (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate), 1,2 Bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl) hydrazine, 2,2'- Thiobis (6-tert-butyl-p-cresol), diethyl 3,5-di-tert-butyl-4-hydroxybenzyl artillery Diethyl tert-butyl-4-hydroxybenzyl phosphate and 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert- ) Benzene (1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene).

상기 제 1 단계에서는 마그네슘 할라이드 1 mol에 대하여 산화방지제 1 mmol 내지 50 mmol을 혼합할 수 있다. In the first step, 1 mmol to 50 mmol of an antioxidant may be mixed with 1 mol of the magnesium halide.

상기 제 1 단계에서는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하고 400 내지 10,000 rpm의 속도로 교반하여 균질 용액을 제조할 수 있다. In the first step, an oil, a magnesium halide, an alcohol having 1 to 5 carbon atoms and an antioxidant are mixed and stirred at a speed of 400 to 10,000 rpm to prepare a homogeneous solution.

상기 제조 방법에 따라 제조된 담체 입자는 프로필렌 중합 촉매용 담체 입자일 수 있다. The carrier particles produced by the above production method may be carrier particles for a propylene polymerization catalyst.

발명의 일 구현예에 따른 담체 입자의 제조 방법에 따르면, 산화방지제를 포함하면서도 올레핀 중합 촉매용 구형 담체로 사용되기 위해 요구되는 입자특성을 충분히 만족시킬 수 있는 담체 입자를 제공할 수 있다. 이러한 담체 입자는 산화방지제를 포함하지만 올레핀 중합 촉매의 활성에는 영향을 미치지 않는다. 따라서, 이러한 담체 입자를 이용하면, 올레핀 중합 공정 및/또는 올레핀 중합체의 압출 공정에서 산화방지제를 사용하지 않거나 혹은 매우 미량 사용하더라도 산화로 인한 변색 혹은 물리적 성질의 열화 없이 압출 및 성형할 수 있는 올레핀 중합체를 효율적으로 제공할 수 있다. According to the method for producing carrier particles according to one embodiment of the present invention, it is possible to provide a carrier particle which can sufficiently satisfy the particle characteristics required for use as a spherical carrier for an olefin polymerization catalyst while containing an antioxidant. These carrier particles contain an antioxidant but do not affect the activity of the olefin polymerization catalyst. Therefore, when such carrier particles are used, the olefin polymer which can be extruded and molded without using any antioxidant in the olefin polymerization process and / or the olefin polymer extrusion process, or without deterioration of physical properties due to oxidation, Can be efficiently provided.

이하 발명의 구체적인 구현예에 따른 담체 입자의 제조 방법과 이로부터 제조된 담체 입자 등에 대해 설명하기로 한다. Hereinafter, a method for producing carrier particles according to a specific embodiment of the invention and carrier particles produced therefrom will be described.

발명의 일 구현예에 따르면, 40 ℃에서 3 내지 100 cSt의 점도를 갖는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하되, 마그네슘 할라이드 1 mol에 대하여 탄소수 1 내지 5의 알코올을 1.5 내지 5 mol로 혼합하여 균질 용액을 제조하는 제 1 단계; 및 상기 제 1 단계에서 수득한 균질 용액을 600 내지 10,000 rpm으로 교반한 후 탄소수 6 이상의 탄화수소 용매 존재 하에서 냉각하여 담체 입자를 제조하는 제 2 단계를 포함하는 담체 입자의 제조 방법이 제공된다. According to an embodiment of the present invention, an oil having a viscosity of 3 to 100 cSt at 40 DEG C, a magnesium halide, an alcohol having 1 to 5 carbon atoms and an antioxidant are mixed, and an alcohol having 1 to 5 carbon atoms is added to 1 mol of the magnesium halide 1.5 to 5 mol to prepare a homogeneous solution; And a second step of stirring the homogeneous solution obtained in the first step at 600 to 10,000 rpm and cooling in the presence of a hydrocarbon solvent having 6 or more carbon atoms to prepare carrier particles.

상기 발명의 일 구현예의 담체 입자의 제조 방법에 따르면, 산화방지제를 포함하면서도 입자 크기 분포가 좁고 단단하며 구형을 갖는 담체 입자를 제조할 수 있다. 또한, 상기 담체 입자는 산화방지제를 포함하지만 올레핀 중합 촉매의 활성에는 영향을 미치지 않는다. 따라서, 상기 담체 입자는 이러한 특성으로 인해 올레핀 중합 촉매용 담체로 사용되어 균일한 크기 및 양호한 유동 성질을 가지며, 올레핀 중합 공정 및/또는 올레핀 중합체의 압출 공정에서 산화방지제를 사용하지 않거나 혹은 매우 미량 사용하더라도 산화로 인한 변색 혹은 물리적 성질의 변화 문제 없이 압출 및 성형할 수 있는 폴리올레핀의 제공이 가능하다. 특히, 상기 담체 입자는 프로필렌 중합 촉매용 담체로 이용되어 이러한 효과를 극대화할 수 있다. According to the method for producing a carrier particle in one embodiment of the present invention, carrier particles having an antioxidant and a narrow particle size distribution and a hard and spherical shape can be produced. In addition, the carrier particles contain an antioxidant but do not affect the activity of the olefin polymerization catalyst. Therefore, the carrier particles are used as a carrier for olefin polymerization catalysts due to these properties, so that they have uniform size and good flow properties and do not use antioxidants in the olefin polymerization process and / or the olefin polymer extrusion process, It is possible to provide a polyolefin which can be extruded and molded without any discoloration due to oxidation or a change in physical properties. Particularly, the carrier particles are used as a carrier for a propylene polymerization catalyst, and this effect can be maximized.

제 1 단계에서는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하여 균질 용액을 제조한다. 이때, 마그네슘 할라이드 1 mol에 대하여 탄소수 1 내지 5의 알코올을 1.5 내지 5 mol 혹은 2.0 내지 3.5 mol로 혼합하여 산화방지제를 포함하더라도 구형의 균일한 입도 분포를 갖는 담체 입자를 제공할 수 있다. In the first step, a homogeneous solution is prepared by mixing oil, magnesium halide, alcohol having 1 to 5 carbon atoms and an antioxidant. At this time, an alcohol having 1 to 5 carbon atoms may be mixed with 1.5 to 5 mol or 2.0 to 3.5 mol based on 1 mol of the magnesium halide to provide a carrier particle having a spherical uniform particle size distribution even though it contains an antioxidant.

만일 탄소수 1 내지 5의 알코올의 함량이 상기 범위 미만이면 담체 입자가 뭉쳐진 형태로 얻어져 평균 입경이 과도하게 커지며, 상기 범위를 초과하면 미세 입자와 구형 입자가 공존하여 평균 입경이 과도하게 작아질 수 있다. 그리고, 이로 인해 담체 입자의 입도 분포가 넓게 형성될 우려가 있다. 그러나, 마그네슘 할라이드와 알코올을 상술한 범위로 사용하면, 마그네슘 할라이드가 알코올에 양호한 용해성을 나타내고, 담체 입자의 제조 공정 후, 잔류 알코올의 함량이 적어 오일이나 탄화수소 용매를 재사용하기 용이하며, 제조된 담체 입자를 이용해 촉매를 제조할 때에 알코올이 담체 입자로부터 급격히 빠져나가 담체 입자의 표면에 균열 생기거나 담체 입자가 깨질 가능성이 적다. If the content of the alcohol having 1 to 5 carbon atoms is less than the above range, the carrier particles are obtained in the form of a lump, and the average particle size becomes excessively large. If the content is in excess of the above range, the fine particles and the spherical particles coexist, have. In addition, there is a fear that the particle size distribution of the carrier particles may be widely formed. However, when the magnesium halide and the alcohol are used in the above-mentioned range, the magnesium halide shows good solubility in the alcohol, the content of the residual alcohol is small after the production process of the carrier particles and the oil or the hydrocarbon solvent can be easily reused, When the catalyst is produced by using the particles, the alcohol rapidly escapes from the carrier particles and cracks on the surface of the carrier particles or the carrier particles are less likely to be broken.

상기 마그네슘 할라이드로는 염화마그네슘, 브롬화마그네슘 및 요오드화마그네슘으로 구성되는 군에서 선택된 1 종 이상이 사용되며, 바람직하게는 이염화마그네슘이 사용될 수 있다. As the magnesium halide, at least one selected from the group consisting of magnesium chloride, magnesium bromide, and magnesium iodide may be used, and magnesium dichloride may be preferably used.

상기 탄소수 1 내지 5의 알코올로는 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 이소펜탄올, 네오펜탄올 및 시클로펜탄올로 구성되는 군에서 선택된 1 종 이상이 사용되며, 바람직하게는 에탄올이 사용될 수 있다. Examples of the alcohol having 1 to 5 carbon atoms include alcohols selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, neopentanol and cyclopentanol Or more, and preferably ethanol may be used.

상기 오일로는 40 ℃에서 3 내지 100 cSt의 점도를 나타내는 것이 사용되는데, 만일 점도가 상기 범위 미만이면 미세 입자가 제조되어 균일한 입도 분포를 갖는 담체 입자의 형성이 어려우며, 점도가 상기 범위를 초과하면 냉각 반응기 벽에 유착된 담체 입자로 인해 수율이 현저하게 낮아지는 문제가 발생할 수 있다. 상기와 같은 점도 범위를 만족하는 오일로는 파라핀계 오일, 실리콘계 오일 또는 등유 등이 사용될 수 있다. 상기 오일은 마그네슘 할라이드 1 mol에 대하여 약 500 mL 내지 2,500 mL로 사용될 수 있다. If the viscosity is less than the above range, it is difficult to form carrier particles having a uniform particle size distribution, and if the viscosity exceeds the above range There is a problem that the yield is significantly lowered due to the carrier particles adhered to the wall of the cooling reactor. As the oil satisfying the viscosity range as described above, paraffin oil, silicone oil or kerosene can be used. The oil may be used at about 500 mL to 2,500 mL per mol of the magnesium halide.

상기 산화방지제로는 올레핀 중합체의 분해 혹은 변색 등의 열화를 방지하기 위해 사용되는 첨가제가 모두 사용될 수 있다. 산화방지제는 플라스틱을 제조할 때 품질 저하를 방지하고, 생산 효율을 향상시키는 동시에 성형 가공품의 품질을 유지하여 부가가치를 높이기 위한 목적으로 사용되고 있다. 특히, 페놀계 산화방지제는 라디칼기 제거제로서 1차 산화방지제로 알려져 있으며, 플라스틱 가공 시 또는 완성품을 사용하는 기간 동안 수지를 보호하는 역할을 한다. 플라스틱용 산화방지제로서의 필요조건은 일반적으로 독성이 없어야 하며 가공성형 온도에 있어서 안전성을 지녀야 하고 활성 및 그 외의 수지가공성을 방해하지 않아야 하며 수지에 대한 혼화성이 좋아야 한다. 또한 다른 첨가제와 화학반응을 일으키지 않아야 하며 수지 분말, 펠렛 등과 혼화성이 좋아야 한다. 일반적으로 폴리프로필렌은 폴리에틸렌보다 산화되기 쉽기 때문에 압출과정에서 더 많은 산화방지제를 사용한다. 폴리프로필렌 압출에 사용되는 산화방지제는 가혹한 조건하에서 폴리프로필렌을 가공하거나 사용할 때 낮은 휘발성을 나타내는 고분자형의 페놀계 산화방지제를 사용하는 것이 적합하다. As the antioxidant, additives which are used for preventing deterioration such as decomposition or discoloration of the olefin polymer may be used. Antioxidants are used for the purpose of preventing quality deterioration in the production of plastics, improving the production efficiency, and maintaining the quality of molded products to increase added value. Particularly, the phenolic antioxidant is known as a primary antioxidant as a radical scavenger and serves to protect the resin during plastic processing or during the period of using the finished product. Requirements for antioxidants for plastics should generally be non-toxic, safe at the processing temperature, free from activity and other resin processability, and good miscibility with the resin. It should not cause any chemical reaction with other additives and should be compatible with resin powders, pellets and the like. In general, polypropylene uses more antioxidants in the extrusion process because it is more easily oxidized than polyethylene. As the antioxidant used for extruding polypropylene, it is preferable to use a phenol-based antioxidant of a polymer type which exhibits low volatility when processing or using polypropylene under harsh conditions.

상기 산화방지제로는 하기 화학식 1로 표시되는 구조를 포함하는 화합물을 사용할 수 있다. As the antioxidant, a compound having a structure represented by the following general formula (1) may be used.

[화학식 1][Chemical Formula 1]

Figure 112016087370758-pat00002
Figure 112016087370758-pat00002

상기 화학식 1에서, In Formula 1,

n은 1 내지 4의 정수이며, n is an integer of 1 to 4,

R은 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 6 내지 30의 아릴기, 탄소수 6 내지 30의 아릴옥시기, 탄소수 7 내지 35의 아릴알킬기, 탄소수 7 내지 35의 알킬아릴기, 탄소수 8 내지 40의 아릴알케닐기, 탄소수 5 내지 30의 헤테로아릴기, 탄소수 6 내지 30의 아릴아민기, 탄소수 5 내지 30의 헤테로아릴아민기 또는 상기 치환기 중 1 종 이상이 -O-, -S-, -CONH-, -COO- 또는 -OCO-를 매개로 결합된 탄소수 1 내지 5의 알킬기이고, R is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 35 carbon atoms, An alkylaryl group having 7 to 35 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, an arylamine group having 6 to 30 carbon atoms, a heteroarylamine group having 5 to 30 carbon atoms, Is an alkyl group having 1 to 5 carbon atoms bonded through the intermediacy of -O-, -S-, -CONH-, -COO- or -OCO-,

n이 2 내지 4의 정수일 때 복수의 R은 동일하거나 상이하며, R로 치환되지 않은 탄소에는 수소가 결합한다. When n is an integer of 2 to 4, a plurality of Rs may be the same or different, and a carbon which is not substituted with R is bonded to hydrogen.

구체적으로, 상기 산화방지제로는 상기 화학식 1에서 n이 2이며, 2개의 R이 서로 동일하거나 상이하며 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, sec-부틸기 또는 tert-부틸기인 구조를 포함하는 화합물을 사용할 수 있다. Specifically, as the antioxidant, n is 2 in the formula (1), two R's are the same or different and each independently represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Butyl group or tert-butyl group can be used.

이러한 구조를 포함하는 화합물로는 2,2-디-tert-부틸-4-메틸페놀(2,2-di-tert-butyl-4-methylphenol; BHT), 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트](pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트(methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀)(2,2-methylenebis(4-methyl-6-tert-butylphenol)), 스테아릴-β-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트(stearyl- β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-하이드록시벤질)벤젠(1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), 3,5-비스(1,1-디메틸에틸)-4-하이드록시벤젠프로피온산 티오디-2,1-에탄디일 에스터(3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropanoic acid thiodi-2,1-ethanediyl ester), N,N'-프로판-1,3-디일비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피온아미드](N,N'-propane-1,3-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide]), 4-하이드록시-3,5-디-tert-부틸페닐프로피온산(4-hydroxy-3,5-di-tert-butylphenylpropionic acid), 1,1-비스(3,5-디-tert-부틸-2-하이드록시페닐)에탄(1,1-Bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane), 4,4'-메틸렌비스(2,6-디-tert-부틸페놀)(4,4'-methylenebis(2,6-di-tert-butylphenol)), 트리에틸렌 글리콜 비스(3-tert-부틸-4-하이드록시-5-메틸페닐)프로피오네이트(triethylene glycol bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate), 1,2-비스(3,5-디-tert-부틸-4-하이드록시하이드로신나모일)하이드라진(1,2-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, 2,2'-티오비스(6-tert-부틸-p-크레졸)(2,2'-thiobis(6-tert-butyl-p-cresol)), 디에틸 3,5-디-tert-부틸-4-하이드록시벤질 포스페이트(diethyl 3,5-di-tert-butyl-4-hydroxybenzyl phosphate) 및 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-하이드록시벤질)벤젠(1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene)으로 구성된 군에서 선택된 1 종 이상이 사용될 수 있다. Examples of compounds containing such a structure include 2,2-di-tert-butyl-4-methylphenol (BHT), pentaerythritol tetrakis [3- (3, (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], methyl 3- (3,3- Di-tert-butyl-4-hydroxyphenyl) propionate, 2,2-methylenebis (4-methyl- 6-tert-butylphenol), 2,2-methylenebis (4-methyl-6-tert-butylphenol), stearyl- Stearyl-β- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5- 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,5- Dimethylethyl) -4-hydroxybenzenepropionic acid thio-2,1-ethanediyl ester (3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic a cid thiodi-2,1-ethanediyl ester), N, N'-propane-1,3-diylbis [3- (3,5- Propane-1,3-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], 4-hydroxy-3,5-di- (3,5-di-tert-butylphenylpropionic acid), 1,1-bis (3,5-di- -tert-butyl-2-hydroxyphenyl) ethane, 4,4'-methylenebis (2,6-di-tert-butylphenol) , Triethylene glycol bis (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, Bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl) hydrazine, 1,2-bis Bis (6-tert-butyl-p-cresol), diethyl 3,5-di-tert-butyl-4-hydroxybenzyl Diethyl tert-butyl-4-hydroxybenzyl phosphate and 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert- ) Benzene (1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene).

상기 제 1 단계에서 산화방지제는 마그네슘 할라이드 1 mol에 대하여 1 mmol 내지 50 mmol로 혼합될 수 있다. 이러한 범위 내에서 올레핀 중합 촉매의 활성에 영향을 미치지 않으면서 구형 담체로 사용되기에 요구되는 입자특성을 충분히 만족시키는 담체 입자를 제공할 수 있다. In the first step, the antioxidant may be mixed with 1 mmol to 50 mmol based on 1 mol of the magnesium halide. Within this range, it is possible to provide a carrier particle that does not affect the activity of the olefin polymerization catalyst and sufficiently satisfies the particle characteristics required for use as a spherical carrier.

상기 제 1 단계에서는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 110 내지 130 ℃의 온도 범위에서 혼합할 수 있다. In the first step, the oil, the magnesium halide, the alcohol having 1 to 5 carbon atoms, and the antioxidant can be mixed in the temperature range of 110 to 130 ° C.

이러한 온도 범위에서 마그네슘 할라이드를 충분히 용해시키며 후속 단계에서 균질 용액이 이송되더라도 반응기 내의 온도가 급격하게 상승되는 것을 억제하여 구형을 가지며 입도 분포가 균일한 담체 입자의 형성이 가능하다. 또한, 마그네슘 할라이드와 알코올의 결합력이 약해서 담체를 형성하는데 발생할 수 있는 문제점을 효과적으로 방지할 수 있으며, 얻어지는 균일 용액의 증기압을 적절한 수준으로 조절할 수 있다. In this temperature range, the magnesium halide is sufficiently dissolved, and even if the homogeneous solution is transferred in the subsequent step, the carrier temperature can be prevented from rising sharply, and carrier particles having a spherical shape and uniform particle size distribution can be formed. In addition, since the binding force between magnesium halide and alcohol is weak, problems that may occur in forming a carrier can be effectively prevented, and the vapor pressure of the obtained homogeneous solution can be adjusted to an appropriate level.

그리고, 제 1 단계에서 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하고 혹은 혼합하면서 이를 400 내지 10,000 rpm의 속도로 교반할 수 있다. In the first step, the oil, the magnesium halide, the alcohol having 1 to 5 carbon atoms and the antioxidant may be mixed or mixed while stirring at a speed of 400 to 10,000 rpm.

이러한 교반 속도 범위 내에서 마그네슘 할라이드가 완전히 용해된 에멀젼이 양호하게 형성되며, 물리적 손상이 없는 구형의 담체 입자를 적절한 크기로 제조할 수 있다. 상기 교반 시간은 특별히 한정되는 것은 아니나, 약 20 분 내지 2 시간으로 조절될 수 있다.Within this range of stirring speeds, emulsions in which the magnesium halide is completely dissolved are well formed, and spherical carrier particles free from physical damage can be produced in an appropriate size. The stirring time is not particularly limited, but can be adjusted to about 20 minutes to 2 hours.

상기 제 1 단계를 통해 균질 용액이 얻어지면 균질 용액을 제 2 단계에 따라 탄소수 6 이상의 탄화수소 용매 존재 하에서 냉각하여 담체 입자를 제공할 수 있다. If a homogeneous solution is obtained through the first step, the homogeneous solution may be cooled in the presence of a hydrocarbon solvent having 6 or more carbon atoms according to the second step to provide carrier particles.

상기 제 2 단계에서 냉각 방법은 특별히 제한되지 않으나, 빠른 속도로 급냉하는 것이 구형 담체 입자의 제조에 유리하다. 따라서, 균질 용액이 담긴 반응기(이하, 제 1 반응기)에 저온의 탄화수소 용매를 첨가할 수도 있으나, 균질 용액을 저온의 탄화수소 용매가 담긴 반응기(이하, 제 2 반응기)에 첨가하는 것이 유리하다.The cooling method in the second step is not particularly limited, but quenching at a rapid rate is advantageous for producing spherical carrier particles. Therefore, although a low-temperature hydrocarbon solvent may be added to a reactor containing a homogeneous solution (hereinafter referred to as a first reactor), it is advantageous to add a homogeneous solution to a reactor containing a low-temperature hydrocarbon solvent (hereinafter referred to as a second reactor).

구체적으로, 제 1 단계에서 수득한 균질 용액은 600 내지 10,000 rpm으로 교반된 후, 탄소수 6 이상의 탄화수소 용매에 첨가될 수 있다. 이때, 교반속도가 상기 범위를 벗어나면 미세 입자가 보다 많이 형성되며 입도 분포와 형상이 불균일한 담체 입자가 형성되게 된다. 상기 교반 시간은 특별히 한정되지 않으며, 10 분 내지 2 시간 사이로 조절될 수 있다.Specifically, the homogeneous solution obtained in the first step is stirred at 600 to 10,000 rpm and then added to a hydrocarbon solvent having 6 or more carbon atoms. At this time, if the stirring speed is out of the above range, more fine particles are formed and carrier particles having uneven particle size distribution and shape are formed. The stirring time is not particularly limited and may be adjusted to 10 minutes to 2 hours.

한편, 균질 용액을 급냉 시키기 위해, 탄소수 6 이상의 탄화수소 용매를 제 2 반응기에 넣고 이의 온도를 -20 내지 20 ℃로 조절해 둘 수 있다. 이와 같이 탄화수소 용매의 온도를 조절함으로써, 단단하며 균일한 형상의 담체 입자를 제조할 수 있고, 에너지 비용을 최소화하여 생산 원가를 절약할 수 있다. On the other hand, in order to quench the homogeneous solution, a hydrocarbon solvent having 6 or more carbon atoms may be added to the second reactor and the temperature thereof may be adjusted to -20 to 20 캜. By controlling the temperature of the hydrocarbon solvent in this way, it is possible to manufacture carrier particles having a hard and uniform shape, and the energy cost can be minimized and the production cost can be saved.

이때, 사용 가능한 탄소수 6 이상의 탄화수소 용매로는 헥산, 헵탄, 데칸, 미네랄 오일, 실리콘 오일 및 등유로 이루어진 군으로부터 선택된 하나 이상을 예시할 수 있고, 탄소수 6 이상의 탄화수소 용매는 상기 나열된 용매가 단독으로 사용되거나 2 종 이상이 혼합되어 사용될 수 있다. 특히, 상기 탄소수 6 이상의 탄화수소 용매로는 헥산을 사용하는 것이 바람직하다. 상기 탄화수소 용매의 탄소수 상한은 특별히 한정되지 않으며, 약 100 이하일 수 있다.Examples of the hydrocarbon solvent having 6 or more carbon atoms usable herein include at least one selected from the group consisting of hexane, heptane, decane, mineral oil, silicone oil and kerosene. The hydrocarbon solvents having 6 or more carbon atoms may be used alone Or a mixture of two or more of them may be used. Particularly, as the hydrocarbon solvent having 6 or more carbon atoms, hexane is preferably used. The upper limit of the carbon number of the hydrocarbon solvent is not particularly limited and may be about 100 or less.

이러한 탄소수 6 이상의 탄화수소 용매의 사용량은 제 1 단계에서 사용되는 오일과 탄화수소 용매의 부피 비율이 1:2 내지 1:6가 되도록 조절될 수 있다. 이러한 범위 내에서 담체 입자의 뭉침 현상을 방지하여 반응기의 온도를 적절하게 유지하며 미세입자의 생성을 효과적으로 방지하고, 생산비용이 증가하는 문제를 방지할 수 있다.The amount of the hydrocarbon solvent having a carbon number of 6 or more can be adjusted so that the volume ratio of the oil and the hydrocarbon solvent used in the first step is 1: 2 to 1: 6. It is possible to prevent accumulation of carrier particles within such a range, to appropriately maintain the temperature of the reactor, effectively prevent generation of fine particles, and prevent the problem of increase in production cost.

상술한 바와 같이 특정 속도로 교반된 균질 용액은 적절한 속도로 탄화수소 용매가 담긴 제 2 반응기에 첨가될 수 있다. 구체적으로, 상기 균질 용액의 이송 속도는 1 내지 8 mL/sec 유속 범위 내에서 단계적으로 증가될 수 있다. 만일, 초기 이송 속도를 1 mL/sec 보다 느리게 조절하면 입자가 뭉쳐 겔과 같은 덩어리가 생성될 수 있고, 나중 이송 속도가 8 mL/sec 보다 빠르게 조절되면 에멀젼이 너무 급속히 냉각되어 입자가 풀리지 못해 입자끼리 뭉쳐 덩어리가 생성될 수 있다. 그리고, 처음부터 끝까지 이송 속도를 동일하게 조절할 경우에도 고체 덩어리가 생성될 수 있다.The homogeneous solution stirred at a specific rate as described above may be added to the second reactor containing the hydrocarbon solvent at a suitable rate. Specifically, the transfer rate of the homogeneous solution may be increased stepwise within a flow rate range of 1 to 8 mL / sec. If the initial feed rate is controlled to be slower than 1 mL / sec, particles may form agglomerates like gel, and if the later feed rate is adjusted faster than 8 mL / sec, the emulsion will cool too rapidly, Clusters can be formed. Also, solid lumps can be generated even if the feed speed is adjusted to be the same from beginning to end.

상기와 같이 이송된 균질 용액은 제 2 반응기에 공급할 때에는 탄화수소 용매 내 또는 탄화수소 용매 위에 분사하는 방식이 이용될 수 있다. 그러나, 입자의 뭉침 현상을 효과적으로 억제하기 위해, 상기 균질 용액은 공중분사 방식으로 제 2 반응기에 공급될 수 있다. When the homogeneous solution is supplied to the second reactor, the homogeneous solution may be injected in a hydrocarbon solvent or a hydrocarbon solvent. However, in order to effectively suppress the aggregation of particles, the homogeneous solution may be supplied to the second reactor in a state of air spraying.

그리고, 균질 용액의 공급 시에 탄화수소 용매는 교반되고 있어 입자의 뭉침 현상을 효과적으로 억제할 수 있다. 상기 탄화수소 용매의 교반 속도는 300 내지 1000 rpm로 조절될 수 있으며, 이러한 범위 내에서 담체 입자의 물리적 손상 없이 입자의 뭉침 현상을 효과적으로 억제할 수 있다. When the homogeneous solution is supplied, the hydrocarbon solvent is agitated and the aggregation phenomenon of the particles can be effectively suppressed. The stirring speed of the hydrocarbon solvent can be controlled at 300 to 1000 rpm, and the aggregation of particles can be effectively suppressed without physical damage of the carrier particles within this range.

상기 제 2 단계에 따라 균질 용액을 탄화수소 용매 내에서 냉각하여 제조된 담체 입자는 본 발명이 속한 기술분야에 알려진 바에 따라 정제 및/또는 건조될 수 있다. 일 예로, 제 2 단계에서 수득한 담체 입자는 슬러리 형태로 얻어진다. 이러한 슬러리 형태의 생성물로부터 미반응 알코올 등을 제거하기 위해, 슬러리 형태의 생성물에 제 2 단계에서 사용한 탄화수소 용매를 첨가하고 교반하여 상층 용액을 제거하는 방식으로 담체 입자를 2 내지 3회 세정할 수 있다. 이때, 상기 교반 속도 및 시간은 200 내지 800 rpm 및 5 분 내지 30 분 정도로 조절될 수 있으며, 이러한 범위 내에서 덩어리 형태의 담체 입자가 풀리면서 물리적 손상 없이 균일한 입도 분포의 담체 입자가 얻어지고 미반응물이 효과적으로 제거될 수 있다. 그리고 세정 공정을 많이 반복할 경우 미분이 생길 수 있어 바람직하지 않다. 상기와 같이 세정된 담체 입자를 흐르는 질소 하에서 30 분 이상 환기시키고 진공 펌프를 이용하여 용매를 완전히 제거하여 건조시킬 수 있다. The carrier particles prepared by cooling the homogeneous solution in a hydrocarbon solvent according to the second step can be purified and / or dried as known to the technical field of the present invention. As an example, the carrier particles obtained in the second step are obtained in the form of a slurry. In order to remove unreacted alcohol or the like from the product in the form of slurry, the carrier particles used in the second step may be added to the product in the form of a slurry and stirred to remove the upper layer solution, so that the carrier particles can be washed 2 to 3 times . At this time, the stirring speed and time may be adjusted to 200 to 800 rpm and 5 to 30 minutes. Within this range, the carrier particles in the form of loose particles are loosened to obtain carrier particles having a uniform particle size distribution without physical damage, The reactants can be effectively removed. If the cleaning process is repeated many times, fine particles may be generated, which is not preferable. The carrier particles thus cleaned can be ventilated under flowing nitrogen for 30 minutes or longer, and the solvent can be completely removed by using a vacuum pump to dry.

이러한 담체 입자는 구형을 이루면서도 입도분포가 균일하고, 입경이 10 ㎛ 이하인 미세입자의 함량이 10 중량% 이하로 극히 적어서 프로필렌 중합 공정에서 요구되는 특성을 충분히 만족시킬 수 있는 촉매를 제조하는데 적합한 담체로 사용될 수 있다. These carrier particles are spherical and homogeneous in particle size distribution, and the content of fine particles having a particle size of 10 탆 or less is extremely small at 10% by weight or less, so that a carrier suitable for preparing a catalyst capable of sufficiently satisfying the properties required in the propylene polymerization process .

또한 담체 입자의 평균입경(D50)이 35 내지 90 ㎛로 슬러리, 벌크 또는 기상 중합 등 기존의 상용 중합 공정에서 요구되는 촉매용 담체로 사용되기에 적합하다. Also, the average particle diameter (D 50 ) of the carrier particles is 35 to 90 탆, which is suitable for use as a carrier for a catalyst required in a conventional commercial polymerization process such as slurry, bulk or gas phase polymerization.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. However, this is provided as an example of the invention, and the scope of the invention is not limited thereto in any sense.

실시예Example 1:  One: 담체carrier 입자의 제조 Manufacturing of particles

교반기와 오일 순환 히터가 장착된 1 L의 제 1 반응기를 질소로 환기시키며 120 ℃에서 2 시간 동안 건조시켰다. The 1 L of the first reactor equipped with the stirrer and the oil circulation heater was ventilated with nitrogen and dried at 120 DEG C for 2 hours.

상기 제 1 반응기에 무수(anhydrous) 이염화마그네슘 16.0 g, 에탄올 29.4 mL, 산화방지제로서 2,2-디-tert-부틸-4-메틸페놀 (2,2-di-tert-butyl-4-methylphenol; BHT) 0.19 g 및 오일 (29.7 cSt, 40 ℃) 250 mL를 투입하고 120 ℃에서 400 rpm의 회전 속도로 1 시간 동안 교반하였다. In the first reactor, 16.0 g of anhydrous magnesium dichloride, 29.4 mL of ethanol and 2, 2-di-tert-butyl-4-methylphenol ; BHT) and 250 mL of oil (29.7 cSt, 40 DEG C) were charged and stirred at 120 DEG C at a rotation speed of 400 rpm for 1 hour.

한편, 교반기와 오일 순환 히터가 장착된 2 L의 제 2 반응기를 질소로 환기시키며 120 ℃에서 2 시간 동안 건조시켰다. 이후, 상기 제 2 반응기에 헥산 1 L를 투입하고 온도를 -20 ℃로 낮춘 다음, 교반기의 회전 속도를 500 rpm으로 유지하였다. On the other hand, a 2 L second reactor equipped with a stirrer and an oil circulation heater was ventilated with nitrogen and dried at 120 DEG C for 2 hours. Thereafter, 1 L of hexane was added to the second reactor, the temperature was lowered to -20 DEG C, and the rotation speed of the stirrer was maintained at 500 rpm.

그리고, 제 1 반응기에 존재하는 마그네슘 화합물이 완전히 용해된 균질 용액을 1000 rpm의 회전 속도로 30 분 교반한 후 바로 이송 라인을 통하여 준비된 제 2 반응기에 이송하였다. 이송 라인에서의 이송 속도는 용해용 반응기(제 1 반응기)와 급냉용 반응기(제 2 반응기) 간의 압력 차를 이용하여 1 내지 6 mL/sec의 유속 범위 내에서 단계적으로 조절되었다. 이때, 이송 라인은 제 2 반응기에 담긴 냉각 용매에서 일정한 간격으로 떨어지게 설치되었다. The homogeneous solution completely dissolved in the magnesium compound present in the first reactor was stirred at a rotation speed of 1000 rpm for 30 minutes and immediately transferred to the second reactor prepared through the transfer line. The feed rate in the transfer line was adjusted stepwise within a flow rate range of 1 to 6 mL / sec using the pressure difference between the dissolution reactor (first reactor) and the quench reactor (second reactor). At this time, the transfer line was set to be spaced apart at regular intervals in the cooling solvent contained in the second reactor.

상기 이송 라인을 통해 이송된 균질 용액은 공중분사 방법으로 제 2 반응기에 투입되었다. 제 2 반응기에 균질 용액을 190 mL 투입한 후, 15 분 동안 -16 ℃에서 유지하고, 제 2 반응기 온도를 실온으로 상승시켰다. 슬러리 형태로 얻어진 생성물에 헥산 1 L를 넣어 250 rpm으로 10 분 동안 교반하였다. 이어서, 교반을 멈춘 후, 담체 입자가 침전되면 상층 용액을 제거하여 헥산, 미반응 알코올 및 오일을 제거하였다. 이와 같은 세정 작업을 2회 반복한 후, 담체를 500 mL 플라스크에 옮겨 담아 흐르는 질소 하에 10 분 환기시키고, 진공펌프를 이용하여 30 분 동안 건조시켰다. 이와 같은 과정을 통해 구형의 담체 입자 15.8 g을 얻었다.The homogeneous solution transferred through the transfer line was injected into the second reactor by air spraying method. 190 mL of homogeneous solution was added to the second reactor, then maintained at -16 DEG C for 15 minutes, and the second reactor temperature was raised to room temperature. 1 L of hexane was added to the product obtained in the form of slurry, and the mixture was stirred at 250 rpm for 10 minutes. Subsequently, when stirring was stopped, when the carrier particles had settled, the upper layer solution was removed to remove hexane, unreacted alcohol and oil. After such a washing operation was repeated twice, the carrier was transferred to a 500 mL flask, ventilated under flowing nitrogen for 10 minutes, and dried using a vacuum pump for 30 minutes. 15.8 g of spherical carrier particles were obtained in this manner.

실시예Example 2:  2: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제 BHT의 함량을 0.37 g으로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of the antioxidant BHT in Example 1 was adjusted to 0.37 g.

실시예Example 3:  3: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제 BHT의 함량을 0.56 g으로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of the antioxidant BHT was adjusted to 0.56 g in Example 1.

실시예Example 4:  4: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트] (pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]) 0.99 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Example 3 was repeated except that pentaerythritol tetrakis [3- (3,5-di (tert-butyl) -4-hydroxyphenyl] -tert-butyl-4-hydroxyphenyl) propionate]) (0.99 g).

실시예Example 5:  5: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트] 1.98 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Except that 1.98 g of pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was used in place of BHT as an antioxidant in Example 1 To prepare carrier particles.

실시예Example 6:  6: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트 (methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) 0.25 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. In Example 1, methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (methyl 3- ) propionate) was used as a carrier particle.

실시예Example 7:  7: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트 0.50 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Except that 0.50 g of methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate was used in place of BHT as an antioxidant in Example 1 to prepare carrier particles Respectively.

실시예Example 8:  8: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트 0.75 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Except that 0.75 g of methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate was used in place of BHT as an antioxidant in Example 1 to prepare carrier particles Respectively.

실시예Example 9:  9: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀) (2,2-methylenebis(4-methyl-6-tert-butylphenol)) 0.29 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. 0.29 g of 2,2-methylenebis (4-methyl-6-tert-butylphenol) was used instead of BHT as the antioxidant in Example 1 , Carrier particles were prepared.

실시예Example 10:  10: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀) 0.57 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that 0.57 g of 2,2-methylenebis (4-methyl-6-tert-butylphenol) was used instead of BHT as an antioxidant in Example 1.

실시예Example 11:  11: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀) 0.85 g을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that 0.85 g of 2,2-methylenebis (4-methyl-6-tert-butylphenol) was used instead of BHT as an antioxidant in Example 1.

실시예Example 12:  12: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 에탄올의 함량을 23.55 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of ethanol was adjusted to 23.55 mL in Example 1.

실시예Example 13:  13: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 에탄올의 함량을 27.47 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1 except that the content of ethanol in Example 1 was adjusted to 27.47 mL.

실시예Example 14:  14: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 에탄올의 함량을 31.39 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of ethanol was adjusted to 31.39 mL in Example 1.

실시예Example 15:  15: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 에탄올의 함량을 34.34 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of ethanol in Example 1 was adjusted to 34.34 mL.

실시예Example 16:  16: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제 (BHT)의 함량을 0.56 g으로 조절하고 에탄올의 함량을 34.34 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1, except that the content of the antioxidant (BHT) was adjusted to 0.56 g and the content of ethanol was adjusted to 34.34 mL.

실시예Example 17:  17: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트] 1.98 g을 사용하고 에탄올의 함량을 34.34 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. 1.98 g of pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was used instead of BHT as an antioxidant in Example 1, and the content of ethanol was adjusted to 34.34 mL Carrier particles were prepared in the same manner as in Example 1. The results are shown in Table 1.

실시예Example 18:  18: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 메틸 3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트 0.75 g을 사용하고 에탄올의 함량을 34.34 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Except that 0.75 g of methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate was used instead of BHT as an antioxidant in Example 1 and the content of ethanol was adjusted to 34.34 mL Carrier particles were prepared in the same manner as in Example 1.

실시예Example 19:  19: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 산화방지제로 BHT 대신 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀) 0.85 g을 사용하고 에탄올의 함량을 34.34 mL로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. The same procedure as in Example 1 was carried out except that 0.85 g of 2,2-methylenebis (4-methyl-6-tert-butylphenol) was used instead of BHT as the antioxidant in Example 1 and the content of ethanol was adjusted to 34.34 mL To prepare carrier particles.

실시예Example 20:  20: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 오일 (8.8 cSt, 40 ℃) 250 mL를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that 250 mL of oil (8.8 cSt, 40 캜) was used in Example 1.

실시예Example 21:  21: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 오일 (50.0 cSt, 40 ℃) 250 mL를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that 250 mL of the oil (50.0 cSt, 40 DEG C) was used in Example 1.

실시예Example 22:  22: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 오일 (100.0 cSt, 40 ℃) 250 mL를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that 250 mL of the oil (100.0 cSt, 40 DEG C) was used in Example 1.

실시예Example 23:  23: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 제 1 반응기에 존재하는 마그네슘 화합물이 완전히 용해된 균질 용액을 700 rpm의 회전 속도로 30 분 동안 교반한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1, except that the homogeneous solution in which the magnesium compound in the first reactor completely dissolved in Example 1 was stirred at a rotation speed of 700 rpm for 30 minutes.

실시예Example 24:  24: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 제 1 반응기에 존재하는 마그네슘 화합물이 완전히 용해된 균질 용액을 2200 rpm의 회전 속도로 30 분 동안 교반한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1, except that the homogeneous solution in which the magnesium compound in the first reactor completely dissolved in Example 1 was stirred at a rotation speed of 2200 rpm for 30 minutes.

비교예Comparative Example 1:  One: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 무수(anhydrous) 이염화마그네슘의 함량을 50.0 g으로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다.Carrier particles were prepared in the same manner as in Example 1, except that the content of anhydrous magnesium dichloride in Example 1 was adjusted to 50.0 g.

비교예Comparative Example 2:  2: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 에탄올 98.11 mL를 사용한 것 외에 실시예 1과 동일한 방법으로 담체를 제조하였다.A carrier was prepared in the same manner as in Example 1 except that 98.11 mL of ethanol was used in Example 1.

비교예Comparative Example 3:  3: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 오일 (120.0 cSt, 40 ℃) 250 mL를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1, except that 250 mL of oil (120.0 cSt, 40 DEG C) was used in Example 1.

비교예Comparative Example 4:  4: 담체carrier 입자의 제조 Manufacturing of particles

실시예 1에서 제 1 반응기에 존재하는 마그네슘 화합물이 완전히 용해된 균질 용액을 500 rpm의 회전 속도로 30 분 동안 교반한 것을 제외하고 실시예 1과 동일한 방법으로 담체 입자를 제조하였다. Carrier particles were prepared in the same manner as in Example 1 except that the homogeneous solution in which the magnesium compound completely dissolved in the first reactor in Example 1 was stirred at a rotation speed of 500 rpm for 30 minutes.

시험예Test Example : : 담체carrier 입자의 평가 Evaluation of Particles

상기 실시예 및 비교예에 따라 제조된 담체 입자의 형상을 전자현미경 (SEM: Scanning Electron Microscope)으로 관찰하여 표 1에 기재하였다. The shapes of the carrier particles prepared according to the above Examples and Comparative Examples were observed with an electron microscope (SEM: Scanning Electron Microscope) and are shown in Table 1.

또한, 헥산에 현탁시킨 상태의 담체 입자의 입자크기를 광투과법에 의해 레이저 입자분석기 (Mastersizer X; Malvern Instruments사 제조)로 측정하였다. 그 결과, 입자크기의 누적분포도를 얻었으며, 이로부터 입자의 평균입경, 입도분포지수 및 미세입자의 함량을 하기와 같이 구하고, 표 1에 기재하였다. Further, the particle size of the carrier particles suspended in hexane was measured with a laser particle analyzer (Mastersizer X, manufactured by Malvern Instruments) by a light transmission method. As a result, a cumulative distribution of the particle size was obtained, and the average particle size, the particle size distribution index and the fine particle content of the particles were obtained as follows.

(1) 평균입경 (D50): 누적중량 50%에 해당하는 입자의 크기(One) Average particle size (D 50 ): the particle size corresponding to the cumulative weight of 50%

(2) 입도분포지수 (P): P = (D90-D10)/D50 (2) Particle size distribution index (P): P = (D 90 -D 10 ) / D 50

상기에서, D90은 누적중량 90%에 해당되는 입자의 크기이고, D10은 누적중량 10%에 해당되는 입자의 크기이다In the above, D 90 is the particle size corresponding to the cumulative weight of 90%, and D 10 is the particle size corresponding to the cumulative weight 10%

(3) 미세입자 함량: 입경이 10 ㎛ 미만인 입자의 누적중량%(3) Fine particle content: Cumulative weight% of particles having a particle diameter of less than 10 [

담체 입자의 모양The shape of the carrier particle 평균입경 [㎛]Average particle diameter [占 퐉] 입도분포지수Particle size distribution index 미세입자함량
[중량%]
Fine particle content
[weight%]
실시예 1Example 1 구형rectangle 6262 1.151.15 5.65.6 실시예 2Example 2 구형rectangle 4747 1.251.25 2.62.6 실시예 3Example 3 구형rectangle 7474 1.551.55 2.72.7 실시예 4Example 4 구형rectangle 4444 1.251.25 4.24.2 실시예 5Example 5 구형rectangle 5656 1.241.24 3.23.2 실시예 6Example 6 구형rectangle 8080 1.251.25 5.35.3 실시예 7Example 7 구형rectangle 4141 1.661.66 2.72.7 실시예 8Example 8 구형rectangle 4848 1.691.69 3.43.4 실시예 9Example 9 구형rectangle 5757 1.521.52 4.94.9 실시예 10Example 10 구형rectangle 5151 1.361.36 2.82.8 실시예 11Example 11 구형rectangle 4949 1.471.47 3.83.8 실시예 12Example 12 구형rectangle 4848 1.671.67 7.57.5 실시예 13Example 13 구형rectangle 6060 1.141.14 5.95.9 실시예 14Example 14 구형rectangle 5656 1.171.17 6.16.1 실시예 15Example 15 구형rectangle 4747 1.251.25 7.97.9 실시예 16Example 16 구형rectangle 4949 1.551.55 7.97.9 실시예 17Example 17 구형rectangle 8585 1.551.55 6.06.0 실시예 18Example 18 구형rectangle 5858 1.061.06 8.28.2 실시예 19Example 19 구형rectangle 5959 1.211.21 6.36.3 실시예 20Example 20 구형rectangle 5252 1.261.26 4.94.9 실시예 21Example 21 구형rectangle 4444 1.441.44 3.63.6 실시예 22Example 22 구형rectangle 3838 1.171.17 2.72.7 실시예 23Example 23 구형rectangle 6161 1.551.55 4.94.9 실시예 24Example 24 구형rectangle 4646 1.421.42 3.83.8 비교예 1Comparative Example 1 미세입자와 입자간 응집된 거대입자 공존Coexistence of coarse particles between fine particles and particles 9797 3.683.68 6.46.4 비교예 2Comparative Example 2 미세입자, 거대입자, 구형 공존Fine particles, large particles, spherical coexistence 2727 2.932.93 6.36.3 비교예 3Comparative Example 3 미세입자와 입자간 응집된 거대입자 공존Coexistence of coarse particles between fine particles and particles 112112 3.013.01 4.24.2 비교예 4Comparative Example 4 미세입자와 입자간 응집된 거대입자 공존Coexistence of coarse particles between fine particles and particles 124124 3.753.75 5.45.4

Claims (10)

40 ℃에서 3 내지 100 cSt의 점도를 갖는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하되, 마그네슘 할라이드 1 mol에 대하여 탄소수 1 내지 5의 알코올을 2.8 내지 3.0 mol로 혼합하여 균질 용액을 제조하는 제 1 단계; 및
상기 제 1 단계에서 수득한 균질 용액을 600 내지 10,000 rpm으로 교반한 후 탄소수 6 이상의 탄화수소 용매 존재 하에서 냉각하여 담체 입자를 제조하는 제 2 단계를 포함하고,
상기 산화방지제로 2,2-디-tert-부틸-4-메틸페놀 (2,2-di-tert-butyl-4-methylphenol; BHT), 펜타에리스리톨 테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트](pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]) 및 2,2-메틸렌비스(4-메틸-6-tert-부틸페놀)(2,2-methylenebis(4-methyl-6-tert-butylphenol))로 구성된 군에서 선택된 1종 이상을 사용하는, 프로필렌 중합 촉매용 담체 입자의 제조 방법.
Magnesium halide, an alcohol having 1 to 5 carbon atoms, and an antioxidant at 40 DEG C and having a viscosity of 3 to 100 cSt, wherein an alcohol having from 1 to 5 carbon atoms is mixed in an amount of from 2.8 to 3.0 mol based on 1 mol of the magnesium halide, A first step of preparing a solution; And
And a second step of stirring the homogeneous solution obtained in the first step at 600 to 10,000 rpm and cooling in the presence of a hydrocarbon solvent having 6 or more carbon atoms to prepare carrier particles,
As the antioxidant, 2,2-di-tert-butyl-4-methylphenol (BHT), pentaerythritol tetrakis [3- (3,5- butyl-4-hydroxyphenyl) propionate] and 2,2-methylenebis (4-methylpentyl) (4-methyl-6-tert-butylphenol)) is used as a catalyst for polymerization of propylene.
삭제delete 제 1 항에 있어서, 마그네슘 할라이드는 염화마그네슘, 브롬화마그네슘 및 요오드화마그네슘으로 구성되는 군에서 선택된 1 종 이상인 프로필렌 중합 촉매용 담체 입자의 제조 방법.
The process according to claim 1, wherein the magnesium halide is at least one selected from the group consisting of magnesium chloride, magnesium bromide, and magnesium iodide.
제 1 항에 있어서, 탄소수 1 내지 5의 알코올은 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 이소펜탄올, 네오펜탄올 및 시클로펜탄올로 구성되는 군에서 선택된 1 종 이상인 프로필렌 중합 촉매용 담체 입자의 제조 방법.
The process according to claim 1, wherein the alcohol having from 1 to 5 carbon atoms is selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, isopentanol, neopentanol and cyclopentanol By weight based on the total weight of the carrier particles.
삭제delete 삭제delete 삭제delete 제 1 항에 있어서, 제 1 단계에서 마그네슘 할라이드 1 mol에 대하여 산화방지제 1 mmol 내지 50 mmol을 혼합하는, 프로필렌 중합 촉매용 담체 입자의 제조 방법.
The process for producing a carrier particle for a propylene polymerization catalyst according to claim 1, wherein 1 mmol to 50 mmol of an antioxidant is mixed with 1 mol of the magnesium halide in the first step.
제 1 항에 있어서, 제 1 단계는 오일, 마그네슘 할라이드, 탄소수 1 내지 5의 알코올 및 산화방지제를 혼합하고 400 내지 10,000 rpm의 속도로 교반하여 균질 용액을 제조하는, 프로필렌 중합 촉매용 담체 입자의 제조 방법. A process for preparing a carrier particle for a propylene polymerization catalyst according to claim 1, wherein the first step comprises mixing the oil, the magnesium halide, the alcohol having 1 to 5 carbon atoms and the antioxidant and stirring at a speed of 400 to 10,000 rpm to prepare a homogeneous solution. Way. 삭제delete
KR1020160115103A 2016-09-07 2016-09-07 Preparation method of supporting particle KR101810161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160115103A KR101810161B1 (en) 2016-09-07 2016-09-07 Preparation method of supporting particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160115103A KR101810161B1 (en) 2016-09-07 2016-09-07 Preparation method of supporting particle

Publications (1)

Publication Number Publication Date
KR101810161B1 true KR101810161B1 (en) 2017-12-19

Family

ID=60924285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160115103A KR101810161B1 (en) 2016-09-07 2016-09-07 Preparation method of supporting particle

Country Status (1)

Country Link
KR (1) KR101810161B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282998A (en) * 2005-03-09 2006-10-19 Japan Polypropylene Corp Solid catalyst component for olefin polymerization, catalyst for olefin polymerization and process for production of polyolefin using it
JP2009040998A (en) * 2007-07-18 2009-02-26 Sumitomo Chemical Co Ltd Polypropylene resin composition and molding made from the same
JP2010201362A (en) * 2009-03-04 2010-09-16 National Institute Of Advanced Industrial Science & Technology Catalyst support, method for producing the catalyst support, and catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282998A (en) * 2005-03-09 2006-10-19 Japan Polypropylene Corp Solid catalyst component for olefin polymerization, catalyst for olefin polymerization and process for production of polyolefin using it
JP2009040998A (en) * 2007-07-18 2009-02-26 Sumitomo Chemical Co Ltd Polypropylene resin composition and molding made from the same
JP2010201362A (en) * 2009-03-04 2010-09-16 National Institute Of Advanced Industrial Science & Technology Catalyst support, method for producing the catalyst support, and catalyst

Similar Documents

Publication Publication Date Title
KR100624027B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
KR100807895B1 (en) Method for preparation of spherical support for olefin polymerization catalyst
WO2001025299A1 (en) Rolled polypropylene and injection-molded polypropylene
KR101701398B1 (en) Preparing method of catalyst for polymerization of polyethylene and process for polymerization of polyethylene using the same
KR100822610B1 (en) Method for preparation of spherical support for olefin polymerization catalyst
EP2520591B1 (en) Catalyst for polyolefin polymerisation and a production method for the same
KR20100125849A (en) A preparation method of dialkoxymagnesium support for catalyst for olefin polymerization, a preparation method of catalyst for olefin polymerization using the same and a polymerization method of olefin using the same
CN111683977B (en) Polypropylene resin pellet and preparation method thereof
KR101810161B1 (en) Preparation method of supporting particle
KR101705851B1 (en) Method of preparation of supporting particle
CN106608941A (en) Carrier used for olefin polymerization catalyst and preparation method thereof
KR101207622B1 (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and propylene polymers obtained using the support
EP2520592B1 (en) Production method for a catalyst for polyolefin polymerisation, a catalyst obtained by means of the same, and a production method for polyolefins by using the same
KR101905163B1 (en) Supporting particle
KR20120097100A (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and method of preparation of propylene polymers using the catalyst
KR101169861B1 (en) Method of preparation of spherical support and solid catalyst for olefin polymerization using the support
FR2992648A1 (en) SOLID CATALYST FOR POLYMERIZING PROPYLENE AND PROCESS FOR PREPARING POLY (PROPYLENE).
KR20090071718A (en) Method of preparation of spherical support for olefin polymerization catalyst
KR100954056B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
KR100640275B1 (en) Method for preparing solid catalysts for ethylene polymerization and copolymerization
KR20170107983A (en) Polyethylene composition and pipe comprising such composition
JPH04189803A (en) Production of polypropylene
KR101835745B1 (en) Method of preparation of supporting particle
KR101835744B1 (en) Preparing method of catalyst for polymerization of polyethylene and process for polymerization of polyethylene using the same
KR102467604B1 (en) Method for producing supporting particle

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant