KR101794499B1 - Drug delivery system containing phase change material and crystalline carbon nanoparticles and method of making the same - Google Patents
Drug delivery system containing phase change material and crystalline carbon nanoparticles and method of making the same Download PDFInfo
- Publication number
- KR101794499B1 KR101794499B1 KR1020170093552A KR20170093552A KR101794499B1 KR 101794499 B1 KR101794499 B1 KR 101794499B1 KR 1020170093552 A KR1020170093552 A KR 1020170093552A KR 20170093552 A KR20170093552 A KR 20170093552A KR 101794499 B1 KR101794499 B1 KR 101794499B1
- Authority
- KR
- South Korea
- Prior art keywords
- drug
- drug delivery
- change material
- crystalline carbon
- phase
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0004—Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/409—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0009—Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 상변환물질과 결정성 탄소 나노입자를 포함하는 약물 전달체 및 이의 제조방법에 관한 것으로, 본 발명에 따른 상변환물질, 약물 및 결정성 탄소 나노입자를 포함하는 약물 전달체는 열에 민감한 상변환물질 안에 약물과 광학 재료인 결정성 탄소를 포함하고 있어, 종양내주사 시 근적외선 조사에 따라 적정 시기에 적정량으로 약물 방출을 조절할 수 있을 뿐만 아니라 광역동치료와 광열치료의 시너지 효과로 인해 종양 치료 효과를 극대화할 수 있다.The present invention relates to a drug delivery system comprising a phase-change material and crystalline carbon nanoparticles and a method of manufacturing the same, and a drug delivery system comprising the phase-change material, the drug and the crystalline carbon nanoparticles according to the present invention, In addition to being able to regulate drug release in an appropriate amount at the appropriate time according to near-infrared irradiation during intratumoral injection, the synergistic effect of photodynamic therapy and metastatic treatment, Can be maximized.
Description
본 발명은 상변환물질과 결정성 탄소 나노입자를 포함하는 약물 전달체 및 이의 제조방법에 관한 것이다.The present invention relates to a drug delivery system comprising a phase-change material and crystalline carbon nanoparticles, and a method for producing the same.
현재까지 종양을 치료하기 위해서 면역, 화학, 방사선, 광선치료와 같은 치료법이 연구되어 왔다. 그 중, 광선치료는 국소적 치료 기술로써 값이 싸고 종양 부위에 특이적 치료로 부작용 최소화의 장점이 있어 많은 관심을 받고 있다. 광선치료는 종양을 치료하기 위하여 근적외선 빛의 흡수가 요구되는 방법으로 광역동치료와 광열치료의 두 가지로 분류가 된다. 광역동치료의 경우, 광 증감제가 특정한 근적외선 빛의 파장에 노출이 되면 광학 에너지를 흡수하여 활성 산소 같은 반응 산소 종을 생성하며, 이는 종양 세포와 조직의 제거를 유도한다. 그러나, 광 증감제는 종양에 특이 전달성이 없기 때문에 종양 환자가 광역동치료 기간 중에 외부의 근적외선 빛에 노출이 되면 전신에 퍼져있는 광 증감제의 활성으로 일반 세포와 조직의 손상을 입힐 수 있는 한계점이 있다.To date, therapies such as immunology, chemistry, radiation, and phototherapy have been studied to treat tumors. Among them, phototherapy is a local therapy technique, which is cheap and has a great interest because it has advantages of minimizing adverse effects due to specific treatment of tumor site. Phototherapy can be categorized into two types: photodynamic therapy and photodynamic therapy, in which near-infrared light absorption is required to treat tumors. In the case of photodynamic therapy, when the photosensitizer is exposed to a particular wavelength of near infrared light, it absorbs optical energy to produce reactive oxygen species such as reactive oxygen species, which leads to the elimination of tumor cells and tissues. However, since the photosensitizer is not specific for the tumor, when the tumor patient is exposed to external near-infrared light during the photodynamic therapy, the activity of the photosensitizer spread throughout the body may cause damage to normal cells and tissues There is a limit.
광열치료는 43℃ 이상의 고열을 통해 종양 세포를 사멸시키는 방법으로, 탄소 나노튜브, 그래핀, 나노다이아몬드, 금 나노쉘 등과 같은 광열 재료의 특정 빛 파장을 흡수하여 열을 내는 성질을 이용한다. 최근, 결정성 탄소기반 나노입자로써 나노다이아몬드는 뛰어난 생체적합성, 높은 기계적강도, 분산안정성, 표면 기능기의 다양화뿐만 아니라 광학 재료로 사용이 가능하여 의약, 의공학 분야에서 관심을 받고 있다. 광열치료는 광역동치료에 비해 나노입자를 주로 사용하기에 EPR 효과(enhanced permeability and retention effect)로 종양 조직에 높은 축적률을 나타내나, 종양 치료 효율이 적은 한계점이 있다. Photothermal therapy is a method of killing tumor cells through a high temperature of 43 ° C or higher, and utilizes heat-absorbing properties by absorbing specific light wavelengths of photothermal materials such as carbon nanotubes, graphene, nanodiamonds, and gold nanoshells. In recent years, nanocrystals as crystalline carbon-based nanoparticles have attracted attention in the fields of medicine and biomedical engineering because they can be used as optical materials as well as excellent biocompatibility, high mechanical strength, dispersion stability, and diversification of surface functional groups. Phototherapy has a higher accumulation rate in tumor tissue due to enhanced permeability and retention effect because nanoparticles are mainly used as compared with photodynamic therapy, but there is a limit in the efficiency of tumor treatment.
따라서, 이러한 문제점들을 보완하고 종양을 효과적으로 치료하기 위한 재료의 개발이 요구된다.Therefore, there is a need to develop materials for complementing these problems and effectively treating tumors.
본 발명의 목적은 상변환물질, 약물 및 결정성 탄소 나노입자를 포함하는 약물 전달체를 제공하는 것이다.It is an object of the present invention to provide a drug carrier comprising a phase-change material, a drug, and crystalline carbon nanoparticles.
본 발명의 다른 목적은 상변환물질, 약물 및 결정성 탄소 나노입자를 포함하는 약물 전달체의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing a drug carrier comprising a phase-change material, a drug, and crystalline carbon nanoparticles.
본 발명의 또 다른 목적은 약물 전달체를 포함하는 약물 전달용 조성물을 제공하는 것이다.It is still another object of the present invention to provide a drug delivery composition comprising a drug delivery vehicle.
본 발명은 상변환물질, 약물 및 결정성 탄소 나노입자를 포함하는 약물 전달체를 제공한다.The present invention provides a drug carrier comprising a phase-change material, a drug, and crystalline carbon nanoparticles.
용어 상변환물질(상변화물질, phase change material)이란, 잠열재, 축열재, 축냉제 또는 열조절성 물질을 의미하는 것으로 고체에서 액체, 액체에서 고체, 액체에서 기체, 또는 기체에서 액체 등 하나의 상태에서 다른 상태로 변하는 일종의 물질적 변환과정(상변환과정)을 통하여 많은 양의 열에너지를 축적하거나 저장된 열에너지를 방출하는 물질이다. 상변환과정에서 모든 물질은 화학적 결합과 같은 화학적 반응이 아닌 분자의 물리적인 배열이 바뀐다. 4천여 종의 물질이 상변화물질로 분류되고 있으나 실질적으로 사용되는 물질은 약 200여 종에 불과하다.The term phase change material means a latent heat material, a heat storage material, a condensation coolant or a heat control material, and is a liquid in a solid state, a solid in a liquid state, a gas in a liquid state, Is a material that accumulates a large amount of heat energy or releases stored heat energy through a kind of material conversion process (phase conversion process) which changes from a state of a state to a state of another state. In the phase transformation process, all materials change the physical arrangement of molecules, not chemical reactions such as chemical bonding. Although about 4,000 substances are classified as phase change substances, only about 200 substances are actually used.
용어 결정성 탄소 나노입자란, 매우 규칙적으로 배열되어 결정성(crystalline)을 나타내는 탄소 원소로 구성된 나노입자를 의미하며, 최근 전기전자재료 및 기능성 소재로 각광받고 있는 나노기술의 핵심 재료이다. 결정성 탄소 나노입자의 종류로는 탄소나노튜브(CNT;Carbon Nano Tube), 탄소나노섬유(Carbon Nano Fiber), 탄소나노리본(Carbon Nano Ribbon), 탄소나노양파(CNO;Carbon Nano Onion), 탄소나노로드(CNR;Carbon Nano Rod), 나노다이아몬드(Nanodiamond) 등이 있으며, 결정성 탄소 나노입자의 제조에는 일반적으로 아크방전(Arc Discharge), 촉매기상증착법(CCVD;Catalytic Chemical Vapor Deposition), 화염합성법(Flame Synthesis) 등이 주로 이용되고 있다.The term "crystalline carbon nanoparticle" means a nanoparticle composed of a carbon element which is arranged in a very regular manner to exhibit crystalline and is a core material of nanotechnology, which has recently been attracting attention as an electrical and electronic material and a functional material. Examples of the crystalline carbon nanoparticles include carbon nanotubes (CNTs), carbon nanofibers, carbon nano ribbons, carbon nano onions (CNOs), carbon nanotubes (CNR), and Nanodiamond. The crystalline carbon nanoparticles are generally prepared by a method such as Arc Discharge, Catalytic Chemical Vapor Deposition (CCVD), Flame Synthesis (Flame Synthesis) are mainly used.
상기 약물 전달체는 근적외선 조사 시 결정성 탄소 나노입자가 근적외선을 흡수하여 온도가 상승하고, 이에 따라 상변환물질이 고체에서 액체로 상변화되어 약물 전달체에 담지된 약물이 방출되는 것일 수 있다.In the above-mentioned drug delivery vehicle, the crystalline carbon nanoparticles absorb near-infrared light when the near-infrared rays are irradiated, and the temperature of the drug carrier is elevated so that the phase-change material is phase-changed from solid to liquid and the drug carried on the drug carrier is released.
본 발명의 일실시예에서, 본 발명에 따른 약물 전달체(Ce6/ND/PCM)가 근적외선을 흡수할 때마다 온도가 반복적으로 상승하고 이에 따라 약물인 클로오린e6의 방출 누적율이 증가하는 것을 확인하였으며(도 2), 이는 결정성 탄소 나노입자인 나노다이아몬드가 근적외선을 흡수하여 약물 전달체(Ce6/ND/PCM)의 온도가 상승함에 따라 상변화물질인 라우르산의 상변화가 야기되어 라우르산이 녹음으로써 클로오린e6가 방출된 것으로 분석되었다(도 3).In one embodiment of the present invention, it has been confirmed that the temperature of the drug delivery vehicle (Ce6 / ND / PCM) according to the present invention increases repeatedly every time the near infrared ray is absorbed and thus the cumulative release rate of the drug, (Fig. 2). This is because the nanodiamonds as crystalline carbon nanoparticles absorb near-infrared rays, causing a phase change of lauric acid, which is a phase change material, as the temperature of the drug carrier (Ce6 / ND / PCM) It was analyzed that the acid was released as a result of cyanogen e6 release (Fig. 3).
상기 약물 전달체는 약물 전달체 100 중량부에 대하여 약물 전달체 100 중량%에 대하여 상변환물질 10 내지 99.9 중량%, 약물 0.1 내지 25 중량% 그리고 결정성 탄소 나노입자 0.1 내지 75 중량%를 포함하는 것일 수 있다.The drug delivery vehicle may comprise 10 to 99.9% by weight of a phase change material, 0.1 to 25% by weight of a drug, and 0.1 to 75% by weight of crystalline carbon nanoparticles based on 100% by weight of the drug delivery vehicle with respect to 100% .
상기 상변환물질은 지방산(Fatty Acid)계 또는 지방알코올(Fatty alcohol)계일 수 있다. The phase change material may be a fatty acid type or a fatty alcohol type.
상기 상변환물질이 지방산(Fatty Acid)계일 경우, 구체적으로는 라우르산(Lauric Acid), 메틸 팔미트산염(Methyl Palmitate), 카프르산(Capric Acid), 에루크산(Erucic Acid)으로 이루어진 군에서 선택되는 것일 수 있다. When the phase change material is a fatty acid type, specifically, it may be a mixture of lauric acid, methyl palmitate, capric acid, and erucic acid. It can be chosen from the group.
상기 상변환물질이 지방알코올(Fatty alcohol)계일 경우, 구체적으로는 트리데실알코올(Tridecyl alcohol), 미리스틸알코올(Myristyl alcohol), 펜타데실알코올(pentadecyl alcohol), 에루실알코올(erucyl alcohol)로 이루어진 군에서 선택되는 것일 수 있다. When the phase change material is a fatty alcohol type, specifically, it may be formed of tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, and erucyl alcohol. It can be chosen from the group.
상기 상변환물질은 당업계에 공지된 상변환물질이라면 어느 것이든 사용 가능하나 주사 등을 통해 인체 내 투여 시 체내 독성을 유발하지 않는 것이 바람직하며, 인체 내에서 상변화를 일으킴으로써 효과가 발휘되므로 녹는점(melting point)은 30 ~ 45℃ 인 것이 바람직하다. 상기 수치 범위를 벗어난 녹는점을 가지는 상변환물질은 근적외선 조사 전 조기에 상변화가 일어나거나, 근적외선 조사 시에 본 발명에서 의도한 상변화가 일어나지 않으므로, 본 발명에 따른 효과를 발휘하기 어렵다.The phase-change material may be any phase-change material known in the art, but it is preferable that the phase-change material does not induce toxicity in the body when injected into the body through injection or the like, and the effect is exhibited by causing a phase change in the body The melting point is preferably 30 to 45 ° C. The phase change material having a melting point outside the numerical range does not exhibit the phase change in the early stage before the near infrared ray irradiation or the phase change in the present invention does not occur at the time of the near infrared ray irradiation.
상기 약물은 소수성 약물일 수 있으며, 소수성 약물의 종류는 특별히 제한되지 않고, 예를 들면, 항암제; 항불안제, 항우울제, 신경안정제 및 항정신신경요제 등과 같은 항정신병 약물; 고지혈증 치료제, 고혈압 치료제, 저혈압 치료제, 항혈전제, 혈관이완제 및 부정맥 치료제 등과 같은 심혈관계 치료제; 간질 치료제; 항궤양제 등과 같은 위장관계 치료제; 류마티스 치료제; 진경제; 결핵 치료제; 근이완제; 골다공증 치료제; 발기부전 치료제; 지혈제; 성호르몬제 등과 같은 호르몬제; 당뇨 치료제; 항생제; 항진균제, 항바이러스제; 해열진통소염제; 자율신경 조절제; 코르티코스테이드; 이뇨제; 항이뇨제; 진통제; 마취제; 항히스타민제; 항원충제; 항빈혈제; 항천식제; 경련방지제; 해독제; 항편두통제; 항구토제; 항파킨슨제; 항정간제; 항혈소판제; 진해거담제; 기관지 확장제; 강심제; 면역조절제; 단백질 약물, 유전자 약물 및 이들의 혼합물로부터 선택될 수 있고, 바람직하게는 항암제, 항정신병 약물, 고지혈증 치료제, 고혈압 치료제, 간질 치료제, 위장관계 치료제, 류마티스 치료제, 진경제, 결핵 치료제, 근이완제, 부정맥 치료제, 골다공증 치료제, 발기부전 치료제, 지혈제, 항바이러스제, 호르몬제, 항생제, 당뇨 치료제, 항진균제, 항혈전제, 해열진통소염제 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 한정되지 않는다. The drug may be a hydrophobic drug, and the kind of the hydrophobic drug is not particularly limited, and examples thereof include anticancer agents; Antipsychotic drugs such as anxiolytics, antidepressants, neurotransmitters, and antipsychotics; A cardiovascular therapeutic agent such as a therapeutic agent for hyperlipidemia, a therapeutic agent for hypertension, a therapeutic agent for hypotension, an antithrombotic agent, a vasodilator and an arrhythmia therapeutic agent; Antiepileptics; Gastrointestinal therapeutic agents such as anti-ulcer agents; Rheumatic remedy; Sincere agent; Tuberculosis treatment; Muscle relaxants; A therapeutic agent for osteoporosis; Erectile dysfunction treatment; styptic; Hormones such as sex hormones and the like; Diabetic therapy; Antibiotic; Antifungal agents, antiviral agents; Antipyretic analgesics; Autonomic control agents; Corticosteroid; diuretic; Antidiuretic agents; painkiller; anesthetic; Antihistamines; Antigen challenge; Anemia; Anti-asthmatics; Anticonvulsants; antidote; Anti-migraine agent; Antistatic agent; Antiparkinsonian; An antitank agent; Antiplatelet agents; Jinhae expectorant; Bronchodilators; cardiac; Immunomodulators; Protein drugs, gene drugs, and mixtures thereof, and is preferably selected from the group consisting of anticancer drugs, antipsychotic drugs, hyperlipidemia drugs, hypertension drugs, epilepsy drugs, gastrointestinal drugs, rheumatic drugs, antispasmodics, tuberculosis drugs, muscle relaxants, But are not limited to, osteoporosis treatment agents, erectile dysfunction treatment agents, hemostatic agents, antiviral agents, hormone agents, antibiotics, diabetic agents, antifungal agents, antithrombotic agents, antipyretic analgesic agents and mixtures thereof.
상기 수용성 약물은, 더욱 구체적으로는 클로오린e6(chlorin e6), 빈블라스틴(vinblastine), 에토포사이드(Etoposide), 악티노마이신 D(actinomycin D), 블레오마이신(bleomycin), 메토트렉세이트(Methotrexate), 알킬레이팅(Alkylating) 화합물, 알케란(Alkeran), 부설판(Busulfan), 시스플라티눔(Cisplatinum), 시톡산(Cytoxan), 다우노루비신(Daunorubicin), 하이드레아(Hydrea), 이포스파미드(Ifosfamide), 미트라마이신(Mithramycin), 마이토마이신(Mitomycin), 미토크산트론(Mitoxantrone), 질소 머스타드(Nitrogen Mustard), 벨란(Velban), 빈크리스틴 (Vincristine), 카보플라티눔(Carboplatinum), 이다루비신(Idarubicin), 이리노테칸(Irinotecan), 류스타틴(Leustatin), 나벨바인(Navelbine), 탁소테레(Taxotere) 및 토포테칸(Topotecan) 아드리아마이신(adriamycin), 시스-플라틴(cisplatin), 다우노마이신(daunomycin), 5-플루오로우라실(5-fluorouracil) 및 파클리탁셀(Paclitaxel)로 이루어진 군에서 선택되는 것일 수 있으나, 이에 한정되지 않는다.The water-soluble drug is more particularly selected from the group consisting of chlorin e6, vinblastine, Etoposide, actinomycin D, bleomycin, methotrexate, Alkylating compounds, Alkeran, Busulfan, Cisplatinum, Cytoxan, Daunorubicin, Hydrea, Ifosfamide, ), Mithramycin, Mitomycin, Mitoxantrone, Nitrogen Mustard, Velban, Vincristine, Carboplatinum, The compounds of the present invention may be selected from the group consisting of Idarubicin, Irinotecan, Leustatin, Navelbine, Taxotere and Topotecan adriamycin, cisplatin, daunomycin, 5-fluorouracil, But it may be selected from the group consisting of cells (Paclitaxel), not limited to this.
상기 결정성 탄소 나노입자는 나노다이아몬드일 수 있다.The crystalline carbon nanoparticles may be nanodiamonds.
용어 나노다이아몬드(Nanodiamond)란, 결정성 탄소 나노입자의 한 종류로서 초고경도 다이아몬드(영어: Nanocrystalline Diamond, Aggreagated diamond nanorod)라고도 명명되는 물질로, 풀러렌(Fullerene)에 열을 가하지 않고 37기가 파스칼 이하의 압력을 가하거나, 2~20기가 파스칼의 압력과 300~2500℃의 열을 가하여 제조된다. 나노다이아몬드의 모스 경도는 다이아몬드보다 1.7~5.2%(10.17~10.52) 높아 다이아몬드보다 더 단단한 물질이며, 신경아세포, 대식세포, PC-12 세포와 같은 다양한 세포형태에 대해 독성을 띠지 않는다고 보고된 바 있다(Biocompatible and detectablecarboxylated nanodiamond on human cell, Kuang-Kai Liu1, Chia-Liang Cheng, Chia-Ching Chang and Jui-I Chao, Nanotechnology, 18 (2007) 325102).Terminology Nanodiamond is a kind of crystalline carbon nanoparticles, which is also called nanocrystalline diamond (Aggreagated diamond nanorod). It is a material that does not heat Fullerene, Pressure, or by applying a pressure of 2 to 20 gigapascals and a heat of 300 to 2500 캜. The Mohs hardness of nanodiamonds is 1.7 ~ 5.2% (10.17 ~ 10.52) higher than diamonds and is harder than diamonds and has not been reported to be toxic to various cell types such as neuroblasts, macrophages and PC-12 cells (Biocompatible and detectable carboxylated nanodiamond on human cell, Kuang-Kai Liu, Chia-Liang Cheng, Chia-Ching Chang and Jui-I Chao, Nanotechnology, 18 (2007) 325102).
본 발명은 The present invention
ⅰ) 소수성 용매 100 중량부에 대하여 상변환물질 0.02 내지 0.20 중량부, 약물 0.005 내지 0.100 중량부 그리고 결정성 탄소 나노입자 0.005 내지 0.100 중량부를 첨가하여 비연속상을 제조하는 단계;(I) 0.02 to 0.20 parts by weight of a phase change material, 0.005 to 0.100 parts by weight of a drug, and 0.005 to 0.100 parts by weight of crystalline carbon nanoparticles are added to 100 parts by weight of a hydrophobic solvent to prepare a non-coagulated phase;
ⅱ) 증류수에 대하여 계면활성제를 첨가하고 용해하여 연속상을 제조하는 단계; 및Ii) adding and dissolving the surfactant to distilled water to produce a continuous phase; And
ⅲ) 상기 단계 ⅱ)의 연속상에 단계 ⅰ)의 비연속상을 첨가함으로써 약물 전달체 입자를 제조하는 단계;를 포함하는 약물 전달체 제조방법을 제공한다.Iii) preparing drug carrier particles by adding the non-inversed phase of step i) to the continuous phase of step ii).
상기 단계 ⅰ)의 소수성 용매는 상변환물질과 약물을 녹일 수 있고 휘발성인 모든 용매를 사용할 수 있으며, 바람직하게는 디클로로메탄(dichloromethane), 클로로포름(chloroform), 헥산(hexane), 아세톤으로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 한정되지 않는다.The hydrophobic solvent of step i) may be any solvent which is capable of dissolving the phase-change material and the drug and is volatile. Preferably, the hydrophobic solvent may be selected from the group consisting of dichloromethane, chloroform, hexane, But is not limited thereto.
상기 단계 ⅱ)의 계면활성제는 약물 전달체를 더욱 안정하게 제조하기 위해 첨가하는 것으로 수용성인 계면활성제라면 모두 사용할 수 있으며, 바람직하게는 도데실황산나트륨(Sodium dodecyl sulfate, SDS), 라우릴황산나트륨(Sodium lauryl sulfate, SLS), 글리세린지방산에스테르(Glycerin fatty acid ester), 자당 지방산에스테르(Sucrose fatty acid esters), 레시틴(Lecithin), 효소처리 레시틴, 폴리소르베이트(Polysorbate), 및 솔비탄지방산에스테르(Sorbitan fatty acid ester)로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 한정되지 않는다. 상기 계면활성제를 첨가하지 않아도 본 발명에 따른 약물 전달체는 안정하게 제조된다.The surfactant of step ii) may be added to prepare the drug delivery system more stably. Any surfactant that is water-soluble may be used. Preferably, sodium dodecyl sulfate (SDS), sodium lauryl sulfate sulfate, SLS, glycerin fatty acid ester, sucrose fatty acid esters, lecithin, enzyme treated lecithin, polysorbate, and sorbitan fatty acid ester ester), but is not limited thereto. Even without adding the surfactant, the drug delivery system according to the present invention can be stably produced.
상기 단계 ⅱ)의 계면활성제는 증류수 100 중량부에 대하여 2 내지 4 중량부로 첨가하는 것일 수 있으나, 이에 한정되지 않는다.The surfactant of step ii) may be added in an amount of 2 to 4 parts by weight based on 100 parts by weight of distilled water, but is not limited thereto.
상기 단계 ⅲ)에서 제조된 약물 전달체 입자의 크기는 25 내지 500 nm일 수 있으나, 이에 한정되지 않는다.The size of the drug carrier particles prepared in step iii) may range from 25 to 500 nm But is not limited thereto.
본 발명은 본 발명에 따른 약물 전달체를 포함하는 약물 전달용 조성물을 제공한다. The present invention provides a drug delivery composition comprising the drug delivery system according to the present invention.
상기 약물 전달용 조성물은 악성종양 및 양성종양으로 이루어진 군으로부터 선택되는 질병의 치료를 위한 것일 수 있다.The composition for drug delivery may be for the treatment of a disease selected from the group consisting of malignant tumors and benign tumors.
본 발명에 따른 약물 전달용 조성물은 악성종양 및 양성종양으로 이루어진 군으로부터 선택되는 질병의 치료를 위한 약학적 조성물에 첨가제로써 포함할 수 있으며, 약학적 조성물 100 중량부에 대해 0.001 내지 10 중량부로 포함할 수 있다.The composition for drug delivery according to the present invention may be contained as an additive in a pharmaceutical composition for the treatment of diseases selected from the group consisting of malignant tumors and benign tumors and is contained in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the pharmaceutical composition. can do.
본 발명의 약물 전달용 조성물은 약제학적 제제에 적합한 어떠한 형태로든 제형화하여 사용될 수 있으나, 가장 바람직하게는 비경구투여를 위한 제형일 수 있으며, 구체적으로는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제일 수 있다. 제제화할 경우에는 당업계에서 통상적으로 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.The composition for drug delivery of the present invention may be formulated in any form suitable for a pharmaceutical preparation, but most preferably it may be a formulation for parenteral administration. Specifically, it may be a sterilized aqueous solution, a non-aqueous solution, Emulsion, and freeze-drying agent. In the case of formulation, a diluent or excipient such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant or the like commonly used in the art is used.
본 발명의 약물 전달용 조성물은 비수성용제, 현탁용제로써 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.The composition for drug delivery of the present invention may be a non-aqueous solution, a suspending agent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, or the like.
본 발명에 따른 약물 전달용 조성물의 약학적 투여 형태는 이들의 약학적 허용 가능한 염의 형태로 사용될 수 있고, 단독으로 또는 타 약학적 활성 화합물과 결합뿐만 아니라 적당한 집합으로도 사용될 수 있다. 상기 염으로는 약학적으로 허용되는 것이라면 특별히 한정되지 않으며, 예를 들면, 염산, 황산, 질산, 인산, 불화수소산, 브롬화수소산, 포름산 아세트산, 타르타르산, 젖산, 시트르산, 푸마르산, 말레산, 숙신산, 메탄술폰산, 벤젠술폰산, 톨루엔술폰산, 나프탈렌술폰산 등을 사용할 수 있다.The pharmaceutical dosage form of the drug delivery composition according to the present invention may be used in the form of a pharmaceutically acceptable salt thereof, and may be used alone or in combination with other pharmaceutically active compounds as well as a suitable combination. The salt is not particularly limited as long as it is pharmaceutically acceptable and includes, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, formic acid acetic acid, tartaric acid, lactic acid, citric acid, fumaric acid, Sulfonic acid, benzenesulfonic acid, toluenesulfonic acid, and naphthalenesulfonic acid.
본 발명의 약물 전달용 조성물은 목적하는 바에 따라 비경구투여할 수 있으며, 하루에 체중 1 ㎏당 0.1~500 ㎎, 1~100 ㎎의 양으로 투여되도록 1회 내지 수회에 나누어 투여할 수 있다. 특정 환자에 대한 투여용량은 환자의 체중, 연령, 성별, 건강 상태, 식이, 투여 시간, 투여 방법, 배설률, 질환의 중증도 등에 따라 변화될 수 있다.The composition for drug delivery of the present invention may be administered parenterally according to the purpose, and may be administered once to several times so as to be administered in an amount of 0.1 to 500 mg and 1 to 100 mg per kg of body weight per day. The dosage for a particular patient may vary depending on the patient's body weight, age, sex, health condition, diet, time of administration, administration method, excretion rate, severity of disease, and the like.
본 발명의 약물 전달용 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 비경구투여될 수 있으며, 비경구투여의 모든 방식은 예상될 수 있는데, 예를 들면, 종양내주사, 자궁내경막, 뇌혈관내(intracerebroventricular)주사, 정맥 주사, 근육 주사, 피하 주사, 직장 주사에 의해 투여될 수 있다.The composition for drug delivery of the present invention can be parenterally administered to mammals such as rats, mice, livestock, and humans, and all the methods of parenteral administration can be expected. For example, intratumoral injection, intrauterine , Intracerebroventricular injection, intravenous injection, intramuscular injection, subcutaneous injection, rectal injection.
본 발명의 약물 전달용 조성물은 종양내주사제 형태인 것이 바람직하나, 이에 한정되지 않는다.The drug delivery composition of the present invention is preferably in the form of an injection into a tumor, but is not limited thereto.
상기 약물 전달용 조성물은 종양내주사된 후, 환부인 종양 부위에 근적외선을 조사하여 약물 방출을 조절하는 것일 수 있다.The composition for drug delivery may be injected into a tumor and then irradiated with near infrared rays to the tumor site, which is the affected part, to control drug release.
본 발명의 일실시예에서, 본 발명에 따른 약물 전달체(Ce6/ND/PCM)는 근적외선을 조사하지 않아 상온 상태일 경우 약물인 클로오린e6의 방출이 전혀 이루어지지 않다가 근적외선 조사 후 온도가 상승해 있는 동안 클로오린e6이 방출되었다. 이와 같은 특성에 따라, 본 발명에 따른 약물 전달용 조성물은 종양 내에 주사된 후, 종양 부위에 대한 근적외선 조사 유무를 통해 약물 방출 시기 및 방출량을 조절할 수 있다.In one embodiment of the present invention, the drug delivery vehicle (Ce6 / ND / PCM) according to the present invention does not emit near-infrared rays and thus does not release the drug claworin e6 at normal temperature. During the course of the cyanogen e6 release. According to this characteristic, the drug delivery composition according to the present invention can control the release timing and release amount of the drug through the presence or absence of near-infrared irradiation on the tumor site after being injected into the tumor.
한편, 본 발명의 약물 전달용 조성물은 그다지 심각한 독성 및 부작용은 없으므로 장기간의 치료에 사용해도 안심할 수 있다.On the other hand, since the drug delivery composition of the present invention has no serious toxicity and side effects, it can be safely used for long-term treatment.
본 발명은 일실시예에서, 상변환물질로써 라우르산 0.01g, 소수성 약물로써 광 증감제인 클로오린e6 0.001g과 결정성 탄소 나노입자로써 나노다이아몬드 0.01g을 소수성 용매인 디클로로메탄에 첨가하여 비연속상을 우선 제조하고, 증류수 500g에 도데실황산나트륨(sodium dodecyl sulfate, SDS) 15g을 용해하여 연속상을 제조하였다. 이후, 초음파파쇄기를 이용하여 연속상에 비연속상을 첨가함으로써 나노 크기의 약물 전달체 입자(Ce6/ND/PCM)를 제조하였다.In one embodiment of the present invention, 0.01 g of lauric acid is used as a phase-change material, 0.001 g of chlorogenic e6 as a photosensitizer, and 0.01 g of nanodiamond as a crystalline carbon nanoparticle are added to dichloromethane, which is a hydrophobic solvent, And a continuous phase was prepared by dissolving 15 g of sodium dodecyl sulfate (SDS) in 500 g of distilled water. Then, nano-sized drug carrier particles (Ce6 / ND / PCM) were prepared by adding a non-emulsion phase to the continuous phase using an ultrasonic crusher.
본 발명의 첫 번째 특징은 우수한 생체적합성을 갖는 결정성 탄소 나노입자를 광학 재료로 사용한 것에 있다. 광열치료는 탄소 나노튜브, 그래핀, 나노다이아몬드, 금 나노쉘 등과 같은 광학 재료에 근적외선 빛을 조사한 후 발생되는 고열을 이용하여 종양 세포를 사멸시키는 방법이다. 본 발명은 광학 재료 중 생체적합성이 뛰어난 결정성 탄소 나노입자인 나노다이아몬드를 이용하여 정상 세포에는 독성이 없고 종양 세포를 파괴하는 약물 전달체를 제조하여 종양 치료에 응용하였다. The first feature of the present invention resides in the use of crystalline carbon nanoparticles having excellent biocompatibility as an optical material. Photothermal therapy is a method of destroying tumor cells using high heat generated by irradiation with near-infrared light to optical materials such as carbon nanotubes, graphene, nanodiamonds, and gold nanoshells. The present invention uses nanodiamonds which are crystalline carbon nanoparticles having excellent biocompatibility among optical materials to produce a drug delivery vehicle which is not toxic to normal cells and destroys tumor cells and is applied to tumor treatment.
두 번째 특징은 상변환물질과 결정성 탄소를 포함하는 약물 전달체 제조 시, 비연속상을 제조하는 단계에서 치료에 적합한 약물을 추가 또는 치환하여 제조하는 것이 가능하므로, 치료하고자 하는 모든 다양한 질환에 적용할 수 있는 것에 있다. The second feature of the present invention is that it can be manufactured by adding or substituting a drug suitable for treatment at the stage of manufacturing the drug delivery vehicle containing the phase change material and the crystalline carbon, It is in what can.
세 번째 특징은 약물 전달체에 상변환물질을 포함함으로써 약물전달 조절이 가능한 것에 있다. 본 발명의 일실시예에서, 본 발명에 따라 제조된 약물 전달체(Ce6/ND/PCM)는 근적외선을 조사하지 않아 상온(20℃) 상태일 경우 클로오린e6 방출이 전혀 이루어지지 않다가 근적외선 조사 후 온도가 상승해 있는 동안(35.2 ~ 43.2℃) 클로오린e6이 방출되었으며, 근적외선을 조사하지 않은 상온 상태일 경우 14일까지 클로오린e6가 누출되지 않았다. 이와 같은 특성에 따라, 근적외선 조사 유무를 통해 약물 방출 시기 및 방출량을 조절할 수 있으므로, 종래 PLGA(poly(lactic-co-glycolic acid) 등의 천연고분자로 구성된 약물 합입 나노입자가 체내 환경과 유사한 수상에서 약물이 소량씩 누출되는 단점을 개선하였다.The third characteristic is that drug delivery can be controlled by including a phase transfer material in the drug delivery system. In one embodiment of the present invention, the drug carrier (Ce6 / ND / PCM) prepared according to the present invention does not emit near-infrared rays and thus does not release cyanogen e6 at room temperature (20 ° C) Chlorine e6 was released during the temperature rise (35.2 to 43.2 ° C) and cyanogen e6 was not leaked until 14 days at room temperature without near infrared irradiation. According to such characteristics, drug release timing and release amount can be controlled through the presence or absence of near-infrared irradiation. Therefore, drug-incorporated nanoparticles composed of natural polymers such as PLGA (poly (lactic-co-glycolic acid) Improvement of disadvantages of drug leakage by small amount.
네 번째 특징은 광역동치료와 광열치료를 동시에 수행할 수 있어 효과적인 종양 치료를 할 수 있다는 것에 있다. 기존 광역동치료는 광 증감제가 쉽게 전신 발현이 되어 환자가 외부의 근적외선 빛에 노출이 될 때 일반 조직도 괴사하게 되는 부작용과 종양에 대한 전달율이 낮은 단점이 있으며, 광열치료는 낮은 치료 효율로실용화에 한계가 있었다. 본 발명에 따라 제조된 약물 전달체는 약물로써 광 증감제를 포함할 경우 광역동치료와 광열치료가 동시에 가능하므로, 시너지 효과를 발휘하여 종양의 치료 효율이 극대화됨으로써 기존 치료의 한계를 극복하였다.The fourth feature is the ability to simultaneously perform photodynamic therapy and photodynamic therapy, thus enabling effective tumor treatment. Conventional photodynamic therapy has the disadvantage that the photosensitizer is easily expressed in the whole body and the patient is exposed to the external near-infrared light, the side effects of the general tissue necrosis and the delivery rate to the tumor are low, and photothermal therapy is put to practical use with low therapeutic efficiency There was a limit. When the drug delivery system according to the present invention includes a photosensitizer as a drug, it can simultaneously perform photodynamic therapy and photodynamic therapy, so that synergistic effects are exerted to maximize the treatment efficiency of the tumor, thereby overcoming the limitations of the existing treatment.
다섯 번째 특징은 상변환물질과 결정성 탄소를 포함하는 약물 전달체를 종양내주사를 통해 종양에 직접적으로 전달한 것에 있다. 일반적으로 정맥주사는 체내에 투여된 약물이 순환 계통에 들어가기 전에 간에서 대사되는 간초회통과효과로 인해 약물의 효율이 줄어들기 때문에 약물의 효율이 낮은 문제점이 있다. 그러나, 종양내주사는 약물을 종양으로 직접 주사하기 때문에 약물의 효율을 최대화하면서 부작용을 최소화할 수 있으므로 본 발명에 따라 제조된 약물 전달체는 종양내주사 방법을 이용하는 것을 특징으로 하며, 본 발명의 일실시예에서 본 발명에 따라 제조된 약물 전달체(Ce6/ND/PCM)는 종양내주사 후 근적외선 조사하는 것이 정맥 주사에 비해 암세포 치료 효율이 높음을 확인하였다(도 4).The fifth feature lies in direct delivery of a drug delivery vehicle containing phase-change material and crystalline carbon to the tumor via intratumoral injection. In general, intravenous injection has a problem in that the efficiency of the drug is low because the efficiency of the drug is reduced due to the hepatic first-pass effect in which the drug administered in the body is metabolized in the liver before entering the circulatory system. However, since the inner tumor of the tumor directly injects the drug into the tumor, it is possible to minimize the side effect while maximizing the efficiency of the drug. Therefore, the drug carrier prepared according to the present invention uses an intratumoral injection method. In the example, the drug delivery vehicle (Ce6 / ND / PCM) prepared according to the present invention was found to be more effective in treating cancer cells than intravenous injection (FIG. 4).
본 발명에 따른 상변환물질, 약물 및 결정성 탄소 나노입자를 포함하는 약물 전달체는 열에 민감한 상변환물질 안에 약물과 광학 재료인 결정성 탄소를 포함하고 있어, 종양내주사 시 근적외선 조사에 따라 적정 시기에 적정량으로 약물 방출을 조절할 수 있을 뿐만 아니라 광역동치료와 광열치료의 시너지 효과로 인해 종양 치료 효과를 극대화할 수 있다.The drug carrier comprising the phase-change material, the drug and the crystalline carbon nanoparticle according to the present invention contains the drug and the crystalline carbon as the optical material in the heat-sensitive phase-change material. Therefore, And the synergistic effects of photodynamic therapy and photodynamic therapy can maximize the effect of tumor treatment.
도 1은 약물 전달체(Ce6/ND/PCM)의 (A) 입자 표면 모습, (B) 입자 내부 모습, (C) 입자 크기 분포도 및 (D) 표면 전하를 나타낸 도이다.
도 2는 약물 전달체(Ce6/ND/PCM)에 근적외선 조사 시 온도 변화에 따른 약물 방출 누적율을 나타낸 도이다.
도 3은 약물 전달체(Ce6/ND/PCM)에 근적외선 조사 시 온도 변화에 따른 약물 방출 과정을 나타낸 모식도이다.
도 4는 약물 전달체(Ce6/ND/PCM)에 근적외선을 조사하지 않은 상온(20℃) 상태에서의 약물 방출율을 나타낸 도이다.
도 5는 암세포 배양액 내 약물 전달체(Ce6/ND/PCM)를 세척한(after washing) 시료와 암세포 배양액 내 약물 전달체(Ce6/ND/PCM)를 세척하지 않고(before washing) 근적외선을 조사한 시료에서의 세포 독성을 (A) 그래프 및 (B) 이미지로 나타낸 도이다(스케일바: 200 ㎛).
도 6은 약물 전달체(Ce6/ND/PCM)를 종양내주사한 누드마우스에서 근적외선 조사 시간에 따른 약물 방출량을 나타낸 도이다.
도 7은 약물 전달체(Ce6/ND/PCM)를 종양내주사한 후 근적외선 조사한 누드마우스의 시간에 따른 종양 크기 변화를 나타낸 도이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a particle surface appearance of a drug carrier (Ce6 / ND / PCM), (B) an inner appearance, (C) a particle size distribution, and (D) surface charge.
FIG. 2 is a graph showing the cumulative drug release rate of a drug delivery vehicle (Ce6 / ND / PCM) according to temperature change upon irradiation with near infrared rays.
FIG. 3 is a schematic diagram showing a drug release process according to a temperature change when a near-infrared ray irradiation is performed on a drug delivery vehicle (Ce6 / ND / PCM).
4 is a graph showing the drug release rate at room temperature (20 ° C) without irradiation of near infrared rays to the drug delivery vehicle (Ce6 / ND / PCM).
FIG. 5 is a graph showing the results of a comparison between a sample after washing with a drug carrier (Ce6 / ND / PCM) in a cancer cell culture medium and a sample with a near infrared ray irradiated before the drug carrier (Ce6 / ND / PCM) (A) and (B) images of the cytotoxicity (scale bar: 200 μm).
FIG. 6 is a graph showing the amount of drug released from nude mice injected into a tumor with a drug delivery vehicle (Ce6 / ND / PCM) according to irradiation time of near-infrared rays.
FIG. 7 is a graph showing changes in tumor size with time in a nude mouse irradiated with near-infrared rays after injecting a drug delivery vehicle (Ce6 / ND / PCM) into a tumor.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
< 실시예 1> 상변화물질과 결정성 탄소 나노입자를 포함하는 약물 전달체 제조 & Lt; Example 1 & gt; A drug delivery system comprising a phase change material and crystalline carbon nanoparticles
라우르산(Lauric Acid) 0.01g, 클로오린e6(chlorin e6) 0.001g과 나노다이아몬드 0.01g을 디클로로메탄(dichloromethane, DCM) 10 g에 첨가하여 비연속상을 제조하였다. 그리고 증류수 500g에 도데실황산나트륨(sodium dodecyl sulfate, SDS) 15g을 용해하여 연속상을 제조하였다. 이후 초음파파쇄기(Ultrasonication, Sonics and Materials Inc., 미국)를 이용하여 연속상에 비연속상을 첨가함으로써 약물인 클로오린e6를 담지한 나노 크기의 약물 전달체 입자를 제조하고 투석한 후 동결건조하였다. 제조된 약물 전달체(Ce6/ND/PCM)의 제타전위 및 입자 크기를 주사전자현미경(Scanning Electron Microscope, SEM)와 투과전자현미경(Transmission Electron Microscope, TEM)을 통하여 확인하였다.0.01 g of Lauric Acid, 0.001 g of chlorin e6 and 0.01 g of nano diamond were added to 10 g of dichloromethane (DCM) to prepare a non-drawn shape. Then, 15 g of sodium dodecyl sulfate (SDS) was dissolved in 500 g of distilled water to prepare a continuous phase. Nano-sized drug carrier particles carrying the drug claworin e6 were prepared by adding a non-emulsion phase to the continuous phase using an ultrasonic shredder (Ultrasonication, Sonics and Materials Inc., USA), dialyzed and lyophilized. Zeta potential and particle size of the prepared drug delivery system (Ce6 / ND / PCM) were confirmed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM).
그 결과, 약물 전달체(Ce6/ND/PCM)의 표면 및 내부 모습은 도 1A 및 도 1B와 같았으며, 제타전위는 -31.3 ± 5.6 mV, 입자 크기는 101.9 ± 31.1 nm로 측정되었다(도 1). As a result, the surface and inner appearance of the drug delivery vehicle (Ce6 / ND / PCM) was as shown in Figs. 1A and 1B, the zeta potential was -31.3 ± 5.6 mV, and the particle size was 101.9 ± 31.1 nm (Fig. 1) .
< 실시예 2> 근적외선 조사에 따른 약물 전달체의 온도 변화 및 약물 방출 거동 검정 & Lt; Example 2 & gt; Temperature change and drug release behavior of drug carriers according to near-infrared irradiation
실시예 1에서 제조한 약물 전달체(Ce6/ND/PCM) 0.1 mg을 증류수 0.1 g 내에 분산하고 6분 동안 아무런 처리를 하지 않다가 이후 4분 동안 레이저 다이오드(InGaAs diode, NDLUX, 한국)를 이용하여 근적외선(near infrared ray, NIR)을 조사하는 과정을 총 세 번 반복하여, 비연속적인 근적외선 조사에 따른 약물 전달체(Ce6/ND/PCM)의 온도 변화와 클로오린e6의 방출 거동을 확인하였다.0.1 mg of the drug carrier (Ce6 / ND / PCM) prepared in Example 1 was dispersed in 0.1 g of distilled water. After 6 minutes of no treatment, no treatment was carried out. Then, using a laser diode (InGaAs diode, NDLUX, Korea) The process of irradiating the near infrared ray (NIR) was repeated three times to confirm the temperature change of the drug delivery system (Ce6 / ND / PCM) and the release behavior of corynefin e6 by noncontinuous NIR irradiation.
그 결과, 약물 전달체(Ce6/ND/PCM)가 비연속적으로 조사되는 근적외선을 흡수할 때마다 온도가 반복적으로 41.8 ± 1.2 ℃까지 상승하고 이에 따라 약물인 클로오린e6의 방출 누적율이 증가하는 것을 확인하였다(도 2). 이는 결정성 탄소 나노입자인 나노다이아몬드가 근적외선을 흡수하여 약물 전달체(Ce6/ND/PCM)의 온도가 상승함에 따라 상변화물질인 라우르산의 상변화가 야기되어 라우르산이 녹음으로써 클로오린e6가 방출된 것으로 분석되었다(도 3).As a result, every time the drug delivery system (Ce6 / ND / PCM) absorbs near-infrared rays irradiated discontinuously, the temperature is repeatedly increased to 41.8 ± 1.2 ° C and the cumulative release rate of the drug, croolin e6, (Fig. 2). This is because the nano-diamonds as crystalline carbon nano-particles absorb near infrared rays and phase change of lauric acid occurs as the temperature of the drug carrier (Ce6 / ND / PCM) rises and lauric acid is recorded, (Fig. 3).
또한, 약물 전달체(Ce6/ND/PCM)는 근적외선을 조사하지 않은 상온(20℃) 상태일 경우 클로오린e6 방출이 전혀 이루어지지 않다가, 근적외선 조사 후 온도가 상승해 있는 동안(35.2 ~ 43.2 ℃) 클로오린e6이 방출되었다. 약물 전달체(Ce6/ND/PCM)는 근적외선을 조사하지 않은 상온 상태일 경우 14일까지 클로오린e6가 누출되지 않았다(도 4). In the case of the drug delivery system Ce6 / ND / PCM, no cyanine e6 release occurs at room temperature (20 ° C) without irradiation with near infrared rays. While the temperature is raised after irradiation with near infrared rays (35.2 to 43.2 ° C ) Chlorine e6 was released. In the case of the drug delivery vehicle (Ce6 / ND / PCM), cyanine e6 did not leak up to 14 days at room temperature without near infrared irradiation (FIG. 4).
이와 같은 특성에 따라, 본 발명에 따른 약물 전달체(Ce6/ND/PCM)는 근적외선 조사 여부를 통해 약물 방출 시기 및 방출량을 조절할 수 있으므로, 종래 PLGA(poly(lactic-co-glycolic acid) 등의 천연고분자로 구성된 약물 합입 나노입자가 체내 환경과 유사한 수상에서 약물이 소량씩 누출되는 단점을 개선하였다. 본 발명에 따른 약물 전달체(Ce6/ND/PCM)는 환부에서 적정 시기에 적정량으로 약물을 방출함으로써 치료 효과를 극대화할 수 있다.According to such characteristics, the drug delivery system (Ce6 / ND / PCM) according to the present invention can control the drug release timing and release amount through the irradiation with near infrared rays, The drug delivery system (Ce6 / ND / PCM) according to the present invention releases the drug in an appropriate amount at the appropriate time in the affected part The treatment effect can be maximized.
<실시예 3> 약물 전달체의 세포 독성 검정<Example 3> Cytotoxicity test of drug delivery vehicle
약물 전달체(Ce6/ND/PCM)의 정맥 주사 또는 종양내주사 시 치료 효율을 비교하기 위하여, 실시예 1에서 제조한 약물 전달체(Ce6/ND/PCM) 1 mg을 표피암 조직에서 유래된 KB 세포(1 × 104개)의 배양액 시료 2개에 각각 24시간 동안 처리하였다. 이후 정맥 주사용의 모델로 약물 전달체(Ce6/ND/PCM)가 처리된 배양액 시료 내의 배양액을 제거 후 PBS(인산완충식염수, Phosphate-buffered saline)로 세척한 시료(after washing)를 제조하고, 종양내주사용의 모델로 약물 전달체(Ce6/ND/PCM)가 처리된 배양액 시료 내의 배양액을 세척하지 않고(before washing) 4분간 근적외선을 조사한 시료를 제조하여 각각의 시료에 대하여 셀 카운팅 키트(Cell Counting Kit-8, Dojindo Co. Ltd., 일본)를 이용하여 근적외선을 조사 후 세포의 양을 측정하고 총 세포의 양으로 나누어 백분율로 세포 독성을 확인하였다.1 mg of the drug delivery vehicle (Ce6 / ND / PCM) prepared in Example 1 was administered to KB cells derived from epidermal carcinoma tissues in order to compare the therapeutic efficiency in intravenous injection or intratumoral injection of the drug delivery vehicle (Ce6 / ND / PCM) (1 x 10 4 ) culture samples were each treated for 24 hours. Subsequently, after the culture medium in the culture medium sample treated with the drug carrier (Ce6 / ND / PCM) was removed as a model for intravenous injection, a sample washed with PBS (phosphate buffered saline) As a model for indoor use, a sample was irradiated with near infrared rays for 4 minutes without washing the culture medium in the sample with the drug carrier (Ce6 / ND / PCM), and the cell counting kit -8, Dojindo Co. Ltd., Japan) was used to measure the amount of cells after irradiation with near infrared rays, and the amount of total cells was used to confirm the cytotoxicity as a percentage.
그 결과, 배양액 내 약물 전달체(Ce6/ND/PCM)를 세척한 시료(after washing)는 세포 생존능이 48.8%였으며, 배양액 내 약물 전달체(Ce6/ND/PCM)를 세척하지 않고(before washing) 근적외선을 조사한 시료는 세포 생존능이 24.8%였다(도 5). 이에, 약물 전달체(Ce6/ND/PCM)는 종양내주사 후 근적외선 조사하는 것이 정맥 주사에 비해 암세포 치료 효율이 높음을 확인하였다.As a result, after washing of the drug carrier (Ce6 / ND / PCM) in the culture medium, the cell viability was 48.8%, and the drug carrier (Ce6 / ND / PCM) Was 24.8% in the cell viability (Fig. 5). Therefore, it was confirmed that the drug delivery system (Ce6 / ND / PCM) was more effective in treating cancer cells than intravenous injection after intratumoral injection.
<실시예 4> 약물 전달체의 종양 내 약물 방출량 검정≪ Example 4 > Drug release test of drug carrier in tumor
실시예 1에서 제조한 약물 전달체(Ce6/ND/PCM)를 KB 세포가 이종이식된 종양이 있는 누드마우스에 24 mg/kg(약물 전달체(Ce6/ND/PCM)/누드마우스 무게)으로 종양내주사하였다. 이후 1분, 2분, 4분 및 6분간 근적외선을 조사하여, 근적외선 조사 시간에 따른 클로오린e6 방출량을 확인하였다. 누드마우스 체내에서의 클로오린e6 방출 및 확산 정도는 이미지 스테이션(Image Station 4000 MM, Kodak, 미국)를 이용하여 확인하였다.The drug carrier (Ce6 / ND / PCM) prepared in Example 1 was administered to nude mice bearing KB cell xenografted tumors at a dose of 24 mg / kg (drug carrier (Ce6 / ND / PCM) / nude mouse weight) Respectively. Thereafter, near infrared rays were irradiated for 1 minute, 2 minutes, 4 minutes and 6 minutes to confirm the amount of corynefin e6 emission according to the near infrared ray irradiation time. The release and diffusion of coryne-e6 in the nude mouse body was confirmed using an image station (Image Station 4000 MM, Kodak, USA).
그 결과, 종양 내에 약물 전달체(Ce6/ND/PCM)를 주사하고 근적외선 조사 시 조사시간이 경과함에 따라 클로오린e6가 누드마우스 전신에 확산되는 것을 확인하였다(도 6).As a result, the drug delivery system (Ce6 / ND / PCM) was injected into the tumor, and it was confirmed that the corydalene e6 diffused throughout the nude mice as irradiation time elapsed during near infrared irradiation (FIG. 6).
<실시예 5> 약물 전달체의 종양 크기 감소 효과 검정Example 5 Tumor Size Reduction Effect of Drug Delivery System
실시예 1에서 제조한 약물 전달체(Ce6/ND/PCM)와, 약물인 클로오린e6을 제외하고 실시예 1과 동일하게 제조한 나노입자(ND/PCM)(대조군)을 각각 KB 세포가 이종이식된 종양이 있는 누드마우스에 24 mg/kg(약물 전달체(Ce6/ND/PCM) 또는 나노입자(ND/PCM)/누드마우스 무게)으로 종양내주사하였다. 이후 4분간 근적외선을 조사하여, 종양치료 시간 경과에 따른 종양 크기를 부피(cm3)=0.523 × 길이(cm) × 너비2(cm2)의 계산 방법에 따라 측정하였다(M. H. El-Dakdouki 외, ACS Appl. Mater: Interfaces 2014, 6, 697.).The nanoparticles (ND / PCM) (control group) prepared in the same manner as in Example 1 except for the drug carrier (Ce6 / ND / PCM) prepared in Example 1 and the drug Cloorin e6 (Ce6 / ND / PCM) or nanoparticle (ND / PCM) / nude mouse weight) was injected intratumorally into nude mice bearing the tumor. The tumor size was measured according to the calculation method of volume (cm 3 ) = 0.523 × length (cm) × width 2 (cm 2 ) according to the duration of tumor treatment (MH El-Dakdouki et al. ACS Appl. Mater:
그 결과, 누드마우스의 최초 종양 크기는 33.8 ± 4.8 mm3이었으나, 본 발명에 따른 약물 전달체(Ce6/ND/PCM)를 종양내주사한 누드마우스의 종양 크기는 시간이 지날수록 유의미하게 감소하여 종양내주사 후 12일째에 10.4 ± 3.4 mm3로 측정되었다(도 7). 그러나, 대조군인 약물을 포함하지 않은 나노입자(ND/PCM)를 종양내주사한 누드마우스의 종양 크기는 종양내주사 후 12일째에 660.7 ± 38.8 mm3로 종양 치료 효과가 미미한 것을 확인하였다. 이에, 본 발명에 따른 약물 전달체(Ce6/ND/PCM)는 근적외선 조사에 의해 클로오린e6를 방출하여 암세포를 사멸함으로써 종양 크기를 감소시키는 효과가 있음을 확인하였다.As a result, the initial tumor size of the nude mouse was 33.8 ± 4.8 mm 3, but the tumor size of the nude mice injected with the drug carrier (Ce6 / ND / PCM) according to the present invention was significantly decreased with time, And 10.4 +/- 3.4 mm < 3 > at
Claims (11)
상기 약물 전달체는 근적외선 조사 시 결정성 탄소 나노입자가 근적외선을 흡수하여 온도가 상승하고, 이에 따라 상변환물질이 고체에서 액체로 상변화되어 약물 전달체에 담지된 약물이 방출되는 것이고,
상기 상변환물질은 30 내지 45℃의 녹는점을 가지는 지방산(Fatty Acid) 및 지방알코올(Fatty alcohol)로 이루어진 군에서 선택되고,
상기 약물은 클로오린e6(chlorin e6), 빈블라스틴(vinblastine), 에토포사이드(Etoposide), 악티노마이신 D(actinomycin D), 블레오마이신(bleomycin), 메토트렉세이트(Methotrexate), 알킬레이팅(Alkylating) 화합물, 알케란(Alkeran), 부설판(Busulfan), 시스플라티눔(Cisplatinum), 시톡산(Cytoxan), 다우노루비신(Daunorubicin), 하이드레아(Hydrea), 이포스파미드(Ifosfamide), 미트라마이신(Mithramycin), 마이토마이신(Mitomycin), 미토크산트론(Mitoxantrone), 질소 머스타드(Nitrogen Mustard), 벨란(Velban), 빈크리스틴 (Vincristine), 카보플라티눔(Carboplatinum), 이다루비신(Idarubicin), 이리노테칸(Irinotecan), 류스타틴(Leustatin), 나벨바인(Navelbine), 탁소테레(Taxotere) 및 토포테칸(Topotecan) 아드리아마이신(adriamycin), 시스-플라틴(cisplatin), 다우노마이신(daunomycin), 5-플루오로우라실(5-fluorouracil) 및 파클리탁셀(Paclitaxel)로 이루어진 군으로부터 선택되며,
상기 결정성 탄소 나노입자는 나노다이아몬드인 것인 약물 전달체.
1. A drug delivery system comprising a phase change material, a drug and crystalline carbon nanoparticles,
In the drug delivery system, the crystalline carbon nanoparticles absorb near-infrared light when irradiated with near-infrared rays, and the temperature of the drug carrier is increased. As a result, the phase change material is phase-changed from solid to liquid,
The phase change material is selected from the group consisting of Fatty Acid and Fatty alcohol having a melting point of 30 to 45 캜,
The drug may be selected from the group consisting of chlorin e6, vinblastine, etoposide, actinomycin D, bleomycin, methotrexate, alkylating compounds , Alkeran, Busulfan, Cisplatinum, Cytoxan, Daunorubicin, Hydrea, Ifosfamide, Mithramycin, ), Mitomycin, Mitoxantrone, Nitrogen Mustard, Velban, Vincristine, Carboplatinum, Idarubicin, Irinotecan, Irinotecan, Leustatin, Navelbine, Taxotere and Topotecan adriamycin, cisplatin, daunomycin, 5- A group consisting of 5-fluorouracil and paclitaxel / RTI >
Wherein the crystalline carbon nanoparticles are nanodiamonds.
The drug carrier according to claim 1, wherein the drug delivery vehicle comprises 5 to 15 parts by weight of a phase change material and 5 to 10 parts by weight of crystalline carbon nanoparticles based on 1 part by weight of the drug.
The method according to claim 1, wherein the fatty acid is selected from the group consisting of Lauric Acid, Methyl Palmitate, Capric Acid and Erucic Acid. ≪ / RTI >
The method of claim 1, wherein the fatty alcohol is selected from the group consisting of tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, and erucyl alcohol. ≪ / RTI >
ⅱ) 증류수에 계면활성제를 첨가하고 용해하여 연속상을 제조하는 단계; 및
ⅲ) 상기 단계 ⅱ)의 연속상에 단계 ⅰ)의 비연속상을 첨가함으로써 약물 전달체 입자를 제조하는 단계;를 포함하는 약물 전달체 제조방법으로서
상기 약물 전달체는 근적외선 조사 시 결정성 탄소 나노입자가 근적외선을 흡수하여 온도가 상승하고, 이에 따라 상변환물질이 고체에서 액체로 상변화되어 약물 전달체에 담지된 약물이 방출되는 것이고,
상기 상변환물질은 30 내지 45℃의 녹는점을 가지는 지방산(Fatty Acid) 및 지방알코올(Fatty alcohol)로 이루어진 군에서 선택되고,
상기 약물은 클로오린e6(chlorin e6), 빈블라스틴(vinblastine), 에토포사이드(Etoposide), 악티노마이신 D(actinomycin D), 블레오마이신(bleomycin), 메토트렉세이트(Methotrexate), 알킬레이팅(Alkylating) 화합물, 알케란(Alkeran), 부설판(Busulfan), 시스플라티눔(Cisplatinum), 시톡산(Cytoxan), 다우노루비신(Daunorubicin), 하이드레아(Hydrea), 이포스파미드(Ifosfamide), 미트라마이신(Mithramycin), 마이토마이신(Mitomycin), 미토크산트론(Mitoxantrone), 질소 머스타드(Nitrogen Mustard), 벨란(Velban), 빈크리스틴 (Vincristine), 카보플라티눔(Carboplatinum), 이다루비신(Idarubicin), 이리노테칸(Irinotecan), 류스타틴(Leustatin), 나벨바인(Navelbine), 탁소테레(Taxotere) 및 토포테칸(Topotecan) 아드리아마이신(adriamycin), 시스-플라틴(cisplatin), 다우노마이신(daunomycin), 5-플루오로우라실(5-fluorouracil) 및 파클리탁셀(Paclitaxel)로 이루어진 군으로부터 선택되며,
상기 결정성 탄소 나노입자는 나노다이아몬드이고,
상기 소수성 용매는 디클로로메탄(dichloromethane), 클로로포름(chloroform), 헥산(hexane), 아세톤으로 이루어진 군으로부터 선택되며,
상기 계면활성제는 수용성 계면활성제인 것인 약물 전달체의 제조방법.
(I) 0.02 to 0.20 parts by weight of a phase change material, 0.005 to 0.100 parts by weight of a drug, and 0.005 to 0.100 parts by weight of crystalline carbon nanoparticles are added to 100 parts by weight of a hydrophobic solvent to prepare a non-coagulated phase;
Ii) adding distilled water to the distilled water and dissolving the surfactant to produce a continuous phase; And
Iii) preparing a drug carrier particle by adding the non-inversed phase of step i) to the continuous phase of step ii)
In the drug delivery system, the crystalline carbon nanoparticles absorb near-infrared light when irradiated with near-infrared rays, and the temperature of the drug carrier is increased. As a result, the phase change material is phase-changed from solid to liquid,
The phase change material is selected from the group consisting of Fatty Acid and Fatty alcohol having a melting point of 30 to 45 캜,
The drug may be selected from the group consisting of chlorin e6, vinblastine, etoposide, actinomycin D, bleomycin, methotrexate, alkylating compounds , Alkeran, Busulfan, Cisplatinum, Cytoxan, Daunorubicin, Hydrea, Ifosfamide, Mithramycin, ), Mitomycin, Mitoxantrone, Nitrogen Mustard, Velban, Vincristine, Carboplatinum, Idarubicin, Irinotecan, Irinotecan, Leustatin, Navelbine, Taxotere and Topotecan adriamycin, cisplatin, daunomycin, 5- A group consisting of 5-fluorouracil and paclitaxel / RTI >
The crystalline carbon nanoparticles are nanodiamonds,
The hydrophobic solvent is selected from the group consisting of dichloromethane, chloroform, hexane, acetone,
Wherein the surfactant is a water-soluble surfactant.
6. The method of claim 5, wherein the surfactant of step (ii) is added in an amount of 2 to 4 parts by weight based on 100 parts by weight of distilled water.
6. The method of claim 5, wherein the size of the drug carrier particles prepared in step (iii) is 25 to 500 nm.
A drug delivery composition comprising the drug delivery system of claim 1.
9. The drug delivery composition according to claim 8, wherein the composition for drug delivery is for the treatment of a disease selected from the group consisting of malignant tumors and benign tumors.
9. The composition for drug delivery according to claim 8, wherein the composition for drug delivery is in the form of an injection into a tumor.
[Claim 9] The composition for drug delivery according to claim 8, wherein the drug delivery composition is injected into a tumor and then the near-infrared rays are irradiated to the lesion to control drug release.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170093552A KR101794499B1 (en) | 2017-07-24 | 2017-07-24 | Drug delivery system containing phase change material and crystalline carbon nanoparticles and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170093552A KR101794499B1 (en) | 2017-07-24 | 2017-07-24 | Drug delivery system containing phase change material and crystalline carbon nanoparticles and method of making the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160038203 Division | 2016-03-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170114265A KR20170114265A (en) | 2017-10-13 |
KR101794499B1 true KR101794499B1 (en) | 2017-11-08 |
Family
ID=60139692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170093552A KR101794499B1 (en) | 2017-07-24 | 2017-07-24 | Drug delivery system containing phase change material and crystalline carbon nanoparticles and method of making the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101794499B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7202574B2 (en) * | 2017-12-15 | 2023-01-12 | 国立研究開発法人産業技術総合研究所 | Modified carbon nanomaterials, nanoclusters, substance delivery carriers and pharmaceutical compositions |
CN114395375B (en) * | 2021-12-31 | 2024-06-07 | 苏州荣格君新材料有限公司 | Metal organic framework-based photo-thermal composite phase change material and application thereof |
-
2017
- 2017-07-24 KR KR1020170093552A patent/KR101794499B1/en active IP Right Grant
Non-Patent Citations (2)
Title |
---|
Angew. Chem. Int. Ed. Engl. 2010. 49(43), 7904-7908 |
Macromolecular Bioscience 2015. 15. 1469-1475 |
Also Published As
Publication number | Publication date |
---|---|
KR20170114265A (en) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raza et al. | “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review | |
Wei et al. | High‐efficient clearable nanoparticles for multi‐modal imaging and image‐guided cancer therapy | |
Feng et al. | Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy | |
Bian et al. | Review of functionalized nanomaterials for photothermal therapy of cancers | |
Zhang et al. | Recent advances in stimuli-responsive polymer systems for remotely controlled drug release | |
Li et al. | NIR‐activated polydopamine‐coated carrier‐free “nanobomb” for in situ on‐demand drug release | |
Chen et al. | Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy | |
Yang et al. | NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy | |
Jaque et al. | Nanoparticles for photothermal therapies | |
Sharker et al. | pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide | |
Ma et al. | A new X-ray activated nanoparticle photosensitizer for cancer treatment | |
Jia et al. | Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy | |
Jiang et al. | Nanomaterial-based CT contrast agents and their applications in image-guided therapy | |
Hartman et al. | Detecting and treating cancer with nanotechnology | |
Gowsalya et al. | Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review | |
Nikam et al. | Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives | |
Xiao et al. | Integration of polymerization and biomineralization as a strategy to facilely synthesize nanotheranostic agents | |
Zha et al. | Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer | |
Xiao et al. | Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy | |
Li et al. | Interventional nanotheranostics of pancreatic ductal adenocarcinoma | |
Gupta et al. | Albumin microspheres II: applications in drug delivery | |
Zheng et al. | Enhanced plasmon-induced resonance energy transfer (PIRET)-mediated photothermal and photodynamic therapy guided by photoacoustic and magnetic resonance imaging | |
Seo et al. | Small gold nanorods-loaded hybrid albumin nanoparticles with high photothermal efficacy for tumor ablation | |
Wang et al. | Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics | |
Chauhan et al. | Comprehensive evaluation of degradable and cost-effective plasmonic nanoshells for localized photothermolysis of cancer cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |