KR101802129B1 - Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials - Google Patents

Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials Download PDF

Info

Publication number
KR101802129B1
KR101802129B1 KR1020160074229A KR20160074229A KR101802129B1 KR 101802129 B1 KR101802129 B1 KR 101802129B1 KR 1020160074229 A KR1020160074229 A KR 1020160074229A KR 20160074229 A KR20160074229 A KR 20160074229A KR 101802129 B1 KR101802129 B1 KR 101802129B1
Authority
KR
South Korea
Prior art keywords
carbon
surfactant
based material
activated carbon
delete delete
Prior art date
Application number
KR1020160074229A
Other languages
Korean (ko)
Inventor
전준표
강필현
이영주
구동현
김선영
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020160074229A priority Critical patent/KR101802129B1/en
Application granted granted Critical
Publication of KR101802129B1 publication Critical patent/KR101802129B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/002Surface-active compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention provides a method for surface-modification of carbon based materials with a surfactant and to surfactant-surface modified carbon based materials, wherein the method for surface-modification of carbon based materials using the surfactant and irradiation has the following properties: 1) the method is very simple by using only the surfactant and irradiation compared to a modification method using chemicals such as nitric acid, sulfuric acid, hydrogen peroxide and the like; 2) the method improves stability by inducing chemical bonding rather than physical bonding; 3) the method adjusts the content of each component, the type of radiation and an irradiation method to modify the surface of a carbon-based material appropriately depending on physicochemical properties required in an application field.

Description

탄소기반 소재를 계면활성제로 표면개질하는 방법 및 계면활성제로 표면개질된 탄소기반 소재 {Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of surface-modifying a carbon-based material with a surfactant and a carbon-based material surface-modified with a surfactant,

본 발명은 탄소기반 소재를 계면활성제로 표면개질하는 방법 및 계면활성제로 표면개질된 탄소기반 소재를 제공하는 것이다.The present invention provides a method of surface-modifying a carbon-based material with a surfactant and a carbon-based material surface-modified with a surfactant.

탄소기반 소재로서 널리 사용되고 있는 활성탄은 넓은 표면적과 특이한 기공구조를 가지고 있어 흡착제로 산업전반에 널리 사용되고 있다. 활성탄은 주로 야자껍질, 종려껍질, 갈탄, 유연탄, 목탄, 무연탄, 석유등의 원료를 고온에서 탄화시키고, 이를 수증기, 이산화탄소, 공기 등의 산화성 기체 또는 염화아연, 인산, 황산 등의 약품으로 활성화시켜 제작되고 있다.Activated carbon, which is widely used as a carbon-based material, has a wide surface area and a specific pore structure, and is widely used in the industry as an adsorbent. Activated carbon is mainly used to carbonize raw materials such as palm shell, palm shell, lignite, bituminous coal, charcoal, anthracite coal, and petroleum at high temperatures and activate it with oxidizing gases such as steam, carbon dioxide, air or chemicals such as zinc chloride, phosphoric acid and sulfuric acid Is being produced.

상용화되어 있는 활성탄은 사용원료, 활성화 방법 및 공정에 따라 다양한 흡착특성을 가지고 있으며, 그 흡착특성에 따라 사용 용도가 서로 상이하며, 또한 활성탄의 가격도 상당한 차이를 가진다. 따라서, 활성탄의 표면특성을 개질하여 전반적인 또는 특정 물질에 대한 흡착성능을 선택적으로 높인 고부가가치의 활성탄 제조에 대한 요구가 지속적으로 제기되고 있으며, 이를 위한 다양한 시도들이 이루어지고 있다.Commercial activated carbons have various adsorption characteristics according to raw materials used, activation methods and processes, and their use is different according to their adsorption characteristics, and the price of activated carbon also has a considerable difference. Therefore, there is a continuing demand for the production of high-value-added activated carbon which selectively enhances the adsorption performance on the whole or specific substances by modifying the surface characteristics of the activated carbon, and various attempts have been made for this purpose.

활성탄의 흡착성능 향상을 위해서 활성탄 표면개질 처리하여 카보닐기, 카복실기, 아민기 등의 유용한 작용기를 생성시키거나, 비표면적을 증가시키는 등의 방법이 주로 사용되고 있으며 대표적으로 아래의 방법이 사용되고 있다.In order to improve the adsorption performance of activated carbon, methods of modifying activated carbon surfaces to produce useful functional groups such as carbonyl group, carboxyl group and amine group, or increasing the specific surface area are mainly used, and the following methods are typically used.

질산, 황산, 과산화수소 등의 화학약품에 일정시간 활성탄을 침지시켜 활성탄의 표면에 산성 작용기, 아민기 등 흡착에 유용한 작용기를 생성하여 특정 물질에 대한 흡착성능을 향상시키거나, 활성탄의 산도(pH)를 조절하는 방법이 시행되고 있다.It is possible to improve the adsorption performance for a specific substance by forming a functional group useful for adsorption such as an acidic functional group and an amine group on the activated carbon surface by immersing activated carbon in a chemical such as nitric acid, sulfuric acid, hydrogen peroxide for a certain period of time, In the United States.

화학약품을 이용하는 방법 이외에 화학적 활성종이 다량 포함되어 있는 플라즈마를 발생시키고, 발생된 플라즈마에 일정시간 동안 활성탄을 노출시켜 활성탄 표면에 유용한 작용기를 생성하거나, 표면 기공구조를 변화시키는 방법이 제시되고 있다.There is proposed a method of generating a plasma containing a large amount of chemically active species and exposing activated carbon to the generated plasma for a certain period of time to generate useful functional groups on the activated carbon surface or changing the surface pore structure.

또한, 진공분위기에서 플라즈마를 발생시키고 발생된 플라즈마에 활성탄을 일정시간 노출시킴으로써 활성탄의 표면 특성을 개질시켜 활성탄의 전기적 특성, 비표면적을 증가시킬 수 있음이 알려져 있다. It is also known that plasma is generated in a vacuum atmosphere and the activated carbon is exposed to plasma for a predetermined time to modify the surface characteristics of the activated carbon to increase the electrical characteristics and specific surface area of the activated carbon.

이외에도 대기압하에서 유전체 장벽방전 장치에 처리대상이 되는 활성탄을 주입하고 산소를 공급하면서 저온의 산소 플라즈마를 발생시켜 활성탄의 표면을 개질하여 금속이온의 흡착성능을 개선하는 방법 등이 알려져 있다. A method of injecting activated carbon to be treated into a dielectric barrier discharge device under atmospheric pressure and generating oxygen plasma at a low temperature while supplying oxygen to modify the surface of activated carbon to improve the adsorption performance of metal ions.

그러나, 화학약품을 사용한 활성탄의 표면개질 처리 방법은 처리 후 개질 반응에 사용되지 않은 잔류 약액과 개질 처리된 활성탄 표면에 잔존하는 약액을 제거하기 위해 세척하는 과정에서 발생하는 세정 폐액 등 다량의 폐기물이 발생하고, 일부 과도한 화학반응에 의해 활성탄의 유용한 기공구조가 파괴되어 처리 전 활성탄이 갖고 있던 유용한 흡착성능을 저하시키는 단점이 있다.However, the surface modification treatment method of activated carbon using a chemical is a method in which a large amount of waste such as a cleaning waste solution generated in a washing process to remove a residual chemical solution not used in the reforming reaction after treatment and a chemical solution remaining on the surface of the activated carbon And the useful pore structure of the activated carbon is destroyed by some excessive chemical reaction, which degrades the useful adsorption capability of the activated carbon before the treatment.

이에, 본 발명자들은 탄소기반 소재 및 계면활성제를 용매에 첨가하여 탄소기반 소재를 중심으로 마이셀화를 유도한 용액에 방사선을 조사함에 따라서, 계면활성제의 소수성 탄소체인에 형성된 자유라디칼이 탄소기반 소재의 표면에 화학적으로 결합하는 것을 알아내고 본 발명을 완성하였다.Accordingly, the present inventors have found that, by adding a carbon-based material and a surfactant to a solvent to irradiate a micelle-induced solution centering on a carbon-based material, the free radicals formed in the hydrophobic carbon chain of the surfactant react with carbon- And the present invention has been completed.

한국공개공보 10-2012-0054958호Korean Laid-Open Publication No. 10-2012-0054958

본 발명의 목적은 탄소기반 소재를 계면활성제로 표면개질하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for surface modification of a carbon-based material with a surfactant.

본 발명의 다른 목적은 상기 방법으로 제조된 표면개질된 탄소기반 소재를 제공하는 것이다.Another object of the present invention is to provide a surface modified carbon based material produced by the above method.

본 발명의 또 다른 목적은 상기 표면개질된 탄소기반 소재를 포함하는 전자소자를 제공하는 것이다.Yet another object of the present invention is to provide an electronic device comprising the surface modified carbon-based material.

본 발명의 다른 목적은 상기 상기 표면개질된 탄소기반 소재를 포함하는 필터를 제공하는 것이다.It is another object of the present invention to provide a filter comprising said surface modified carbon-based material.

본 발명의 또 다른 목적은 상기 방법으로 제조된 SDBS(sodium dodecylbenzenesulfonate)로 표면개질된 활성탄을 제공하는 것이다.It is still another object of the present invention to provide an activated carbon surface-modified with SDBS (sodium dodecylbenzenesulfonate) prepared by the above method.

본 발명의 다른 목적은 상기 표면개질된 활성탄을 포함하는 축전식탈염(capacitive deionization, CDI) 전극을 제공하는 것이다.Another object of the present invention is to provide a capacitive deionization (CDI) electrode comprising the surface-modified activated carbon.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 탄소기반 소재 및 계면활성제를 용매에 첨가하여, 탄소기반 소재를 중심으로 마이셀화된 용액을 준비하는 단계(단계 1); 및The present invention relates to a process for preparing a micelle-containing solution (step 1) by adding a carbon-based material and a surfactant to a solvent, And

상기 단계 1에서 준비한 용액에 방사선을 조사하여, 계면활성제의 소수성 탄소체인에 자유라디칼을 형성을 유도하고, 상기 자유라디칼이 탄소기반 소재의 표면 탄소와 화학적으로 결합하는 단계(단계 2);Irradiating the solution prepared in step 1 above with radiation to induce formation of free radicals in the hydrophobic carbon chain of the surfactant and chemically bonding the free radicals to the surface carbon of the carbon-based material (step 2);

를 포함하는 탄소기반 소재를 계면활성제로 표면개질하는 방법을 제공한다.Wherein the carbon-based material is surface-modified with a surfactant.

또한, 본 발명은 상기 방법으로 제조된 표면개질된 탄소기반 소재를 제공한다.The present invention also provides a surface modified carbon based material made by the above method.

나아가, 본 발명은 상기 표면개질된 탄소기반 소재를 포함하는 전자소자를 제공한다. 여기서, 상기 전자소자는 전극(예를 들어, 일차전지, 이차전지, 커패시터, 슈퍼커패시터, 연료전지에 사용되는 전극) 등일 수 있다.Further, the present invention provides an electronic device comprising the surface-modified carbon-based material. Here, the electronic device may be an electrode (for example, a primary cell, a secondary cell, a capacitor, a supercapacitor, or an electrode used in a fuel cell), or the like.

또한, 본 발명은 상기 표면개질된 탄소기반 소재를 포함하는 필터를 제공한다. 여기서, 상기 필터는 담배필터, 공기여과필터 또는 수처리필터 등일 수 있다.The present invention also provides a filter comprising the surface modified carbon-based material. Here, the filter may be a cigarette filter, an air filtering filter, a water treatment filter, or the like.

나아가, 본 발명은 상기 방법으로 제조된 SDBS(sodium dodecylbenzenesulfonate)로 표면개질된 활성탄을 제공한다.Further, the present invention provides an activated carbon surface-modified with SDBS (sodium dodecylbenzenesulfonate) prepared by the above method.

또한, 본 발명은 상기 표면개질된 활성탄을 포함하는 축전식탈염 전극을 제공한다.The present invention also provides a storage-type desalination electrode comprising the surface-modified activated carbon.

본 발명에 따른 계면활성제 및 방사선 조사를 이용한 탄소기반 소재의 표면개질 방법은, The surface modification method of the carbon-based material using the surfactant and the irradiation of the radiation-

1) 종래의 질산, 황산, 과산화수소 등의 화학약품을 이용하는 개질방법 대비 계면활성제와 방사선 조사만을 이용하므로 매우 간단하고, 1) Compared with the conventional reforming method using chemicals such as nitric acid, sulfuric acid, and hydrogen peroxide, it is very simple because it uses only a surfactant and irradiation with radiation,

2) 물리적 결합이 아닌 화학적 결합을 유도할 수 있어 안정성이 향상되며, 2) It is possible to induce chemical bonding, not physical bonding,

3) 각 성분의 함량, 방사선의 종류 및 조사방법을 조절함으로써 적용분야에 요구되는 물리화학적 성질에 적절하게 탄소기반 소재를 표면개질할 수 있는 효과가 있다.3) By controlling the content of each component, the kind of radiation and the irradiation method, it is possible to modify the surface of the carbon-based material appropriately according to the physicochemical properties required in the application field.

도 1은 본 발명에 따른 탄소기반 소재를 계면활성제로 표면개질하는 방법의 단계를 나타낸 순서도이다.
도 2는 본 발명에서 그라프트율을 측정하기 위해 사용된 활성탄, 계면활성제 및 표면개질 활성탄의 열중량분석결과를 나타낸 그래프이다.
FIG. 1 is a flow chart showing steps of a method of surface-modifying a carbon-based material according to the present invention with a surfactant.
FIG. 2 is a graph showing the results of thermogravimetric analysis of activated carbon, surfactant, and surface-modified activated carbon used for measuring graft rate in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

탄소기반Carbon-based 소재를 계면활성제로  As the surface active agent 표면개질하는Surface modified 방법 Way

본 발명은 탄소기반 소재 및 계면활성제를 용매에 첨가하여, 탄소기반 소재를 중심으로 마이셀화된 용액을 준비하는 단계(단계 1); 및The present invention relates to a process for preparing a micelle-containing solution (step 1) by adding a carbon-based material and a surfactant to a solvent, And

상기 단계 1에서 준비한 용액에 방사선을 조사하여, 계면활성제의 소수성 탄소체인에 자유라디칼을 형성을 유도하고, 상기 자유라디칼이 탄소기반 소재의 표면 탄소와 화학적으로 결합하는 단계(단계 2);Irradiating the solution prepared in step 1 above with radiation to induce formation of free radicals in the hydrophobic carbon chain of the surfactant and chemically bonding the free radicals to the surface carbon of the carbon-based material (step 2);

를 포함하는 탄소기반 소재를 계면활성제로 표면개질하는 방법을 제공한다.Wherein the carbon-based material is surface-modified with a surfactant.

본 발명에 따른 방법에 있어서, 상기 단계 1은 탄소기반 소재 및 계면활성제를 용매에 첨가하여, 탄소기반 소재를 중심으로 마이셀화된 용액을 준비하는 단계이다.In the method according to the present invention, step 1 is a step of preparing a micellized solution around a carbon-based material by adding a carbon-based material and a surfactant to a solvent.

상기 단계 1에는 가교제를 더 포함할 수 있다. 가교제를 첨가할 경우에는 자유라디칼이 활성탄 표면 및 가교제와 함께 결합하여 계면활성제의 활성탄 표면 그라프트율이 향상된다. 즉, 적용분야에 요구되는 물리화학적 성질이 높은 그라프트율이 필요할 경우 선택적으로 첨가할 수 있다.Step 1 may further include a crosslinking agent. When a cross-linking agent is added, the free radicals bond with the surface of the activated carbon and the cross-linking agent, so that the activated carbon surface graft rate of the surfactant is improved. That is, it can be added selectively when a high graft rate is required for the physicochemical properties required in the application field.

상기 가교제의 예로는 디비닐벤젠, 1,5-헥사디엔-3-인, 헥사트리엔, 디비닐에테르, 디비닐술폰, 프탈산알릴, 2,6-디아크릴페놀, 디알릴카르비놀 등을 사용할 수 있다.Examples of the cross-linking agent include divinylbenzene, 1,5-hexadiene-3-phosphorus, hexatriene, divinyl ether, divinylsulfone, allyl phthalate, 2,6-diacrylphenol and diallylcarbinol .

상기 탄소기반 소재는 크기가 1-1000000 nm, 바람직하게는 10-50000 nm, 더욱 바람직하게는 100-10000 nm인 것을 사용할 수 있다. 상기 탄소기반 소재는 활성탄, 탄소나노튜브, 탄소나노섬유, 흑연나노섬유, 그래핀 등을 사용할 수 있고, 바람직하게는 입자 형태의 소재를 사용할 수 있다.The carbon-based material may have a size of 1-1000000 nm, preferably 10-50000 nm, and more preferably 100-10000 nm. The carbon-based material may be activated carbon, carbon nanotubes, carbon nanofibers, graphite nanofibers, graphene, or the like, and preferably, particle-shaped materials may be used.

상기 계면활성제는 음이온성 계면활성제, 양이온성 계면활성제, 양쪽성 계면활성제, 비이온성 계면활성제 등을 사용할 수 있다. 본 발명에서 계면활성제의 소수성 탄소체인은 방사선 조사에 의해 자유라디칼이 형성되고, 상기 자유라디칼이 탄소기반 소재의 표면 탄소에 화학적으로 결합되고, 친수성기는 적용분야에 필요한 기능성을 나타내는 것을 특징으로 한다. 즉, 적용분야에 필요한 친수성 헤드(작용기)를 갖는 계면활성제를 선택하여 사용할 수 있다.The surfactant may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant. In the present invention, the hydrophobic carbon chain of the surfactant is characterized in that free radicals are formed by irradiation, the free radicals are chemically bonded to the surface carbon of the carbon-based material, and the hydrophilic group exhibits the functionality required for the application field. That is, a surfactant having a hydrophilic head (functional group) necessary for an application field can be selected and used.

상기 계면활성제의 바람직한 예는 하기 화학식 1로 표시할 수 있다.Preferable examples of the surfactant may be represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

CH3-(CH2)n-R CH 3 - (CH 2) n -R

상기 화학식 1에서,In Formula 1,

n은 7-17의 정수이고,n is an integer of 7-17,

R은 설페이트, 에테르 술페이트, 알카릴 술포네이트, 숙시네이트, 술포숙시네이트, 포스페이트, 에테르 포스페이트, 에테르 카르복실레이트, 아미노산, 펩티드, 카르복실산, 글루타메이트, 아실 글루타메이트, 또는 아민이다.R is a sulfate, an ether sulfate, an alkaryl sulfonate, a succinate, a sulfosuccinate, a phosphate, an ether phosphate, an ether carboxylate, an amino acid, a peptide, a carboxylic acid, a glutamate, an acylglutamate, or an amine.

여기서, 상기 치환기 R은 염 형태일 수 있다.Here, the substituent R may be in a salt form.

상기 n은 계면활성제의 소수성 탄소체인의 길이를 의미하는데, 만약 계면활성제의 소수성 탄소체인 길이가 C8(n=7) 미만일 경우 그라프트율이 현저히 저하되는 문제가 있을 수 있고, C18(n=17) 초과일 경우 그라프트율은 문제가 없지만 분자량이 늘어남에 따라서 탄소기반 소재의 표면에 기능성을 부여하는 계면활성제의 친수성기가 도입되는 비중이 줄어드는 문제와 C18 이상의 계면활성제는 비용이 증가하는 문제가 있을 수 있다. 여기서, 소수성 탄소체인 길이가 C8 미만인 계면활성제의 경우 방사선 조사에 따른 자유라디칼 형성이 저하되거나, 탄소체인의 자유도가 낮아지기 때문이다.If the length of the hydrophobic carbon chain of the surfactant is less than C8 (n = 7), there may be a problem that the graft rate is significantly lowered, and if C18 (n = 17) is exceeded There is no problem in the graft rate, but as the molecular weight increases, the specific gravity of introducing the hydrophilic group of the surfactant, which imparts the functionality to the surface of the carbon-based material, decreases, and the cost of the surfactant of C18 or higher may increase. Here, in the case of a surfactant having a hydrophobic carbon chain length of less than C8, the formation of free radicals by irradiation is lowered or the degree of freedom of the carbon chain is lowered.

상기 단계 1의 용매로는 물 또는 유기용매를 사용할 수 있다. 여기서, 용매는 계면활성제를 용해할 수 있는 용매를 적절히 선택하여 사용할 수 있고, 상기 유기용매로는 알코올류(메탄올, 에탄올, 프로판올, 이소프로판올, 1-부탄올, 2-부탄올, 이소부탄올, 이소펜탄올 등), 알데히드류(포름알데히드 등), 카르복실산류(포름산, 아세트산, 프로피온산, 부티르산, 발레산, 카프로산, 에난트산, 카프릴산, 펠라르곤산, 카프릭산, 운데실산, 라우르산 등), 염화탄소류(클로로폼, 디클로로메탄, 디클로로에탄, 트리클로로에탄, 테트라클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 테트라클로로에틸렌, 클로로벤젠, o-디클로로벤젠 등), 아민류(에틸렌디아민, 피리딘, 디에틸렌트리아민, 퀴놀린, 피페리딘, 트리부틸아민 등), 에스테르류(아세트산메틸, 아세트산에틸, 아세트산프로필, 아세트산아이소프로필, 아세트산뷰틸, 아세트산아이소뷰틸, 아세트산펜틸, 아세트산아이소펜틸 등), 에테르류(디에틸에테르, 에틸에테르, 다이옥세인, 테트라하이드로뷰테인 등), 시안류(아세토니트릴 등), 케톤류(아세톤, 메틸에틸케톤(MEK), 메틸뷰틸케톤(MBK), 메틸아이소뷰틸케톤(MIBK) 등), 포화 및 불포화 탄화수소류(헥산, 케로센, 벤젠, 사이클로헥산, 톨루엔, 자일렌 등) 등을 사용할 수 있다.The solvent of step 1 may be water or an organic solvent. Here, as the solvent, a solvent capable of dissolving the surfactant can be appropriately selected and used. The organic solvent includes alcohols (such as methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, Etc.), aldehydes (such as formaldehyde), carboxylic acids (such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enantic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid Dichloroethane, dichloroethylene, trichlorethylene, tetrachlorethylene, chlorobenzene, o-dichlorobenzene, etc.), amines (such as ethylenediamine, And the like), esters (such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, n-butyllithium, (Acetonitrile, etc.), ketones (such as acetone, methyl ethyl ketone (acetone, methyl ethyl ketone) and the like) MEK), methyl butyl ketone (MBK), methyl isobutyl ketone (MIBK), etc.), saturated and unsaturated hydrocarbons (hexane, kerosene, benzene, cyclohexane, toluene and xylene).

본 발명에 따른 방법에 있어서, 상기 단계 2는 상기 단계 1에서 준비한 용액에 방사선을 조사하여, 계면활성제의 소수성 탄소체인에 자유라디칼을 형성을 유도하고, 상기 자유라디칼이 탄소기반 소재의 표면 탄소와 화학적으로 결합하는 단계이다.In the method according to the present invention, step 2 is a step of irradiating the solution prepared in step 1 above with radiation to induce the formation of free radicals in the hydrophobic carbon chain of the surfactant, Chemically bonding.

상기 방사선으로는 전자선 또는 감마선을 사용할 수 있다.As the radiation, an electron beam or a gamma ray can be used.

상기 전자선의 경우 투과도가 낮은 편이므로 라인 형태로 조사하는 것이 바람직한데, 예를 들어, 단계 1의 용액을 밑면이 넓고 높이가 낮은 용기에 담은 다음 전자선 조사 라인을 약 4초에 1회 지나가는 형태로 조사할 수 있다.For example, the solution of step 1 may be placed in a container having a wide bottom surface and a low height, and then the electron beam irradiation line may be passed once in about 4 seconds. You can investigate.

상기 감마선은 투과도가 높은 편이므로, 예를 들어 단계 1의 용액을 드럼통 형태의 용기에 담고 감마선을 투과시키는 형태로 조사할 수 있다.Since the gamma ray has a high transmittance, for example, the solution of Step 1 may be irradiated in a form such that gamma rays are transmitted through a drum-shaped container.

본 발명의 실험예 1에서 전자선과 감마선의 그라프트율을 비교하여 보면, 감마선이 더욱 우수한 것으로 나타난다(표 1 및 표 2 참조). 예를 들어, 탄소기반 소재로서 활성탄을 사용할 경우 이의 적용분야에 요구되는 물리화학적 성질이 다공성과 표면 기능성을 동시에 요구할 경우에는 감마선 보다는 전자선이 유리할 수 있고, 표면 기능성만을 요구할 경우에는 전자선 보다는 감마선이 유리할 수 있다. 일례로, 공기 또는 수 처리용 필터의 경우 다공성과 표면 기능성을 동시에 요구하는 경우가 많으므로 전자선이 유리할 수 있고, 축전식탈염 전극의 경우 다공성 보다는 표면 기능성이 우선시 요구되므로 감마선이 유리할 수 있다.In Experimental Example 1 of the present invention, gamma rays are more excellent when comparing the graft rates of electron beams and gamma rays (see Table 1 and Table 2). For example, when activated carbon is used as the carbon-based material, the electron beam may be more advantageous than the gamma ray if the physical and chemical properties required for its application simultaneously require both porosity and surface functionality. If only the surface functionality is required, . For example, air or water treatment filters often require both porosity and surface functionality, so electron beams can be advantageous, and gamma-rays can be advantageous in the case of storage-type desalting electrodes because surface functionality is preferred over porosity.

따라서, 본 발명에 따른 계면활성제 및 방사선 조사를 이용한 탄소기반 소재의 표면개질 방법은, Therefore, the surface modification method of the carbon-based material using the surfactant and the irradiation of the radiation according to the present invention can be applied to the surface-

1) 종래의 질산, 황산, 과산화수소 등의 화학약품을 이용하는 개질방법 대비 계면활성제와 방사선 조사만을 이용하므로 매우 간단하고, 1) Compared with the conventional reforming method using chemicals such as nitric acid, sulfuric acid, and hydrogen peroxide, it is very simple because it uses only a surfactant and irradiation with radiation,

2) 물리적 결합이 아닌 화학적 결합을 유도할 수 있어 안정성이 향상되며, 2) It is possible to induce chemical bonding, not physical bonding,

3) 각 성분의 함량, 방사선의 종류 및 조사방법을 조절함으로써 적용분야에 요구되는 물리화학적 성질에 적절하게 탄소기반 소재를 표면개질할 수 있는 효과가 있다.3) By controlling the content of each component, the kind of radiation and the irradiation method, it is possible to modify the surface of the carbon-based material appropriately according to the physicochemical properties required in the application field.

계면활성제로 As a surfactant 표면개질된Surface modified 탄소기반Carbon-based 소재 Material

본 발명은 상기 방법으로 제조된 표면개질된 탄소기반 소재를 제공한다. The present invention provides a surface modified carbon based material made by the above method.

본 발명에 따른 표면개질된 탄소기반 소재는 계면활성제의 소수성 탄소체인이 탄소기반 소재의 표면에 화학적으로 결합되고, 계면활성제의 친수성기가 탄소기반 소재의 표면에 기능을 부여하는 것을 특징으로 한다.The surface modified carbon based material according to the present invention is characterized in that the hydrophobic carbon chain of the surfactant is chemically bonded to the surface of the carbon based material and the hydrophilic group of the surfactant imparts a function to the surface of the carbon based material.

상기 탄소기반 소재로는 활성탄, 탄소나노튜브, 탄소나노섬유, 흑연나노섬유, 그래핀 등을 사용할 수 있고, 바람직하게는 입자 형태의 소재를 사용할 수 있다.As the carbon-based material, activated carbon, carbon nanotubes, carbon nanofibers, graphite nanofibers, graphenes, and the like can be used. Particulate materials can be preferably used.

전자소자Electronic device

본 발명은 상기 계면활성제로 표면개질된 탄소기반 소재를 포함하는 전자소자를 제공한다.The present invention provides an electronic device comprising a carbon-based material surface-modified with the surfactant.

상기 전자소자로는 일차전지, 이차전지, 커패시터, 슈퍼커패시터 또는 연료전지에 사용되는 전극 등일 수 있고, 탄소기반 소재를 사용하는 모든 전자소자에 적용할 수 있다.The electronic device may be a primary cell, a secondary cell, a capacitor, a super capacitor, an electrode used in a fuel cell, or the like, and may be applied to all electronic devices using a carbon-based material.

필터filter

본 발명은 상기 계면활성제로 표면개질된 탄소기반 소재를 포함하는 필터를 제공한다.The present invention provides a filter comprising a carbon-based material surface-modified with the surfactant.

상기 필터는 담배필터, 공기여과필터, 수처리필터 등일 수 있다.The filter may be a cigarette filter, an air filtration filter, a water treatment filter, or the like.

SDBSSDBS (sodium (sodium dodecylbenzenesulfonatedodecylbenzenesulfonate )로 )in 표면개질된Surface modified 활성탄 Activated carbon

본 발명은 상기 방법으로 제조된 계면활성제로서 SDBS(sodium dodecylbenzenesulfonate)로 표면개질된 활성탄을 제공한다.The present invention provides an activated carbon surface-modified with SDBS (sodium dodecylbenzenesulfonate) as a surfactant prepared by the above method.

여기서, 상기 계면활성제로서 SDBS의 친수성기는 이온교환 기능성을 부여하여, 하기의 축전식탈염 전극에 유용할 수 있다.Here, as the surfactant, the hydrophilic group of SDBS imparts ion exchange functionality and can be useful for the following storage desalting electrode.

축전식탈염Condensation desalination (capacitive deionization, CDI) 전극(capacitive deionization) electrode

본 발명은 상기 SDBS(sodium dodecylbenzenesulfonate)로 표면개질된 활성탄을 포함하는 축전식탈염 전극을 제공한다.The present invention provides a storage type desalination electrode comprising activated carbon surface-modified with SDBS (sodium dodecylbenzenesulfonate).

종래 사용되고 있는 축전식탈염(capacitive deionization, CDI) 전극의 경우, 탄소전극, 활성탄 및 이온교환막이 순차적으로 적층된 형태로서 이온교환막을 사용하여 비용이 비싸고 가공 공정이 길며 이온교환용량이 우수하지 못한 단점이 있다.In the case of capacitive deionization (CDI) electrodes which have been conventionally used, carbon electrodes, activated carbon and ion exchange membranes are sequentially laminated in the form of an ion exchange membrane, which is expensive, has a long processing process, .

본 발명에 따른 축전식탈염 전극의 경우 이온교환능을 갖는 SDBS(sodium dodecylbenzenesulfonate)로 표면개질된 활성탄을 이용하므로 고가의 이온교환막을 사용하지 않아도 될 뿐만 아니라, 이온교환용량(IEC) 역시 우수하다.In the case of the storage-type desalination electrode according to the present invention, since the surface-modified activated carbon is used with SDBS (sodium dodecylbenzenesulfonate) having ion exchange ability, not only expensive ion exchange membranes are used but also ion exchange capacity (IEC) is excellent.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<< 실시예Example 1> 계면활성제로  1> as a surfactant 표면개질된Surface modified 활성탄의 제조 Production of activated carbon

실시예에서 사용한 각 성분의 함량 및 방사선 종류와 세기를 하기 표 1에 정리하여 나타내었다.The contents of each component used in the examples, the kind of radiation, and the intensity are shown in Table 1 below.

단계 1: 활성탄의 Step 1: 마이셀화Micellization 용액의 준비 Preparation of solution

활성탄 (제조사: 구래라이(일본), 모델명: P-60, 평균입자크기: 10 ㎛) 및 계면활성제로 SDBS (sodium dodecylbenzenesulfonate)를 용매로 물에 첨가하여, 활성탄을 중심으로 마이셀을 형성하였다. 여기서, 활성탄 표면에 계면활성제의 그라프트율 향상이 필요한 경우 가교제로 DVB (divinylbenzene)를 선택적으로 첨가하였다.Micelles were formed around activated carbon by adding activated carbon (manufacturer: Gurray (Japan), model name: P-60, average particle size: 10 μm) and sodium dodecylbenzenesulfonate (SDBS) as a solvent as a solvent. Here, DVB (divinylbenzene) was selectively added as a crosslinking agent when it is necessary to improve the graft ratio of the surface active agent on the surface of activated carbon.

단계 2: 방사선 조사Step 2: Irradiation

상기 단계 1에서 준비한 용액에 방사선으로 전자선(25kGy/pass) 또는 감마선(2kGy/hr)을 조사하여, 계면활성제의 소수성 탄소 체인에 자유라디칼 형성을 유도하고, 이 자유라디칼이 활성탄 표면에 화학적으로 결합되도록 하였다. 여기서, 단계 1에서 가교제를 첨가할 경우에는 자유라디칼이 활성탄 표면 및 가교제와 함께 결합하여 계면활성제의 활성탄 표면 그라프트율이 향상된다. Irradiation of the solution prepared in step 1 with electron beams (25 kGy / pass) or gamma rays (2 kGy / hr) was conducted to induce formation of free radicals in the hydrophobic carbon chains of the surfactant. The free radicals were chemically bonded Respectively. Here, when the crosslinking agent is added in Step 1, the free radicals bond with the surface of the activated carbon and the crosslinking agent to improve the activated carbon surface graft rate of the surfactant.

상기 전자선은 라인 형태로 조사되고, 단계 1의 용액을 밑면이 넓고 높이가 낮은 용기에 담은 다음 전자선 조사 라인을 약 4초에 1회 지나가는 형태로 조사하였다. 상기 감마선은 단계 1의 용액을 드럼통 형태의 용기에 담고 감마선을 투과시키는 형태로 조사하였다.The electron beam was irradiated in the form of a line, and the solution of Step 1 was immersed in a container having a large bottom surface and low in height, and then irradiated with an electron beam irradiation line passing about once every 4 seconds. The gamma ray was irradiated in the form of a solution in which the solution of Step 1 was contained in a drum-shaped container and a gamma ray was transmitted.

단계 3: Step 3: 미반응물의Unreacted 제거 및 건조 Removing and drying

상기 단계2에서 방사선 조사 처리 후에, 미반응 계면활성제 및/또는 가교제를 제거하기 위하여 필터링하고, 건조하여 목적의 계면활성제로 표면개질된 활성탄을 제조하였다.After the irradiation treatment in the step 2, the unreacted surfactant and / or crosslinking agent was filtered out and dried to prepare activated carbon surface-modified with the desired surfactant.

실시예Example 탄소기반
소재
Carbon-based
Material
계면활성제Surfactants 가교제Cross-linking agent 용매menstruum 방사선
조사선량 (kGy)
radiation
Irradiation dose (kGy)
그라프트율
(%)
Graft rate
(%)
활성탄(g)Activated carbon (g) SDBS(g)SDBS (g) DVB(g)DVB (g) 물(g)Water (g) 전자선
(25kGy/pass)
Electron beam
(25 kGy / pass)
감마선
(2kGy/hr)
Gamma ray
(2 kGy / hr)
1-11-1 0.10.1 0.10.1 0.010.01 1515 100100 -- 2929 1-21-2 0.10.1 0.20.2 0.010.01 1515 100100 -- 3131 1-31-3 0.10.1 1One 0.010.01 1515 100100 -- 4141 1-41-4 0.10.1 0.10.1 0.030.03 1515 100100 -- 4343 1-51-5 0.10.1 0.20.2 0.030.03 1515 100100 -- 4949 1-61-6 0.10.1 1One 0.030.03 1515 100100 -- 6464 1-71-7 0.10.1 0.10.1 0.050.05 1515 100100 -- 3232 1-81-8 0.10.1 0.20.2 0.050.05 1515 100100 -- 3636 1-91-9 0.10.1 1One 0.050.05 1515 100100 -- 3939 1-101-10 0.10.1 0.10.1 -- 1515 100100 -- 3131 1-111-11 0.10.1 0.20.2 -- 1515 100100 -- 3030 1-121-12 0.10.1 1One -- 1515 100100 -- 3838 2-12-1 1One 22 0.50.5 100100 2525 -- 88 2-22-2 1One 22 0.50.5 100100 5050 -- 2323 2-32-3 1One 22 0.50.5 100100 7575 -- 2929 2-42-4 1One 22 0.50.5 100100 100100 -- 3838 2-52-5 22 44 1One 100100 5050 -- 3232 2-62-6 22 44 1One 100100 100100 -- 7575 2-72-7 1.51.5 33 0.750.75 100100 5050 -- 2121 2-82-8 1.51.5 33 0.750.75 100100 100100 -- 4747 3-13-1 55 55 2.52.5 500500 -- 5050 93.193.1 3-23-2 55 1010 2.52.5 500500 -- 2525 92.592.5 3-33-3 55 1010 2.52.5 500500 -- 5050 95.995.9 3-43-4 55 1010 2.52.5 500500 -- 100100 98.498.4 3-53-5 55 1010 -- 500500 -- 5050 84.584.5

<< 실험예Experimental Example 1> 계면활성제의 소수성 탄소체인 길이에 따른  1> hydrophobic carbon chain of surfactant 그라프트율Graft rate 평가 evaluation

계면활성제가 활성탄 표면에 화학적으로 그라프트(graft)되는 정도를 알아보기 위하여 다음과 같이 실험하였다.To investigate the degree of chemical grafting of surfactant onto the surface of activated carbon, the following experiment was conducted.

구체적으로, 실시예에서 제조한 표면개질된 활성탄의 그라프트율, 그리고 소수성 탄소체인 길이가 다른 계면활성제를 사용할 경우의 그라프트율을 알아보기 위하여 열중량분석(thermogravimetric analysis, TGA) 방법을 이용하였다.Specifically, a thermogravimetric analysis (TGA) method was used to determine the graft rate of the surface-modified activated carbon prepared in the examples and the graft rate in the case of using a surfactant having a different hydrophobic carbon chain length.

일반적으로, 활성탄 표면개질 시 미반응된 계면활성제는 세척과정에서 모두 제거가 되게 되며 활성탄 표면에 화학적으로 결합되어 있는 계면활성제 만이 열중량분석 시 잔류물(char) 형태로 존재하게 되어 그라프트율에 영향을 주게 된다.In general, when the activated carbon surface is modified, all of the unreacted surfactants are removed during the washing process. Only the surfactant chemically bonded to the activated carbon surface is present in the form of char in the thermogravimetric analysis, thereby affecting the graft rate .

실시예의 그라프트율은 상기 표 1에 병기하였고, 다른 계면활성제를 사용할 경우의 그라프트율은 하기 표 2에 나타내었다.The grafting ratios in Examples are shown in Table 1, and the grafting ratios in the case of using other surfactants are shown in Table 2 below.

탄소기반
소재
Carbon-based
Material
계면활성제Surfactants 가교제Cross-linking agent 용매menstruum 방사선
조사선량 (kGy)
radiation
Irradiation dose (kGy)
그라프트율
(%)
Graft rate
(%)
활성탄(g)Activated carbon (g) (g)(g) DVB(g)DVB (g) 물(g)Water (g) 전자선
(25kGy/pass)
Electron beam
(25 kGy / pass)
감마선
(2kGy/hr)
Gamma ray
(2 kGy / hr)
0.10.1 SHBS(C6)
1
SHBS (C6)
One
0.030.03 1515 100100 -- 12.112.1
0.10.1 SOBS(C8)
1
SOBS (C8)
One
0.030.03 1515 100100 -- 62.162.1
실시예
1-6
Example
1-6
0.10.1 SDBS(C12)
1
SDBS (C12)
One
0.030.03 1515 100100 -- 6464
0.10.1 SHDBS(C16)
1
SHDBS (C16)
One
0.030.03 1515 100100 -- 65.965.9
0.10.1 SODBS(C18)
1
SODBS (C18)
One
0.030.03 1515 100100 -- 66.266.2
55 SHBS(C6)
10
SHBS (C6)
10
2.52.5 500500 -- 100100 32.932.9
55 SOBS(C8)
10
SOBS (C8)
10
2.52.5 500500 -- 100100 97.197.1
실시예
3-4
Example
3-4
55 SDBS(C12)
10
SDBS (C12)
10
2.52.5 500500 -- 100100 98.498.4
55 SHDBS(C16)
10
SHDBS (C16)
10
2.52.5 500500 -- 100100 98.698.6
55 SODBS(C18)
10
SODBS (C18)
10
2.52.5 500500 -- 100100 99.199.1
SHBS (sodium hexylbenzenesulfonate; C6)
SOBS (sodium octylbenzenesulfonate; C8)
SDBS (sodium dodecylbenzenesulfonate; C12)
SHDBS (sodium hexadecylbenzenesulfonate; C16)
SODBS (sodium octadecylbenzenesulfonate; C18)
SHBS (sodium hexylbenzenesulfonate; C6)
SOBS (sodium octylbenzenesulfonate; C8)
SDBS (sodium dodecylbenzenesulfonate; C12)
SHDBS (sodium hexadecylbenzenesulfonate; C16)
SODBS (sodium octadecylbenzenesulfonate; C18)

상기 표 2에 나타난 바와 같이, 계면활성제의 소수성 탄소체인 길이가 C8 이상일 경우에는 그라프트율이 우수하게 나오는 반면에, C8 미만일 경우 그라프트율이 현저히 저하되는 것으로 나타났다. 이러한 결과는 소수성 탄소체인 길이가 C8 미만인 계면활성제의 경우 방사선 조사에 따른 자유라디칼 형성이 저하되거나, 탄소체인의 자유도가 낮아지기 때문인 것으로 사료된다. 따라서, 본 발명에서는 C8 이상의 소수성 탄소체인을 갖는 계면활성제를 이용하는 것이 그라프트율 향상에 바람직한 것을 알 수 있었다.As shown in Table 2, when the length of the hydrophobic carbon chain of the surfactant is more than C8, the graft rate is excellent, whereas when the surfactant is less than C8, the graft rate is remarkably decreased. These results suggest that the surfactant with a hydrophobic carbon chain length of less than C8 is reduced by the irradiation of free radicals and the degree of freedom of the carbon chain is lowered. Therefore, in the present invention, it has been found that it is preferable to use a surfactant having a hydrophobic carbon chain of C8 or more in order to improve the graft rate.

한편, 상기 표 1에 나타난 바와 같이, 각 실시예의 그라프트율은 8-98.4%로 다양하게 나타났고, 이 중에서 가교제를 사용하지 않은 실시예의 경우에도 그라프트율은 평이하게 나타났으며, 가교제를 첨가해줄 경우에는 그라프트율이 소폭 상승하는 것으로 나타났다. 따라서, 본 발명에 따른 제조방법을 이용할 경우 계면활성제만을 이용하여 탄소기반 소재(예를 들어, 활성탄)의 표면을 용이하게 개질할 수 있다.On the other hand, as shown in Table 1, the grafting rate of each example varied from 8 to 98.4%, and grafting rate was also found to be even in the case of the example not using the crosslinking agent. When the crosslinking agent was added The graft rate was slightly increased. Therefore, when the production method according to the present invention is used, the surface of a carbon-based material (for example, activated carbon) can be easily modified using only a surfactant.

Claims (16)

탄소기반 소재 및 계면활성제를 용매에 첨가하여, 탄소기반 소재를 중심으로 마이셀화된 용액을 준비하는 단계(단계 1); 및
상기 단계 1에서 준비한 용액에 방사선을 조사하여, 계면활성제의 소수성 탄소체인에 자유라디칼 형성을 유도하고, 상기 자유라디칼이 탄소기반 소재의 표면 탄소와 화학적으로 결합하는 단계(단계 2);
를 포함하는 탄소기반 소재를 계면활성제로 표면개질하는 방법.
Adding a carbon-based material and a surfactant to a solvent to prepare a micellized solution around the carbon-based material (step 1); And
Irradiating the solution prepared in step 1 with radiation to induce free radical formation in the hydrophobic carbon chain of the surfactant and chemically bonding the free radical to the surface carbon of the carbon-based material (step 2);
Wherein the carbon-based material is surface-modified with a surfactant.
제1항에 있어서,
상기 단계 1에 가교제를 더 포함하는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the step (1) further comprises a crosslinking agent.
제1항에 있어서,
상기 탄소기반 소재는 크기가 1-1000000 nm인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the carbon-based material has a size of 1-1000000 nm.
제3항에 있어서,
상기 탄소기반 소재는 활성탄, 탄소나노튜브, 탄소나노섬유, 흑연나노섬유 및 그래핀으로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 방법.
The method of claim 3,
Wherein the carbon-based material is one selected from the group consisting of activated carbon, carbon nanotubes, carbon nanofibers, graphite nanofibers, and graphenes.
제1항에 있어서,
상기 계면활성제는 음이온성 계면활성제, 양이온성 계면활성제, 양쪽성 계면활성제 또는 비이온성 계면활성제인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the surfactant is an anionic surfactant, a cationic surfactant, an amphoteric surfactant or a nonionic surfactant.
제5항에 있어서,
상기 계면활성제는 하기 화학식 1로 표시되는 것을 특징으로 하는 방법:
[화학식 1]
CH3-(CH2)n-R
(상기 화학식 1에서,
n은 7-17의 정수이고;
R은 설페이트, 에테르 술페이트, 알카릴 술포네이트, 숙시네이트, 술포숙시네이트, 포스페이트, 에테르 포스페이트, 에테르 카르복실레이트, 아미노산, 펩티드, 카르복실산, 글루타메이트, 아실 글루타메이트 또는 아민이고;
상기 R은 염 형태일 수 있다).
6. The method of claim 5,
Wherein the surfactant is represented by the following Formula 1:
[Chemical Formula 1]
CH 3 - (CH 2) n -R
(In the formula 1,
n is an integer of 7-17;
R is a sulfate, an ether sulfate, an alkaryl sulfonate, a succinate, a sulfosuccinate, a phosphate, an ether phosphate, an ether carboxylate, an amino acid, a peptide, a carboxylic acid, a glutamate, an acylglutamate or an amine;
Wherein R may be in salt form.
제1항에 있어서,
상기 용매는 물 또는 유기용매인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the solvent is water or an organic solvent.
제7항에 있어서,
상기 유기용매는 알코올류, 알데히드류, 카르복실산류, 염화탄소류, 아민류, 에스테르류, 에테르류, 시안류, 케톤류, 또는 포화 및 불포화 탄화수소류인 것을 특징으로 하는 방법.
8. The method of claim 7,
Wherein the organic solvent is an alcohol, an aldehyde, a carboxylic acid, a chlorocarbon, an amine, an ester, an ether, a cyan, a ketone, or a saturated or an unsaturated hydrocarbon.
제1항에 있어서,
상기 방사선은 전자선 또는 감마선인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the radiation is an electron beam or a gamma ray.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020160074229A 2016-06-15 2016-06-15 Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials KR101802129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160074229A KR101802129B1 (en) 2016-06-15 2016-06-15 Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160074229A KR101802129B1 (en) 2016-06-15 2016-06-15 Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170139322A Division KR101908457B1 (en) 2017-10-25 2017-10-25 Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials

Publications (1)

Publication Number Publication Date
KR101802129B1 true KR101802129B1 (en) 2017-11-28

Family

ID=60811061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160074229A KR101802129B1 (en) 2016-06-15 2016-06-15 Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials

Country Status (1)

Country Link
KR (1) KR101802129B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658056A (en) * 2018-05-24 2018-10-16 安徽省齐岗农业发展有限公司第分公司 A kind of preparation method of the biological carbon with good electrical properties
CN109231205A (en) * 2018-09-18 2019-01-18 中国东方电气集团有限公司 A kind of activated carbon for super capacitors and preparation method thereof that sulfosalt surfactant is modified
CN109879269A (en) * 2019-04-12 2019-06-14 湖南师范大学 A method of using bamboo powder as the synthesising mesoporous carbon material of carbon source

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Applied Surface Science, 2009, 255, pp. 6359-6366*
Chemical Engineering Journal, 2009, 148, pp. 365-370*
Environ, Eng. Res., 2009, 14, 3, pp. 153-157*
J. Electrochem. Soc., 1990, 137, 9, pp. 2736-2745*

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658056A (en) * 2018-05-24 2018-10-16 安徽省齐岗农业发展有限公司第分公司 A kind of preparation method of the biological carbon with good electrical properties
CN109231205A (en) * 2018-09-18 2019-01-18 中国东方电气集团有限公司 A kind of activated carbon for super capacitors and preparation method thereof that sulfosalt surfactant is modified
CN109231205B (en) * 2018-09-18 2021-11-05 中国东方电气集团有限公司 Sulfonate surfactant modified activated carbon for supercapacitor and preparation method thereof
CN109879269A (en) * 2019-04-12 2019-06-14 湖南师范大学 A method of using bamboo powder as the synthesising mesoporous carbon material of carbon source
CN109879269B (en) * 2019-04-12 2022-08-19 湖南师范大学 Method for synthesizing mesoporous carbon material by using bamboo powder as carbon source

Similar Documents

Publication Publication Date Title
KR101802129B1 (en) Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials
Duan et al. Plasma surface modification of materials and their entrapment of water contaminant: A review
Shawky et al. Chitosan/carbon nanotube composite beads: Preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt
US20110312485A1 (en) Method for preparation of activated carbon
WO2013046975A1 (en) Gas separation membrane, manufacturing method for same, and gas separation membrane module using same
KR101908457B1 (en) Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials
Poursaberi et al. Magnetic removal of reactive Black 5 from wastewater using ionic liquid grafted‐magnetic nanoparticles
KR102058374B1 (en) Radioactive cesium absorbent and method of the same
Poornachandhra et al. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics
Dehaghi Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: The effect of functionalization
Akbartabar et al. Physical chemistry studies of acid dye removal from aqueous media by mesoporous nano composite: Adsorption isotherm, kinetic and thermodynamic studies
Huang et al. Surface modification and characterization of an H2/O2 plasma‐treated polypropylene membrane
DE102012024329B4 (en) Process for producing reduced graphene oxide and reduced graphene oxide produced therewith and use thereof
CN115672280B (en) Preparation method of perfluoro caprylic acid adsorbent
Lashgari et al. Introducing surface-modified ordered mesoporous carbon as a promising sorbent for extraction of N-nitrosamines
KR101690543B1 (en) Method for Preparing Polymer Coated Fludized Bed Carbon Electrode, and Fludized Bed Carbon Electrode By The Same
JP4868326B2 (en) Titanium oxide / carbon composite particles and production method thereof
Al-Amrani et al. Influence of hydrophilicity/hydrophobicity on adsorption/desorption of sulfanilic acid using amine-modified silicas and granular activated carbon
Han et al. Removal of methylene blue from aqueous solution by functionalized UiO-66 with basic moiety
Li et al. A continuous method to prepare porous polystyrene membranes with high adsorption ability for polycyclic aromatic hydrocarbons
KR102413737B1 (en) Manufacturing Method of Coffee Activated Carbon Deodorant
Ogata et al. Interactions of cationic and anionic dyes with activated carbons
JP6616597B2 (en) 1,4-dioxane treatment method
US20070134437A1 (en) Surface treatment method for material with surface microstructure
Ali et al. Green functionalization: comparison of different carbonaceous materials

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant