KR101802746B1 - Multi-layer filter for 3d printer reducing fine dust - Google Patents

Multi-layer filter for 3d printer reducing fine dust Download PDF

Info

Publication number
KR101802746B1
KR101802746B1 KR1020160098917A KR20160098917A KR101802746B1 KR 101802746 B1 KR101802746 B1 KR 101802746B1 KR 1020160098917 A KR1020160098917 A KR 1020160098917A KR 20160098917 A KR20160098917 A KR 20160098917A KR 101802746 B1 KR101802746 B1 KR 101802746B1
Authority
KR
South Korea
Prior art keywords
filter
filter module
dimensional printer
module
printer
Prior art date
Application number
KR1020160098917A
Other languages
Korean (ko)
Inventor
최병영
Original Assignee
최병영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최병영 filed Critical 최병영
Priority to KR1020160098917A priority Critical patent/KR101802746B1/en
Application granted granted Critical
Publication of KR101802746B1 publication Critical patent/KR101802746B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • B29C2071/0027Removing undesirable residual components, e.g. solvents, unreacted monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Filtering Materials (AREA)

Abstract

The present invention relates to a three-dimensional printer composite filter. More specifically, the present invention relates to a three-dimensional printer composite filter which is capable of reducing fine dust, volatile organic compounds (VOCs) and the like generated when pyrolyzing a filament material of a three-dimensional printer such as plastics and the like. To this end, the three-dimensional printer composite filter of the present invention is formed by laminating a plurality of filter modules and any one of the plurality of filter modules is an ultra low penetration air (ULPA) filter module for removing fine dust in a three-dimensional printer composite filter, wherein the three-dimensional printer composite filter can further comprise an adsorption filter module for removing the VOCs or a prefilter module for prefiltering foreign materials in air to reduce a load of the ULPA filter module. Further, any one or more of the plurality of filter modules laminated can contain an inorganic antibacterial material, and the three-dimensional printer composite filter can further comprise a housing which enables attachment and detachment of the filter modules, and in which the filter modules are in close contact with each other and laminated.

Description

미세먼지 저감을 위한 3D프린터용 복합 필터{MULTI-LAYER FILTER FOR 3D PRINTER REDUCING FINE DUST}MULTI-LAYER FILTER FOR 3D PRINTER REDUCING FINE DUST}

본 발명은 3D프린터용 복합 필터에 관한 것으로서, 더욱 상세하게는 3D프린터의 플라스틱 등의 필라멘트 재료가 열분해될 때 발생하는 미세먼지 및 휘발성 유기화합물(VOCs) 등을 저감시킬 수 있는 3D프린터용 복합 필터에 관한 것이다.The present invention relates to a composite filter for a 3D printer, and more particularly to a composite filter for a 3D printer capable of reducing fine dust and volatile organic compounds (VOCs) generated when a filament material such as plastic of a 3D printer is pyrolyzed .

3D 프린터는 3차원 도면을 바탕으로 소재 재료를 순차적으로 분사하여 미세한 두께로 층층이 쌓아 올려 실물의 입체 형상을 출력하는 장치로서, 다른 부가 제조 기술에 비해 사용이 용이하고 속도도 매우 빠른 특징을 갖는다. 이러한 3D 프린터를 이용하여 가정이나 학교 등에서도 다앙한 시제품 제작이 가능하게 되어 최근 그 사용이 크게 확산되고 있다. 이러한 3D 프린터를 통한 입체물의 제작에 있어서는, 먼저 CAD 또는 3D 모델링 프로그램 등을 이용하여 3차원 도면이 완성된 후, 소정 데이터 인터페이스를 통해 해당 데이터가 프린터 측으로 전송되게 된다. 이에, 상기 3D 프린터는 전송된 도면 데이터를 기초로 해당 입체물을 만드는 과정을 수행하게 되는데, 즉 해당 도면 데이터를 기초로 가상적인 단면을 만들어낸 후 ABS 플라스틱 등의 필라멘트 재료를 노즐을 통해 분사하면서 연속적인 층을 생성하고 융합함에 따라 해당 입체물이 제작되게 된다. 이때, 상술한 바와 같은 3D 프린터를 통한 소정 입체물의 제작 시에는 노즐 장치에서의 재료 용융 시 열분해에 의한 미세먼지 및 등이 생성된 후 장치 외부로 방출되게 되며, 이로 인해 사용자 등이 악취나 메스꺼움을 호소하게 되며, 독성물질이나 미세먼지 등이 호흡기로 흡입되면 인체에 해로운 영향을 끼치게 되는 문제점이 발생하게 된다.The 3D printer is a device for sequentially ejecting material materials on the basis of a three-dimensional drawing and stacking the layers in a minute thickness to output a three-dimensional shape of a real object, which is easy to use and has a very high speed. The use of such a 3D printer makes it possible to produce various prototypes at homes and schools, and the use thereof has been greatly expanded in recent years. In the production of stereoscopic objects through the 3D printer, the 3D data is firstly completed using a CAD or 3D modeling program, and then the corresponding data is transmitted to the printer through a predetermined data interface. Accordingly, the 3D printer performs the process of creating the corresponding solid object based on the transmitted drawing data. That is, a virtual cross-section is created based on the drawing data, and the filament material such as ABS plastic is sprayed through the nozzle, As the layer is created and fused, the corresponding solid body is produced. At this time, when a predetermined solid object is manufactured through the 3D printer as described above, fine dust and the like generated by pyrolysis upon melting the material in the nozzle device are generated and then discharged to the outside of the apparatus. As a result, And when toxic substances or fine dusts are inhaled into the respiratory tract, there arises a problem that the harmful effect is exerted on the human body.

대한민국 공개특허공보 제10-2013-0061820호Korean Patent Publication No. 10-2013-0061820

본 발명의 목적은 3D프린터의 플라스틱 등의 필라멘트 재료가 열분해될 때 발생하는 미세먼지 및 휘발성 유기화합물 등을 저감시킬 수 있는 3D프린터용 복합 필터를 제공하는 것이다.An object of the present invention is to provide a composite filter for a 3D printer capable of reducing fine dust and volatile organic compounds generated when a filament material such as plastic of a 3D printer is thermally decomposed.

상기한 본 발명의 목적을 달성하기 위하여, In order to achieve the object of the present invention described above,

본 발명은 복수의 필터 모듈이 적층되어 이루어지는 3D프린터용 복합 필터에 있어서, 상기 복수의 필터 모듈 중 어느 하나는 미세먼지 제거를 위한 울파필터 모듈인 것을 특징으로 하는 3D프린터용 복합 필터를 제공한다.The present invention provides a composite filter for a 3D printer in which a plurality of filter modules are laminated, wherein one of the plurality of filter modules is an Ul filter module for removing fine dust.

상기 3D프린터용 복합 필터는 휘발성 유기화합물 제거를 위한 흡착필터 모듈 또는 상기 울파필터 모듈의 부하 경감을 위해 공기 중 이물질을 먼저 걸러내는 프리필터 모듈을 포함할 수 있다.The composite filter for 3D printer may include an adsorption filter module for removing volatile organic compounds or a pre-filter module for filtering foreign matter in the air to reduce the load of the ultrafilter filter module.

상기 적층되는 복수의 필터 모듈 중 어느 하나 이상은 무기계 항균물질을 함유할 수 있다.Any one or more of the plurality of filter modules to be laminated may contain an inorganic antibacterial substance.

상기 3D프린터용 복합 필터는 필터 모듈의 착탈이 가능하면서 상호 밀착 적층시키는 하우징부를 포함할 수 있다.The composite filter for a 3D printer may include a housing part for attaching and detaching the filter module and laminating them together.

본 발명에 따른 3D프린터용 복합 필터는 정화효율이 0.12마이크론 크기의 미세먼지를 99.99% 제거할 수 있는 울파필터 모듈과 흡착필터 모듈 또는 프리필터 모듈을 포함하고 있어 미세먼지 및 휘발성 유기화합물을 제거하는 효과가 매우 탁월하다. 또한, 필터 모듈을 개별적으로 착탈시킬 수 있으므로, 필요한 필터 모듈만 선택적으로 교체시킬 수 있어 경제적으로 우수한 효과를 가진다.The composite filter for 3D printer according to the present invention includes an ultrafine filter module capable of removing 99.99% of fine dust having a purification efficiency of 0.12 micron, an adsorption filter module or a prefilter module to remove fine dust and volatile organic compounds The effect is excellent. In addition, since the filter modules can be attached and detached individually, only the necessary filter modules can be selectively replaced, which is economically advantageous.

도 1은 본 발명의 일 실시예에 따른 3D프린터용 복합 필터의 적층된 필터 모듈의 적층 단면도.
도 2는 본 발명의 일 실시예에 따른 3D프린터용 복합 필터의 필터 모듈 사시도.
도 3은 본 발명의 일 실시예에 따른 3D프린터용 복합 필터가 하우징부에서 착탈되는 모습을 나타내는 사시도.
도 4는 도 1의 울파필터 모듈에 적용된 울파필터의 SEM 이미지.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of a stacked filter module of a composite filter for a 3D printer according to an embodiment of the present invention.
2 is a perspective view of a filter module of a composite filter for a 3D printer according to an embodiment of the present invention.
3 is a perspective view showing a state in which a composite filter for a 3D printer according to an embodiment of the present invention is attached to and detached from a housing part;
4 is an SEM image of an Ul-wave filter applied to the Ul-wave filter module of FIG.

이하 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어서 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid unnecessarily obscuring the subject matter of the present invention.

도 1에는 본 발명의 일 실시예에 따른 3D프린터용 복합 필터(10)(이하, '복합 필터'라 함)에 복수의 필터 모듈(100)이 적층된 단면 구조가 도시되어 있으며, 도 2는 본 발명의 일 실시예에 따른 3D프린터용 복합 필터의 적층된 필터 모듈(100)이 도시되어 있다. 도 1에서와 같이, 공기의 흐름이 아래에서 위로 이동한다고 할 때, 복합 필터(10)는 미세먼지 제거를 위한 울파필터 모듈(110) 상단에 휘발성 유기화합물 제거를 위한 흡착필터 모듈(120)과 울파필터 모듈(110) 하단에 상기 울파필터 모듈(110)의 부하 경감을 위해 공기 중 이물질을 앞서 걸러내는 프리필터 모듈(130)이 적층되는 것이 바람직하나 반드시 이러한 순서에 구속되는 것은 아니다. FIG. 1 is a cross-sectional view of a composite filter 10 for a 3D printer according to an embodiment of the present invention (hereinafter, referred to as a 'composite filter') in which a plurality of filter modules 100 are stacked. A stacked filter module 100 of a composite filter for a 3D printer according to an embodiment of the present invention is shown. 1, the composite filter 10 includes an adsorption filter module 120 for removing volatile organic compounds on the upper side of the UL wave filter module 110 for removing fine dust, It is preferable that the pre-filter module 130 which filters the foreign substances in the air is laminated on the lower end of the Ul-filter module 110 to reduce the load of the UL-filter module 110, but it is not necessarily limited to this order.

필터 모듈(100)은 도 2와 같이 울파필터, 흡착필터, 프리필터 등의 필터(102)가 필터 지지대(101)에 의해 지지되는 형태로 제공된다.The filter module 100 is provided in such a form that a filter 102 such as an ultrasonic filter, an adsorption filter, a prefilter, etc. is supported by a filter support 101 as shown in FIG.

상기 울파필터 모듈(110)은 필수적으로 복합 필터(10)에 적층되며, 나머지 흡착필터 모듈(120)과 프리필터 모듈(130)은 선택적으로 추가되어 적층될 수 있다.The UL wave filter module 110 is essentially laminated to the composite filter 10, and the remaining adsorption filter module 120 and the pre-filter module 130 may be selectively added and stacked.

도 3은 본 발명의 일 실시예에 따른 3D프린터용 복합 필터(10의 필터 모듈(100)이 하우징부(200)에서 착탈되는 모습을 나타내는 사시도이다. 상기 하우징부(200)는 필터 모듈(100)들이 적층된 상태에서 3D프린터의 환풍팬(미도시)에 의해 공기가 하우징부(200)의 상하단의 개구부(210)를 통과할 때 공기가 필터 모듈(100)의 적층된 사이로 새어나오지 않도록 필터 모듈(100)을 상호 밀착시키는 역할을 담당한다. 이를 위해 필터 모듈(100)의 크기에 맞추어 제작되는 것이 바람직하며, 필요에 따라 별도의 패킹 부재가 더 부착될 수 있다.3 is a perspective view illustrating a state in which the filter module 100 of the composite filter 10 for 3D printer according to the embodiment of the present invention is attached to and detached from the housing part 200. The housing part 200 includes a filter module 100 So that the air does not escape through the stacked layers of the filter module 100 when the air passes through the openings 210 at the upper and lower ends of the housing part 200 by the ventilation fan (not shown) It is preferable that the filter module 100 is manufactured in accordance with the size of the filter module 100. Further, a separate packing member may be further attached if necessary.

상기 울파필터 모듈(110)은 미세먼지 제거를 위해 울파필터가 적용되는데, 이러한 울파(ULPA, Ultra-low Penetration Air)필터는 0.12마이크론 크기 이상의 미세먼지 입자를 99.999% 까지 제거하는 필터로서, 주로 반도체 클린룸 등에 사용된다. 이러한 울파 필터는 유리섬유 또는 부직포 재질의 것이 사용될 수 있다.The ULPA (Ultra-Low Penetration Air) filter is a filter for removing fine dust particles having a size of 0.12 micron or more up to 99.999% It is used in a clean room and the like. Such an Ulpa filter may be made of glass fiber or nonwoven fabric.

상기 흡착필터 모듈(120)에 적용되는 흡착필터는 활성탄 또는 제올라이트 등을 주요 소재로 할 수 있으며, 나아가 휘발성 유기화합물(VOCs)을 제거할 수 있는 것이면 흡착필터로 사용할 수 있다. 특히 활성탄 필터의 경우 야자각, 목재류, 갈탄, 무연탄, 유연탄등의 탄소질을 원료로 하여 활성화 과정을 통해 분자 크기 정도의 미세세공을 발달시킨 흡착제로서 1g당 1000㎡ 이상의 큰 내부 표면적을 갖는 물질이면 더욱 바람직하다.The adsorption filter applied to the adsorption filter module 120 may be made of activated carbon, zeolite, or the like, and may be used as an adsorption filter if it can remove volatile organic compounds (VOCs). Particularly, in the case of the activated carbon filter, a substance having a large inner surface area of 1,000 m 2 or more per 1 g is used as an adsorbent having carbon pellets such as coconut angle, wood, lignite, anthracite coal, bituminous coal, More preferable.

상기 프리필터(Pre filter) 모듈(130)은 이동하는 공기의 압력손실을 적게 하고, 공기 중 부유하는 20㎛ 내외의 큰 먼지(황사, 동물 털, 이불 먼지)를 1차 제거하는 필터로서, 공기가 필터를 통과할 때 나타나는 압력강하를 줄이는 효과도 있다. 주로 폴리비닐클로라이드(PVC), 폴리에틸렌(PE), 또는 폴리프로필렌(PP) 섬유의 부직포 필터 또는 다공성 스펀지 필터일 수 있다. The pre-filter module 130 is a filter for reducing the pressure loss of the moving air and primarily removing large dusts (yellow dust, animal hair, blanket dust) of about 20 μm floating in the air, There is also an effect of reducing the pressure drop when the filter passes through the filter. It can be a nonwoven filter or a porous sponge filter mainly made of polyvinyl chloride (PVC), polyethylene (PE), or polypropylene (PP) fiber.

상기 적층되는 복수의 필터 모듈(100) 중 어느 하나 이상은 무기계 항균물질을 함유할 수 있으며, 바람직하게는 울파필터 모듈(110) 또는 프리필터 모듈(130)일 수 있다. 상기 무기계 항균물질은 티타니아(Titanla)(TiO2), 산화아연(ZnO) 또는 은(Ag) 성분의 나노입자 일 수 있으며, 특별히, 무기계 항균제로서 산화아연은 우수한 수준의 독이나 세균에 대한 항성을 가지고 있어, 박테리아, 바이러스, 진균류 등의 단세포 동물이 산소 및 소화 대사 작용을 하는 특수한 효소에 작용하여 무력화시킬 수 있으므로 보다 바람직하다. 무기계 항균제로서 은 나노입자보다 환경에 대한 위험성이 현저히 낮고 인체 적합성이 탁월하여 보다 바람직할 수 있다.Any one or more of the plurality of filter modules 100 to be stacked may contain an inorganic antibacterial substance, and may be an Ulfar filter module 110 or a prefilter module 130. The inorganic antimicrobial material may be nanoparticles of Titanla (TiO2), zinc oxide (ZnO) or silver (Ag), and in particular zinc oxide as an inorganic antimicrobial agent has excellent levels of poisons against poisons or bacteria It is more preferable that a single-celled animal such as bacteria, viruses, fungi, etc. acts on oxygen and a special enzyme for digestive metabolism to neutralize it. As an inorganic antimicrobial agent, the risk to the environment is significantly lower than that of silver nanoparticles, and the human body suitability is excellent, which is more preferable.

이러한 산화아연은 통상적인 파우더 분말 형태일 수 있고, 또는 1차 입자가 집합된 2차 입자로 이루어지는 분말 형태를 가질 수 있다. 1차 입자 및 2차 입자를 갖는 산화아연의 제조방법으로는 일 예로 습식 화학 공정 (wet chemical process)에 의해 제조된 1차 입자를 밀링 공정을 통해 2차 입자를 형성하는 방식으로 제조될 수 있다. 구체적으로 예를 들면, 아연 할로겐화물 수용액에 물 또는 염기성이 강한 수산화아연을 첨가하여 반응시킨 후, 물을 제공하지 않는 강한 염기성 화합물을 첨가한 후 승온시켜 평균입경 1nm 내지 50nm 범위의 산화아연 1차 입자를 형성시키고 분리한 다음, 산화아연 1차 입자를 밀링 공정을 통하여 2차 입자의 평균입경이 0.1㎛ 내지 10㎛ 범위를 유지하도록 하여 상기 입자 구조의 산화아연을 얻을 수 있다. 상기 밀링 공정은 예를 들어 제트밀(Zet Mill), 비즈밀(beads mill), 고에너지 볼 밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼 밀(stirred ball mill), 진동 밀(vibration mill) 등을 이용하여 수행될 수 있다.Such zinc oxide may be in the form of a conventional powder powder, or may have a powder form consisting of secondary particles in which primary particles are aggregated. As a method of producing zinc oxide having primary particles and secondary particles, for example, primary particles produced by a wet chemical process can be manufactured by a method of forming secondary particles through a milling process . Specifically, for example, after a water or basic strong zinc hydroxide is added to an aqueous zinc zinc halide solution and reacted, a strong basic compound that does not provide water is added, and then the temperature is elevated to obtain zinc oxide primary zinc oxide particles having an average particle diameter of 1 nm to 50 nm The zinc oxide primary particles of the particle structure can be obtained by forming and separating the particles and allowing the zinc oxide primary particles to maintain the average particle diameter of the secondary particles within the range of 0.1 탆 to 10 탆 through the milling process. The milling process may be performed, for example, using a jet mill, a beads mill, a high energy ball mill, a planetary mill, a stirred ball mill, (vibration mill) or the like.

상기 산화아연을 필터 모듈에 함유시키는 방법의 한 예로서, 상기 산화아연을 고농도로 함유하는 마스터배치를 제조한 다음, 상기 마스터배치를 각 필터 모듈에서 원하는 산화아연 함량에 따라 고분자 수지와 혼합한 혼합물을 필터에 용융 방사하여 부직포 형태로 제조할 수 있다. 상기 용융 방사는 이중화 컴포넌트(component) 복합방사 또는 단순방사 방법으로 수행될 수 있으며, 또한 단섬유(fiber)로의 생산도 가능하다. 상기 고분자 수지는 예를 들어 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리스티렌(PS), 폴리비닐아세테이트(PVAc), 폴리아크릴레이트(polyacrylate), 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리메틸메타크릴레이트(PMMA), 에틸렌-비닐 아세테이트 코폴리머(EVA), 폴리카보네이트(PC), 폴리아마이드(polyamide) 및 실리콘계 수지로부터 선택되는 적어도 하나를 포함할 수 있다.As an example of a method for incorporating the zinc oxide into the filter module, a master batch containing the zinc oxide at a high concentration is prepared, and then the master batch is mixed with a polymer resin in accordance with a desired zinc oxide content in each filter module May be melt-spun into a filter to produce a nonwoven fabric. The melt spinning can be carried out by a duplicated component composite spinning or simple spinning method, and can also be produced as short fibers. The polymer resin may be, for example, an acrylonitrile-butadiene-styrene (ABS), a polypropylene (PP), a polyethylene (PE), a polystyrene (PS), a polyvinyl acetate (PVAc), a polyacrylate, At least one member selected from the group consisting of polyvinylidene fluoride (PET), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), ethylene-vinyl acetate copolymer (EVA), polycarbonate (PC), polyamide, . ≪ / RTI >

[실험예][Experimental Example]

1. 항균성 실험1. Antimicrobial activity

(1)제조예(1) Production example

항균물질로 나노사이즈 산화아연 파우더 입자(SH에너지화학 주식회사, 산화아연, 1차 입경 5~15nm, 비표면적 47m2/g)을 해쇄기를 통해 2차 입경 1.7㎛ 내외로 유지하여, 이를 폴리프로필렌(MI-800 제품)과 1 : 19의 중량비로 고압 압출기(한국생산기술원 보유 기자재)를 통해 마스터배치를 제작하였다. 상기 마스터배치를 다시 폴리프로필렌(MI-800)과 1 : 4의 중량비로 섞은 다음 한국생산기술원 보유 Melt Brown 부직포 섬유 제조 설비를 통해 180℃ 온도로 용융하고 방사시켜 프리필터로 사용할 멜트 브라운 부직포 시트를 제조하였다. 상기 멜트 브라운 부직포 시트의 양면에 저융점 부직포 시트(한국생산기술원, LM30)를 배치하고 열합지(thermal bonding)하여 3중 구조의 항균 필터를 제조하였다.The nano-sized zinc oxide powder particles (zinc oxide, primary particle diameter 5 to 15 nm, specific surface area 47 m 2 / g) as antimicrobial material were maintained at about 1.7 탆 in secondary particle diameter through a shredder, MI-800) and a high-pressure extruder (equipment having the Korea Institute of Production Technology) at a weight ratio of 1:19. The masterbatch was again mixed with polypropylene (MI-800) at a weight ratio of 1: 4, melted at 180 ° C through a Melt Brown nonwoven fabric manufacturing facility possessed by the Korean Institute of Production Technology and spun to obtain a meltblown nonwoven fabric sheet . A low melting point nonwoven fabric sheet (LM30, Korea Industrial Technology Institute) was placed on both sides of the melt-blown nonwoven fabric sheet and thermally bonded to produce a triple-layered antibacterial filter.

(2) 비교제조예(2) Comparative Production Example

산화아연을 포함시키지 않고, 폴리프로필렌(MI-800)을 한국생산기술원 보유 Melt Brown 부직포 섬유 제조 설비를 통해 180℃ 온도로 용융하고 방사시켜 프리필터 용도의 멜트 브라운 부직포 시트를 제조하였으며, 상기 멜트 브라운 부직포 시트의 양면에 저융점 부직포 시트(한국생산기술원, LM30)를 배치하고 열합지하여 3중 구조의 필터를 제조하였다.The melt-brown nonwoven fabric sheet for prefiltering was prepared by melting and radiating polypropylene (MI-800) at a temperature of 180 ° C through Melt Brown nonwoven fabric manufacturing facility having a production facility of MIT Brown, without zinc oxide, A nonwoven fabric sheet of low melting point (LM30, Korea Industrial Technology Institute) was placed on both sides of the nonwoven fabric sheet and thermally joined to produce a triple structure filter.

(3)평가결과 (3) Evaluation results

비교제조예에 따른 필터와 제조예에 따른 항균 필터에 대한 항균도 조사를 KS J 4206법에 따라 실시하였다. 실험 균주로 스테필로코쿠스 아우레우스(Staphylococcus aureus ATCC 6538)를 공시균으로 사용하였다.The antimicrobial activity of the filter according to the Comparative Production Example and the antibacterial filter according to the Production Example was examined according to the method of KS J 4206. Staphylococcus aureus ATCC 6538 was used as an experimental strain.

- 시험조건: 시험균액을 37 ± 1 ℃ 에서 24 시간 진탕 배양 후 균수 측정 (진탕 횟수 120 회/분)- Test conditions: The test strain was incubated at 37 ± 1 ° C for 24 hours with shaking, and the number of bacteria was measured (120 times / min of shaking)

- 시험시료 중량: 2.0g- Test sample weight: 2.0 g

- 중화용액: 인산완충용액 ( pH 7.0 ± 0.2 )- Neutral solution: Phosphate buffer solution (pH 7.0 ± 0.2)

- 증가율(F) : Mb / Ma (31.6 배 이상)- Growth rate (F): Mb / Ma (31.6 times or more)

- Ma : 대조시료의 초기 균수 (평균치)- Ma: initial number of bacteria (average value)

- Mb : 24 시간 배양 후 대조 시료의 균수 (평균치)- Mb: number of bacteria (average value)

- Mc : 24 시간 배양 후 시험 시료의 균수 (평균치)- Mc: number of bacteria (average value) of the test sample after 24 hours of incubation

[표 1][Table 1]

Figure 112016075552128-pat00001
Figure 112016075552128-pat00001

(*CFU = Colony Forming Unit, < = 미만)(* CFU = Colony Forming Unit, <= less)

이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described with reference to the above embodiments, the present invention is not limited thereto. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

10 : 복합 필터 100 : 필터 모듈
110 : 울파필터 모듈 120 : 흡착필터 모듈
130 : 프리필터 모듈 200 : 하우징
10: Composite filter 100: Filter module
110: Ulpa filter module 120: Adsorption filter module
130: pre-filter module 200: housing

Claims (4)

복수의 필터 모듈이 적층되어 이루어지는 3D프린터용 복합 필터에 있어서,
상기 3D프린터용 복합 필터는 휘발성 유기화합물 제거를 위한 흡착필터 모듈; 울파필터 모듈의 부하 경감을 위해 공기 중 이물질을 먼저 걸러내는 프리필터 모듈; 및 1차 산화아연 입자에 밀링 공정을 통해 2차 산화아연 입자를 형성시킨 분말 형태의 산화아연 항균물질을 함유한 울파필터 모듈;을 포함하는 것을 특징으로 하는 3D프린터용 복합 필터.
1. A composite filter for a 3D printer comprising a plurality of filter modules stacked,
The composite filter for 3D printer includes an adsorption filter module for removing volatile organic compounds; A pre-filter module for filtering out foreign substances in the air to reduce the load of the ULPA filter module; And an Ulpa filter module containing zinc oxide antimicrobial material in the form of powder in which secondary zinc oxide particles are formed through a milling process on the primary zinc oxide particles.
삭제delete 삭제delete 삭제delete
KR1020160098917A 2016-08-03 2016-08-03 Multi-layer filter for 3d printer reducing fine dust KR101802746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160098917A KR101802746B1 (en) 2016-08-03 2016-08-03 Multi-layer filter for 3d printer reducing fine dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160098917A KR101802746B1 (en) 2016-08-03 2016-08-03 Multi-layer filter for 3d printer reducing fine dust

Publications (1)

Publication Number Publication Date
KR101802746B1 true KR101802746B1 (en) 2017-12-28

Family

ID=60939620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160098917A KR101802746B1 (en) 2016-08-03 2016-08-03 Multi-layer filter for 3d printer reducing fine dust

Country Status (1)

Country Link
KR (1) KR101802746B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087044A (en) 2018-01-16 2019-07-24 주식회사 더하임 A Filter Unit For 3D Printer
KR102100061B1 (en) 2018-11-30 2020-04-10 김정기 Assembly type multi 3d printing equipment comprising exchangeable filter
KR20200071803A (en) 2018-11-30 2020-06-22 김정기 Complex 3d printing device
KR102398626B1 (en) 2021-03-12 2022-05-23 주식회사 씨코어 Functional air purification filter including polymer matrix and activated carbon and method for manufacturing the same
WO2022164442A1 (en) * 2021-01-29 2022-08-04 Hewlett-Packard Development Company, L.P. Removal of volatile organic compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087044A (en) 2018-01-16 2019-07-24 주식회사 더하임 A Filter Unit For 3D Printer
KR102100061B1 (en) 2018-11-30 2020-04-10 김정기 Assembly type multi 3d printing equipment comprising exchangeable filter
KR20200071803A (en) 2018-11-30 2020-06-22 김정기 Complex 3d printing device
WO2022164442A1 (en) * 2021-01-29 2022-08-04 Hewlett-Packard Development Company, L.P. Removal of volatile organic compounds
KR102398626B1 (en) 2021-03-12 2022-05-23 주식회사 씨코어 Functional air purification filter including polymer matrix and activated carbon and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101802746B1 (en) Multi-layer filter for 3d printer reducing fine dust
Zhang et al. Spider‐web‐inspired PM0. 3 filters based on self‐sustained electrostatic nanostructured networks
Homaeigohar et al. Nanocomposite electrospun nanofiber membranes for environmental remediation
CN102302875B (en) Method for preparing antibacterial air-filtering membrane
JPS6342956A (en) Active particle-containing nonwoven material and its formation
JP2000070646A (en) Air purifying filter member
CN203913468U (en) A kind of health-care gauze mask with solid filtration and antibacterial functions PM2.5 chip
CN201612179U (en) Medical antibacterial mask
Henning et al. Review on polymeric, inorganic, and composite materials for air filters: from processing to properties
CN103691206A (en) Degradable interlayer material for screen window capable of purifying air
Li et al. Biodegradable MOFilters for effective air filtration and sterilization by coupling MOF functionalization and mechanical polarization of fibrous poly (lactic acid)
Mukhopadhyay Composite nonwovens in filters: Applications
Kim et al. Application of 2D materials for adsorptive removal of air pollutants
JP6076077B2 (en) air filter
CN204815964U (en) Air filter material with disinfection function of disinfecting
JP5564220B2 (en) Composite structure including three-dimensional structure and filter using the structure
KR101603273B1 (en) Mask using loess for cleaning air
CN113696571A (en) Virus-killing aggregate, H12-grade melt-blown cloth and graphene non-woven fabric glue-sprayed composite material and preparation method thereof
KR102485704B1 (en) Nanofiber filter using non-woven fabric and mesh and its manufacturing method
WO2021246977A1 (en) The use of photothermal agents in the air filters
TWM477315U (en) Gas filtering element
JP2002102624A (en) Honeycomb filter
TWI745925B (en) Nanofiber air filter medium with high adsorption performance and preparation method
KR20230076979A (en) Antibacterial and deodorizing composite nonwoven fabric for air purification and manufacturing method thereof
CN204812206U (en) Mask

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant