KR101780028B1 - Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same - Google Patents

Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same Download PDF

Info

Publication number
KR101780028B1
KR101780028B1 KR1020150033367A KR20150033367A KR101780028B1 KR 101780028 B1 KR101780028 B1 KR 101780028B1 KR 1020150033367 A KR1020150033367 A KR 1020150033367A KR 20150033367 A KR20150033367 A KR 20150033367A KR 101780028 B1 KR101780028 B1 KR 101780028B1
Authority
KR
South Korea
Prior art keywords
composite material
graphene
pvdf
pvdf composite
reduced
Prior art date
Application number
KR1020150033367A
Other languages
Korean (ko)
Other versions
KR20160109266A (en
Inventor
이헌상
고현협
김마리
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020150033367A priority Critical patent/KR101780028B1/en
Publication of KR20160109266A publication Critical patent/KR20160109266A/en
Application granted granted Critical
Publication of KR101780028B1 publication Critical patent/KR101780028B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)

Abstract

본 발명은 환원된 산화그래핀/PVDF 복합소재, 이의 제조방법 및 이를 이용온도 및 압전 센서에 관한 것으로, 보다 구체적으로는 폴리비닐리덴플루오라이드(PVDF); 및 상기 PVDF 100중량% 대비 0.001 내지 3 중량 %의 환원된 산화그래핀을 포함하는 복합소재이고, 상기 복합소재는 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 하는, 환원된 그래핀/PVDF 복합소재가 개시된다. 이러한 본 발명의 복합소재는 다양한 형태로 성형이 가능하고 온도변화에 따른 저항 감소 값이 커서 산업 활용도가 높다.The present invention relates to a reduced oxidized graphene / PVDF composite material, a method for producing the same, a use temperature thereof, and a piezoelectric sensor, and more specifically, polyvinylidene fluoride (PVDF); And 0.001 to 3% by weight of reduced graphene graphene based on 100% by weight of the PVDF, wherein the composite material has a negative temperature coefficient thermistor (NTC) characteristic. Graphene / PVDF composite material is disclosed. The composite material of the present invention can be molded into various shapes and has a high resistance reduction value due to a temperature change, resulting in high industrial utilization.

Description

환원된 산화그래핀/PVDF 복합소재, 이의 제조방법 및 이를 이용한 써미스터 센서{REDUCED GRAPHENE OXIDE/PVDF COMPOSITE, METHOD THEREOF AND THERMISTOR SENSOR USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a reduced oxide graphene / PVDF composite material, a method of manufacturing the same, and a thermistor sensor using the same. BACKGROUND ART [0002]

본 발명은 환원된 산화그래핀/PVDF 복합소재, 이의 제조방법 및 이를 이용한 써미스터 센서에 관한 것으로, 다양한 형태로 성형이 가능하며 온도변화에 따른 저항 감소 값이 커서 산업 활용도가 높은 써미스터에 관한 것이다.
The present invention relates to a reduced oxidized graphene / PVDF composite material, a method of manufacturing the same, and a thermistor sensor using the same, and more particularly, to a thermistor having a high resistance to temperature change and high industrial utilization.

써미스터(thermistor)란 열 감응 저항기(thermally sensitive resister)로부터 유래된 것으로, 최근에는 온도에 따라 전기저항이 크게 변하는 물질로 만든 장치에 대한 일반 명칭으로서 받아들여지고 있다. 써미스터는 본래 온도측정 또는 온도조절 소자로서 활용하기 위한 의도로 개발되었으나, 최근에는 의학장비, 자동차공업, 통신장비 등의 다양한 산업 분야에 걸쳐 폭넓게 활용되고 있다. A thermistor is derived from a thermally sensitive resistor. Recently, it has been accepted as a general name for a device made of a material whose electrical resistance varies greatly with temperature. Thermistors have been originally developed for use as temperature measurement or temperature control devices, but recently they have been widely used in various industrial fields such as medical equipment, automobile industry, and communication equipment.

산업 분야에 적용시, 온도변화에 대해 써미스터가 최대 감응을 달성하는 것이 바람직할 수 있는데, 그러한 하나의 예로 미세파 동력의 측정을 위해 써미스터를 사용하는 경우를 들 수 있다. 미세파 빔의 에너지 흐름의 속도는, 써미스터에 빔이 떨어지게 하면 비교적 낮은 온도 상승이 일어나 써미스터의 저항에 변화가 일어나며, 그 양을 측정하여 미세파 동력의 지시로서 측정할 수 있다. 그러나 써미스터의 다른 용도에서는 온도변화에 대해 써미스터의 감도가 감소하는 것이 바람직한 경우도 있다.When applied to industrial applications, it may be desirable for the thermistor to achieve maximum response to temperature changes, such as using a thermistor to measure the microwave power. The speed of the energy flow of the fine wave beam can be measured as the indication of the fine wave power by measuring the amount of the resistance of the thermistor due to a relatively low temperature rise when the beam is dropped on the thermistor. However, in other applications of the thermistor, it may be desirable to reduce the sensitivity of the thermistor to temperature changes.

써미스터는 두 종류로 분류할 수 있는데, 써미스터의 저항의 온도 계수의 수치적 신호에 의하여 판정된다. 그 값을 이하에서 α로 나타내며, 단위온도 변화당 저항의 변화 분으로서 다음 식에 의해 정의된다:Thermistors can be classified into two types, which are determined by the numerical signal of the temperature coefficient of the resistance of the thermistor. The value is denoted by a in the following and is defined by the following equation as the change in resistance per unit temperature change:

Figure 112015023450532-pat00001
Figure 112015023450532-pat00001

여기에서 ρ는 써미스터 저항이며 T는 온도이다. α의 음의 값은 온도가 증가에서 써미스터의 저항이 감소하는 것을 의미하며(dρ/dT<0), 음의 α를 갖는 써미스터는 NTC-써미스터로, 반면에 양의 저항 온도계수(dρ/dT>0) 갖는 써미스터는 PTC-써미스터로 분류된다.Where ρ is the thermistor resistance and T is the temperature. The negative value of α means that the resistance of the thermistor decreases with increasing temperature (dρ / dT <0), the thermistor with negative α is the NTC-thermistor, while the positive resistance temperature coefficient (dρ / dT > 0) is classified as a PTC-thermistor.

NTC-써미스터 물질은 일반적으로 저항 온도 관계 지수함수에 따른다:NTC-thermistor materials generally follow the resistance-temperature-related exponential function:

Figure 112015023450532-pat00002
Figure 112015023450532-pat00002

여기에서 ρ0는 T→∞에 대한 저항이며, β는 써미스터의 특성 상수이다. 저항온도계수 α와 써미스터 상수 β사이의 관계는 α의 정의 (I)식에, (II)식에서 주어진 ρ에 대해 대입하여 얻을 수 있다.Where ρ 0 is the resistance to T → ∞ and β is the characteristic constant of the thermistor. The relationship between the resistance thermometer number α and the thermistor constant β can be obtained by substituting for the given ρ in the formula (I) and α given in (II).

Figure 112015023450532-pat00003
Figure 112015023450532-pat00003

저항-온도식(II)는 써미스터 상수β가 lnρ 대 1/T의 플롯이 직선으로 주어지고 그 슬로프가 β로, 써미스터의 전기적 측정으로부터 직접 유도되는 양이다. 따라서 이러한 두 값, α와 β는 써미스터(어느 주어진 온도) 저항의 크기와 함께 써미스터의 전기적 특성을 특징짓는다.The resistance-temperature equation (II) is the amount by which the thermistor constant β is given as a plot of lnρ versus 1 / T as a straight line and its slope is derived directly from the electrical measurement of the thermistor. Thus, these two values, α and β, characterize the electrical characteristics of the thermistor with the magnitude of the thermistor (any given temperature) resistance.

보통 NTC-써미스터는 반도전성 전이 금속 산화물로 제조되어 상기 써미스터의 화학 조성과 기하학적 인자를 조절함으로써 실온에서 약 1 내지 >1,000,000 Ω 범위의 전기저항을 갖는 장치로 제작하는 것이 가능하다.Usually, the NTC-thermistor can be fabricated from a semiconductive transition metal oxide, and by adjusting the chemical composition and geometric factor of the thermistor, it is possible to fabricate a device having an electrical resistance in the range of about 1 to> 1,000,000 ohms at room temperature.

NTC-써미스터는 자주 후막 페이스트 상 조성으로 공급되며 여기에서 첨정석 형 금속 산화물을 함유하는 도전성 상은 예를 들면 전색제로서 사용되는 불활성 액체 매질 내에 유리 바인더와 같은 무기 바인더에 의하여 둘러싸여 원하는 전기적 및 운반특성의 조성을 달성한다.The NTC-thermistor is often supplied in a thick-film paste phase composition wherein the conductive phase containing the spinel-type metal oxide is surrounded by an inorganic binder, such as a glass binder, in an inert liquid medium used, for example, as a vehicle to provide the desired electrical and transport properties Composition.

코발트 루텐에이트, Co2RuO4 는 후막 NTC 써미스터 제조용에 적당한 중요한 첨정석 형(AB2O4, 여기에서 A와 B는 금속 원자)반도전성 산화물의 예이다. 선행 기술 미합중국 특허 제5,122,302호에서는 Co2RuO4를 Co3O4 와 RuO2의 대략 화학양론적 양을 수성 분산하고 850 ℃ 이상 고온에서 공기 중 건조 분산물을 배소하여 합성한 것이 개시되어있다. Mat.Res.Bull. 18, p.647(1983)과 Mat.Res.Bull. 19, p.1959(1984)에서 크룻쯔와 켐레르-섹크는 Co-Ru-O계의 여러 가지 조성의 제조와 상기 계의 전이금속함유 조성을 연장되는 배소 과정을 갖는 방법으로 제조하는 것을 보고하고 있다.Cobalt ruthenate and Co 2 RuO 4 are examples of important spinel types (AB 2 O 4 , where A and B are metal atoms) semiconductive oxides suitable for thick-film NTC thermistor manufacturing. Prior art US Pat. No. 5,122,302 discloses that Co 2 RuO 4 is prepared by aqueous dispersion of an approximate stoichiometric amount of Co 3 O 4 and RuO 2 and roasting of a dry dispersion in air at a temperature higher than 850 ° C. Mat.Res.Bull. 18, p. 647 (1983) and Mat. Res. 19, p. 1959 (1984), Kurtz and Chemer-Sekk reported that the preparation of various compositions of Co-Ru-O system and the composition of the transition metal in the system were prepared by a process having an extended roasting process have.

다양한 산업분야에서 써미스터가 활용됨에 따라, 새로운 써미스터와 이를 제조하기 위한 편리하고 경제적인 방법에 대한 요구는 계속 증가하고 있다. With the use of thermistors in a variety of industries, the need for new thermistors and convenient and economical ways to manufacture them continues to grow.

또한, 무기재료인 반도체를 활용하는 NTC 써미스터의 경우 성형이 자유롭지 못한 단점이 있어, 적용될 수 있는 산업 분야가 한정되는 문제가 있었다. 또한 다양하게 성형가능한 고분자 써미스터의 경우에는 성능이 상대적으로 낮다는 문제가 있었다.
In addition, NTC thermistors utilizing semiconductors, which are inorganic materials, have drawbacks in that they are not free to mold, and thus there is a problem that the applicable industrial fields are limited. In addition, in the case of a polymer thermistor having various shapes, the performance is relatively low.

이에, 본 발명은 이러한 문제를 해결하기 위하여, 다양한 형태로 성형이 가능하면서 성능이 높아, 산업 활용도가 큰 써미스터를 제공하고자 한다. Accordingly, in order to solve such a problem, the present invention provides a thermistor which can be molded into various shapes, has high performance, and has high industrial utilization.

따라서 본 발명은 환원된 산화그래핀/PVDF 복합소재를 제공하는 것을 기술적 해결과제로 한다. Accordingly, it is a technical object of the present invention to provide a reduced oxidized graphene / PVDF composite material.

또한 본 발명은 상기 복합소재의 제조방법을 제공하는 것을 다른 해결과제로 한다.Another object of the present invention is to provide a method of manufacturing the composite material.

또한 본 발명은 상기 복합소재를 이용한 온도 및 압력 감지 써미스터 센서를 제공하는 것을 다른 해결과제로 한다.
Another object of the present invention is to provide a temperature and pressure sensing thermistor sensor using the composite material.

상술한 바와 같은 문제를 해결하기 위한 본 발명의 일 측면에 따르면, 폴리비닐리덴플루오라이드(PVDF); 및 상기 PVDF 100중량% 대비 0.001 내지 3 중량 %의 환원된 산화그래핀을 포함하는 복합소재이고, 상기 복합소재는 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재가 제공된다. According to an aspect of the present invention for solving the above problems, there is provided a polyvinylidene fluoride (PVDF); And 0.001 to 3% by weight of reduced graphene graphene based on 100% by weight of the PVDF, wherein the composite material has a negative temperature coefficient thermistor (NTC) characteristic. Gt; graphene / PVDF &lt; / RTI &gt; composite material is provided.

바람직하게는, 상기 환원된 산화그래핀/PVDF 복합소재는 압전성(piezoelectric effect)을 지니고, 온도변화에 따른 TCR(Temperature Coefficient of Resistance)이 1% 이상일 수 있다. Preferably, the reduced oxidized graphene / PVDF composite material has a piezoelectric effect, and the TCR (Temperature Coefficient of Resistance) according to the temperature change may be 1% or more.

또한 바람직하게는, 상기 상기 환원된 산화그래핀/PVDF 복합소재는, 산화그래핀 수용액과 폴리비닐리덴플루오라이드 및 유기 용매를 혼합하여 제조된 혼합액으로부터 산화그래핀/PVDF 복합소재를 형성한 후, 이를 환원시켜 제조되는 것을 특징으로 한다.
Preferably, the reduced oxidized graphene / PVDF composite material is formed by forming an oxidized graphene / PVDF composite material from a mixed solution prepared by mixing an aqueous solution of graphene oxide with polyvinylidene fluoride and an organic solvent, And then reducing it.

또한 상기 다른 과제를 해결하기 위한 본 발명의 다른 측면에 따르면, According to another aspect of the present invention,

1) 산화그래핀 수용액을 제조하는 단계; 1) preparing an aqueous solution of oxidized graphene;

2) 상기 산화그래핀 수용액에 폴리비닐리덴플루오라이드 및 유기 용매를 혼합하여 혼합액을 제조한 후, 기판에 코팅 및 건조하여 산화그래핀/PVDF 복합소재를 제조하는 단계; 및2) preparing a mixed solution by mixing polyvinylidene fluoride and an organic solvent in the aqueous solution of the oxidized graphene, and coating and drying the mixture on a substrate to prepare an oxidized graphene / PVDF composite material; And

3) 상기 단계 2)에서 제조된 복합소재를 환원시켜 환원된 산화그래핀/PVDF 복합소재를 제조하는 단계;를 포함하고,3) reducing the composite material produced in step 2) to produce a reduced oxidized graphene / PVDF composite material,

상기 환원된 산화그래핀/PVDF 복합소재는 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재의 제조방법이 제공된다. Wherein the reduced graphene graphene / PVDF composite material has a negative temperature coefficient thermistor (NTC) characteristic. The present invention also provides a method of manufacturing a reduced graphene graphene / PVDF composite material.

바람직하게는 상기 방법으로 제조되는 복합소재는 상술한 환원된 산화그래핀/PVDF 복합소재인 것을 특징으로 한다.Preferably, the composite material produced by the above method is characterized by being the above-described reduced graphene oxide / PVDF composite material.

바람직하게는 상기 환원시, 100℃이상의 열환원 방법, 히드라진 방법 또는 알루미늄 환원제 방법을 이용하여 산화그래핀을 환원시킬 수 있다.
Preferably, during the reduction, the graphene oxide may be reduced using a thermal reduction method at 100 deg. C or more, a hydrazine method, or an aluminum reducing agent method.

또한 본 발명의 다른 과제를 해결하기 위하여 본 발명의 다른 측면에 따르면, 상술한 복합소재로 성형한 필름; 및 상기 필름의 일 면 또는 양 면 상에 점착 조성물을 도포하여 형성된 점착층;을 포함하는 테이프인 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서가 제공된다. According to another aspect of the present invention, there is provided a film formed from the composite material described above. And a pressure sensitive adhesive layer formed by applying a pressure sensitive adhesive composition on one or both surfaces of the film.

바람직하게는 상기 필름은 상기 복합소재와, 상기 복합소재와 다른 이종소재가 복합하여 제조된 것을 특징으로 한다. Preferably, the film is produced by combining the composite material and a different material from the composite material.

또한 본 발명의 다른 과제를 해결하기 위하여 본 발명의 다른 측면에 따르면, 상술한 복합소재를 압출, 사출, 컴프레션 몰딩 또는 3D 프린팅하여 성형하는 것을 특징으로 하는 온도 및 압력 감지 써미스터 센서가 제공된다.According to another aspect of the present invention, there is provided a temperature and pressure sensing thermistor sensor, wherein the composite material is formed by extrusion, injection molding, compression molding, or 3D printing.

또한 본 발명의 다른 과제를 해결하기 위하여 본 발명의 다른 측면에 따르면, 상술한 복합소재를 섬유의 형태, 상기 섬유를 직조하여 직물 형태 또는 의류 형태로 제조한 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서가 제공된다.
According to another aspect of the present invention, there is provided a temperature and pressure sensing thermistor, comprising: the composite material in the form of fibers, the fibers being woven to form a fabric or a garment; A sensor is provided.

상술한 본 발명에 따르면, 우수한 물성을 갖는 폴리비닐리덴플루오라이드와 산화그래핀을 포함함으로써 열전도도 및 내전압성 등의 전기적 성능과, 기계적 성능이 모두 향상된 NTC 갖는 복합소재를 제공할 수 있는 효과가 있다. 이러한 본 발명의 복합소재는 써미스터로 적용가능하면서도 다양한 형태로 성형이 가능하며, 100℃ 이상의 고온에서도 사용할 수 있으며, 온도변화에 따른 저항 감소 값이 커서 산업 활용도가 높다. 특히 압출, 사출성형, 방사 및 용액 캐스팅 등의 다양한 방법으로 성형할 수 있으므로, 필름형태로 제조하여 피부의 온도를 측정하거나, 섬유형태로 제조하여 기능성 의류로도 적용될 수 있고, 자동차의 방수 써미스터, 냉장고 등 가전제품의 써미스터 등 다양한 산업분야에 널리 적용될 수 있다.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a composite material having an NTC having improved electrical performance such as thermal conductivity and withstand voltage and improved mechanical performance by including polyvinylidene fluoride and an oxide graphene having excellent physical properties have. The composite material of the present invention can be applied as a thermistor and can be formed into various shapes, and can be used at a high temperature of 100 ° C or more. In particular, since it can be formed by various methods such as extrusion, injection molding, spinning and solution casting, it can be manufactured into a film form and measured for skin temperature, It can be widely applied to various industrial fields such as a thermistor of a home appliance such as a refrigerator.

이하에서 본원 발명에 대하여 보다 상세히 설명한다. 본원 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것은 본원 명세서의 설명에서 생략한다.
Hereinafter, the present invention will be described in more detail. Those skilled in the art will appreciate that the present invention is not limited to the details of the disclosed embodiments.

본 발명은 NTC 특성을 갖는 복합소재 및 이를 포함하는 온도 및 압력 센서에 관한 것으로, 본 발명은 폴리비닐리덴플루오라이드(PVDF); 및 상기 PVDF 100중량% 대비 0.001 내지 3 중량%의 환원된 산화그래핀을 포함하는 복합소재이고, 상기 복합소재는 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 하는, 환원된 그래핀/PVDF 복합소재를 제공한다. The present invention relates to a composite material having NTC characteristics and a temperature and pressure sensor including the composite material. The present invention relates to a composite material having polyvinylidene fluoride (PVDF); And 0.001 to 3% by weight of reduced graphene graphene based on 100% by weight of the PVDF, wherein the composite material has a negative temperature coefficient thermistor (NTC) characteristic. To provide a graphene / PVDF composite material.

이러한 환원된 그래핀/PVDF 복합소재는 다음의 방법으로 제조할 수 있다. Such a reduced graphene / PVDF composite material can be produced by the following method.

1) 산화그래핀 수용액을 제조하는 단계; 2) 상기 산화그래핀 수용액에 폴리비닐리덴플루오라이드 및 유기 용매를 혼합하여 혼합액을 제조한 후, 기판에 코팅 및 건조하여 산화그래핀/PVDF 복합소재를 제조하는 단계; 및 3) 상기 단계 2)에서 제조된 복합소재를 환원시켜 환원된 산화그래핀/PVDF 복합소재를 제조하는 단계;를 거친다. 1) preparing an aqueous solution of oxidized graphene; 2) preparing a mixed solution by mixing polyvinylidene fluoride and an organic solvent in the aqueous solution of the oxidized graphene, and coating and drying the mixture on a substrate to prepare an oxidized graphene / PVDF composite material; And 3) reducing the composite material produced in step 2) to produce a reduced oxidized graphene / PVDF composite material.

이 때, 상기 환원된 산화그래핀/PVDF 복합소재는 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 한다. At this time, the reduced oxidized graphene / PVDF composite material is characterized by having a negative temperature coefficient thermistor (NTC) characteristic.

상기 그래핀은 흑연 스택의 각 층을 나타내고, 산화그래핀(또는 그래핀 옥사이드)은 개별 그래핀 시트가 산화되어 있는 고도로 산화된 형태의 흑연을 나타내기 위해 사용된다. 그래파이트옥사이드는 흑연의 부분 산화 결과로 생성되는데, 그래파이트옥사이드의 여러 층이 완전히 분리되어 하나의 층이 10 nm 이하인 경우를 산화그래핀이라 정의한다. 그 중 분리된 층의 두께가 10 nm에서 100 nm인 경우는 나노그래파이트옥사이드라 한다. The graphene represents each layer of the graphite stack, and the oxidized graphene (or graphene oxide) is used to denote a highly oxidized form of graphite in which the individual graphene sheets are oxidized. Graphite oxide is produced as a result of the partial oxidation of graphite. When several layers of graphite oxide are completely separated and one layer is 10 nm or less, it is defined as oxidized graphene. In the case where the thickness of the separated layer is 10 nm to 100 nm, it is referred to as nano-graphite oxide.

그래핀은 반도체의 성질을 나타내는데, 본 발명 복합소재에 포함되는 산화그래핀(graphene oxide)은 그래핀(graphene)이 갖는 높은 열전도도 특성을 일정 수준 나타내면서도, 절연 재료에 사용시 절연 필름이 메탈 PCB용으로 사용될 수 있을 정도의 높은 내전압 강도를 구현할 수 있으며, 열경화성 수지 내에서 높은 상용성을 나타낼 수 있는 장점이 있다.The graphene oxide included in the composite material of the present invention exhibits a high thermal conductivity property of graphene at a certain level, but when the insulating film is used for an insulating material, It is possible to realize a high withstand voltage strength that can be used for a thermosetting resin and to exhibit high compatibility in a thermosetting resin.

본 발명에서는 제조단계에서 산화그래핀과 폴리비닐리덴플루오라이드를 혼합함으로써, 복합소재에 환원된 산화그래핀, 나노그래파이트옥사이드가 고르게 분산됨에 따라 기체분자가 확산하는 통로가 구불구불하게 형성될 수 있고, 결과적으로 확산거리가 증가하게 되므로, 확산도를 감소시킬 수 있다. In the present invention, by mixing the graphene oxide and the polyvinylidene fluoride in the production step, as the reduced graphene grains and nano-graphite oxide are uniformly dispersed in the composite material, the passage through which the gas molecules are diffused can be formed in a meandering form As a result, the diffusion distance is increased, so that the diffusion degree can be reduced.

특히 본 발명에 따른 복합소재는 필름 형상으로 제조될 수 있는데, 필름을 통과하는 기체 및 수증기의 투과도는 확산도와 용해도의 곱으로 나타나므로, 본 발명 복합소재 필름에서는 결과적으로 상기 기체 및 수증기의 투과도를 감소시킬 수 있다. 따라서 본 발명의 복합소재 필름은 기체나 수분 차단성을 필요로 하는, 우유나 맥주 등의 식품 보관용 플라스틱 식품용기나, 화학약품, 농약용기, 연료탱크와 화학물질의 저장용기 등에도 적용될 수 있다. In particular, the composite material according to the present invention can be produced in the form of a film. Since the permeability of gas and water vapor passing through the film is expressed by the product of the diffusivity and the solubility, . Therefore, the composite material film of the present invention can be applied to plastic food containers for storing foods such as milk and beer, chemical agents, pesticide containers, storage tanks for fuel tanks and chemical materials, which require gas and moisture barrier properties .

이 때 본 발명의 복합소재는, 산화그래핀 : 폴리비닐리덴플루오라이드의 중량비가 0.001~3 : 100, 좀 더 바람직하게는 0.5 ~ 2 : 100이 되도록 하는데, 산화그래핀의 함량이 너무 낮으면 열전도도가 낮아지며, 산화 그래핀의 함량이 너무 큰 경우에는 열전도도는 높아지지만 내전압 강도가 저하되고, 산화 그래핀의 분산성이 저하되어 복합소재의 유연성이 크게 저하될 수 있다.At this time, in the composite material of the present invention, the weight ratio of the oxidized graphene: polyvinylidene fluoride is 0.001 to 3: 100, more preferably 0.5 to 2: 100. When the content of the graphene oxide is too low When the content of the graphene oxide is too high, the thermal conductivity is increased, but the withstand voltage strength is lowered and the dispersibility of the graphene oxide is lowered, so that the flexibility of the composite material may be significantly lowered.

본 발명 복합소재에 포함되는 폴리비닐리덴플루오라이드는 지방족계 탄화수소의 분자구조에 수소원자를 불소원자로 일부치환한 수지로, 불소 수지의 장점인 뛰어난 내약품성과 기계적·열적·전기적 특성을 지니며, 특히 결정성이 높아 불소계 수지 중에서 가장 뛰어난 기계적 강도를 나타낼 수 있게 되므로, 복합소재에 우수한 물성을 부여할 수 있게 된다. The polyvinylidene fluoride contained in the composite material of the present invention is a resin in which a hydrogen atom is partially substituted with a fluorine atom in the molecular structure of an aliphatic hydrocarbon. The polyvinylidene fluoride has excellent chemical resistance and mechanical, thermal and electrical properties, In particular, since it has a high crystallinity, it can exhibit the most excellent mechanical strength among the fluorine-based resins, and thus it is possible to impart excellent physical properties to the composite material.

특히 본 발명으로 제조된 복합소재에서 폴리비닐리덴플루오라이드는 매트릭스로 작용하며, 매트릭스에 분산된 그래핀에 의해 폴리비닐리덴플루오라이드 결정이 알파 형태에서 베타 형태로 변화된다. 베타 형태 결정의 폴리비닐리덴플루오라이드는 압전성능(piezoelectric effect)을 나타내며, 그에 따라 본 발명 복합소재도 압전성능을 나타내게 된다. 그러나 본 발명에서 제공하는 폴리비닐니덴플루오라이드 그래핀 복합소재의 결정구조는 베타형태에 국한하는 것은 아니다. Particularly, in the composite material produced by the present invention, the polyvinylidene fluoride acts as a matrix, and the polyvinylidene fluoride crystal is changed from the alpha form to the beta form by graphene dispersed in the matrix. The polyvinylidene fluoride in the beta form crystal exhibits a piezoelectric effect, and accordingly, the composite material of the present invention also exhibits piezoelectric performance. However, the crystal structure of the polyvinylidene fluoride graphene composite material provided by the present invention is not limited to the beta form.

한편, 상기 단계 2)에서 산화그래핀과 폴리비닐리덴플루오라이드를 포함하는 조성물에 점성을 부유하도록 첨가되는 유기 용매는, 크게 제한되는 것은 아니며, 예를 들어, N,N-디메틸포름아미드(N,N-dimethylformamide; DMF), N-메틸피롤리디논(Nmethylpyrrolidinone;NMP), N,N-디메틸아세트아미드(N,N-dimethylacetamide; DMAc), 테트라히드로퓨란(tetrahydrofuran; THF), 디메틸설폭시드(dimethylsulfoxide; DMSO), 시클로헥산(cyclohexane), 아세토니트릴(acetonitrile), 메탄올, 에탄올, 이소프로판올 등을 사용할 수 있다. On the other hand, in the step 2), the organic solvent to be added to float the viscosity in the composition containing the oxidized graphene and the polyvinylidene fluoride is not particularly limited and, for example, N, N-dimethylformamide (N N-dimethylformamide (DMF), N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethylsulfoxide dimethylsulfoxide (DMSO), cyclohexane, acetonitrile, methanol, ethanol, isopropanol, and the like.

유기 용매의 양은, 유기 용매 중 산화그래핀 및 폴리비닐리덴플루오라이드의 고형물의 고체 함량이 10 내지 50 중량%, 바람직하게는 15 내지 25 중량 %가 되도록 혼합한다. The amount of the organic solvent is such that the solids content of the oxidized graphene and the polyvinylidene fluoride in the organic solvent is 10 to 50% by weight, preferably 15 to 25% by weight.

또한 상기 본 발명에 있어서, 상기 산화그래핀의 환원시, 100 ℃에서 열 환원시킬 수 있으나, 이에 한정되는 것은 아니고, 히드라진 방법(Hydrazine Method)이나, 알루미늄 환원제 방법에 의해 환원되어 형성될 수도 있다. In the present invention, the reduction of the oxidized graphene may be performed at 100 ° C., but not limited thereto, and may be reduced by a hydrazine method or an aluminum reducing agent method.

이상과 같은 제조 방법으로 제조된 본 발명 복합소재는, 써미스터로서 응력을 가하면 저항이 감소하는 압전성(piezoelectric effect)을 지니며, 온도변화에 따른 TCR이 1% 이상일 수 있다. The composite material of the present invention produced by the above manufacturing method has a piezoelectric effect with reduced resistance when stressed as a thermistor, and the TCR according to the temperature change may be 1% or more.

본 발명에서의 TCR(Temperature Coefficient of Resistance)은 온도저항계수로서, 하기한 식에 의해 도출되는데 단위는 %로 나타낸다. The TCR (Temperature Coefficient of Resistance) in the present invention is a temperature coefficient of resistance, which is derived by the following equation, where the unit is expressed in%.

TCR (%) = (기준 온도 저항 - 온도 상승 시 저항) / (기준 온도 저항)×(1/(온도변화))×100 (%)TCR (%) = (reference temperature resistance - resistance at rising temperature) / (reference temperature resistance) x (1 / (temperature change)

본 발명의 복합소재는, TCR이 0.5% 이상, 좀더 바람직하게는 TCR이 1% 이상으로, 온도변화에 따른 저항 감소 성능이 우수하다. The composite material of the present invention has a TCR of not less than 0.5%, more preferably not less than 1%, and exhibits excellent resistance reduction performance with temperature change.

또한 본 발명의 복합소재는, 써미스터 특성을 가짐에 따라 온도 및 압력 감지 써미스터 센서로서 적용될 수 있다. 이 때, 상기 온도 및 압력감지 써미스터 센서는, 복합소재로 성형되는 필름을 테이프 형태로 제조한 것일 수 있다. 또한 상기 온도 및 압력 감지 써미스터 센서는 상기 복합소재를 압출, 사출, 컴프레션 몰딩 또는 3D 프린팅하여 성형할 수 있다. 또한, 상기 복합소재를 섬유의 형태, 상기 섬유를 직조하여 직물 형태 또는 의류 형태로 제조할 수 있다. In addition, the composite material of the present invention can be applied as a temperature and pressure sensing thermistor sensor having a thermistor characteristic. At this time, the temperature and pressure sensing thermistor sensor may be a film formed of a composite material in the form of a tape. The temperature and pressure sensing thermistor sensor may be formed by extrusion, injection molding, compression molding, or 3D printing. In addition, the composite material may be produced in the form of fibers, the fibers may be woven into a fabric form or a garment form.

이와 같이 본 발명에 따른 복합 소재는 다양한 형태로 성형이 가능하고, 온도변화에 따른 저항 감소값이 커서 산업 활용도가 높다.
As described above, the composite material according to the present invention can be formed into various shapes, and the resistance reduction value according to the temperature change is large, so that the industrial utilization is high.

이하, 본 발명의 바람직한 실시 예를 통해 본원 발명을 보다 상세히 설명한다. 하기 실시 예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위를 한정하는 것으로 해석되어서는 아니된다.
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention. The following examples are provided to aid understanding of the present invention and should not be construed as limiting the scope of the present invention.

실시예Example

Ausbury carbon사의 Flake graphite를 Modified Hummers 방법(Chem. Mater. 1999,11,771)으로 산화하여 그래핀옥사이드 수용액을 합성하였다. 얻어진 그래핀옥사이드가 폴리비닐리덴플루오라이드 대비 1 중량%가 되도록 하여 유기용매인 DMF(N,N-dimethylformamide)에 혼합하고, DMF 대비 고체 함량이 20 중량%가 되도록 하여 회전 밀링을 하여 24시간 동안 혼합하였다. 형성된 조성물을 유리기판 위에 20 ㎛ 두께로 캐스팅하여 갈색의 필름을 얻었다. 수득한 갈색 필름을 60℃에서 5시간 동안 건조시킨 후, 140 ℃에서 24시간 어닐링하여 산화그래핀을 환원하고, 검은색 필름을 얻었다.
An aqueous solution of graphene oxide was synthesized by oxidizing Flake graphite from Ausbury carbon with Modified Hummers method (Chem.Mater. 1999,11,771). The resultant graphene oxide was mixed with DMF (N, N-dimethylformamide) as an organic solvent so that the graphene oxide was 1 wt% relative to the polyvinylidene fluoride. The resultant mixture was subjected to rotary milling to a solid content of 20 wt% . The resultant composition was cast on a glass substrate to a thickness of 20 mu m to obtain a brown film. The obtained brown film was dried at 60 캜 for 5 hours and then annealed at 140 캜 for 24 hours to reduce the oxidized graphene to obtain a black film.

복합소재 써미스터 필름의 물성평가 및 결과Property evaluation and result of composite material thermistor film

상기 실시예에서 수득한 필름에 대해 20℃에서의 기준온도저항을 측정하고, 온도를 60℃로 상승시켜 온도 상승시의 저항을 측정하였다. 측정된 기준온도저항과 온도상승시의 저항을 통해 수득한 필름의 TCR을 도출하였다. 그 결과를 하기 표1에 도시하였다.For the film obtained in the above example, the reference temperature resistance at 20 캜 was measured, and the temperature was raised to 60 캜 to measure the resistance at the time of temperature rise. The TCR of the film obtained through the measured reference temperature resistance and the resistance at the time of temperature rise was derived. The results are shown in Table 1 below.

기준온도저항Reference temperature resistance 온도상승시 저항Resistance at rising temperature TCR (%)TCR (%) 1.2 Mega Ohm1.2 Mega Ohm 0.19 Mega Ohm0.19 Mega Ohm 2.12.1

Claims (11)

환원된 산화그래핀(rGO) 및 폴리비닐리덴플루오라이드(PVDF)를 포함하는 rGO/PVDF 복합소재로서,
상기 rGO/PVDF 복합소재는 산화그래핀(GO):PVDF의 중량비가 0.001~3 : 100인 GO/PVDF 복합소재의 환원으로 제조되어,
상기 rGO/PVDF 복합소재의 PVDF가 베타상으로 이루어짐에 따라 압전성(piezoelectric effect) 및 부온도계수 써미스터(negative temperature coefficient thermistor:NTC)특성을 갖는 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재.
As an rGO / PVDF composite material comprising reduced oxidized graphene (rGO) and polyvinylidene fluoride (PVDF)
The rGO / PVDF composite material is prepared by reduction of a GO / PVDF composite material having a weight ratio of graphene oxide (GO): PVDF of 0.001 to 3: 100,
Wherein the reduced graphene graphene / PVDF composite material has a piezoelectric effect and a negative temperature coefficient thermistor (NTC) characteristic as the PVDF of the rGO / PVDF composite material is in a beta phase. .
삭제delete 제 1 항에 있어서,
상기 rGO/PVDF 복합소재는 온도변화에 따른 TCR(Temperature Coefficient of Resistance)이 1% 이상이며,
상기 rGO/PVDF 복합소재는, 산화그래핀 수용액과 폴리비닐리덴플루오라이드 및 유기 용매를 혼합한 혼합액을 기판에 코팅 및 건조하여 GO/PVDF 복합소재를 형성한 후, 이를 100~140℃에서 환원시켜 제조되는 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재.
The method according to claim 1,
The rGO / PVDF composite material has a TCR (Temperature Coefficient of Resistance) of at least 1%
The rGO / PVDF composite material is prepared by coating a mixture of an oxidized graphene aqueous solution, polyvinylidene fluoride and an organic solvent on a substrate and drying the resultant to form a GO / PVDF composite material, reducing the mixture at 100 to 140 ° C Wherein the reduced graphene graphene / PVDF composite material is produced from a reduced graphene graphene / PVDF composite material.
1) 산화그래핀 수용액을 제조하는 단계;
2) 상기 산화그래핀 수용액에 폴리비닐리덴플루오라이드 및 유기 용매를 혼합하여 혼합액을 제조한 후, 기판에 코팅 및 건조하여 산화그래핀/PVDF 복합소재를 제조하는 단계; 및
3) 상기 단계 2)에서 제조된 복합소재를 100~140℃에서 환원시켜 환원된 산화그래핀/PVDF 복합소재를 제조하는 단계;를 포함하고,
상기 환원된 산화그래핀/PVDF 복합소재의 PVDF는 베타상으로 이루어져, 압전성(piezoelectric effect) 및 부온도계수 써미스터 (negative temperature coefficient thermistor; NTC) 특성을 갖는 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재의 제조방법.
1) preparing an aqueous solution of oxidized graphene;
2) preparing a mixed solution by mixing polyvinylidene fluoride and an organic solvent in the aqueous solution of the oxidized graphene, and coating and drying the mixture on a substrate to prepare an oxidized graphene / PVDF composite material; And
3) reducing the composite material prepared in the step 2) at 100 to 140 ° C to prepare a reduced oxidized graphene / PVDF composite material,
The reduced oxidized graphene / PVDF composite material PVDF is in a beta phase and has a piezoelectric effect and a negative temperature coefficient thermistor (NTC) characteristic. Method of manufacturing PVDF composite material.
삭제delete 삭제delete 제 1 항 또는 제 3 항에 따른 복합소재로 성형한 필름; 및 상기 필름의 일 면 또는 양 면 상에 점착 조성물을 도포하여 형성된 점착층;을 포함하는 테이프인 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서.A film molded from a composite material according to any one of claims 1 to 3; And an adhesive layer formed by applying an adhesive composition on one or both surfaces of the film. 제 7 항에 있어서,
상기 필름은 상기 복합소재와, 상기 복합소재와 다른 이종소재가 복합하여 제조된 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서.
8. The method of claim 7,
Wherein the film is made by combining the composite material and a different material from the composite material.
제 1 항 또는 제 3 항에 따른 복합소재를 압출, 사출, 컴프레션 몰딩 또는 3D 프린팅하여 성형하는 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서.A temperature and pressure sensing thermistor sensor characterized in that the composite material according to claim 1 or 3 is molded by extrusion, injection molding, compression molding or 3D printing. 제 1 항 또는 제 3 항에 따른 복합소재를 섬유의 형태, 상기 섬유를 직조하여 직물 형태 또는 의류 형태로 제조한 것을 특징으로 하는, 온도 및 압력 감지 써미스터 센서.
The temperature and pressure sensing thermistor sensor according to claim 1 or 3, characterized in that the composite material is in the form of fibers, the fibers are woven to form a fabric or a garment.
제 4 항에 있어서,
상기 환원된 산화그래핀/PVDF 복합소재는 제1항 또는 제3항에 따른 복합소재인 것을 특징으로 하는, 환원된 산화그래핀/PVDF 복합소재의 제조방법.
5. The method of claim 4,
Wherein the reduced graphene graphene / PVDF composite material is a composite material according to any one of Claims 1 to 7.
KR1020150033367A 2015-03-10 2015-03-10 Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same KR101780028B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150033367A KR101780028B1 (en) 2015-03-10 2015-03-10 Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150033367A KR101780028B1 (en) 2015-03-10 2015-03-10 Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same

Publications (2)

Publication Number Publication Date
KR20160109266A KR20160109266A (en) 2016-09-21
KR101780028B1 true KR101780028B1 (en) 2017-09-19

Family

ID=57079998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150033367A KR101780028B1 (en) 2015-03-10 2015-03-10 Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same

Country Status (1)

Country Link
KR (1) KR101780028B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076393A (en) * 2017-12-22 2019-07-02 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same
KR102149030B1 (en) * 2020-04-20 2020-08-27 국방과학연구소 Apparatus for synthesizing roll to roll large-area graphene, method for synthesizing large-area graphene and method for reducing graphene oxide fabric

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943519B1 (en) * 2017-09-26 2019-01-29 울산과학기술원 Composite, manufacturing method thereof, and flexible temperature sensor including the composite
CN110819044B (en) * 2019-10-21 2021-08-06 西安理工大学 Preparation method of graphene-ferroferric oxide/polyvinylidene fluoride composite film
KR102201847B1 (en) * 2020-01-09 2021-01-12 한국교통대학교 산학협력단 ritical temperature piezo-resistive composites comprising paraffin wax and pressure sensor comprising the same
FR3108756B1 (en) * 2020-03-30 2022-04-01 Commissariat Energie Atomique THERMAL PATTERN SENSOR
CN111849094B (en) * 2020-07-10 2022-04-15 上海如实密封科技有限公司 High-strength high-modulus fluororubber composition and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200363858Y1 (en) 2004-07-08 2004-10-11 조인셋 주식회사 Film typed thermistor temperature sensor
CN102796333B (en) 2012-09-06 2014-01-22 哈尔滨工业大学 Preparation method of polyvinylidene-fluoride-base temperature-sensitive resistance material with negative temperature coefficient effect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200363858Y1 (en) 2004-07-08 2004-10-11 조인셋 주식회사 Film typed thermistor temperature sensor
CN102796333B (en) 2012-09-06 2014-01-22 哈尔滨工业大学 Preparation method of polyvinylidene-fluoride-base temperature-sensitive resistance material with negative temperature coefficient effect

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RSC ADVANCES, 2014, 4, 45220
RSC ADVANCES, 2014,4, 19594-19601

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076393A (en) * 2017-12-22 2019-07-02 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same
KR102083007B1 (en) * 2017-12-22 2020-02-28 울산과학기술원 Method for manufacturing polyvinylidene fluoride nano fiber including graphene oxide and method for manufacturing smart textile using the same
KR102149030B1 (en) * 2020-04-20 2020-08-27 국방과학연구소 Apparatus for synthesizing roll to roll large-area graphene, method for synthesizing large-area graphene and method for reducing graphene oxide fabric

Also Published As

Publication number Publication date
KR20160109266A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
KR101780028B1 (en) Reduced graphene oxide/pvdf composite, method thereof and thermistor sensor using the same
Kim et al. Complexity in charge transport for multiwalled carbon nanotube and poly (methyl methacrylate) composites
Ansari et al. Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites
CN107793153B (en) A kind of compound thermistor material and its preparation method and application
CN108439982B (en) Axial composite negative temperature coefficient thermal sensitive ceramic material and preparation method thereof
CN105967656B (en) Novel NTC thermistor material based on nickel oxide
KR101220312B1 (en) Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition
KR101943519B1 (en) Composite, manufacturing method thereof, and flexible temperature sensor including the composite
Klym et al. Integrated thick-film pi-p+ structures based on spinel ceramics
CN109133201A (en) Based on the Ni-based perovskite oxide material of A codopes of multicomponent and application method
Zhao et al. The investigation of Zn content on the structure and electrical properties of Zn x Cu 0.2 Ni 0.66 Mn 2.14− x O 4 negative temperature coefficient ceramics
Zeng et al. Electrical properties of perovskite YFeO 3 based ceramics modified by Cu/Nb ions as negative temperature coefficient thermistors
CN105967677A (en) Novel zinc-nickel oxide NTC (negative temperature coefficient) thermosensitive resistor material
CN106710758B (en) A kind of preparation method of the linear negative temperature coefficient thermistor of thick film sheet type
KR20100124302A (en) Composite material for temperature measurement, temperature sensor comprising the composite material, and method for producing the composite material and the temperature sensor
Lan et al. Construction and characterization of NTC thermistors at low temperature
CN205748699U (en) A kind of linear transform circuit for negative tempperature coefficient thermistor
Huo et al. Effect of solid contents on the electrical properties of Co2. 77Mn1. 71Fe1. 10Zn0. 42O8 ceramic prepared by slurry spin coating technique
US11460427B2 (en) Chemiresistor humidity sensor and fabrication method thereof
CN110317045A (en) A kind of manganese ferronickel cobalt-based NTC thermistor material and preparation method thereof
CN109734423B (en) Negative temperature coefficient thermosensitive material and preparation method thereof
US6004485A (en) Method for making a temperature sensor
CN110642603A (en) Novel high-precision NTC (negative temperature coefficient) thermistor material based on nickel oxide
CN109796203A (en) A kind of zno-based negative temperature coefficient heat-sensitive resistance material
CN104230342A (en) Negative temperature coefficient thermistor material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant