KR101807708B1 - Method for generating induced pluripotent stem cells - Google Patents
Method for generating induced pluripotent stem cells Download PDFInfo
- Publication number
- KR101807708B1 KR101807708B1 KR1020170137236A KR20170137236A KR101807708B1 KR 101807708 B1 KR101807708 B1 KR 101807708B1 KR 1020170137236 A KR1020170137236 A KR 1020170137236A KR 20170137236 A KR20170137236 A KR 20170137236A KR 101807708 B1 KR101807708 B1 KR 101807708B1
- Authority
- KR
- South Korea
- Prior art keywords
- medium
- cells
- culture
- differentiation
- cell
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 (a) 역분화 유도 인자를 코딩하는 유전자가 도입된 인간-유래의 체세포를, 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및 골 형성 단백질 경로 차단제로 이루어진 군으로부터 1종 이상 선택된 역분화-증진제을 포함하는 배지 중에서 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니(embryonic stem cell-like colonies)를 분리하는 단계를 포함하는 역분화 만능 줄기세포(iPS cells)의 제조방법을 제공한다. 본 발명의 제조방법은 높은 효율로 역분화 만능 줄기세포를 제조할 수 있으며, 또한 무-이종감염물질(xenopathogen-free) 및 무-지지세포(feeder cell-free) 조건하에서 역분화 만능 줄기세포를 제조할 수 있다.The present invention relates to a method for producing a recombinant human somatic cell, comprising the steps of: (a) culturing a human-derived somatic cell into which a gene encoding a dediffering inducer is introduced in the presence of at least one selected from the group consisting of a protein kinase C inhibitor, a histone deacetylase inhibitor, Culturing in a medium containing a differentiation-enhancing agent; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a). The present invention also provides a method for producing iPS cells. The production method of the present invention is capable of producing reprogrammed pluripotent stem cells at high efficiency and also capable of producing reprogrammed pluripotent stem cells under xenopathogen-free and feeder cell-free conditions Can be manufactured.
Description
본 발명은 역분화 만능 줄기세포의 제조방법에 관한 것으로, 더욱 상세하게는 프로틴 키나아제 C 저해제(protein kinase C inhibitor), 히스톤 데아세틸라제 저해제(histone deacetylase inhibitor), 및/또는 골 형성 단백질 경로 차단제(bone morphogenetic protein (BMP) pathway blocker)를 역분화-증진제로서 사용하여, 높은 효율로 역분화 만능 줄기세포를 제조(generating or preparing)하는 방법에 관한 것이다. 또한, 본 발명에 따른 제조방법은 무-이종감염물질(xenopathogen-free) 및 무-지지세포(feeder cell-free) 조건하에서 역분화 만능 줄기세포를 제조하는 방법을 포함한다.More particularly, the present invention relates to a method for producing a pluripotent stem cell comprising a protein kinase C inhibitor, a histone deacetylase inhibitor, and / or an osteogenic protein pathway inhibitor bone morphogenetic protein (BMP) pathway blocker) as a reprogramming-enhancing agent to produce or prepare reprogrammed pluripotent stem cells at high efficiency. In addition, the manufacturing method according to the present invention includes a method for producing reprogramming pluripotent stem cells under conditions of xenopathogen-free and feeder cell-free.
역분화 만능 줄기세포(induced pluripotent stem cell, iPS 세포)는 분화된 세포(예를 들어, 체세포)로부터 역분화되어 얻어진 만능분화능(pluripotency)을 갖는 세포를 지칭하며, 각종 장기 세포로 분화 가능하다. iPS 세포는 역분화 유도인자들에 의해 분화된 세포를 재프로그램화(reprogramming)하여 얻어질 수 있으므로, 체세포 핵치환(somatic cell transfer) 없이 환자 면역 적합성 만능 세포주의 생성이 가능하다. 따라서 iPS 세포는 환자의 세포에서 유래될 수 있어 임상에 적용 시 면역 거부반응을 피할 수 있다. 또한, iPS 세포는 난자나 배아를 사용하지 않기 때문에 생명윤리적 논란이나 종교적 비난이 없는 장점이 있다.Induced pluripotent stem cells (iPS cells) refer to pluripotency cells obtained by differentiation from differentiated cells (for example, somatic cells) and are capable of differentiating into various organ cells. Since iPS cells can be obtained by reprogramming the cells differentiated by the differentiation inducing factors, it is possible to generate patient immunocompetent universal cell lines without somatic cell transfer. Therefore, iPS cells can be derived from the patient's cells, so immunization rejection can be avoided when applied to clinical applications. In addition, iPS cells do not use oocytes or embryos, so there is no bioethical controversy or religious criticism.
2006년 8월에 Takahashi, K., 및 Yamanaka, S. 등이 생쥐 세포를 이용한 역분화에 의한 iPS 세포의 형성을 최초로 발표(Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676)한 이래, Takahashi, K. 등 및 Yu, J. 등은 인간세포를 대상으로 역분화에 의한 iPS 세포의 형성을 보고한 바 있다(Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872; 및 Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science, New York, NY). Takahashi, K. 등은 iPS 세포를 얻기 위해서는 Sox2, Oct3/4, 및 Klf4의 역분화 유도인자가 필수적으로 필요하고 또한, 추가적으로 c-Myc이 iPS 세포의 형성을 촉진하는 역할을 하는 것을 밝혀냈다. 또한, Yu, J. 등은 Sox2, Oct3/4, 및 Nanog의 역분화 유도인자가 iPS 세포를 얻기 위해 필수적으로 필요하며, Lin28이 존재하는 경우 iPS 세포의 형성이 증가하는 것을 밝혀냈다.Takahashi, K., and Yamanaka, S., et al., In August 2006, first reported the formation of iPS cells by degeneration using mouse cells (Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 126, 663-676) one since, Takahashi, K., etc., and Yu, J. et target human cells reported the formation of iPS cells by the de-differentiation Induction of pluripotent stem cells from adult cells (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. human fibroblasts by defined factors Cell 131 , 861-872 and Yu, J., Vodyanik, MA, Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, JL, Tian, S., Nie, J. , Jonsdottir, GA, Ruotti, V., Stewart, R. , et al. (2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Takahashi, K. et al. Have found that induction factors of Sox2, Oct3 / 4, and Klf4 are essential for obtaining iPS cells, and additionally, c-Myc plays a role in promoting the formation of iPS cells. In addition, Yu, J. et al. Found that the induction factor of Sox2, Oct3 / 4, and Nanog is essential for obtaining iPS cells, and the formation of iPS cells is increased in the presence of Lin28.
한편, 종래의 재프로그램화(reprogramming)에 의한 iPS 세포의 제조방법, 예를 들어, Takahashi, K. et al (2007) Cell 131, 861-872 에 따르면, 5 x 104 개의 인간 피부 섬유아세포로부터 약 10 여개의 iPS 세포만이 얻어지는 낮은 효율의 문제점을 가지고 있다. 또한, 소태아혈청(fetal bovine serum) 등의 이종감염물질(xenopathogen)의 사용을 필요로 하며, 역분화 유도 과정에서 동물 유래의 지지세포(feeder cells)의 사용을 필요로 하므로, iPS 세포를 실제 임상에 적용하는데 있어서 안전성 측면에서 한계가 있다.On the other hand, according to a conventional method of producing iPS cells by reprogramming, for example, according to Takahashi, K. et al (2007) Cell 131 , 861-872, 5 x 10 4 human dermal fibroblasts There is a problem of low efficiency in which only about 10 iPS cells are obtained. In addition, since it requires the use of xenopathogen such as fetal bovine serum and the use of animal-derived feeder cells in the process of inducing the differentiation, There are limits to safety in clinical application.
본 발명자들은 높은 효율로 iPS 세포를 제조할 수 있는 방법을 개발하고자 다양한 연구를 수행하였다. 그 결과, 특정 물질 즉, 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및/또는 골 형성 단백질 경로 차단제가 체세포의 역분화를 증진하는 활성이 있어, 높은 효율로 iPS 세포를 제조할 수 있다는 것을 발견하였다. 또한, 상기 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및/또는 골 형성 단백질 경로 차단제를 사용할 경우, 무-이종감염물질(xenopathogen-free) 및 무-지지세포(feeder cell-free) 조건하에서 역분화 만능 줄기세포를 제조할 수 있다는 것을 발견하였다.The present inventors have conducted various studies to develop a method for producing iPS cells with high efficiency. As a result, it has been found that a specific substance, that is, a proteine kinase C inhibitor, a histone deacetylase inhibitor, and / or an osteogenic protein pathway blocker has an activity of promoting the differentiation of somatic cells and can produce iPS cells with high efficiency Respectively. In addition, when the protein kinase C inhibitor, the histone deacetylase inhibitor, and / or the osteogenic protein pathway blocker are used, it is possible to obtain a reverse transcription reaction under xenopathogen-free and feeder cell- We have found that pluripotent stem cells can be produced.
따라서, 본 발명은 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및/또는 골 형성 단백질 경로 차단제를 역분화-증진제로서 사용하는, iPS 세포의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a process for producing iPS cells using a protein kinase C inhibitor, a histone deacetylase inhibitor, and / or an osteogenic protein pathway inhibitor as a reprogramming-enhancing agent.
본 발명의 일 태양에 따라, (a) 역분화 유도 인자를 코딩하는 유전자가 도입된 인간-유래의 체세포를, 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및 골 형성 단백질 경로 차단제로 이루어진 군으로부터 1종 이상 선택된 역분화-증진제을 포함하는 배지 중에서 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는 역분화 만능 줄기세포의 제조방법이 제공된다.According to one aspect of the present invention, there is provided a method for producing a recombinant human somatic cell comprising: (a) culturing human-derived somatic cells into which a gene encoding a reprogramming inducing factor has been introduced from a group consisting of a protein kinase C inhibitor, a histone deacetylase inhibitor, In a medium containing at least one selected reprogramming-enhancing agent; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a).
본 발명의 역분화 만능 줄기세포의 제조방법에 있어서, 상기 역분화-증진제는 히스톤 데아세틸라제 저해제 및 골 형성 단백질 경로 차단제의 혼합물이 특히 바람직하며, 상기 역분화-증진제의 농도는 0.001 내지 1000 μM의 범위일 수 있다.In a preferred embodiment of the present invention, the de-differentiation-enhancing agent is a mixture of a histone deacetylase inhibitor and an osteogenic protein pathway blocker, and the concentration of the de-differentiation-enhancing agent is in the range of 0.001 to 1000 μM Lt; / RTI >
본 발명의 일 구현예에서, 단계(a)의 상기 배양은 (i) 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제1 배지") 중에서 3∼6 일 동안 1차 배양을 수행하는 단계, (ii) 세포외기질 단백질(extracellular matrix protein)의 존재하에서, 상기 제1 배지 중에서 1.5∼3 일 동안 2차 배양을 수행하는 단계, 및 (iii) 인간 배아줄기세포 배양용 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제2 배지") 중에서 15∼30 일 동안 3차 배양을 수행하는 단계를 포함할 수 있다.In one embodiment of the present invention, said culturing of step (a) comprises the steps of: (i) culturing a medium obtained by adding said de-differentiation-enhancing agent to the medium used for introduction of the gene encoding the dedifferentiation inducing factor (" and performing a first incubation for 3-6 days in, (ii) in the presence of a substrate protein (extracellular matrix protein) other cells, and performing a secondary culture for 1.5~3 days in the first medium, and ( iii) performing a tertiary culture for 15 to 30 days in a culture medium obtained by adding the de-differentiation-enhancing agent to a human embryonic stem cell culture medium ("second medium").
상기 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지 및/또는 상기 인간 배아줄기세포 배양용 배지는 무-이종감염물질 배지일 수 있으며, 상기 (i) 내지 (iii)의 배양이 무-지지세포(feeder cell-free) 조건하에서 바람직하게 수행될 수 있다.The medium used for introducing the gene encoding the dediffering inducer and / or the culture medium for human embryonic stem cell culture may be a non-xenogeneic infectious agent medium, and the culture of (i) to (iii) Can be preferably performed under feeder cell-free conditions.
본 발명에 따른 역분화 만능 줄기세포의 제조방법은 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및/또는 골 형성 단백질 경로 차단제를 역분화-증진제로서 사용함으로써, 높은 효율로 역분화 만능 줄기세포를 제조할 수 있다. 또한, 상기 역분화 증진제를 사용할 경우, 역분화 만능 줄기세포의 제조과정 전체를 무-이종감염물질(xenopathogen-free) 및 무-지지세포(feeder cell-free) 조건하에서 수행할 수 있다. 따라서, 본 발명에 따른 역분화 만능 줄기세포의 제조방법은 임상에 사용하기에 적합한, 즉 우수한 안전성을 갖는 역분화 만능 줄기세포를 높은 효율로 제조할 수 있다.INDUSTRIAL APPLICABILITY According to the present invention, a method for producing stem cells capable of producing differentiated pluripotent stem cells can be carried out by using a protein kinase C inhibitor, a histone deacetylase inhibitor, and / or an osteogenic protein pathway blocker as a reprogramming- Can be manufactured. In addition, when the de-differentiation enhancer is used, the entire process for producing the dedifferentiated pluripotent stem cells can be performed under xenopathogen-free and feeder cell-free conditions. Thus, the method of the present invention can produce highly reprogrammed pluripotent pluripotent stem cells suitable for clinical use, that is, excellent safety.
도 1은 프로틴 키나아제 C 저해제(Go6983, Go), 히스톤 데아세틸라제 저해제(트리코스타틴 에이, TSA), 골 형성 단백질 경로 차단제(도르소몰핀, DM)을 각각 혹은 조합하여 처리된 배지를 사용하였을 때, 생성되는 인간 역분화 만능 줄기세포의 생성효율(10,000 개의 세포당 얻어진 iPS 세포 콜로니의 수)을 평가한 결과이다.
도 2는 프로틴 키나아제 C 저해제(Go6983, Go) 및 히스톤 데아세틸라제 저해제(트리코스타틴 에이, TSA)를 조합하여 처리된 배지; 또는 프로틴 키나아제 C 저해제(Go6983, Go)를 처리한 배지를 사용하였을 때, 생성되는 인간 역분화 만능 줄기세포를 미분화 표지인 Tra1-60 항체를 이용하여 면역염색한 결과이다.
도 3은 프로틴 키나아제 C 저해제(Go6983, Go) 및 히스톤 데아세틸라제 저해제(트리코스타틴 에이, TSA)를 조합하여 처리된 배지; 또는 프로틴 키나아제 C 저해제(Go6983, Go)를 처리한 배지를 사용하였을 때, 미분화 표지 마커인 알칼린 포스파테이즈, Oct4, SSEA4, Tra1-60, 및 Sox2의 발현을 측정한 결과이다.Fig. 1 shows the results obtained when a medium treated with a combination of a protein kinase C inhibitor (Go6983, Go), a histone deacetylase inhibitor (tricostatin A, TSA) and an osteogenic protein pathway blocker (dorsomorphin, DM) , And the production efficiency (number of iPS cell colonies obtained per 10,000 cells) of the resulting human de-differentiating pluripotent stem cells.
FIG. 2 shows a medium treated with a combination of a protein kinase C inhibitor (Go6983, Go) and a histone deacetylase inhibitor (trichostatin A, TSA); Or Goetene kinase inhibitor (Go6983, Go) was used as a culture medium, the resultant immunodefined human pluripotent stem cells were immunostained using Tra1-60 antibody, which is an undifferentiated marker.
Figure 3 shows a medium treated with a combination of a protein kinase C inhibitor (Go6983, Go) and a histone deacetylase inhibitor (trichostatin A, TSA); Oct4, SSEA4, Tra1-60, and Sox2 when the medium treated with the protein kinase C inhibitor or the protein kinase C inhibitor (Go6983, Go) was used.
본 명세서에서, "역분화 만능 줄기세포 (induced pluripotent stem cells, iPS 세포)"라 함은 "reprogrammed pluripotent stem cells"로도 지칭되며, 분화된 세포를 재프로그램하여(즉, 역분화시켜) 만능분화능(pluripotency)을 갖도록 유도된 세포를 말한다. 상기 역분화 만능 줄기세포는 뇌, 심장 등의 장기 세포로 다양하게 분화될 수 있다.In the present specification, the term " induced pluripotent stem cells (iPS cells) ", also referred to as "reprogrammed pluripotent stem cells ", reprograms (i.e., quot; pluripotency "). The STEMs can be variously differentiated into long-term cells such as the brain and heart.
본 발명은 (a) 역분화 유도 인자를 코딩하는 유전자가 도입된 인간-유래의 체세포를, 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 및 골 형성 단백질 경로 차단제로 이루어진 군으로부터 1종 이상 선택된 역분화-증진제을 포함하는 배지 중에서 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는 역분화 만능 줄기세포의 제조방법을 제공한다.The present invention relates to a method for producing a recombinant human somatic cell, comprising the steps of: (a) culturing a human-derived somatic cell into which a gene encoding a dediffering inducer is introduced in the presence of at least one selected from the group consisting of a protein kinase C inhibitor, a histone deacetylase inhibitor, Culturing in a medium containing a differentiation-enhancing agent; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a).
상기 역분화 유도인자는 재프로그램화를 유도할 수 있는 기능을 갖는 모든 인자들을 포함하며, 바람직하게는 재프로그램화에 관여하는 것으로 알려져 있는 역분화 유도인자의 조합을 포함한다. 예를 들어, 상기 역분화 유도인자는 재프로그램화를 유도하는 것으로 알려져 있는 Sox2, Oct3/4, Nanog, Klf4, Lin28, 및 Myc로 이루어진 군으로부터 2종 이상 선택될 수 있다. 상기 Sox2, Oct3/4, Nanog, Klf4, Lin28, 및 c-Myc의 아미노산 서열 및 염기 서열은 GenBank 등에 공지되어 있다.The de-differentiation inducing factor includes all factors having a function to induce reprogramming, and preferably includes a combination of de-differentiation inducing factors known to be involved in reprogramming. For example, the dedifferentiation factor may be selected from the group consisting of Sox2, Oct3 / 4, Nanog, Klf4, Lin28, and Myc, which are known to induce reprogramming. The amino acid sequences and base sequences of Sox2, Oct3 / 4, Nanog, Klf4, Lin28, and c-Myc are known in GenBank and the like.
상기 역분화 유도 인자를 코딩하는 유전자가 도입된 인간-유래의 체세포는 공지의 방법, 예를 들어 Takahashi, K. 등의 방법(Takahashi, K., et al., (2007) Cell 131, 861-872) 및/또는 Yu, J. 등의 방법(Yu, J., et al., (2007). Science, New York, NY)에 따라 얻어질 수 있다. 즉, 인체로부터 분리된 체세포를 소태아혈청(fetal bovine serum) 및 항생물질(페니실린/스트렙토마이신)을 함유하는 배지(예를 들어, DMEM 배지) 중에 접종하고, 레트로바이러스를 이용하여 역분화 유도 인자를 코딩하는 유전자를 상기 인간-유래의 체세포에 전달할 수 있다. 상기 역분화 유도 인자를 코딩하는 유전자의 전달은 통상 1일 동안 배양함으로써 수행될 수 있으나, 크게 제한되는 것은 아니다. 한편, 상기 역분화 유도 인자를 코딩하는 유전자의 전달은 소태아혈청 등과 같은 이종감염물질(xenopathogen)이 없는 무-이종감염물질 배지(xenopathogen-free medium)를 사용하여 수행되는 것이 최종적으로 얻어지는 역분화 만능 줄기세포의 임상-적용성 측면에서 바람직하다. 따라서, 상기 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지는 무-이종감염물질 배지(xenopathogen-free medium)를 사용하는 것이 바람직하며, 예를 들어 MesenGroTMhMSC Medium (StemRD, USA)를 사용할 수 있다.Derived somatic cells into which the gene encoding the dedifferentiation inducing factor is introduced can be obtained by a known method such as the method of Takahashi, K. et al. (Takahashi, K., et al., (2007) Cell 131 , 861- 872) and / or Yu, J. et al. (Yu, J., et al., (2007) Science, New York, NY). That is, somatic cells isolated from a human body are inoculated into a medium (for example, DMEM medium) containing fetal bovine serum and antibiotic substance (penicillin / streptomycin) Can be transferred to the human-derived somatic cells. The transfer of the gene encoding the dedifferentiation inducer can be carried out by culturing for one day, but is not limited thereto. On the other hand, the gene encoding the dedifferentiation inducer is transferred using a xenopathogen-free medium without xenopathogen such as fetal bovine serum, It is preferable in terms of clinical applicability of pluripotent stem cells. Therefore, it is preferable to use a xenopathogen-free medium such as MesenGro ™ hMSC Medium (StemRD, USA) for the introduction of the gene encoding the de-differentiation inducer. Can be used.
본 발명의 역분화 만능 줄기세포의 제조방법에 있어서, 상기 프로틴 키나아제 C 저해제(protein kinase C inhibitor)는 프로틴 키나아제 C 저해 활성을 갖는 모든 물질을 포함한다. 상기 프로틴 키나아제 C 저해제는 3-[1-[3-(디메틸아미노)프로필]-5-메톡시-1H-인돌-3-일]-4-(1H-인돌-3-일)-1H-피롤-2,5-디온(3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione, Go6983); 3-(1H-인돌-3-일)-4-[2-(4-메틸피페라진-1-일)퀴나졸린-4-일]피롤-2,5-디온(3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione, Sotrastaurin, AEB 071); 3-{1-[3-(아미디노티오)프로필]-1H-인돌-3-일}-3-(1-메틸-1H-인돌-3-일)말레이미드 메탄 술포네이트(3-{1-[3-(amidinothio)propyl]-1H-indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide methane sulfonate, Ro-31-8220); 13-히드록시옥타데카디에논산(13-hydroxyoctadecadienoic acid); 2-[1-(3-디메틸아미노프로필)인돌-3-일]-3-(인돌-3-일) 말레이미드(2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide, GF 109203X, Go6850); 13-((디메틸아미노)메틸)-10,11,14,15-테트라히드로-4,9:16,21-디메테노-1H,13H-디벤조(E,K)피롤(3,4-H)(1,4,13)옥사디아자시클로헥사데센-1,3(2H)-디온(13-((dimethylamino)methyl)-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo(E,K)pyrrolo(3,4-H)(1,4,13)oxadiazacyclohexadecene-1,3(2H)-dione, LY-333531, Ruboxistaurin, PKC beta inhinitor); 2,6-디아미노-N-([1-(1-옥소트리데실)-2-피페리딘일]메틸)헥산아미드(2,6-diamino-N-([1-(1-oxotridecyl)-2-piperidinyl]methyl)hexanamide, NPC 15437); 및 4'-데메틸아미노-4'-히드록시스타우로스포린(4'-demethylamino-4'-hydroxystaurosporine, RK-286C)으로 이루어진 군으로부터 1 종 이상 선택될 수 있으나, 이에 제한되는 것은 아니다. In the method of the present invention, the protein kinase C inhibitor includes all substances having a protein kinase C inhibitory activity. The protein kinase C inhibitor is selected from the group consisting of 3- [1- [3- (dimethylamino) propyl] -5-methoxy-1H-indol-3-yl] -4- (1H- (1H-indol-3-yl) -1H-pyrrole-2-
또한, 상기 히스톤 데아세틸라제 저해제(histone deacetylase inhibitor)는 N-히드록시-3-(3-페닐설파모일페닐)아크릴아미드(N-Hydroxy-3-(3-phenylsulfamoylphenyl)acrylamide, Belinostat, PXD101, PX105684); 7-(4-(3-에티닐페닐아미노)-7-메톡시퀴나졸린-6-일옥시)-N-히드록시헵탄아미드(7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide, CUDC-101); [R-(E,E)]-7-[4-(디메틸아미노)페닐]-N-히드록시-4,6-디메틸-7-옥소-2,4-헵타디엔아미드([R-(E,E)]-7-[4-(dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide, Trichostatin A, TSA); N-히드록시-N'-페닐옥탄디아미드(N-hydroxy-N'-phenyloctanediamide, Vorinostat, SAHA, Zolinza, MK-0683); 발프로익산 또는 그의 염(valproic acid or its salt); 소듐 부티레이트(Sodium butyrate); 3-(2-부틸-1-(2-(디에틸아미노)에틸)-1H-벤조[d]이미다졸-5-일)-N-히드록시아크릴아미드(3-(2-butyl-1-(2-(diethylamino)ethyl)-1H-benzo[d]imidazol-5-yl)-N-hydroxyacrylamide, SB939); N-히드록시-N'-3-피리디닐옥탄디아미드(N-hydroxy-N'-3-pyridinyloctanediamide, Pyroxamide, NSC 696085); 3-(디메틸아미노메틸)-N-[2-[4-(히드록시카바모일)페녹시]에틸]-1-벤조퓨란-2-카르복사미드(3-(dimethylaminomethyl)-N-[2-[4-(hydroxycarbamoyl)phenoxy]ethyl]-1-benzofuran-2-carboxamide, PCI-24781, CRA-02478); N-[[4-[[(2-아미노페닐)아미노]카르보닐]페닐]메틸]카르바믹산 3-피리디닐메틸 에스테르(N-[[4-[[(2-aminophenyl)amino]carbonyl]phenyl]methyl]carbamic acid 3-pyridinylmethyl ester, Entinostat, MS-275, SNDX-275, MS-27-275); N-(2-아미노페닐)-4-[[(4-피리딘-3-일피리미딘-2-일)아미노]메틸]벤젠아미드(N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl]benzamide, Mocetinostat, MGCD0103); 3-[5-(3-(3-플루오로페닐)-3-옥소프로펜-1-일)-1-메틸-1H-피롤-2-일]-N-히드록시-2-프로펜아미드(3-[5-(3-(3-Fluorophenyl)-3-oxopropen-1-yl)-1-methyl-1H-pyrrol-2-yl]-N-hydroxy-2-propenamide, MC1568); N-히드록시-3-[4-[2-(2-메틸-1H-인돌-3-일)에틸아미노메틸]페닐]-2(E)-프로펜아미드(N-hydroxy-3-[4-[2-(2-methyl-1H-indol-3-yl)ethylaminomethyl]phenyl]-2(E)-propenamide, Panobinostat, LBH-589, NVP-LBH589, LBH589); 3-[4-[N-(2-히드록시에틸)-N-[2-(1H-indol-3-일)에틸]아미노메틸]페닐]-2(E)-프로페노히드록사믹산(3-[4-[N-(2-hydroxyethyl)-N-[2-(1H-indol-3-yl)ethyl]aminomethyl]phenyl]-2(E)-propenohydroxamic acid, Dacinostat, LAQ824, NVP-LAQ824); N-히드록시-2-(4-((((1-메틸-1H-인돌-3-일)메틸)아미노)메틸)피페리딘-1-일)피리미딘-5-카르복사미드(N-hydroxy-2-(4-((((1-methyl-1H-indol-3-yl)methyl)amino)methyl)piperidin-1-yl)pyrimidine-5-carboxamide, JNJ-26481585); {6-[(디에틸아미노)메틸]나프탈렌-2-일}메틸 [4-(히드록시카르바모일)페닐]카르바메이트({6-[(diethylamino)methyl]naphthalen-2-yl}methyl [4-(hydroxycarbamoyl)phenyl]carbamate, Givinostat, Gavinostat, ITF2357, ITF 2357); 및 4-(4-클로로-2-메틸페녹시)-N-히드록시부탄아미드(4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide, Droxinostat)로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다. The histone deacetylase inhibitor may be N-hydroxy-3- (3-phenylsulfamoylphenyl) acrylamide, Belinostat, PXD101, PX105684 ); 7- (4- (3-ethynylphenylamino) -7-methoxyquinazolin-6-yloxy) -N-hydroxyheptanamide -yloxy) -N-hydroxyheptanamide, < / RTI >CUDC-101); [R- (E, E)] - 7- [4- (dimethylamino) phenyl] -N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide , E)] - 7- [4- (dimethylamino) phenyl] -N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide, Trichostatin A, TSA); N-hydroxy-N'-phenyloctanediamide (Vorinostat, SAHA, Zolinza, MK-0683); Valproic acid or its salt; Sodium butyrate; Benzo [d] imidazol-5-yl) -N-hydroxyacrylamide (3- (2-butyl-1- (2- (diethylamino) ethyl) -1H-benzo [d] imidazol-5-yl) -N-hydroxyacrylamide, SB939); N-hydroxy-N'-3-pyridinyloctanediamide (Pyroxamide, NSC 696085); 3- (dimethylaminomethyl) -N- [2- [4- (hydroxycarbamoyl) phenoxy] ethyl] -1-benzofuran-2-carboxamide [4- (hydroxycarbamoyl) phenoxy] ethyl] -1-benzofuran-2-carboxamide, PCI-24781, CRA-02478); N - [[4 - [[(2-aminophenyl) amino] carbonyl] phenyl] methyl] carbamic acid 3-pyridinyl methyl ester phenyl] methyl] carbamic acid 3-pyridinylmethyl ester, Entinostat, MS-275, SNDX-275, MS-27-275); (2-aminophenyl) -4 - [[(4-methylpiperazin-1-yl) pyridin-3-ylpyrimidin-2-yl) amino] methyl] benzamide, Mocetinostat, MGCDO103); 1-methyl-1H-pyrrol-2-yl] -N-hydroxy-2-propenamide (3- [5- (3- (3-Fluorophenyl) -3-oxopropen-1-yl) -1-methyl-1H-pyrrol-2-yl] -N-hydroxy-2-propenamide, MC1568; (N-hydroxy-3- [4 (4-fluorophenyl) ethyl] (E) -propenamide, Panobinostat, LBH-589, NVP-LBH589, LBH589); Phenyl] -2 (E) -propenhydrooxamic acid (3 < RTI ID = 0.0 > (E) -propenohydroxamic acid, Dacinostat, LAQ824, NVP-LAQ824) was prepared by the method described in Example 1, ; Methyl) piperazin-1 -yl) pyrimidine-5-carboxamide (prepared from N -hydroxy-2- (4 - (((1-methyl-1H-indol-3-yl) methyl) amino) methyl) piperidin-1-yl) pyrimidine-5-carboxamide, JNJ-26481585); [(6 - [(diethylamino) methyl] naphthalen-2-yl} methyl [4- (hydroxycarbamoyl) phenyl] carbamate [4- (hydroxycarbamoyl) phenyl] carbamate, Givinostat, Gavinostat, ITF2357, ITF 2357); And 4- (4-chloro-2-methylphenoxy) -N-hydroxybutanamide, Droxinostat). But is not limited to.
또한, 상기 골 형성 단백질 경로 차단제제(bone morphogenetic protein (BMP) pathway blocker)는 노긴(noggin); 코르딘(chordin); 폴리스타틴(follistatin); 및 6-(4-(2-피페리딘-1-일에톡시)페닐))-3-피리딘-4-일피라졸로(1,5-a)피리미딘(6-(4-(2-piperidin-1-ylethoxy)phenyl))-3-pyridin-4-ylpyrazolo(1,5-a)pyrimidine, dorsomorphin)으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다. Also, the bone morphogenetic protein (BMP) pathway blocker may be noggin; Chordin; Follistatin; A) pyrimidine (6- (4- (2-tert-butoxycarbonylamino) phenyl) piperidin-1-ylethoxy) phenyl) -3-pyridin-4-ylpyrazolo (1,5-a) pyrimidine and dorsomorphin.
본 발명의 역분화 만능 줄기세포의 제조방법에 있어서, 상기 역분화-증진제는 프로틴 키나아제 C 저해제, 히스톤 데아세틸라제 저해제, 골 형성 단백질 경로 차단제를 각각 단독으로 사용하거나, 혹은 2종 이상을 조합하여 사용할 수 있으며, 특히 바람직하게는 히스톤 데아세틸라제 저해제 및 골 형성 단백질 경로 차단제를 조합하여 사용하는 것이 높은 효율로 역분화 만능 줄기세포를 제조할 수 있다.In the method of the present invention for producing dedifferentiated pluripotent stem cells, the de-differentiation-enhancing agent may be selected from the group consisting of a protein kinase C inhibitor, a histone deacetylase inhibitor, and an osteogenic protein pathway inhibitor, Especially preferably, a combination of a histone deacetylase inhibitor and an osteogenic protein pathway inhibitor can be used to produce a degenerated pluripotent stem cell with high efficiency.
상기 역분화-증진제의 사용량 즉, 배지 중의 농도는 바람직하게는 0.001 내지 1000 μM, 더욱 바람직하게는 0.01 내지 10 μM의 범위일 수 있다. 물론, 필요에 따라 상기 농도 범위를 초과하여 사용될 수도 있다.The amount of the de-differentiation-enhancing agent, that is, the concentration in the medium may preferably be in the range of 0.001 to 1000 μM, more preferably 0.01 to 10 μM. Of course, the concentration range may be used if necessary.
상기 역분화-증진제 존재하에서의 배양, 즉 단계(a)의 상기 배양은 바람직하는 The culture in the presence of the de-differentiation-enhancing agent, i.e. the culture of step (a)
(i) 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제1 배지") 중에서 3∼6 일 동안 1차 배양을 수행하는 단계, (ii) 세포외기질 단백질(extracellular matrix protein)의 존재하에서, 상기 제1 배지 중에서 1.5∼3 일 동안 2차 배양을 수행하는 단계, 및 (iii) 인간 배아줄기세포 배양용 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제2 배지") 중에서 15∼30 일 동안 3차 배양을 수행하는 단계를 포함할 수 있다.(i) de-differentiation inducing the de-differentiation on the medium used for the introduction of a gene encoding a factor-enhancing agents added to the resulting medium (the "first medium") in a step of performing a first incubation for 3-6 days, (ii (Ii) carrying out a secondary culture in the first medium for 1.5 to 3 days in the presence of an extracellular matrix protein, and (iii) culturing the transformant in a medium for human embryonic stem cell culture, Followed by carrying out a third culture for 15 to 30 days in a medium obtained by adding the medium ("second medium").
상기 단계(i)에서, 상기 1차 배양은 3∼6 일 동안, 예를 들어 약 4일 동안 수행될 수 있다. 상기 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지는 무-이종감염물질 배지(xenopathogen-free medium)를 사용하는 것이 바람직하며, 예를 들어, MesenGroTMhMSC Medium (StemRD, USA)일 수 있다.In said step (i), said primary culture can be carried out for 3 to 6 days, for example for about 4 days. The medium used for the introduction of the gene encoding the dedifferentiation inducing factor is preferably a xenopathogen-free medium, for example, MesenGro ™ hMSC Medium (StemRD, USA) have.
상기 단계(ii)는 세포외기질 단백질(extracellular protein)의 존재하에서 단계(i)에서 사용된 배지와 동일한 배지를 사용하여 수행하는 단계로서, 이어지는 3차 배양에 세포를 미리 적응시키는 역할을 한다. 상기 세포외기질 단백질로는 세포 배양에 통상적으로 사용되는 코팅용 단백질, 예를 들어 비트로넥틴(vitronectin), 매트리젤(Matrigel, BD Biosciences, USA), 셀스타트(CellStart, Invitrogen, USA), 젤라틴(gelatin) 등을 제한없이 사용할 수 있다. 상기 2차 배양은 1.5∼3 일 동안, 예를 들어 약 2일 동안 수행될 수 있다.The step (ii) is carried out in the presence of extracellular protein using the same medium as that used in step (i), and serves to pre-adapt the cells to the subsequent tertiary culture. Examples of the extracellular matrix proteins include coating proteins commonly used for cell culture such as vitronectin, Matrigel (BD Biosciences, USA), CellStart (Invitrogen, USA), gelatin gelatin, etc. may be used without limitation. The secondary culture may be performed for 1.5-3 days, for example about 2 days.
상기 단계(iii)에서, 상기 3차 배양은 15∼30 일 동안, 예를 들어 약 18∼20일 동안 수행될 수 있다. 상기 인간 배아줄기세포 배양용 배지는 인간 배아줄기세포의 유지배양시 통상적으로 사용되는 배지일 수 있으나, 무-이종감염물질 배지(xenopathogen-free medium)를 사용하는 것이 바람직하며, 예를 들어 넉아웃 제노프리 혈청 대체물, 글루타맥스, 비필수 아미노산, 베타-머캅토에탄올, 항생제, 및 bfgf(basic fibroblast growth factor)를 포함하는 DMEM/F-12 배지일 수 있다. 상기 기본 배지(basal medium)는 DMEM/F-12 배지 뿐만 아니라 통상의 세포배양용 배지일 수 있으며, 예를 들면, DMEM (Dulbecco's Modified Eagle's Medium, GIBCO, USA); MEM (Minimal Essential Medium, GIBCO, USA); BME (Basal Medium Eagle, GIBCO, USA); RPMI 1640 (GIBCO, USA); DMEM/F-10 (Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-10; GIBCO, USA); α-MEM(α-Minimal essential Medium; GIBCO, USA); G-MEM(Glasgow's Minimal Essential Medium, GIBCO, USA); IMDM(Isocove's Modified Dulbecco's Medium, GIBCO, USA); KnockOut DMEM (GIBCO, USA) 등일 수 있다.In the step (iii), the tertiary culture may be performed for 15 to 30 days, for example, for about 18 to 20 days. The culture medium for culturing human embryonic stem cells may be a culture medium commonly used for culturing human embryonic stem cells, but it is preferable to use a xenopathogen-free medium. For example, F-12 medium containing a genotype-free serum replacement, glutamax, non-essential amino acid, beta-mercaptoethanol, antibiotic, and basic fibroblast growth factor (bfgf). The basal medium may be a conventional cell culture medium as well as DMEM / F-12 medium such as DMEM (Dulbecco's Modified Eagle's Medium, GIBCO, USA); MEM (Minimal Essential Medium, GIBCO, USA); BME (Basal Medium Eagle, GIBCO, USA); RPMI 1640 (GIBCO, USA); DMEM / F-10 (Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-10; GIBCO, USA); α-MEM (α-Minimal Essential Medium; GIBCO, USA); G-MEM (Glasgow ' s Minimal Essential Medium, GIBCO, USA); IMDM (Isocove ' s Modified Dulbecco ' s Medium, GIBCO, USA); KnockOut DMEM (GIBCO, USA), and the like.
상기 (i) 내지 (iii)의 배양은 동물유래의 지지세포를 사용하지 않고, 즉 무-지지세포(feeder cell-free) 조건하에서 특히 바람직하게 수행될 수 있다.The cultivation of the above (i) to (iii) can be carried out particularly preferably without using animal-derived support cells, that is, under feeder cell-free conditions.
본 발명의 제조방법은 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계[즉, 단계(b)]를 포함한다.The production method of the present invention includes a step of separating embryonic stem cell-like colonies from the culture obtained from step (a) (i.e., step (b)).
역분화 만능 줄기세포의 콜로니는 배양물 중에서 핵이 상대적으로 크면서 세포질은 적은 작고 둥근 세포들이 뭉쳐있는 형태의 형태학적으로 구분되는 모양을 가지고 있으므로, 통상의 방법 예를 들어 알콜램프로 끝을 구부린 파스퇴르 파이펫을 이용한 물리적인 방법으로 이들을 분리할 수 있다.Since the colonies of the pluripotent pluripotent stem cells have a morphologically distinct form in which the nuclei are relatively large and the cytoplasm is small and the round cells are clustered in the culture, They can be separated by physical methods using Pasteur pipettes.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited to these examples.
실시예 1.Example 1.
2개의 6 웰 플레이트에 MesenGroTMhMSC Medium (StemRD, USA)(배지-A)를 가하고, 인간 체세포인 지방기질세포(Adipose-derived stromal cell; ADSC)(Lonza, USA)를 한 웰당 1.5x105 cells가 되도록 접종한 후, Takahashi, K. 등의 방법(Takahashi, K. et al (2007) Cell 131, 861-872)에 따라 레트로바이러스를 이용하여 4종의 역분화 유도 인자를 코딩하는 유전자(Oct4, Sox2, Klf4, c-Myc)를 전달하였다(1일 동안 배양). 다음 표 1에 나타낸 바와 같이 역분화-증진제를 배지-A에 첨가하여 배지-A1 내지 배지-A7을 준비하고, 배지-A1 내지 배지-A7로 매일 배지를 교환하면서 4일 동안 배양하여 역분화를 유도하였다. The two 6-well plates MesenGro TM hMSC Medium (StemRD, USA) was added to (-A medium), human somatic cells the fat stromal cells (Adipose-derived stromal cell; ADSC ) (Lonza, USA) to a 1.5x10 5 cells per well (Takahashi, K. et al. (2007) Cell 131 , 861-872), and a gene encoding four kinds of dediffering inducers (Oct4 , Sox2, Klf4, c-Myc) (1 day incubation). As shown in the following Table 1, the depletion-enhancing agent was added to the medium-A to prepare the medium-A1 to the medium-A7, and the medium was changed to medium-A1 to medium-A7 every day for 4 days, Respectively.
각 웰에 트립신/EDTA 처리 및 원심분리하여 각 웰로부터 얻어진 세포를, 비트로넥틴(vitronectin)(5 ㎍/ml, BD Biosciences, USA)으로 도포한 6 cm 배양용기에 약 5x104 cells 가 되도록 접종한 다음, 2일 동안 동일한 매일 각각의 배지(즉, 배지-A1 내지 배지-A7)로 교환하면서 배양하였다. Each well was treated with trypsin / EDTA and centrifuged, and the cells obtained from each well were inoculated into a 6 cm culture dish coated with vitronectin (5 / / ml, BD Biosciences, USA) to obtain about 5 × 10 4 cells Then, the cells were incubated for 2 days with the same daily medium (i.e. medium-A1 to medium-A7).
이후, 15% (v/v) 넉아웃 제노프리 혈청 대체물(KnockOut SR XenoFree; GIBCO, USA), 1x 글루타맥스(GIBCO, USA), 1% (v/v) 비필수 아미노산(GIBCO, USA), 0.1mM 베타-머캅토에탄올(GIBCO), 1% (v/v) 페니실린/스트렙토마이신(GIBCO, USA), 8 ng/ml bfgf(basic fibroblast growth factor)(차바이오앤디오스텍, Korea)로 보충된 DMEM/F-12 (GIBCO, USA)[배지-B]에 역분화-증진제를 첨가하여 준비한 배지-B1 내지 배지-B7(표 1 참조)로 각 웰의 배지를 매일 교체하면서 20일 동안 배양하였다. (GIBCO, USA), 1x glutamax (GIBCO, USA), 1% (v / v) nonessential amino acid (GIBCO, USA) Supplemented with 0.1 mM beta-mercaptoethanol (GIBCO), 1% (v / v) penicillin / streptomycin (GIBCO, USA) and 8 ng / ml bfgf (Chiba and Diostech, Korea) Cultured for 20 days while the culture medium of each well was changed daily with medium B1 to medium B7 (see Table 1) prepared by adding a differentiation-enhancing agent to DMEM / F-12 (GIBCO, USA) Respectively.
- Go: 3-[1-[3-(디메틸아미노)프로필]-5-메톡시-1H-인돌-3-일]-4-(1H-인돌-3-일)-1H-피롤-2,5-디온)(Go6983)- Go: 3- [1- [3- (Dimethylamino) propyl] -5-methoxy-lH-indol-3-yl] -4- (lH- 5-dione) (Go6983)
- TSA: 트리코스타틴 에이(Trichostatin A)- TSA: Trichostatin A (Trichostatin A)
- DM: 도르소몰핀(dorsomorphin)- DM: dorsomorphin.
역분화 유도 인자 전달 후, 약 배양 20일 째에 iPS 세포 콜로니가 각 웰에서 형성되는 것을 관찰할 수 있었으며, 배양 25일 째에 배아줄기세포-유사 콜로니(hESC-like colonies)를 계수하였다. 10,000 개의 세포당 얻어진 iPS 세포 콜로니의 수를 측정한 결과는 도 1과 같다. 도 1의 결과로부터 알 수 있는 바와 같이, 본 발명에 따라 프로틴 키나아제 C 저해제, 히스톤 디아세틸라제 저해제, 또는 BMP 경로 저해제를 처리한 군은 대조군에 비해 iPS 세포 콜로니 수가 적어도 2배 이상 증가하였다. 특히, 히스톤 디아세틸라제 저해제(트리코스타틴 에이) 및 BMP 경로 저해제(도르소몰핀)을 동시에 처리한 군은 대조군에 비해 iPS 세포 콜로니 수가 7배 이상으로 현저하게 증가하였다.After the induction of differentiation induction factors, iPS cell colonies were observed to form in each well on the 20th day after the incubation, and hESC-like colonies were counted on the 25th day of culture. The results of measuring the number of iPS cell colonies obtained per 10,000 cells are shown in Fig. As can be seen from the results of FIG. 1, the number of iPS cell colonies in the group treated with the protein kinase C inhibitor, the histone deacetylase inhibitor, or the BMP pathway inhibitor increased by at least 2 times as compared with the control group. In particular, the number of iPS cell colonies in the group treated with both the histone deacetylase inhibitor (trichostatin A) and the BMP pathway inhibitor (dorsomorphin) was remarkably increased to 7 times or more as compared with the control group.
시험예 1. iPS 세포의 확인Test Example 1. Identification of iPS cells
실시예 1에서, 제5군(Go6983 + TSA) 및 제2군(Go6983)의 배양 25일째 배양액 중의 iPS 세포 콜로니를 미분화 표지인 Tra1-60 항체(Millipore, USA)를 이용하여 염색하였으며, 또한 생성된 iPS 세포 콜로니들의 미분화 표지 마커인 알칼린 포스파테이즈, Oct4, SSEA4, Tra1-60, 및 Sox2의 발현을 측정하였다.In Example 1, iPS cell colonies in the culture medium of the fifth group (Go6983 + TSA) and the second group (Go6983) were stained using a Tra1-60 antibody (Millipore, USA) The expression of alkaline phosphatase, Oct4, SSEA4, Tra1-60, and Sox2, which are undifferentiated markers of iPS cell colonies, was measured.
즉, 배양 25일째에 콜로니들을 인산완충식염수로 세척한 후 4% 포름알데하이드 용액을 10분간 처리하여 고정하였다. 이를 다시 인산완충식염수로 10분씩 3회 세척한 후, 10% 정상 당나귀 혈청(normal donkey serum) 용액으로 상온에서 1시간 블록킹(blocking)하였다. 일차항체인 mouse Tra1-60 항체를(1:500, Millipore, USA) 실온에서 1시간 동안 처리한 후, 인산완충식염수로 10분씩 3회 세척한 다음, 이차항체인 biotinylated goal anti-mouse IgG 항체(1:100, Vector Laboratory, USA)를 넣고 상온에서 30분 동안 반응시켰다. 인산완충식염수로 10분씩 3회 세척한 후, streptavidin-horseradish peroxydase conjugate (Vector Laboratory, USA)를 실온에서 30분 동안 처리하고, 다시 인산완충식염수로 10분씩 3회 세척한 후 DAB Peroxidase Substrate Kit(Vector Laboratory, USA)를 이용하여 발색시켰다.That is, on the 25th day of culture, the colonies were washed with phosphate-buffered saline and fixed with 4% formaldehyde solution for 10 minutes. The cells were washed three times with phosphate-buffered saline for 10 minutes, and then blocked with 10% normal donkey serum at room temperature for 1 hour. The primary antibody, mouse Tra1-60 antibody (1: 500, Millipore, USA) was treated at room temperature for 1 hour, washed three times with phosphate-buffered saline for 10 minutes, and then incubated with a secondary antibody, biotinylated target anti-mouse IgG 1: 100, Vector Laboratory, USA) and incubated at room temperature for 30 minutes. After washing three times for 10 minutes with phosphate buffered saline, streptavidin-horseradish peroxydase conjugate (Vector Laboratory, USA) was treated at room temperature for 30 minutes, washed again with phosphate-buffered saline for 10 minutes three times, and then stained with DAB Peroxidase Substrate Kit Laboratory, USA).
또한, 동일한 방법으로 콜로니들을 인산완충식염수로 세척한 후, 4% 포름알데하이드 용액을 10분 동안 처리하여 고정한 후, 알칼린 포스파테이즈 염색을 다음과 같이 시행하였다. iPS 세포 콜로니들을 10분씩 3회 세척한 후, 100X NBT 용액 (디메틸포름아미드 70% 및 물 30%의 혼합용매 중 50 mg/ml의 니트로 블루 테트라졸리움(Sigma, USA))과 100x XPHOS 용액(물 중의 10 mg/ml의 5-브로모-4-클로로-3-인돌일 포스페이트, 2나트륨염(Sigma, USA))을 AP buffer(100 mM Tris pH 8.5, 100 mM NaCl, 50 mM MgCl2)를 이용하여 1X로 희석하여 iPS 세포 콜로니들을 30분 이상 반응시킨 후 H2O로 씻어주고 관찰하였다.In the same manner, the colonies were washed with phosphate-buffered saline, fixed with 4% formaldehyde solution for 10 minutes, and then subjected to alkaline phosphatase staining as follows. iPS cell colonies were washed three times for 10 minutes each and then washed with 100X NBT solution (50 mg / ml nitro blue tetrazolium (Sigma, USA) in a mixed solvent of 70% dimethylformamide and 30% water) and 100x XPHOS solution (100 mM Tris pH 8.5, 100 mM NaCl, 50 mM MgCl 2 ) was added to 10 mg / ml of 5-bromo-4-chloro-3-indolyl phosphate, disodium salt And iPS cell colonies were incubated for 30 minutes or more, followed by washing with H 2 O and observed.
또한, Oct4, SSEA4, Tra1-60, 및 Sox2의 발현을 측정하기 위하여 면역염색을 다음과 같이 시행하였다. 먼저 iPS 세포 콜로니들을 인산완충식염수로 씻어준 후 4% 포름알데하이드 용액을 10분간 처리하여 고정하였다. 일차항체들인 mouse anti-Oct4 항체(Santa Cruz, USA), mouse anti-SSEA4 항체(Millipore, USA), mouse anti-Tra1-60 항체(Millipore, USA), mouse anti-Sox2 항체(Millipore, USA)들과 실온에서 1시간 동안 반응시키고, 인산완충식염수로 10분씩 3회 세척한 후 이차항체인 Alexa-594 goat anti-mouse IgG (1:200, Invitrogen, USA)와 실온에서 1시간 동안 반응시켰다. 다시 인산완충식염수로 10분씩 3회 세척한 후, 30 nM 4',6-디아미디노-2-페닐인돌(DAPI)(Invitrogen, USA)를 이용하여 핵을 염색하였다. 다시 인산완충식염수로 10분씩 3회 세척한 후 형광현미경으로 관찰하였다In order to measure the expression of Oct4, SSEA4, Tra1-60, and Sox2, immunostaining was performed as follows. First, iPS cell colonies were washed with phosphate-buffered saline and fixed with 4% formaldehyde solution for 10 minutes. Mouse anti-Oct4 antibody (Santa Cruz, USA), mouse anti-SSEA4 antibody (Millipore, USA), mouse anti-Tra1-60 antibody (Millipore, USA) and mouse anti-Sox2 antibody (1: 200, Invitrogen, USA) for 1 hour at room temperature. The reaction mixture was washed three times with phosphate-buffered saline for 10 minutes at room temperature. The cells were washed three times with phosphate-buffered saline for 10 minutes, and stained with 30 nM 4 ', 6-diamidino-2-phenylindole (DAPI) (Invitrogen, USA). After washing three times with phosphate-buffered saline for 10 minutes, the cells were observed under a fluorescence microscope
미분화 표지인 Tra1-60 항체(Millipore, USA)를 이용하여 염색한 결과는 도 2와 같으며, 생성된 iPS 세포 콜로니들의 미분화 표지 마커인 알칼린 포스파테이즈, Oct4, SSEA4, Tra1-60, 및 Sox2의 발현을 측정한 결과는 도 3과 같다. 상기 도 2 및 3의 결과로부터, 본 발명에 따라 생성된 iPS 세포는 Tra1-60 항체에 대하여 양성반응을 나타내었으며, iPS 세포의 미분화 표지 마커인 알칼린 포스파테이즈, Oct4, SSEA4, Tra1-60, 및 Sox2 모두를 잘 발현하고 있음을 알 수 있다.The results obtained are shown in FIG. 2. The results are shown in FIG. 2. The results are shown in FIG. 2. The undifferentiated markers of the produced iPS cell colonies, alkaline phosphatase, Oct4, SSEA4, Tra1-60, and The results of measurement of Sox2 expression are shown in FIG. From the results of FIGS. 2 and 3, iPS cells produced according to the present invention showed positive responses to Tra1-60 antibody, and the undifferentiated markers of iPS cells, alkaline phosphatase, Oct4, SSEA4, Tra1-60 , And Sox2 were expressed well.
Claims (1)
(b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니(embryonic stem cell-like colonies)를 분리하는 단계를 포함하는 역분화 만능 줄기세포(iPS cells)의 제조방법으로서,
상기 히스톤 데아세틸라제 저해제가 [R-(E,E)]-7-[4-(디메틸아미노)페닐]-N-히드록시-4,6-디메틸-7-옥소-2,4-헵타디엔아미드이고, 상기 골 형성 단백질 경로 차단제는 6-(4-(2-피페리딘-1-일에톡시)페닐))-3-피리딘-4-일피라졸로(1,5-a)피리미딘이며,
상기 역분화-증진제의 농도가 0.01 내지 10μM의 범위이고,
상기 인간-유래의 체세포가 지방기질세포이며,
상기 역분화 유도 인자를 코딩하는 유전자가 Oct4, Sox2, Klf4 및 c-Myc이고,
상기 단계(a)의 배양이 (i) 역분화 유도 인자를 코딩하는 유전자의 도입에 사용된 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제1 배지") 중에서 3∼6 일 동안 1차 배양을 수행하는 단계, (ii) 세포외기질 단백질(extracellular matrix protein)의 존재하에서, 상기 제1 배지 중에서 1.5∼3 일 동안 2차 배양을 수행하는 단계, 및 (iii) 인간 배아줄기세포 배양용 배지에 상기 역분화-증진제를 가하여 얻어진 배지("제2 배지") 중에서 15∼30 일 동안 3차 배양을 수행하는 단계를 포함하는 역분화 만능 줄기세포(iPS cells)의 제조방법.(a) culturing a human-derived somatic cell into which a gene encoding a dedifferential inducer has been introduced, as a de-differentiation-enhancing agent, in a medium comprising a mixture of a histone deacetylase inhibitor and an osteogenic protein pathway blocker; And
(b) isolating embryonic stem cell-like colonies from the culture obtained from step (a), said method comprising the steps of:
Wherein the histone deacetylase inhibitor is [R- (E, E)] -7- [4- (dimethylamino) phenyl] -N-hydroxy-4,6-dimethyl- Amide and the osteogenic protein pathway inhibitor is selected from the group consisting of 6- (4- (2-piperidin-1-ylethoxy) phenyl) Lt;
Wherein the concentration of the de-differentiation-enhancing agent is in the range of 0.01 to 10 [mu] M,
Wherein said human-derived somatic cell is a lipid stromal cell,
Wherein the gene encoding the dedifferentiation inducing factor is Oct4, Sox2, Klf4 and c-Myc,
Wherein the culture of step (a) is (i) cultured in a medium ("first medium") obtained by adding the de-differentiation-enhancing agent to a medium used for introducing a gene encoding a reprogramming inducing factor for 3 to 6 days, (Ii) performing a secondary culture in the first medium for 1.5 to 3 days in the presence of an extracellular matrix protein, and (iii) culturing a human embryonic stem cell culture (Iii) culturing the cells in a culture medium for 15 to 30 days in a medium obtained by adding the de-differentiation-enhancing agent to the medium ("second medium").
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170137236A KR101807708B1 (en) | 2017-10-23 | 2017-10-23 | Method for generating induced pluripotent stem cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170137236A KR101807708B1 (en) | 2017-10-23 | 2017-10-23 | Method for generating induced pluripotent stem cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110033789A Division KR101807704B1 (en) | 2011-04-12 | 2011-04-12 | Method for generating induced pluripotent stem cells using reprogramming-enhancing agents |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170121733A KR20170121733A (en) | 2017-11-02 |
KR101807708B1 true KR101807708B1 (en) | 2018-01-18 |
Family
ID=60383368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170137236A KR101807708B1 (en) | 2017-10-23 | 2017-10-23 | Method for generating induced pluripotent stem cells |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101807708B1 (en) |
-
2017
- 2017-10-23 KR KR1020170137236A patent/KR101807708B1/en active IP Right Grant
Non-Patent Citations (3)
Title |
---|
Cell Stem Cell. 4(4):301-12 (2009.04.03.) |
Cell Stem Cell. 7(6):651-5 (2010.12.03.) |
Stem Cells. 29(4):618-28 (2011.04.05.) |
Also Published As
Publication number | Publication date |
---|---|
KR20170121733A (en) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101807704B1 (en) | Method for generating induced pluripotent stem cells using reprogramming-enhancing agents | |
CN108884436B (en) | Induced expanded pluripotent stem cells, methods of making and using | |
Li et al. | Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage | |
KR101807710B1 (en) | Method for generating induced pluripotent stem cells | |
KR101807724B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells | |
KR101313535B1 (en) | Culture media for maintaining stemness of human human embryonic stem cells or induced pluripotent stem cells and culture method using the same | |
KR101807708B1 (en) | Method for generating induced pluripotent stem cells | |
KR101807706B1 (en) | Method for generating induced pluripotent stem cells | |
KR101807711B1 (en) | Method for generating induced pluripotent stem cells | |
KR101810008B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using reprogramming-enhancing agents | |
KR101807727B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells | |
KR101810010B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using reprogramming-enhancing agents | |
KR101810006B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using reprogramming-enhancing agents | |
KR101807728B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells | |
KR101810014B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101810012B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101807713B1 (en) | Method for generating induced pluripotent stem cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101807722B1 (en) | Method for generating induced pluripotent stem cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101807720B1 (en) | Method for generating induced pluripotent stem cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101807719B1 (en) | Method for generating induced pluripotent stem cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101810013B1 (en) | Method for generating induced pluripotent stem cells from human-derived somatic cells using histone deacetylase inhibitor and bone morphogenetic protein pathway blocker | |
KR101872782B1 (en) | Method for generating induced pluripotent stem cells using reprogramming-enhancing agents | |
KR20170121124A (en) | Method for generating induced pluripotent stem cells using reprogramming-enhancing agents | |
KR20170121122A (en) | Method for generating induced pluripotent stem cells using reprogramming-enhancing agents | |
WO2011055886A1 (en) | Method for cultivating human embryonic stem cells or dedifferentiated pluripotent stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |