KR101774996B1 - Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof - Google Patents

Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof Download PDF

Info

Publication number
KR101774996B1
KR101774996B1 KR1020160078447A KR20160078447A KR101774996B1 KR 101774996 B1 KR101774996 B1 KR 101774996B1 KR 1020160078447 A KR1020160078447 A KR 1020160078447A KR 20160078447 A KR20160078447 A KR 20160078447A KR 101774996 B1 KR101774996 B1 KR 101774996B1
Authority
KR
South Korea
Prior art keywords
seq
base
polynucleotide
nos
dna
Prior art date
Application number
KR1020160078447A
Other languages
Korean (ko)
Inventor
조은해
이태헌
전영주
황태주
유기영
Original Assignee
주식회사 녹십자지놈
사회복지법인 한국혈우재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 녹십자지놈, 사회복지법인 한국혈우재단 filed Critical 주식회사 녹십자지놈
Priority to KR1020160078447A priority Critical patent/KR101774996B1/en
Priority to PCT/KR2017/006344 priority patent/WO2017222247A2/en
Application granted granted Critical
Publication of KR101774996B1 publication Critical patent/KR101774996B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a marker for predicting efficacy of a hemophilia treatment agent. More specifically, the present invention relates to a single nucleotide polymorphism (SNP) marker for predicting efficacy of a hemophilia treatment agent, a composition containing a preparation capable of detecting the SNP marker, a microarray or a kit containing the composition, a method for providing information for predicting efficacy of the hemophilia treatment agent using the SNP marker, and a method for selecting SNP for predicting efficacy of the hemophilia treatment agent.

Description

혈우병 치료제의 효능 예측 마커 및 이의 용도 {Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof}Markers for Predicting Effect of Therapeutic Agents Against Hemophilia and Use Thereof

본 발명은 혈우병 치료제의 효능 예측 마커에 관한 것으로, 보다 자세하게는 혈우병 치료제의 효능 예측용 SNP(single nucleotide polymorphism) 마커, 상기 SNP 마커를 검출할 수 있는 제제를 포함하는 조성물, 상기 조성물을 포함하는 키트 또는 마이크로어레이, 상기 SNP 마커를 이용한 혈우병 치료제의 효능 예측을 위한 정보의 제공 방법 및 혈우병 치료제의 효능 예측용 SNP를 선별하는 방법에 관한 것이다.The present invention relates to a marker for predicting the efficacy of a therapeutic agent for hemophilia, and more particularly to a composition comprising a single nucleotide polymorphism (SNP) marker for predicting the efficacy of a therapeutic agent for hemophilia, an agent capable of detecting the SNP marker, Or a microarray, a method for providing information for predicting the efficacy of a hemophilia therapeutic agent using the SNP marker, and a method for selecting a SNP for predicting efficacy of a hemophilia therapeutic agent.

혈우병은 혈액응고인자 결핍으로 인한 출혈성 질환이며 Factor VIII 결핍증을 혈우병A, Factor IX 결핍증을 혈우병B로 명명한다. 혈우병A의 발생빈도는 5,000명에서 10,000명당 1명으로 발생하고, 혈우병B의 발생빈도는 이의 약 1/5 가량으로 추산된다(Park YS. J Korean Med Assoc, 2009; 52(12):1201-6). 혈우병은 혈액응고인자의 활성도에 따라 중증(<1%), 중등증(1-5%), 경증(>5%)으로 분류된다. 일반적인 혈우병 치료는 부족한 혈액응고인자를 보충해 주는 것으로 현재 Factor VIII, Factor IX 제제가 사용되고 있으며, 치료 중 항체가 생성된 경우 우회 인자를 투여한다(Kemton CL et al., Blood. 2009;113(1):11-7). Hemophilia is a haemorrhagic disease caused by a deficiency of blood clotting factors. Factor VIII deficiency is referred to as hemophilia A, and Factor IX deficiency as hemophilia B. The incidence of haemophilia A occurs from 5,000 to 1 in 10,000, and the incidence of haemophilia B is estimated to be about one-fifth of that (Park YS, 2009; 52 (12): 1201- 6). Hemophilia is classified as severe (<1%), moderate (1-5%) or mild (> 5%) depending on the activity of blood coagulation factors. In general, hemophilia therapy replenishes deficient blood coagulation factors. Currently Factor VIII, Factor IX agents are used, and if antibodies are produced during treatment, bypass agents are administered (Kemton CL et al., Blood. 2009; 113 ): 11-7).

혈우병의 약물치료에서 항체생성(inhibitor development) 반응을 예측하는 것은 매우 중요하다. 혈우병A 환자에서의 항체생성 반응 빈도는 약 30%이고, 혈우병B 환자에서는 약 3%이다(Kessler CM, Hematology Am Soc Hematol Educ Program. 2005:429-35). 혈우병 치료제에 대한 항체는 약제 노출 후 50일 이내에 가장 많이 발생하고 통상적으로 0.6 Bethesda Unit (BU) 이상일 때 항체생성군으로 분류되며, 5 BU 이상일 때에는 고항체생성군으로 분류된다(Kasper CK et al., Thromb Diath Haemorrh. 1975;34(2):612; Verbruggen B et al., Thromb Haemost. 1995;73(2):247-51; Viel KR et al., N Engl J Med. 2009;360(16):1618-27; Kemton CL et al., Blood. 2009;113(1):11-7). 항체생성 반응이 있는 환자의 치료는 매우 어려우며, 특히 잦은 출혈로 인한 관절 합병증이 빈번하게 발생한다(Park YS, J Korean Med Assoc 2009; 52(12):1201-6). 대체 요법으로는 활성화 프로트롬빈 복합체, Factor VII 재조합 제제와 같은 우회인자 투여가 있으나, 항체생성 반응군에서는 면역관용요법을 통해 항체를 제거하는 것이 더 바람직할 수 있다(Kemton CL et al., Blood. 2009;113(1):11-7; Park YS, J Korean Med Assoc 2009; 52(12):1201-6). 면역관용요법의 성공률은 30-80%로 다양하며, 면역관용요법 시행 후 환자는 다시 지속적인 Factor VIII 또는 Factor IX 제제 사용이 가능하다(Park YS, J Korean Med Assoc 2009; 52(12):1201-6). It is very important to predict the inhibitor development response in hemophilia drug therapy. The incidence of antibody production in hemophilia A patients is about 30%, and about 3% in hemophilia B patients (Kessler CM, Hematology Am Soc Hematol Educ. Program 2005: 429-35). Antibodies to hemophilia therapy are most commonly encountered within 50 days of drug exposure, and are classified as antibody-producing when they are more than 0.6 Bethesda Unit (BU), and are classified as high antibody-producing when they are above 5 BU (Kasper CK et al. , Thromb Diath Haemorrh 1975; 34 (2): 612; Verbruggen B et al., Thromb Haemost 1995: 73 (2): 247-51; Viel KR et al., N Engl J Med. ): 1618-27; Kemton CL et al., Blood. 2009; 113 (1): 11-7). However, there is a high incidence of joint complications due to frequent bleeding (Park YS, J Korean Med Assoc 2009; 52 (12): 1201-6). Alternative therapies include bypass agents such as activated prothrombin complexes and Factor VII recombinant agents, but it may be more desirable to remove the antibody through immunotherapy in the antibody-generated response group (Kemton CL et al., Blood. 2009 ; 113 (1): 11-7; Park YS, J Korean Med Assoc 2009; 52 (12): 1201-6). The success rate of immune tolerance varies from 30 to 80%, and patients can continue to use Factor VIII or Factor IX after immunotherapy (Park YS, J Korean Med Assoc 2009; 52 (12): 1201- 6).

혈우병 치료제 항체생성 반응의 주요 예측 인자 또는 원인에 대하여 여러 연구가 진행된 바 있다. 그 중 유전적 예측 인자로는 F8 유전자의 결함이 가장 큰 원인으로 알려져 있으며(Schwaab R et al., Thromb Haemost. 1995 74(6):1402-6; Oldenburg J et al., Thromb Haemost. 1997, 77(2):238-42), MHC II, TNF-α, IL-10, CTLA-4 등의 유전자에 위치한 SNP(single nucleotide polymorphism) 변이들 또한 유의미한 통계적 연관성을 나타내는 것으로 사료되나, 아직 밝혀지지 않은 유전적 예측 인자가 다수 존재할 것으로 예상된다(Hay CR et al., Thromb Haemost. 1997 77(2):234-7; Oldenburg J et al., Thromb Haemost. 1997;77(2):238-42; Astermark J et al., Blood. 2006a, 107(8):3167-72; Astermark J et al., Blood. 2006b, 108(12):3739-45; Astermark J et al., J Thromb Haemost. 2007, 5(2):263-5). A number of studies have been conducted on the major predictors or causes of antibody production in hemophilia therapy. The genetic predisposition factor is known to be the most likely cause of defects in the F8 gene (Schwaab R et al., 1995 [6]: 1402-6; Oldenburg J et al., Thromb Haemost 1997, SNP (single nucleotide polymorphism) mutations located in genes such as MHC II, TNF-α, IL-10 and CTLA-4 are also statistically significant 1997). In addition, a number of genetic predictors are expected to be present (Hay CR et al., 1997 (2): 234-7; Oldenburg J et al., Thromb Haemost. Astmar J et al., J Thromb Haemost. 2007 (2006), 379-45; Astark J et al., 2006, 107 (8): 3167-72; , 5 (2): 263-5).

이에, 본 출원의 발명자들은 혈우병 치료제의 항체생성 반응의 유전적 예측 마커를 규명하고자, 엑솜 서열분석 데이터(Exome Sequencing data)를 이용한 전장 유전체 연관분석(Genome Wide Association Study)을 수행하여 혈우병 치료제의 효능을 예측할 수 있는 연관 SNP 세트를 규명하고, 본 발명을 완성하게 되었다. Therefore, the inventors of the present application conducted a genome wide association study using Exome Sequencing data to identify the genetic prediction marker of the antibody production reaction of hemophilia therapy, , And finally completed the present invention.

본 발명의 목적은 혈우병 치료제의 효능 예측 SNP 마커를 제공하는데 있다.It is an object of the present invention to provide an efficacy predictive SNP marker of hemophilia therapy.

본 발명의 다른 목적은 상기 혈우병 치료제의 효능 예측 SNP 마커를 검출할 수 있는 제제를 포함하는, 혈우병 치료제의 효능 예측용 조성물을 제공하는데 있다. Another object of the present invention is to provide a composition for predicting the efficacy of a therapeutic agent for hemophilia comprising an agent capable of detecting the predictive SNP marker of the hemophilia therapeutic agent.

본 발명의 또 다른 목적은 상기 혈우병 치료제의 효능 예측 조성물을 포함하는 혈우병 치료제의 효능 예측용 키트 또는 마이크로어레이를 제공하는데 있다.Another object of the present invention is to provide a kit or a microarray for predicting the efficacy of a therapeutic agent for hemophilia comprising the composition for predicting efficacy of the therapeutic agent for hemophilia.

본 발명의 또 다른 목적은 상기 SNP 마커의 다형성 부위의 염기를 결정하는 단계를 포함하는, 혈우병 치료제의 효능 예측을 위한 정보의 제공 방법을 제공하는데 있다.Yet another object of the present invention is to provide a method for providing information for predicting the efficacy of a therapeutic agent for hemophilia comprising the step of determining a base at a polymorphic site of the SNP marker.

본 발명의 또 다른 목적은 혈우병 치료제의 효능 예측용 SNP 마커를 선별하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for screening SNP markers for predicting the efficacy of a therapeutic agent for hemophilia.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 87의 염기서열로부터 유래하고, 서열번호 1 내지 84의 101 번째 염기 및 서열번호 85 내지 87의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는 혈우병 치료제의 효능 예측 SNP (Single Nucleotide Polymorphism) 마커를 제공한다.In order to accomplish the above object, the present invention provides a nucleic acid molecule comprising a nucleotide sequence derived from the nucleotide sequence of SEQ ID NOS: 1 to 87 and comprising at least 5 consecutive nucleotides comprising the nucleotide sequence 101 of SEQ ID NO: 1 to 84 and the nucleotide sequence of SEQ ID NO: 85 to 87, A single nucleotide polymorphism (SNP) marker for the hemophilia therapeutic comprising one or more polynucleotides selected from polynucleotides composed of a nucleotide or a complementary polynucleotide thereof.

본 발명은 또한, 상기 SNP 마커를 검출할 수 있는 프로브, 프라이머 또는 압타머를 포함하는, 혈우병 치료제의 효능 예측 조성물을 제공한다.The present invention also provides a composition for predicting efficacy of a therapeutic agent for hemophilia comprising a probe, a primer or an extramamer capable of detecting the SNP marker.

본 발명은 또한, 상기 조성물을 포함하는 혈우병 치료제의 효능 예측 키트 또는 마이크로어레이를 제공한다.The present invention also provides an efficacy prediction kit or microarray for hemophilia therapy comprising the composition.

본 발명은 또한, (a) 분리된 시료의 DNA로부터 상기 SNP 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계; 및 (b) 상기 (a) 단계의 증폭된 또는 혼성화된 다형성 부위의 염기를 결정하는 단계를 포함하는, 혈우병 치료제의 효능 예측을 위한 정보의 제공 방법을 제공한다.(A) amplifying or hybridizing a polymorphic site of the SNP marker with a probe from the DNA of the isolated sample; And (b) determining a base of the amplified or hybridized polymorphic site of step (a). The present invention also provides a method for providing information for predicting the efficacy of a therapeutic agent for hemophilia.

본 발명은 또한, (a) 혈우병 치료제를 투여한 대상의 전장 엑솜 서열 분석 (Whole Exome Sequencing)에서 시퀀싱 깊이 값 (Sequencing Depth)이 10 이상 및 유전자형 정확도 (Genotype Quality) 값이 20 이상인 SNP를 선별하고, 그 중 주변에 유잔자 영역이 존재하지 않는 Intergenic Variant는 제거하는 단계; (b) 상기 (a) 단계에서 선별된 SNP에 대해 연관 분석을 수행하여 혈우병 치료제 항체생성 표현형과 연관성이 있는 SNP를 선별하는 단계; 및 (c) 상기 (b) 단계에서 선별된 SNP에 대하여 면역체계와 관련된 유전자 영역의 SNP를 선별하는 단계를 포함하는, 혈우병 치료제의 효능 예측 SNP 선별 방법을 제공한다.The present invention also relates to a method for screening for SNPs in which (a) SNPs having a sequencing depth value of 10 or more and a genotype quality value of 20 or more are selected in wholeexome sequencing of a subject to which a hemophilia treatment agent is administered , Removing the intergenic variant in which there is no residual region in the periphery; (b) performing a linkage analysis on the selected SNPs in step (a), thereby selecting SNPs that are related to the antibody-producing phenotype of hemophilia treatment; And (c) selecting a SNP in a gene region related to the immune system for the SNP selected in the step (b).

본 발명에 따르면, 혈우병 치료제의 효능 예측 SNP 마커를 이용하여 혈우병 치료제에 대한 항체 생성여부의 객관적인 위험도를 예측 할 수 있다. According to the present invention, an objective risk of antibody production to a hemophilia therapeutic agent can be predicted by using the predictive Efficacy SNP marker of hemophilia treatment agent.

도 1은 혈우병 치료제의 효능 예측 SNP 마커를 선별하는 방법을 나타낸 개략도이다.FIG. 1 is a schematic view showing a method of selecting an effect predictive SNP marker of a hemophilia therapeutic agent.

달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.

본 발명은 일 관점에서, 혈우병 치료제의 효능 예측 단일염기다형성인 SNP(single nucleotide polymorphism) 마커를 제공한다.The present invention, in one aspect, provides a single nucleotide polymorphism (SNP) marker that is a predictive single nucleotide polymorphism for the efficacy of hemophilia therapy.

상기 마커는 바람직하게는, 서열번호 1 내지 87의 염기서열로부터 유래하고, 서열번호 1 내지 84의 101 번째 염기 및 서열번호 85 내지 87의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는 혈우병 치료제의 효능 예측 SNP (Single Nucleotide Polymorphism) 마커일 수 있다.The marker is preferably selected from the group consisting of 5 or more consecutive bases derived from the nucleotide sequences of SEQ ID NOS: 1 to 87 and comprising the 101st base of SEQ ID NOS: 1 to 84 and the 100th base of SEQ ID NOS: 85 to 87 as SNPs A single nucleotide polymorphism (SNP) marker of the hemophilia therapeutic comprising one or more polynucleotides selected from polynucleotides or their complementary polynucleotides.

본 발명에서 "혈우병"은 혈액응고인자 결핍으로 인한 출혈성 질환이며 Factor VIII 결핍증을 혈우병A, Factor IX 결핍증을 혈우병B로 명명한다. A형 혈우병은 FVIII 유전자의 이상 (defect)으로 인한 FVIII의 양적 또는 질적 결함을 특징으로 하는 출혈성 질환이고, B형 혈우병은 FIX 유전자의 이상으로 인한 FIX의 양적 또는 질적 결함을 특징으로 한다.In the present invention, "hemophilia" is a haemorrhagic disease caused by a deficiency of blood coagulation factor, and Factor VIII deficiency is termed hemophilia A, and Factor IX deficiency is termed hemophilia B. Type A haemophilia is a hemorrhagic disease characterized by a quantitative or qualitative defect of FVIII due to defect of FVIII gene and type B haemophilia is characterized by a quantitative or qualitative defect of FIX due to abnormality of FIX gene.

바람직하게 본 발명은 혈우병 A 치료제의 효능 예측에 관한 것이다.Preferably, the present invention relates to the prediction of the efficacy of the hemophilia A therapeutic agent.

본 발명에서 사용되는 용어, "다형성(polymorphism)"이란 하나의 유전자 좌위(locus)에 두 가지 이상의 대립 유전자(allele)가 존재하는 경우를 말하며 다형성 부위 중에서, 사람에 따라 단일 염기만이 다른 것을 단일 염기다형성(single nucleotide polymorphism, SNP)이라 한다. 바람직한 다형성 마커는 선택된 집단에서 1% 이상, 더욱 바람직하게는 5% 또는 10% 이상의 발생 빈도를 나타내는 두 가지 이상의 대립 유전자를 가진다.The term "polymorphism " used in the present invention refers to the case where two or more alleles exist in one locus, and among the polymorphic sites, It is called single nucleotide polymorphism (SNP). Preferred polymorphic markers have two or more alleles with a frequency of occurrence of 1% or more, more preferably 5% or 10% or more in the selected population.

본 발명에서 사용되는 용어, "대립 유전자"는 상동 염색체의 동일한 유전자 좌위에 존재하는 한 유전자의 여러 타입을 말한다. 대립 유전자는 다형성을 나타내는데 사용되기도 하며, 예컨대, SNP는 두 종류의 대립 인자(biallele)를 갖는다.As used herein, the term "allele" refers to various types of a gene present at the same gene locus on a homologous chromosome. Alleles are also used to represent polymorphisms, for example, SNPs have two kinds of bialles.

본 발명에서 사용되는 용어, "rs_id"란 1998년부터 SNP 정보를 축적하기 시작한 NCBI가 초기에 등록되는 모든 SNP에 대하여 부여한 독립된 표지자인 rs-ID를 의미한다. 본 발명에서는 rs2486316와 같은 형태로 기재하였다. 이와 같은 표에 기재된 rs_id는 본 발명의 다형성 마커인 SNP 마커를 의미한다. 당업자라면 상기 rs_id를 이용하여 SNP의 위치 및 서열을 용이하게 확인할 수 있을 것이다. NCBI의 dbSNP (The Single Nucleotide Polymorphism Database) 번호인 rs_id에 해당하는 구체적인 서열은 시간이 지남에 따라 약간 변경될 수 있다. 본 발명의 범위가 상기 변경된 서열에도 미치는 것은 당업자에게 자명할 것이다.The term " rs_id " used in the present invention means an independent marker rs-ID assigned to all SNPs initially registered by the NCBI that has started to accumulate SNP information since 1998. [ In the present invention, it is described in the form of rs2486316. The rs_id shown in the above table means the SNP marker which is the polymorphism marker of the present invention. Those skilled in the art will readily be able to ascertain the location and sequence of the SNP using the rs_id. The specific sequence corresponding to rs_id, the number of the NCBI's Single Nucleotide Polymorphism Database (dbSNP), may change slightly over time. It will be apparent to those skilled in the art that the scope of the present invention also affects the altered sequence.

상기 "서열번호 1 내지 87"은 다형성 부위를 포함하는 다형성 서열(polymorphic sequence)이다. 다형성 서열이란 폴리뉴클레오티드 서열 중에 SNP를 포함하는 다형성 부위(polymorphic site)를 포함하는 서열을 의미한다. 상기 폴리뉴클레오티드 서열은 DNA 또는 RNA가 될 수 있다.The above "SEQ ID NOS: 1 to 87" is a polymorphic sequence including a polymorphic site. A polymorphic sequence means a sequence comprising a polymorphic site comprising a SNP in a polynucleotide sequence. The polynucleotide sequence may be DNA or RNA.

본 발명의 SNP 마커는 표 1 내지 2에 표시된 마커로서, 개체의 SNP 마커의 다형성 부위가 위험 대립 유전자(risk allele)로 표시된 대립 유전자일 경우, 혈우병 치료제에 대한 항체 생성 위험이 높은 개체로 판단할 수 있으며, 보호 대립 유전자(protective allele)로 표시된 대립 유전자일 경우, 혈우병 치료제에 대한 항체 생성 위험이 낮은 개체로 판단할 수 있다. 본 발명에서 "위험 대립 유전자"는 "효과 대립 유전자"와 혼용될 수 있다.The SNP markers of the present invention are the markers shown in Tables 1 and 2, and when the polymorphic site of the SNP marker of an individual is an allele indicated by a risk allele, it is determined that the individual is at an increased risk of antibody production to the hemophilia treatment And alleles marked with a protective allele can be considered as individuals with a low risk of antibody production to the hemophilia treatment. In the present invention, "risk allele" may be used in combination with "effect allele ".

바람직하게 상기 SNP 마커는 혈우병 치료제의 효능 예측 SNP 마커로서, 상기 서열번호 1 내지 87의 염기서열로부터 유래하는 폴리뉴클레오티드 중, 각 서열번호로 기재되는 SNP 마커에 있어서, 서열번호 1 내지 84의 101 번째 염기 또는 서열번호 85 내지 87의 100번째 염기가 표 1 및 2의 대립 유전자형 염기를 포함하는 5개 이상의 연속적인 염기로 구성되는 폴리뉴클레오티드, 또는 이의 상보적인 폴리뉴클레오티드로 이루어진 군에서 선택된 하나 이상의 폴리뉴클레오티드일 수 있다.Preferably, the SNP marker is an EFFECT predictive SNP marker of a hemophilia therapeutic agent. In the polynucleotide derived from the nucleotide sequence of SEQ ID NO: 1 to 87, the SNP marker of SEQ ID NO: 1 to 84 Base or a polynucleotide whose 100 th base of SEQ ID NOS: 85 to 87 is composed of 5 or more consecutive bases comprising allelic bases of Tables 1 and 2, or a complementary polynucleotide thereof, Lt; / RTI &gt;

본 발명에 따른 혈우병 치료제의 효능 예측 SNP는 상기 SNP 각각으로 구성될 수 있고, 보다 바람직하게 2 이상의 SNP로 구성될 수 있으며, 가장 바람직하게는 상기 SNP 1 내지 87 전부로 구성될 수 있다.Efficacy prediction of hemophilia therapy according to the present invention The SNP may be composed of each of the SNPs, more preferably 2 or more SNPs, and most preferably all of the SNPs 1 to 87.

본 발명에 따른 상기 SNP를 포함하는 혈우병 치료제의 효능 예측 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드는 SNP가 위치하는 염기를 중심으로 5개 이상의 연속 염기로 구성되는 것이 바람직하며, 보다 바람직하게는 5 내지 50개, 보다 더 바람직하게는 10내지 40개, 보다 더 바람직하게는 20 내지 30개의 연속 염기로 구성될 수 있으나, 이에 한정되지 않는다.It is preferable that the polynucleotide or the complementary polynucleotide thereof for predicting the efficacy of a therapeutic agent for hemophilia comprising the SNP according to the present invention is composed of 5 or more continuous bases, more preferably 5 to 50 More preferably from 10 to 40, even more preferably from 20 to 30 contiguous bases, but is not limited thereto.

다른 관점에서 본 발명은, 상기 SNP 마커를 검출할 수 있는 제제를 포함하는, 혈우병 치료제의 효능 예측 조성물을 제공한다.In another aspect, the present invention provides a composition for predicting efficacy of a therapeutic agent for hemophilia comprising an agent capable of detecting the SNP marker.

본 발명에 있어서, 상기 검출할 수 있는 제제는 프로브일 수 있다. 프로브는 상기와 같은 유전자의 다형성 부위와 특이적으로 혼성화 반응을 통해 확인하여 혈우병 치료제의 효능을 예측할 수 있는 올리고뉴클레오티드를 의미한다.In the present invention, the detectable agent may be a probe. The probe refers to an oligonucleotide which can be identified through a hybridization reaction specifically with a polymorphic site of the above-mentioned gene to predict the efficacy of the therapeutic agent for hemophilia.

본 발명의 대립형질 특이적 프로브는 같은 종의 두 개체로부터 유래한 핵산 단편 중에서 다형성 부위가 존재하여, 한 개체로부터 유래한 DNA 단편에는 혼성화 하나, 다른 개체로부터 유래한 단편에는 혼성화하지 않는다. 이 경우 혼성화 조건은 대립형질간의 혼성화 강도에 있어서 유의한 차이를 보여 대립형질 중 하나에만 혼성화되도록 충분히 엄격해야한다. 이러한 본 발명의 프로브는 중앙 부위가 다형성 서열의 다형성 부위와 정렬하는 것이 바람직하다. 이에 따라 서로 다른 대립형질성 형태 간에 좋은 혼성화 차이를 유발할 수 있다. 본 발명의 프로브는 대립형질을 검출하여 혈우병 치료제의 효능에 대한 감수성을 진단하기 위한 마이크로어레이 등의 진단 키트나 진단 방법 등에 사용될 수 있다. 이와 같은 유전자 분석의 구체적 방법은 특별한 제한이 없으며, 이 발명이 속하는 기술 분야에 알려진 모든 유전자 검출 방법에 의하는 것일 수 있다.The allele-specific probe of the present invention has a polymorphic site among nucleic acid fragments derived from two individuals of the same species, and hybridizes to a DNA fragment derived from one individual, but not to a fragment derived from another individual. In this case, the hybridization conditions show a significant difference in the hybridization intensity between the alleles, and should be sufficiently strict so that only one of the alleles hybridizes. Preferably, the probe of the present invention aligns with the polymorphic site of the polymorphic sequence. This can lead to good hybridization differences between different allelic forms. The probe of the present invention can be used for a diagnostic kit or a diagnostic method such as a microarray for detecting alleles and diagnosing sensitivity to the efficacy of a hemophilia therapeutic. The specific method of such gene analysis is not particularly limited, and may be by any gene detection method known in the art.

본 발명에 있어서, 상기 검출할 수 있는 제제는 프라이머일 수 있다. 본 발명의 프라이머는 상기와 같은 유전자의 다형성 부위를 증폭을 통해 확인하여 혈우병 치료제의 효능을 예측할 수 있는 조성물을 의미하며, 바람직하게는 상기 혈우병 치료제의 효능 예측 마커의 폴리뉴클레오티드를 특이적으로 증폭할 수 있는 프라이머를 의미한다.In the present invention, the detectable agent may be a primer. The primer of the present invention refers to a composition capable of identifying the polymorphic site of the above-mentioned gene through amplification to predict the efficacy of the therapeutic agent for hemophilia. Preferably, the primer specifically amplifies the polynucleotide of the efficacy prediction marker of the hemophilia therapeutic agent Primer &quot;

상기 다형성 마커 증폭에 사용되는 프라이머는, 적절한 버퍼 중의 적절한 조건(예컨대, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA 폴리머라제와 같은 중합제) 및 적당한 온도 하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고뉴클레오티드를 말한다. 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 통상 15 내지 30 뉴클레오티드이다. 짧은 프라이머 분자는 일반적으로 주형과 안정한 혼성체를 형성하기 위해서는 더 낮은 온도를 필요로 한다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화 할 정도로 충분히 상보적이어야 한다. 상기 프라이머는 다형성 부위를 포함하는 DNA 서열에 혼성화하여 다형성 부위를 포함하는 DNA 단편을 증폭시킨다.The primers used for the polymorphic marker amplification can be amplified by PCR using appropriate conditions in suitable buffers (e.g., 4 different nucleoside triphosphates and polymerases such as DNA polymerase) and at a suitable temperature, which can serve as a starting point for template- Refers to single stranded oligonucleotides. The appropriate length of the primer may vary depending on the intended use, but is usually 15 to 30 nucleotides. Short primer molecules generally require a lower temperature to form a stable hybrid with the template. The primer sequence need not be completely complementary to the template, but should be sufficiently complementary to hybridize with the template. The primer hybridizes to a DNA sequence containing a polymorphic site to amplify a DNA fragment containing the polymorphic site.

본 발명에서 사용되는 용어, "프라이머"는 짧은 자유 3' 말단 수산화기(free 3' hydroxyl group)를 가지는 염기서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머라아제 또는 역전사 효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재 하에서 DNA 합성을 개시할 수 있다. PCR 증폭을 실시하여 원하는 생성물의 생성 여부를 통해 혈우병 치료제에 대한 항체 생성여부를 예측할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 것을 기초로 변형할 수 있다.As used herein, the term "primer" refers to a base sequence having a short free 3 'hydroxyl group, capable of forming a base pair with a complementary template, Quot; means a short sequence functioning as a starting point for &lt; / RTI &gt; The primers can initiate DNA synthesis in the presence of reagents and four different nucleoside triphosphates for polymerization reactions (i. E., DNA polymerase or reverse transcriptase) at appropriate buffer solutions and temperatures. PCR amplification can be used to predict whether antibodies to the hemophilia treatment will be produced through the production of desired products. The PCR conditions, the lengths of the sense and antisense primers can be modified based on what is known in the art.

본 발명의 프로브 또는 프라이머는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, "캡화", 천연 뉴클레오타이드 하나 이상의 동족체로의 치환, 및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.The probes or primers of the present invention can be chemically synthesized using the phosphoramidite solid support method, or other well-known methods. Such nucleic acid sequences may also be modified using many means known in the art. Non-limiting examples of such modifications include, but are not limited to, methylation, "capping ", replacement of natural nucleotides with one or more homologues, and modifications between nucleotides, such as uncharged linkers, such as methylphosphonate, Phosphoamidates, carbamates, etc.) or charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.).

본 발명에 있어서, 상기 검출할 수 있는 제제는 압타머일 수 있다.In the present invention, the above-mentioned detectable agent may be an aptamer.

압타머는 단일 사슬 DNA 또는 RNA분자로서, 높은 친화성으로 타겟물질을 특이적으로 인지할 수 있는 작은 단일가닥 올리고핵산을 말한다. 압타머는 검출분석 시스템에서 분자를 인식할 수 있는 바이오센서의 일 요소로 이용될 수 있어 항체의 대체물질로 인식되어 오고 있다. 특히, 압타머는 항체와 달리 독소를 비롯한 다양한 유기물 및 무기물의 표적 분자로 이용될 수 있고, 일단 특정 물질에 특이적으로 결합하는 압타머를 분리해내면 자동화된 올리고머 합성 방법으로 낮은 비용과 일관성으로 재생산이 가능한바 경제적이었다. 이에 1996년 처음으로 형광표지된 압타머를 이용하여 표적 단백질을 측정한 압타머 기반의 바이오센서가 개발된 이후로 이와 같은 압타머의 장점과 구조적 특성을 기반으로 하여 다양한 압타머 바이오센서들이 개발되고 있다 (김연석&구만복, NICE, 26(6): 690, 2008).Aptamer is a single chain DNA or RNA molecule, which refers to a small single stranded oligonucleotide capable of specifically recognizing a target substance with high affinity. Aptamers can be used as a component of a biosensor capable of recognizing molecules in a detection assay system and have been recognized as a substitute for antibodies. In particular, aptamers can be used as target molecules for various organic and inorganic substances, including toxins, unlike antibodies, and once an extramammer that specifically binds to a specific substance is isolated, automated oligomer synthesis methods can be used to reproduce This was economically feasible. Since the development of an abutamer-based biosensor measuring the target protein using the fluorescent-labeled abstammer for the first time in 1996, various types of abstamator biosensors have been developed based on the advantages and structural characteristics of the abutmenter (Kim, Yeon-seok & Guman-bok, NICE, 26 (6): 690, 2008).

또 다른 관점에서, 본 발명은 상기 혈우병 치료제의 효능 예측 조성물을 포함하는 혈우병 치료제의 효능 예측 키트를 제공한다.In another aspect, the present invention provides a kit for predicting the efficacy of a therapeutic agent for hemophilia comprising the composition for predicting efficacy of the therapeutic agent for hemophilia.

상기 키트는 PCR 키트, DNA 분석용(예: DNA 칩) 키트 또는 혐광염료(Fluorescence dye) 키트일 수 있으며, 이에 한정되는 것은 아니다.The kit may be a PCR kit, a DNA analysis kit (for example, a DNA chip), or a fluorescence dye kit, but is not limited thereto.

본 발명의 키트는 혈우병 치료제의 효능 예측 마커인 SNP 마커를 증폭을 통해 확인하거나, mRNA에 대한 증폭된 cDNA 주형에서 SNP 마커를 확인함으로써 혈우병 치료제의 효능을 예측할 수 있다. The kit of the present invention can predict the efficacy of the hemophilia treatment agent by confirming the SNP marker, which is an effect prediction marker of the hemophilia therapeutic agent, by amplification or by confirming the SNP marker in the amplified cDNA template for mRNA.

구체적인 일례로서, 본 발명의 키트는 PCR을 수행하기 위해 분석하고자 하는 시료로부터 유래된 게놈 DNA, 본 발명의 마커에 대해 특이적인 프라이머 세트, 적당량의 DNA 중합 효소(예를 들면, Taq polymerase), dNTP 혼합물, PCR 완충용액 및 물을 포함하는 키트일 수 있다. 상기 PCR 완충용액은 KCl, Tris-HCl 및 MgCl2를 함유할 수 있다. 이외에 PCR산물의 증폭 여부를 확인할 수 있는 전기영동 수행에 필요한 구성 성분들이 본 발명의 키트에 추가로 포함될 수 있다. As a specific example, the kit of the present invention comprises a genomic DNA derived from a sample to be analyzed, a primer set specific for the marker of the present invention, an appropriate amount of DNA polymerase (for example, Taq polymerase), dNTP Mixture, PCR buffer solution and water. The PCR buffer solution may contain KCl, Tris-HCl and MgCl2. In addition, components necessary for conducting electrophoresis to confirm whether the PCR product is amplified can be further included in the kit of the present invention.

또한, 본 발명의 키트는 프로브 타입을 이용한 형광염료 키트를 수행하기 위해 필요한 요소를 포함하는 혈우병 치료제의 효능 예측 키트일 수 있다. 혐광염료를 이용한 분석 방법으로는 TaqMan5'(nuclease assay), 분자비콘(Molecular Beacons), OLA(Oligonucleotide Ligase Assay), Invader Assay(Invasive Cleavage of Oligonucleotide Probes), Pyrosequencing, Single Base Extension 또는 Fluorescence Polarization 등이 있으며, 이에 한정되는 것은 아니다. In addition, the kit of the present invention may be an efficacy prediction kit of a hemophilia therapy agent including elements necessary for performing a fluorescent dye kit using a probe type. As a method of analysis using a dyestuff dye, TaqMan 5 '(nuclease assay), molecular beacons, OLA (oligonucleotide ligase assay), Invader Assay (Invasive Cleavage of Oligonucleotide Probes), Pyrosequencing, Single Base Extension or Fluorescence Polarization , But is not limited thereto.

또한 바람직하게는, 본 발명의 키트는 DNA 칩을 수행하기 위해 필요한 필수 요소를 포함하는 혈우병 치료제의 효능 예측 키트일 수 있다. DNA 칩 키트는, 일반적으로 편평한 고체 지지판, 전형적으로는 현미경용 슬라이드보다 크지 않은 유리 표면에 핵산 종을 격자형 배열(gridded array)로 부착한 것으로, 칩 표면에 핵산이 일정하게 배열되어, DNA 칩 상의 핵산과 칩 표면에 처리된 용액 내에 포함된 상보적인 핵산 간에 다중 혼성화(hybridization) 반응이 일어나 대량 병렬 분석이 가능하도록 하는 도구이다.Also preferably, the kit of the present invention may be an efficacy prediction kit of a hemophilia therapeutic agent containing essential elements necessary for performing a DNA chip. DNA chip kits are those in which nucleic acid species are attached in a gridded array on a generally flat solid support plate, typically a glass surface not larger than a slide for a microscope, and nucleic acids are uniformly arranged on the chip surface, Hybridization reaction occurs between the nucleic acid on the surface and the complementary nucleic acid contained in the solution treated on the surface of the chip to enable a mass parallel analysis.

또 다른 관점에서, 본 발명은 상기 혈우병 치료제의 효능 예측 마커의 폴리뉴클레오티드를 포함하는 혈우병 치료제의 효능 예측 마이크로어레이를 제공한다.In another aspect, the present invention provides an efficacy prediction microarray of a hemophilia therapeutic agent comprising a polynucleotide of an efficacy prediction marker of the hemophilia therapeutic agent.

상기 마이크로어레이는 DNA 또는 RNA 폴리뉴클레오티드를 포함하는 것일 수 있다. 상기 마이크로어레이는 본 발명의 폴리뉴클레오티드,폴리펩티드, cDNA 등을 포함하는 것을 제외하고는 통상적인 마이크로어레이로 이루어질 수 있다.The microarray may comprise DNA or RNA polynucleotides. The microarray may be a conventional microarray, except for including the polynucleotides, polypeptides, cDNA, etc. of the present invention.

바람직하게는, 상기 혈우병 치료제의 효능 예측 마이크로어레이는 서열번호 1 내지 87의 각 다형성 서열 중의 다형성 부위의 염기를 특이적으로 구별할 수 있도록 혼성화할 수 있는 폴리뉴클레오티드, 그의 상보적 폴리뉴클레오티드, 또는 그들과 혼성화하는 폴리뉴클레오티드, 그에 의해 코딩되는 폴리펩티드 또는 그의 cDNA를 이용하여 프로브로 사용함으로써, 당업자에게 알려져 있는 통상적인 방법에 의해 제조될 수 있다.Preferably, the hemophilia therapy antagonist is a polynucleotide capable of hybridizing specifically to a base of a polymorphic site in each polymorphic sequence of SEQ ID NOS: 1 to 87, a complementary polynucleotide thereof, , A polynucleotide that hybridizes with the polynucleotide of the present invention, a polypeptide encoded by the polynucleotide, or cDNA thereof, as a probe, can be produced by a conventional method known to those skilled in the art.

상기 폴리뉴클레오티드는 아미노-실란(amino-silane), 폴리-L-라이신(poly-L-lysine) 및 알데히드(aldehyde)로 이루어진 군에서 선택되는 하나의 활성기가 코팅된 기판 상에 고정되는 것이 바람직하나 이에 한정되는 것은 아니다.The polynucleotide is preferably immobilized on a substrate coated with one activator selected from the group consisting of amino-silane, poly-L-lysine and aldehyde But is not limited thereto.

프로브 폴리뉴클레오티드를 기판상에 고정화하여 마이크로어레이를 제조하는 방법은 당업계에 잘 알려져 있다. 상기 프로브 폴리뉴클레오티드는 혼성화할 수 있는 폴리뉴클레오티드를 의미하는 것으로, 핵산의 상보성 가닥에 서열 특이적으로 결합할 수 있는 올리고뉴클레오티드를 의미한다. 본 발명의 프로브는 대립 유전자 특이적 프로브로서, 같은 종의 두 구성원으로부터 유래한 핵산 단편 중에 다형성 부위가 존재하여, 한 구성원으로부터 유래한 DNA 단편에는 혼성화하나, 다른 구성원으로부터 유래한 단편에는 혼성화하지 않는다. 이 경우 혼성화 조건은 대립 유전자간의 혼성화 강도에 있어서 유의한 차이를 보여, 대립 유전자 중 하나에만 혼성화 하도록 충분히 엄격해야 한다. 이렇게 함으로써 다른 대립 유전자 형태 간에 좋은 혼성화 차이를 유발할 수 있다. 본 발명의 상기 프로브는 대립 유전자를 검출하여 혈우병 치료제의 효능 예측 등에 사용될 수 있다. 상기 예측 방법에는 서던 블롯트 등과 같은 핵산의 혼성화에 근거한 검출방법들이 포함되며, DNA 칩을 이용한 방법에서 DNA 칩의 기판에 미리 결합된 형태로 제공될 수도 있다.Methods for producing microarrays by immobilizing probe polynucleotides on a substrate are well known in the art. The probe polynucleotide means a polynucleotide capable of hybridizing, and means an oligonucleotide capable of binding to the complementary strand of the nucleic acid in a sequence-specific manner. The probe of the present invention is an allele-specific probe in which a polymorphic site exists in a nucleic acid fragment derived from two members of the same species and hybridizes to a DNA fragment derived from one member but does not hybridize to a fragment derived from another member . In this case, the hybridization conditions show a significant difference in the intensity of hybridization between alleles, and should be sufficiently stringent to hybridize to only one of the alleles. This can lead to good hybridization differences between different allelic forms. The probe of the present invention can be used for predicting the efficacy of a therapeutic agent for hemophilia by detecting an allele. The prediction method includes detection methods based on hybridization of a nucleic acid such as a Southern blot, and may be provided in a form pre-bonded to a substrate of a DNA chip in a method using a DNA chip.

본 발명의 혈우병 치료제의 효능 예측과 연관된 프로브 폴리뉴클레오티드의 기판상에 고정화하는 과정도 또한 이러한 종래 기술을 사용하여 용이하게 제조할 수 있다. 상기 폴리뉴클레오티드를 기판에 고정화시키는 방법으로는 피에조일렉트릭(piezoelectric) 방식을 이용한 마이크로피펫팅(micropipetting)법, 핀(pin) 형태의 스팟터(spotter)를 이용한 방법 등을 사용하는 것이 바람직하나 이에 한정되지 않는다.The process of immobilizing the probe polynucleotide on the substrate associated with the prediction of the efficacy of the hemophilia therapeutic of the present invention can also be easily produced using such a conventional technique. The method of immobilizing the polynucleotide on the substrate is preferably a micropipetting method using a piezo electric method or a method using a pin type spotter, It does not.

또한, 마이크로어레이 상에서의 핵산의 혼성화 및 혼성화 결과의 검출은 당업계에 잘 알려져 있다. 상기 검출은 예를 들면, 핵산 시료를 형광 물질, 예를 들면 Cy3 및 Cy5와 같은 물질을 포함하는 검출 가능한 신호를 발생시킬 수 있는 표지 물질로 표지한 다음, 마이크로어레이 상에 혼성화하고 상기 표지 물질로부터 발생하는 신호를 검출함으로써 혼성화 결과를 검출할 수 있다.In addition, hybridization of nucleic acids on a microarray and detection of hybridization results are well known in the art. The detection can be accomplished, for example, by labeling the nucleic acid sample with a labeling substance capable of generating a detectable signal comprising a fluorescent substance, such as Cy3 and Cy5, and then hybridizing on the microarray and detecting The hybridization result can be detected by detecting the generated signal.

또 다른 관점에서, 본 발명은 상기 SNP 마커의 다형성 부위의 염기를 결정하는 단계를 포함하는, 혈우병 치료제의 효능 예측을 위한 정보의 제공 방법을 제공한다.In another aspect, the present invention provides a method for providing information for predicting the efficacy of a hemophilic therapeutic agent, comprising determining a base at a polymorphic site of the SNP marker.

본 발명의 일 실시예에 따르면, (a) 분리된 시료의 DNA로부터 상기 SNP 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계; 및 (b) 상기 (a) 단계의 증폭된 또는 혼성화된 다형성 부위의 염기를 결정하는 단계를 포함하는, 혈우병 치료제의 효능 예측을 위한 정보의 제공 방법일 수 있다.According to an embodiment of the present invention, there is provided a method for amplifying a polynucleotide comprising: (a) amplifying a polymorphic site of the SNP marker from DNA of a separated sample or hybridizing with a probe; And (b) determining the base of the amplified or hybridized polymorphic site of step (a).

상기 분리된 시료의 DNA는 개체로부터 분리된 시료로부터 수득할 수 있다.The DNA of the isolated sample can be obtained from a sample isolated from the individual.

본 발명의 용어, "개체"란 혈우병 치료제의 효능 예측을 하기 위한 피험자로서, 상기 혈우병 치료제의 효능 예측은 혈우병 치료제 투약 개체군에서 항체 생성 반응에 대한 오즈비(Odds Ratio) 또는 상대위험도(Relative Risk)로 판단할 수 있다. 상기 검체에서 머리카락, 뇨, 혈액, 각종 체액, 분리된 조직, 분리된 세포 또는 타액과 같은 시료 등으로부터 DNA를 수득할 수 있으나, 이에 제한되는 것은 아니다.The term "individual" of the present invention refers to a subject who predicts the efficacy of a therapeutic agent for hemophilia. The prediction of the efficacy of the therapeutic agent for hemophilia is based on the odds ratio or relative risk of antibody production in the hemophilia therapy- . DNA can be obtained from the sample, such as hair, urine, blood, various body fluids, isolated tissues, isolated cells or saliva, but is not limited thereto.

상기 (a) 단계의 DNA로부터 상기 SNP 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계는 당업자에게 알려진 어떠한 방법이든 사용 가능하다. 예를 들면, 표적 핵산을 PCR을 통하여 증폭하고 이를 정제하여 얻을 수 있다. 그 외 리가제 연쇄 반응(LCR), 전사증폭(transcription amplification) 및 자가유지 서열 복제 및 핵산에 근거한 서열 증폭(NASBA)이 사용될 수 있다.The step of amplifying the polymorphic site of the SNP marker from the DNA of step (a) or hybridizing with the probe may be performed by any method known to those skilled in the art. For example, the target nucleic acid can be obtained by PCR amplification and purification thereof. Other ligase chain reaction (LCR), transcription amplification and self-sustaining sequence replication and nucleic acid based sequence amplification (NASBA) can be used.

상기 방법 중 (b)단계의 다형성 부위의 염기를 결정하는 것은 서열 분석, 마이크로어레이(microarray)에 의한 혼성화, 대립 유전자 특이적인 PCR (allele specific PCR), 다이나믹 대립 유전자 혼성화 기법(dynamic allele-specific hybridization, DASH), PCR 연장 분석, PCR-SSCP, PCR-RFLP 분석 또는 TaqMan 기법, SNPlex 플랫폼(Applied Biosystems), 질량 분석법(예를 들면, Sequenom의 MassARRAY 시스템), 미니-시퀀싱(minisequencing) 방법, Bio-Plex 시스템(BioRad), CEQ and SNPstream 시스템(Beckman), Molecular Inversion Probe 어레이 기술(예를 들면, Affymetrix GeneChip), 및 BeadArray Technologies(예를 들면, Illumina GoldenGate 및 Infinium 분석법)를 포함하나, 이에 한정되지 않는다. 상기 방법들 또는 본 발명이 속하는 기술분야의 당업자에게 이용 가능한 다른 방법에 의해, 마이크로세틀라이트, SNP 또는 다른 종류의 다형성 마커를 포함한, 다형성 마커에서의 하나 이상의 대립 유전자가 확인될 수 있다. 이와 같은 다형성 부위의 염기를 결정하는 것은 바람직하게는 SNP 칩을 통해 수행할 수 있다.Determination of bases in the polymorphic site of step (b) of the above method can be carried out by sequencing, hybridization by microarray, allele specific PCR, dynamic allele-specific hybridization , DASH), PCR extension analysis, PCR-SSCP, PCR-RFLP analysis or TaqMan technique, SNPlex platform (Applied Biosystems), mass spectrometry (eg, Sequenom's MassARRAY system), mini- But are not limited to, the Plex system (BioRad), the CEQ and SNPstream system (Beckman), the Molecular Inversion probe array technology (e.g. Affymetrix GeneChip), and BeadArray Technologies (e.g. Illumina GoldenGate and Infinium analysis) . One or more alleles in a polymorphic marker can be identified, including microsatellite, SNP, or other types of polymorphic markers, by such methods or by other methods available to those skilled in the art to which this invention belongs. The base of such a polymorphic site can be determined preferably through a SNP chip.

본 발명에서 사용되는 용어, "SNP 칩"은 수십만 개의 SNP의 각 염기를 한번에 확인할 수 있는 DNA 마이크로어레이의 하나를 의미한다.The term "SNP chip" used in the present invention means one of DNA microarrays capable of confirming each base of several hundred thousand SNPs at a time.

TaqMan 방법은 (1) 원하는 DNA 단편을 증폭할 수 있도록 프라이머 및 TaqMan 탐침을 설계 및 제작하는 단계; (2) 서로 다른 대립 유전자의 탐침을 FAM 염료 및 VIC 염료로 표지(Applied Biosystems)하는 단계; (3) 상기 DNA를 주형으로 하고, 상기의 프라이머 및 탐침을 이용하여 PCR을 수행하는 단계; (4) 상기의 PCR 반응이 완성된 후, TaqMan 분석 플레이트를 핵산 분석기로 분석 및 확인하는 단계; 및 (5) 상기 분석결과로부터 단계 (1)의 폴리뉴클레오티드들의 유전자형을 결정하는 단계를 포함한다.The TaqMan method comprises the steps of: (1) designing and constructing a primer and a TaqMan probe to amplify a desired DNA fragment; (2) labeling probes of different alleles with FAM dyes and VIC dyes (Applied Biosystems); (3) performing PCR using the DNA as a template and using the primer and the probe; (4) after completion of the PCR reaction, analyzing and confirming the TaqMan assay plate with a nucleic acid analyzer; And (5) determining the genotype of the polynucleotides of step (1) from the analysis result.

상기에서, 시퀀싱 분석은 염기서열 결정을 위한 통상적인 방법을 사용할 수 있으며, 자동화된 유전자분석기를 이용하여 수행될 수 있다. 또한, 대립 유전자 특이적 PCR은 SNP가 위치하는 염기를 3' 말단으로 하여 고안한 프라이머를 포함한 프라이머 세트로 상기 SNP가 위치하는 DNA 단편을 증폭하는 PCR 방법을 의미한다. In the above, the sequencing analysis can be performed using a conventional method for determining the nucleotide sequence, and can be performed using an automated gene analyzer. The allele-specific PCR means a PCR method in which a DNA fragment in which the SNP is located is amplified with a primer set including a primer designed with the base at the 3 'end at which the SNP is located.

PCR 연장 분석은 먼저 단일염기 다형성이 위치하는 염기를 포함하는 DNA 단편을 프라이머 쌍으로 증폭을 한 다음, 반응에 첨가된 모든 뉴클레오티드를 탈인산화시킴으로써 불활성화시키고, 여기에 SNP 특이적 연장 프라이머, dNTP 혼합물, 디디옥시뉴클레오티드, 반응 완충액 및 DNA 중합효소를 첨가하여 프라이머 연장반응을 수행함으로써 이루어진다. 이때, 연장 프라이머는 SNP가 위치하는 염기의 5' 방향의 바로 인접한 염기를 3' 말단으로 삼으며, dNTP 혼합물에는 디디옥시뉴클레오티드와 동일한 염기를 갖는 핵산이 제외되고, 상기 디디옥시뉴클레오티드는 SNP를 나타내는 염기 종류 중 하나에서 선택된다. 이때, 검출방법으로는 연장 프라이머 또는 디디옥시뉴클레오티드를 형광 표지한 경우에는 일반적인 염기서열 결정에 사용되는 유전자 분석기(예를 들어, ABI사의 Model 3700 등)를 사용하여 형광을 검출함으로써 상기 SNP을 검출할 수 있으며, 무-표지된 연장 프라이머 및 디디옥시뉴클레오티드를 사용할 경우에는 MALDI-TOF (matrix assisted laser desorption ionization-time of flight) 기법을 이용하여 분자량을 측정함으로써 상기 SNP를 검출할 수 있다.PCR extension analysis is performed by first amplifying a DNA fragment containing a base in which a single base polymorphism is located with a pair of primers and then inactivating all the nucleotides added to the reaction by dephosphorylation and adding SNP specific extension primer, dNTP mixture , Digoxinucleotide, reaction buffer, and DNA polymerase to perform primer extension reaction. At this time, the extension primer has a base immediately adjacent to the 5 'direction of the base in which the SNP is located at the 3' terminus, and the nucleic acid having the same base as the dodecoxynucleotide is excluded in the dNTP mixture, and the dodecoxynucleotide indicates the SNP Base type. As the detection method, when the extension primer or the dioxynucleotide is fluorescently labeled, the SNP is detected by detecting fluorescence using a gene analyzer (for example, Model 3700 of ABI Co., Ltd.) used for general nucleotide sequence determination And when the unlabeled extension primer and the didyxin nucleotide are used, the SNP can be detected by measuring the molecular weight using MALDI-TOF (matrix assisted laser desorption ionization-time of flight) technique.

상기 (b) 단계에서 결정된 염기서열 중, 서열번호 1로 기재되는 rs2486316에 있어서, 101번째 염기가 T인 경우; 서열번호 2로 기재되는 rs476488에 있어서, 101번째 염기가 C인 경우; 서열번호 3으로 기재되는 rs55700376에 있어서, 101번째 염기가 A인 경우; 서열번호 4로 기재되는 rs1131568에 있어서, 101번째 염기가 T인 경우; 서열번호 5로 기재되는 rs3815496에 있어서, 101번째 염기가 C인 경우; 서열번호 6으로 기재되는 rs62334652에 있어서, 101번째 염기가 C인 경우; 서열번호 7로 기재되는 rs45468202에 있어서, 101번째 염기가 C인 경우; 서열번호 8로 기재되는 rs3805220에 있어서, 101번째 염기가 A인 경우; 서열번호 9로 기재되는 rs13306436에 있어서, 101번째 염기가 A인 경우; 서열번호 10으로 기재되는 rs2307075에 있어서, 101번째 염기가 C인 경우; 서열번호 11로 기재되는 rs703에 있어서, 101번째 염기가 C인 경우; 서열번호 12로 기재되는 rs16928973에 있어서, 101번째 염기가 T인 경우; 서열번호 13으로 기재되는 rs2074226에 있어서, 101번째 염기가 T인 경우; 서열번호 14로 기재되는 rs10844140에 있어서, 101번째 염기가 T인 경우; 서열번호 15로 기재되는 rs2074572에 있어서, 101번째 염기가 T인 경우; 서열번호 16로 기재되는 rs9367에 있어서, 101번째 염기가 C인 경우; 서열번호 17으로 기재되는 rs3816553에 있어서, 101번째 염기가 A인 경우; 서열번호 18로 기재되는 rs383483에 있어서, 101번째 염기가 G인 경우; 서열번호 19로 기재되는 rs2227982에 있어서, 101번째 염기가 A인 경우; 서열번호 20으로 기재되는 rs73019023에 있어서, 101번째 염기가 G인 경우; 서열번호 21로 기재되는 rs75345202에 있어서, 101번째 염기가 A인 경우; 서열번호 22로 기재되는 rs2287872에 있어서, 101번째 염기가 A인 경우; 서열번호 23로 기재되는 rs3815734에 있어서, 101번째 염기가 C인 경우; 서열번호 24로 기재되는 rs2239354에 있어서, 101번째 염기가 A인 경우; 서열번호 25로 기재되는 rs8099222에 있어서, 101번째 염기가 A인 경우; 서열번호 26로 기재되는 rs6136376에 있어서, 101번째 염기가 A인 경우; 서열번호 58로 기재되는 rs190983971에 있어서, 101번째 염기가 G인 경우; 서열번호 59로 기재되는 rs117064599에 있어서, 101번째 염기가 G인 경우; 서열번호 60로 기재되는 rs12091406에 있어서, 101번째 염기가 A인 경우; 서열번호 61로 기재되는 rs117447527에 있어서, 101번째 염기가 A인 경우; 서열번호 62로 기재되는 rs3738869에 있어서, 101번째 염기가 C인 경우; 서열번호 63로 기재되는 rs200662898에 있어서, 101번째 염기가 T인 경우; 서열번호 64로 기재되는 rs17878995에 있어서, 101번째 염기가 T인 경우; 서열번호 65로 기재되는 rs140930246에 있어서, 101번째 염기가 C인 경우; 서열번호 66로 기재되는 rs75953973에 있어서, 101번째 염기가 A인 경우; 서열번호 67로 기재되는 rs149045171에 있어서, 101번째 염기가 A인 경우; 서열번호 68로 기재되는 rs732072에 있어서, 101번째 염기가 A인 경우; 서열번호 69로 기재되는 rs72481820에 있어서, 101번째 염기가 T인 경우; 서열번호 70로 기재되는 rs78245838에 있어서, 101번째 염기가 C인 경우; 서열번호 71로 기재되는 rs117884186에 있어서, 101번째 염기가 C인 경우; 서열번호 85로 기재되는 염기서열에 있어서, 100번째 염기가 G인 경우; 서열번호 86으로 기재되는 염기서열에 있어서, 100번째 염기가 A인 경우; 또는 서열번호 87로 기재되는 염기서열에 있어서, 100번째 염기가 C인 경우, 혈우병 치료제에 대한 항체 생성 위험도가 증가하는 것으로 판단할 수 있다. 상기 다형성 부위는 위험 대립 유전자로 판단하며, 상기 대립 유전자의 빈도가 높을수록 혈우병 치료제 항체 생성 위험이 높다고 판단할 수 있다. 보다 바람직하게는 서열번호 1 내지 26, 58 내지 71 및 85 내지 87 중 다형성 부위 2개 이상이 위험 대립 유전자인 경우, 가장 바람직하게는 43개 모두 위험 대립 유전자일수록 혈우병 치료제 항체 생성 위험이 높다고 판단할 수 있다. 상기 101번째 염기가 표 1의 위험 대립 유전자의 염기가 아닌 경우 이는 혈우병 치료제 항체 생성 위험이 낮다고 판단할 수 있다.Among the nucleotide sequences determined in the step (b), when the 101st base is T in rs2486316 described in SEQ ID NO: 1; In rs476488 described in SEQ ID NO: 2, when the 101st base is C; In rs55700376 described in SEQ ID NO: 3, when the 101st base is A; In rs1131568 described in SEQ ID NO: 4, when the 101st base is T; In rs3815496 described in SEQ ID NO: 5, when the 101st base is C; In rs62334652 described in SEQ ID NO: 6, when the 101st base is C; In rs45468202 described in SEQ ID NO: 7, when the 101st base is C; In rs3805220 described in SEQ ID NO: 8, when the 101st base is A; In rs13306436 described in SEQ ID NO: 9, when the 101st base is A; In rs2307075 described in SEQ ID NO: 10, when the 101st base is C; In the case of rs703 represented by SEQ ID NO: 11, when the 101st base is C; In rs16928973 described in SEQ ID NO: 12, when the 101st base is T; In rs2074226 described in SEQ ID NO: 13, when the 101st base is T; In rs10844140 described in SEQ ID NO: 14, when the 101st base is T; In rs2074572 described in SEQ ID NO: 15, when the 101st base is T; In rs9367 described in SEQ ID NO: 16, when the 101st base is C; In the case of rs3816553 described in SEQ ID NO: 17, when the 101st base is A; In rs383483 described in SEQ ID NO: 18, when the 101st base is G; In rs2227982 described in SEQ ID NO: 19, when the 101st base is A; In rs73019023 described in SEQ ID NO: 20, when the 101st base is G; In rs75345202 described in SEQ ID NO: 21, when the 101st base is A; In rs2287872 described in SEQ ID NO: 22, when the 101st base is A; In the case of rs3815734 described in SEQ ID NO: 23, when the 101st base is C; In rs2239354 represented by SEQ ID NO: 24, when the 101st base is A; In rs8099222 described in SEQ ID NO: 25, when the 101st base is A; In the case of rs6136376 described in SEQ ID NO: 26, when the 101st base is A; In rs190983971 described in SEQ ID NO: 58, when the 101st base is G; In rs117064599 described in SEQ ID NO: 59, when the 101st base is G; In rs12091406 described in SEQ ID NO: 60, when the 101st base is A; In rs117447527 described in SEQ ID NO: 61, when the 101st base is A; In rs3738869 represented by SEQ ID NO: 62, when the 101st base is C; In rs200662898 described in SEQ ID NO: 63, when the 101st base is T; In rs17878995 described in SEQ ID NO: 64, when the 101st base is T; In rs140930246 described in SEQ ID NO: 65, when the 101st base is C; In rs75953973 described in SEQ ID NO: 66, when the 101st base is A; In rs149045171 described in SEQ ID NO: 67, when the 101st base is A; In rs732072 described in SEQ ID NO: 68, when the 101st base is A; In rs72481820 described in SEQ ID NO: 69, when the 101st base is T; In rs78245838 described in SEQ ID NO: 70, when the 101st base is C; In rs117884186 described in SEQ ID NO: 71, when the 101st base is C; In the nucleotide sequence shown in SEQ ID NO: 85, when the 100th base is G; In the nucleotide sequence shown in SEQ ID NO: 86, when the 100th base is A; Or in the nucleotide sequence shown in SEQ ID NO: 87, when the 100th base is C, it can be judged that the risk of antibody production to the hemophilia therapeutic agent increases. The polymorphic site is judged to be a risk allele, and the higher the frequency of the allele gene, the higher the risk of the antibody production of the hemophilia therapeutic agent can be determined. More preferably, if two or more polymorphic sites of SEQ ID NOS: 1 to 26, 58 to 71, and 85 to 87 are risk alleles, and most preferably all 43 polymorphisms are risk alleles, . If the 101 &lt; th &gt; base is not the base of the risk allele in Table 1, it can be judged that the risk of the antibody production of the hemophilia therapeutic is low.

Figure 112016060696143-pat00001
Figure 112016060696143-pat00001

표 1의 SNP(OR >1)은 혈우병 치료제에 대한 항체 생성 위험도를 증가시킨다.The SNPs in Table 1 (OR> 1) increase the risk of antibody production to hemophilia treatment.

더욱 바람직하게는, 서열번호 1, 9, 58 내지 71, 85 및 86 중 다형성 부위 1개 이상, 보다 바람직하게는 2개 이상이 위험 대립 유전자인 경우, 가장 바람직하게는 18개 모두 위험 대립 유전자일수록 혈우병 A 치료제 항체 생성 위험이 높다고 판단할 수 있다. 상기 서열번호 1, 9, 58 내지 71의 101번째 염기 및 서열번호 84 및 85의 100번째 염기가 표 1의 효과 대립 유전자의 염기가 아닌 경우 이는 혈우병 치료제 항체 생성 위험이 낮다고 판단할 수 있다.More preferably, if one or more, more preferably two or more of the polymorphic sites of SEQ ID NOS: 1, 9, 58 to 71, 85 and 86 are risk alleles, most preferably all 18 are risk alleles It can be judged that there is a high risk of antibody production of hemophilia A therapeutic agent. When the 101st base of SEQ ID NOS: 1, 9, 58 to 71 and the 100th base of SEQ ID NOS: 84 and 85 are not bases of the effect allele of Table 1, it can be judged that the risk of the antibody production of the hemophilia therapeutic is low.

또한, 상기 (b) 단계에서 결정된 염기서열 중, 서열번호 27로 기재되는 rs366316에 있어서, 101번째 염기가 G인 경우; 서열번호 28로 기재되는 rs138067550에 있어서, 101번째 염기가 T인 경우; 서열번호 29로 기재되는 rs3213479에 있어서, 101번째 염기가 A인 경우; 서열번호 30으로 기재되는 rs17141154에 있어서, 101번째 염기가 A인 경우; 서열번호 31로 기재되는 rs2269443에 있어서, 101번째 염기가 A인 경우; 서열번호 32로 기재되는 rs2459467에 있어서, 101번째 염기가 T인 경우; 서열번호 33으로 기재되는 rs2230525에 있어서, 101번째 염기가 C인 경우; 서열번호 34로 기재되는 rs6876997에 있어서, 101번째 염기가 G인 경우; 서열번호 35로 기재되는 rs149956505에 있어서, 101번째 염기가 T인 경우; 서열번호 36으로 기재되는 rs2504020에 있어서, 101번째 염기가 G인 경우; 서열번호 37로 기재되는 rs2252752에 있어서, 101번째 염기가 C인 경우; 서열번호 38로 기재되는 rs2298584에 있어서, 101번째 염기가 G인 경우; 서열번호 39로 기재되는 rs4762088에 있어서, 101번째 염기가 C인 경우; 서열번호 40으로 기재되는 rs3024610에 있어서, 101번째 염기가 T인 경우; 서열번호 41로 기재되는 rs1985에 있어서, 101번째 염기가 A인 경우; 서열번호 42로 기재되는 rs3765622에 있어서, 101번째 염기가 G인 경우; 서열번호 43으로 기재되는 rs3826637에 있어서, 101번째 염기가 A인 경우; 서열번호 44로 기재되는 rs7226624에 있어서, 101번째 염기가 C인 경우; 서열번호 45로 기재되는 rs2240592에 있어서, 101번째 염기가 C인 경우; 서열번호 46으로 기재되는 rs2252673에 있어서, 101번째 염기가 G인 경우; 서열번호 47로 기재되는 rs55882956에 있어서, 101번째 염기가 A인 경우; 서열번호 48로 기재되는 rs56374127에 있어서, 101번째 염기가 T인 경우; 서열번호 49로 기재되는 rs229525에 있어서, 101번째 염기가 G인 경우; 서열번호 50으로 기재되는 rs144426992에 있어서, 101번째 염기가 G인 경우; 서열번호 51로 기재되는 rs1465922에 있어서, 101번째 염기가 A인 경우; 서열번호 52로 기재되는 rs2112290에 있어서, 101번째 염기가 A인 경우; 서열번호 53로 기재되는 rs2072372에 있어서, 101번째 염기가 A인 경우; 서열번호 54로 기재되는 rs10844141에 있어서, 101번째 염기가 G인 경우; 서열번호 55로 기재되는 rs71359461에 있어서, 101번째 염기가 C인 경우; 서열번호 56로 기재되는 rs2305372에 있어서, 101번째 염기가 T인 경우; 서열번호 57로 기재되는 rs1057114에 있어서, 101번째 염기가 C인 경우; 서열번호 72로 기재되는 rs139568272에 있어서, 101번째 염기가 A인 경우; 서열번호 73로 기재되는 rs2298022에 있어서, 101번째 염기가 A인 경우; 서열번호 74로 기재되는 rs13097123에 있어서, 101번째 염기가 T인 경우; 서열번호 75로 기재되는 rs35625434에 있어서, 101번째 염기가 A인 경우; 서열번호 76로 기재되는 rs185470785에 있어서, 101번째 염기가 G인 경우; 서열번호 77로 기재되는 rs61332891에 있어서, 101번째 염기가 T인 경우; 서열번호 78로 기재되는 rs3793744에 있어서, 101번째 염기가 A인 경우; 서열번호 79로 기재되는 rs17154981에 있어서, 101번째 염기가 A인 경우; 서열번호 80으로 기재되는 rs77893724에 있어서, 101번째 염기가 C인 경우; 서열번호 81로 기재되는 rs55851358에 있어서, 101번째 염기가 C인 경우; 서열번호 82로 기재되는 rs11545564에 있어서, 101번째 염기가 G인 경우; 서열번호 83로 기재되는 rs139142355에 있어서, 101번째 염기가 T인 경우; 또는 서열번호 84로 기재되는 rs56292769에 있어서, 101번째 염기가 C인 경우, 혈우병 치료제에 대한 항체 생성위험도가 감소한 것으로 판단할 수 있다. 상기 다형성 부위는 보호 대립 유전자로 판단하며, 상기 대립 유전자의 빈도가 높을수록 혈우병 치료제의 항체 생성 위험이 낮다고 판단할 수 있다. 보다 바람직하게는 서열번호 27 내지 57 및 72 내지 84 중 다형성 부위 2개 이상이 보호 대립 유전자인 경우, 가장 바람직하게는 44개 모두 보호 대립 유전자일수록 혈우병 A 치료제 항체 생성 위험이 낮다고 판단할 수 있다. 상기 101번째 염기가 표 2의 보호 대립 유전자의 염기가 아닌 경우 이는 혈우병 치료제 항체 생성 위험이 높다고 판단할 수 있다.In addition, in the case of rs366316 of SEQ ID NO: 27 among the nucleotide sequences determined in the step (b), when the 101st base is G; In rs138067550 described in SEQ ID NO: 28, when the 101st base is T; In the case of rs3213479 described in SEQ ID NO: 29, when the 101st base is A; In the case of rs17141154 described in SEQ ID NO: 30, when the 101st base is A; In rs2269443 described in SEQ ID NO: 31, when the 101st base is A; In rs2459467 described in SEQ ID NO: 32, when the 101st base is T; In rs2230525 described in SEQ ID NO: 33, when the 101st base is C; In rs6876997 described in SEQ ID NO: 34, when the 101st base is G; In rs149956505 described in SEQ ID NO: 35, when the 101st base is T; In rs2504020 described in SEQ ID NO: 36, when the 101st base is G; In rs2252752 described in SEQ ID NO: 37, when the 101st base is C; In rs2298584 described in SEQ ID NO: 38, when the 101st base is G; In rs4762088 described in SEQ ID NO: 39, when the 101st base is C; In rs3024610 described in SEQ ID NO: 40, when the 101st base is T; In rs1985 described in SEQ ID NO: 41, when the 101st base is A; In rs3765622 described in SEQ ID NO: 42, when the 101st base is G; In rs3826637 described in SEQ ID NO: 43, when the 101st base is A; In rs7226624 described in SEQ ID NO: 44, when the 101st base is C; In rs2240592 described in SEQ ID NO: 45, when the 101st base is C; In rs2252673 described in SEQ ID NO: 46, when the 101st base is G; In rs55882956 described in SEQ ID NO: 47, when the 101st base is A; In rs56374127 described in SEQ ID NO: 48, when the 101st base is T; In rs229525 described in SEQ ID NO: 49, when the 101st base is G; In rs144426992 described in SEQ ID NO: 50, when the 101st base is G; In rs1465922 described in SEQ ID NO: 51, when the 101st base is A; In the case of rs2112290 represented by SEQ ID NO: 52, when the 101st base is A; In rs2072372 described in SEQ ID NO: 53, when the 101st base is A; In rs10844141 described in SEQ ID NO: 54, when the 101st base is G; In rs71359461 described in SEQ ID NO: 55, when the 101st base is C; In rs2305372 described in SEQ ID NO: 56, when the 101st base is T; In rs1057114 described in SEQ ID NO: 57, when the 101st base is C; In rs139568272 described in SEQ ID NO: 72, when the 101st base is A; In rs2298022 described in SEQ ID NO: 73, when the 101st base is A; In rs13097123 described in SEQ ID NO: 74, when the 101st base is T; In rs35625434 represented by SEQ ID NO: 75, when the 101st base is A; In rs185470785 described in SEQ ID NO: 76, when the 101st base is G; In rs61332891 described in SEQ ID NO: 77, when the 101st base is T; In the case of rs3793744 represented by SEQ ID NO: 78, when the 101st base is A; In rs17154981 described in SEQ ID NO: 79, when the 101st base is A; In rs77893724 described in SEQ ID NO: 80, when the 101st base is C; In rs55851358 described in SEQ ID NO: 81, when the 101st base is C; In rs11545564 described in SEQ ID NO: 82, when the 101st base is G; In rs139142355 described in SEQ ID NO: 83, when the 101st base is T; Or rs56292769 described in SEQ ID NO: 84, when the 101st base is C, it can be judged that the risk of antibody production to the hemophilia treatment is decreased. The polymorphic site is judged to be a protective allele, and the higher the frequency of the allele gene, the lower the risk of antibody production in the hemophilia therapy. More preferably, when two or more polymorphic sites of SEQ ID NOS: 27 to 57 and 72 to 84 are protective alleles, most preferably all of the 44 polymorphic sites are considered to have a lower risk of producing hemophilia A therapeutic antibody. If the 101 &lt; th &gt; base is not the base of the protective allele of Table 2, it can be judged that the risk of the antibody production of the hemophilia therapeutic is high.

통계적 유의성이 관찰된 OR <1 인 SNP 대립 유전자형SNP alleles with OR <1 observed statistically significant 유전형Genotype 유전형Genotype 서열번호SEQ ID NO: 참조Reference 대립Opposition 서열번호SEQ ID NO: 참조Reference 대립Opposition 2727 AA GG 4949 AA GG 2828 CC TT 5050 AA GG 2929 GG AA 5151 GG AA 3030 GG AA 5252 GG AA 3131 GG AA 5353 CC AA 3232 AA TT 5454 AA GG 3333 TT CC 5555 GG CC 3434 AA GG 5656 AA TT 3535 AA TT 5757 GG CC 3636 CC GG 7272 GG AA 3737 TT CC 7373 GG AA 3838 AA GG 7474 CC TT 3939 GG CC 7575 GG AA 4040 CC TT 7676 AA GG 4141 TT AA 7777 AA TT 4242 CC GG 7878 GG AA 4343 GG AA 7979 GG AA 4444 TT CC 8080 AA CC 4545 GG CC 8181 TT CC 4646 CC GG 8282 AA GG 4747 GG AA 8383 GG TT 4848 CC TT 8484 GG CC

표 2의 SNP(OR <1)은 혈우병 치료제에 대한 항체 생성 위험도를 감소시킨다.The SNP (OR < 1) in Table 2 reduces the risk of antibody production to hemophilia treatment.

더욱 바람직하게는, 서열번호 72 내지 84 중 다형성 부위 1개 이상, 보다 바람직하게는 2개 이상이 위험 대립 유전자인 경우, 가장 바람직하게는 13개 모두 보호 대립 유전자일수록 혈우병 치료제 항체 생성 위험이 낮다고 판단할 수 있다. 상기 101번째 염기가 표 2의 보호 대립 유전자의 염기가 아닌 경우 이는 혈우병 치료제 항체 생성 위험이 높다고 판단할 수 있다.More preferably, at least one polymorphic site in SEQ ID NOS: 72 to 84, more preferably two or more polymorphic sites, is most likely to be a risk allele, and most preferably all 13 polymorphic sites have a lower risk of antibody production can do. If the 101 &lt; th &gt; base is not the base of the protective allele of Table 2, it can be judged that the risk of the antibody production of the hemophilia therapeutic is high.

또 다른 관점에서, 본 발명은 혈우병 치료제의 효능 예측 SNP를 선별하는 방법을 제공하는 것이다.In another aspect, the present invention provides a method for screening the efficacy-predictive SNP of a hemophilia therapeutic.

본 발명의 일 실시예에 따르면, (a) 혈우병 치료제를 투여한 대상의 전장 엑솜 서열 분석 (Whole Exome Sequencing)에서 시퀀싱 깊이 값 (Sequencing Depth)이 10 이상 및 유전자형 정확도 (Genotype Quality) 값이 20 이상인 SNP를 선별하고, 그 중 주변에 유잔자 영역이 존재하지 않는 Intergenic Variant는 제거하는 단계; (b) 상기 (a) 단계에서 선별된 SNP에 대해 연관 분석을 수행하여 혈우병 치료제 항체생성 표현형과 연관성이 있는 SNP를 선별하는 단계; 및 (c) 상기 (b) 단계에서 선별된 SNP에 대하여 면역체계와 관련된 유전자 영역의 SNP를 선별하는 단계를 포함하는, 혈우병 치료제의 효능 예측 SNP 선별 방법일 수 있다.According to one embodiment of the present invention, there is provided a method of detecting hemophilia comprising the steps of (a) subjecting a subject to hemophilia treatment with a sequencing depth value of 10 or more and a genotype quality value of 20 or more in whole exome sequencing Selecting an SNP, and removing an intergenic variant in which no residue region exists; (b) performing a linkage analysis on the selected SNPs in step (a), thereby selecting SNPs that are related to the antibody-producing phenotype of hemophilia treatment; And (c) selecting a SNP in a gene region related to the immune system for the SNP selected in the step (b).

상기 용어 "Sequencing Depth"는 시퀀싱 과정 동안 염기가 판독되는 수를 의미한다. 시퀀싱 깊이(범위)는 판독한 전체 수가 분석하는 시퀀스의 길이보다 몇 배나 더 큰 것인지를 나타내며, 깊이는 재구성된 시퀀스에서 특정 염기를 나타내는 판독의 평균 개수이다. 또한 용어 GQ(Genotype Quality)는 유전자형이 진정한 유전자형이라는 신뢰도를 나타내는 Phred-scaled 값이다. 이는 값이 높을수록 더 정확한 유전자형을 반영한다.The term "Sequencing Depth" refers to the number of bases read during the sequencing process. The sequencing depth (range) indicates how many times the total number read out is several times longer than the length of the sequence being analyzed, and the depth is the average number of reads that represent a particular base in the reconstructed sequence. In addition, the term GQ (Genotype Quality) is a Phred-scaled value indicating the reliability that the genotype is a genotype. The higher the value, the more accurate the genotype.

상기 (a) 단계의 전장 엑솜 염기서열 분석(Whole Exome Sequencing)은 혈우병 약물치료를 받고 있는 대상의 DNA 검체에 대해 SureSelect XT v5 Kit를 이용하여 라이브러리를 제작하고 NextSeq 500 장비에서 수행할 수 있다. "유전자간 변형"이란 상기 전장 엑솜 염기서열 분석을 수행하여 선별된 SNP 중, 주변에 유전자 영역이 존재하지 않는 SNP를 의미한다.Whole exome sequencing of step (a) above can be performed on a NextSeq 500 instrument using a SureSelect XT v5 Kit for DNA samples of subjects undergoing hemophilia treatment. "Intergenic strain" means a SNP in which no gene region exists in the vicinity of the selected SNPs by performing the full-length exocytic base sequence analysis.

상기 (b) 단계에서 연관분석은 피셔의 정확검정(Fisher's Exact Test)으로 수행하였으며, 이는 분할표를 구성하는 도수자료를 초기하확률분포를 이용하여 검정하는 방법이다. 본 발명의 일 실시예에 따르면, 연관성 분석은 전체 집단, F8 inversion 검출군에 대하여 각각 진행되며, 항체생성 반응에 대한 집단간 비교는 >0.60 BU 집단 대 ≤0.60 BU 집단 및 >5.00 BU 집단 대 ≤5.00 BU 집단으로 나누어 실시하였다. 상기 (b) 단계는 이에 제한되지는 않으나, 전체 집단(n=250)의 항체생성군에 대한 OR 값이 > 5 또는 < 0.2 이며, P < 0.05 를 만족하는 SNP들을 우선 선별할 수 있으며, 선별된 SNP의 혈우병 A 치료제에 대한 항체 생성여부에 대한 연관성을 분석하여 전체 집단 또는 F8 inversion 검출 집단에 대해 반복된 통계적 유의성이 관찰되는 SNP만을 선별할 수 있다. In the step (b), the correlation analysis is performed using Fisher's Exact Test, which is a method of testing the frequency data constituting the partition table using an initial probability distribution. According to one embodiment of the present invention, association analysis is performed for the whole population, F8 inversion detection group, and the group comparison for antibody generation reaction is> 0.60 BU group vs. 0.60 BU group and> 5.00 BU group vs. 5.00 BU group. Although the step (b) is not limited thereto, it is possible to first select SNPs satisfying P &lt; 0.05 with an OR value of &gt; 5 or <0.2 with respect to the whole group (n = 250) SNPs in patients with hemophilia A can be screened only for SNPs with repeated statistical significance for the whole population or the F8 inversion detection group.

본 발명에서 사용되는 용어 "OR 값"이란 오즈비(Odds Ratio)로서, 사례 대조연구에 있어서 상대위험도(relative risk)의 추정치로서 산출되는 비율을 나타내는 것으로, 대조군 중에서 해당 SNP를 가질 확률에 대한 사례군 중에서 해당 SNP를 가질 확률의 비율을 나타낸다. 예를 들어, 사례군 가운데 위험요인에 노출한 자 a명, 노출하지 않은자 b명, 대조군의 노출자 c명, 비노출자 d명인 경우, 오즈비는 ad/bc로 표시된다. The term "OR value" used in the present invention refers to the odds ratio, which is a ratio calculated as an estimate of relative risk in a case-control study. In the case of the control group, Represents the ratio of the probability of having the corresponding SNP in the group. For example, if a person exposed to a risk factor, a person who has not exposed a person, a person who has exposed a person in a control group, or a person who is a non-exposed person in the case group, the ozone ratio is displayed as ad / bc.

상기 오즈비가 1을 초과하는 경우 해당 다중 SNP가 혈우병 치료제에 대한 항체 생성과 연관성이 있음을 나타내며, 오즈비가 1 미만인 경우 해당 다중 SNP가 혈우병 A 치료제에 대한 항체 생성과 연관성이 없음을 의미한다. 오즈비가 클수록 상기 연관성도 증가하며, 오즈비가 1보다 작을수록 연관성이 감소한다.If the odds ratio is greater than 1, the corresponding multiple SNPs are associated with antibody production to hemophilia therapy. If the odds ratio is less than 1, the multiple SNPs are not associated with antibody production to the hemophilia A treatment. The larger the odds ratio, the greater the association, and the smaller the odds ratio is, the lower the relevance.

또한, 상기 SNP 다형성의 결과들은 당업계에서 일반적으로 사용되는 통계학적 분석 방법을 이용하여 통계처리 할 수 있으며, 예를 들면, 스튜던트 t-검정(Student's t-test), 카이-스퀘어 테스트 (Chi-square test), 선형 회귀선 분석(linear regression line analysis), 다변량 로지스틱 회귀분석 (multiple logistic regression analysis) 등을 통해 얻은 연속 변수 (continuous variables), 범주형 변수 (categorical variables) 및 95% 신뢰구간 (confidence interval) 등의 변수를 이용하여 분석할 수 있다. The results of the SNP polymorphism can also be statistically processed using statistical analysis methods commonly used in the art. For example, Student's t-test, Chi- continuous variables, categorical variables, and 95% confidence intervals (CIs) obtained through linear regression analysis, linear regression line analysis, and multiple logistic regression analysis. ) Can be used for analysis.

상기 (c) 단계는 (b) 단계에서 선별된 SNP에 대하여 면역체계와 관련된 유전자 영역의 SNP를 선별하고, 바람직하게는 해당 SNP의 HGVS(Human Genome Variation Society) 정보를 확인한다. 본 발명의 일 실시예에 따르면 상기 (a) 내지 (c) 단계를 수행하여 혈우병 치료제의 효능 예측을 위한 87개 SNP 마커 세트(중복 SNP 4개)를 선별하였다.In the step (c), the SNPs of the gene region related to the immune system are selected for the SNP selected in the step (b), and preferably the HGVS (Human Genome Variation Society) information of the corresponding SNP is confirmed. According to an embodiment of the present invention, 87 SNP marker sets (4 redundant SNPs) for predicting the efficacy of hemophilia therapy were selected by performing steps (a) through (c).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1: 실시 표본 및 혈우병 치료제 항체생성 반응 검사Example 1: Tests for production samples and antibodies against hemophilia

(1) 실시 대상 선별(1) Subject selection

총 250명의 혈우병 약물치료를 받고 있는 대상(F8 inversion 검출: 141명, F8 inversion 미검출: 109명)의 DNA 검체에 대해 SureSelect XT v5 Kit를 이용하여 라이브러리를 제작하고 NextSeq 500 장비에서 Whole Exome Sequencing을 수행하였다.A total of 250 hemophilic patients were treated with the SureSelect XT v5 Kit for DNA samples (F8 inversion detection: 141, F8 inversion not detected: 109), and Whole Exome Sequencing was performed on NextSeq 500 Respectively.

(2) 혈우병 치료제 항체생성 반응 검사(2) Hemophilia treatment antibody production test

혈우병 약물치료 중 F8 항체 역가가 0.60 BU 이하로 유지된 대상은 108명이었고, 0.61 BU 에서 5.00 BU 이하의 값을 나타낸 대상은 78명, 5.01 BU 이상의 값을 나타낸 대상은 64명이었다. 실시 표본 집단의 구성은 표 3과 같이 나타낼 수 있다.In the hemophilia drug treatment, the number of patients with F8 antibody titer was 0.60 BU or less, 108 patients, and 0.61 BU to 5.00 BU and 78 patients, respectively. The composition of the working sample group can be shown in Table 3.

실시 표본 집단의 구성The composition of the working sample ≤ 0.60 BU (집단 1)≤ 0.60 BU (group 1) 0.61~5.00 BU (집단 2)0.61 to 5.00 BU (group 2) ≥ 5.01 BU (집단 3)≥ 5.01 BU (group 3) 전체
(n=250)
all
(n = 250)
108명108 people 78명78 people 64명64 people
F8 inversion 검출
(n=141)
F8 inversion detection
(n = 141)
63명63 people 54명54 people 24명24 people

실시예 2: SNP세트 구축Example 2: Construction of a SNP set

(1) 전장 엑솜 서열 분석(Whole Exome Sequencing)(1) Whole Exome Sequencing

혈우병 치료제 항체생성 반응 예측 변이 세트를 구축하기 위해 총 3단계로 나누어 수행하였다. 본 단계에서는 NextSeq 500에서 생산된 250명의 Whole Exome Sequencing Data에서 Sequencing Depth 값이 10 이상, Genotype Quality 값이 20 이상의 조건을 모두 만족하는 변이를 선별하고, 그 중 주변에 유전자 영역이 존재하지 않는 Intergenic Variant를 제거하였다. In order to establish the predictive mutation set of antibody production reaction hemophilia therapeutic agent, 3 steps were performed in total. In this step, we selected 250 cases of Whole Exome Sequencing Data produced by NextSeq 500, which satisfy all the conditions of Sequencing Depth value of 10 or more and Genotype Quality value of 20 or more. Among them, Intergenic Variant .

(2) 연관성 분석(2) Association analysis

상기 단계에서 선별된 SNP에 대해 피셔의 정확검증(Fisher's Exact Test)를 시행하여 연관성 분석(Association Analysis)를 실시하였다. 연관성 분석은 전체 집단(n=250), F8 inversion 검출군(n=141)에 대하여 각각 진행되며, 항체생성 반응에 대한 집단 간 비교는 비교조건 1(> 0.60 BU 집단 1(대조군) vs. 집단 2 및 집단 3(사례군)) 또는 비교조건 2(> 5.00 BU; 집단 1 및 집단 2(대조군) vs. 집단 3(사례군))로 나누어 실시하였다. 전체 집단(n=250)의 항체생성군에 대한 OR값이 > 5 또는 < 0.2 이며, P < 0.05 를 만족하는 변이를 우선 선별하고, 전체 집단 또는 F8 inversion 검출 집단에 대해 비교조건 1 및 2에서 반복된 통계적 유의성이 관찰되는 SNP만 선별하였다. 우선 선별한 SNP 중 OR 값이 >1인 SNP 들은 혈우병 A 치료제에 대한 항체 생성에 고위험성을 갖고 있으며, 반대로 OR 값이 <1인 SNP는 혈우병 A 치료제에 대한 항체 생성에 저위험성을 갖는다고 볼 수 있다. 그 중 OR 값이 >5이거나 <0.2인 SNP 들은 항체 생성 반응에 대해 통계적으로 강력한 연관성을 나타낸다고 간주할 수 있다. Fisher's Exact Test was performed on selected SNPs in the above step, and Association analysis was performed. The correlation analysis was conducted for the whole population (n = 250) and F8 inversion detection group (n = 141), and the comparison between the groups for antibody production was compared with the comparison condition 1 (> 0.60 BU group 1 2) and group 3 (case group) or comparison condition 2 (> 5.00 BU; group 1 and group 2 (control) vs. group 3 (case group)). Variants satisfying P &lt; 0.05 were selected first, with an OR value of &gt; 5 or < 0.2 for the antibody-producing group of the whole population (n = 250) Only SNPs with repeated statistical significance were selected. SNPs with an OR value> 1 among the selected SNPs have a high risk of producing antibodies to the hemophilia A treatment agent. Conversely, SNPs with an OR value <1 have a low risk of antibody production to the hemophilia A treatment agent . SNPs with an OR value> 5 or <0.2 can be considered to have a statistically strong association with the antibody production response.

(3) Variant Annotation (3) Variant Annotation

본 단계에서는 상기 연관성 분석단계에서 선별된 SNP에 대하여 Immune System과 관련된 유전자 영역의 변이를 선별하고, 해당 SNP의 HGVS(Human Genome Variation Society) 정보를 확인하였다.In this step, the mutation of the gene region related to the Immune System was selected for the SNP selected in the association analysis step, and the HGVS (Human Genome Variation Society) information of the corresponding SNP was confirmed.

실시예 3: 선별된 SNP의 연관분석Example 3: Association analysis of selected SNPs

전체 250명 환자에 대해서 항체생성군에 대한 OR값이 > 5 또는 < 0.2이면서 P < 0.05인 변이는 표 4와 같다. Table 4 shows the variation of the OR of the antibody-producing group with respect to all 250 patients in which the OR value was > 5 or < 0.2 and P < 0.05.

전체 집단(n=250)에서 항체생성군에 대한 OR값이 > 5 또는 < 0.2인 SNP 일람A list of SNPs with an OR value> 5 or <0.2 for the antibody-producing group in the whole population (n = 250) 유전형Genotype 변이의 빈도Frequency of mutation PhenotypePhenotype ChrChr Position(hg19)Position (hG19) GeneGene rsIDrsID 서열번호SEQ ID NO: 참조Reference 대립Opposition 대조군Control group 사례군Case group OROR PP > 0.60 BU> 0.60 BU 1One 1218324512183245 TNFRSF8TNFRSF8 rs2486316rs2486316 1One GG TT 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 1One 4381225543812255 MPLMPL rs190983971rs190983971 5858 AA GG 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 1One 4381237643812376 MPLMPL rs117064599rs117064599 5959 AA GG 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 1One 183559841183559841 NCF2NCF2 rs12091406rs12091406 6060 GG AA 0.0090.009 0.0470.047 5.2805.280 0.0110.011 > 0.60 BU> 0.60 BU 1One 207753547207753547 CR1CR1 rs117447527rs117447527 6161 CC AA 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 22 2942055029420550 ALKALK rs3738869rs3738869 6262 TT CC 0.0050.005 0.0390.039 8.6638.663 0.0110.011 > 0.60 BU> 0.60 BU 22 3014406430144064 ALKALK rs200662898rs200662898 6363 CC TT 0.0050.005 0.0390.039 8.6638.663 0.0110.011 > 0.60 BU> 0.60 BU 33 31181423118142 IL5RAIL5RA rs17878995rs17878995 6464 GG TT 0.0090.009 0.0490.049 5.5485.548 0.0140.014 > 0.60 BU> 0.60 BU 33 5713175957131759 IL17RDIL17RD rs140930246rs140930246 6565 TT CC 0.0050.005 0.0420.042 9.4859.485 0.0060.006 > 0.60 BU> 0.60 BU 33 187009180187009180 MASP1MASP1 rs75953973rs75953973 6666 GG AA 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 77 2277129622771296 IL6IL6 rs13306436rs13306436 99 GG AA 0.0140.014 0.0850.085 6.6056.605 0.0000.000 > 0.60 BU> 0.60 BU 88 67279856727985 DEFB1DEFB1 rs149045171rs149045171 6767 GG AA 0.0050.005 0.0350.035 7.8477.847 0.0200.020 > 0.60 BU> 0.60 BU 1111 6542756865427568 RELARELA rs732072rs732072 6868 GG AA 0.0090.009 0.0460.046 5.1335.133 0.0120.012 > 0.60 BU> 0.60 BU 1818 6753464267534642 CD226CD226 rs72481820rs72481820 6969 CC TT 0.0050.005 0.0350.035 7.8477.847 0.0200.020 > 0.60 BU> 0.60 BU 2121 4571216745712167 AIREAIRE rs78245838rs78245838 7070 TT CC 0.0050.005 0.0420.042 9.4859.485 0.0060.006 > 0.60 BU> 0.60 BU 2121 4630863046308630 ITGB2ITGB2 rs117884186rs117884186 7171 GG CC 0.0050.005 0.0390.039 8.6638.663 0.0110.011 > 0.60 BU> 0.60 BU 33 5225948752259487 TLR9TLR9 -- 8585 CC GG 0.0050.005 0.0390.039 8.6638.663 0.0110.011 > 0.60 BU> 0.60 BU 1919 5533319355333193 KIR3DL1KIR3DL1 -- 8686 CC AA 0.0050.005 0.0410.041 8.1538.153 0.0110.011 > 0.60 BU> 0.60 BU 1One 3274156132741561 LCKLCK rs139568272rs139568272 7272 GG AA 0.0560.056 0.0110.011 0.1820.182 0.0040.004 > 0.60 BU> 0.60 BU 1One 161642982161642982 FCGR2BFCGR2B rs2298022rs2298022 7373 GG AA 0.0420.042 0.0070.007 0.1630.163 0.0080.008 > 0.60 BU> 0.60 BU 33 99657459965745 IL17RCIL17RC rs13097123rs13097123 7474 CC TT 0.0320.032 0.0040.004 0.1060.106 0.0180.018 > 0.60 BU> 0.60 BU 33 1008482810084828 FANCD2FANCD2 rs35625434rs35625434 7575 GG AA 0.0280.028 0.0040.004 0.1240.124 0.0340.034 > 0.60 BU> 0.60 BU 66 7452486174524861 CD109CD109 rs185470785rs185470785 7676 AA GG 0.0280.028 0.0040.004 0.1250.125 0.0340.034 > 0.60 BU> 0.60 BU 88 2238593222385932 PPP3CCPPP3CC rs61332891rs61332891 7777 AA TT 0.0280.028 0.0040.004 0.1240.124 0.0340.034 > 0.60 BU> 0.60 BU 1010 9760726697607266 ENTPD1ENTPD1 rs3793744rs3793744 7878 GG AA 0.0280.028 0.0040.004 0.1240.124 0.0340.034 > 0.60 BU> 0.60 BU 1111 6020110260201102 MS4A5MS4A5 rs17154981rs17154981 7979 GG AA 0.0510.051 0.0110.011 0.1990.199 0.0080.008 > 0.60 BU> 0.60 BU 1414 2484256324842563 NFATC4NFATC4 rs77893724rs77893724 8080 AA CC 0.0280.028 0.0040.004 0.1240.124 0.0340.034 > 0.60 BU> 0.60 BU 1414 2484466924844669 NFATC4NFATC4 rs55851358rs55851358 8181 TT CC 0.0370.037 0.0070.007 0.1870.187 0.0150.015 > 0.60 BU> 0.60 BU 1616 8594272185942721 IRF8IRF8 rs11545564rs11545564 8282 AA GG 0.0320.032 0.0040.004 0.1060.106 0.0180.018 > 0.60 BU> 0.60 BU 1717 3268535532685355 CCL13CCL13 rs139142355rs139142355 8383 GG TT 0.0280.028 0.0040.004 0.1240.124 0.0340.034 > 0.60 BU> 0.60 BU 2121 4564890545648905 ICOSLGICOSLG rs56292769rs56292769 8484 GG CC 0.0370.037 0.0070.007 0.1840.184 0.0150.015

전체 250명 환자에 대해서 항체생성군 및 고농도 항체생성군에 대한 반복된 통계적 유의성이 관찰된 변이 일람은 표 5과 같으며 위험도를 증가시키는 마커(OR > 1)는 19개, 감소시키는 마커(OR < 1)는 23개로 나타났다.Table 5 lists the mutations observed repeated statistical significance for the antibody-producing group and the high-antibody-producing group for all 250 patients. The risk-increasing marker (OR> 1) was 19, the decreasing marker (OR <1) were 23.

전체 집단(n=250)에서 항체생성군 및 고농도 항체생성군에 대해 반복된 통계적 유의성이 관찰된 SNP 일람SNPs with repeated statistical significance for the antibody-producing group and the high-antibody-producing group in the whole group (n = 250) 유전형Genotype 변이의 빈도Frequency of mutation PhenotypePhenotype ChrChr Position(hg19)Position (hG19) GeneGene rsIDrsID 서열번호SEQ ID NO: 참조Reference 대립Opposition 대조군Control group 사례군Case group OROR PP > 0.60 BU> 0.60 BU 1One 1218324512183245 TNFRSF8TNFRSF8 rs2486316rs2486316 1One GG TT 0.0050.005 0.0320.032 7.0367.036 0.0360.036 > 0.60 BU> 0.60 BU 1One 1219829712198297 TNFRSF8TNFRSF8 rs476488rs476488 22 TT CC 0.3750.375 0.4680.468 1.4681.468 0.0410.041 > 0.60 BU> 0.60 BU 1One 181026031181026031 MR1MR1 rs55700376rs55700376 33 GG AA 0.0190.019 0.0630.063 3.5533.553 0.0110.011 > 0.60 BU> 0.60 BU 33 172223690172223690 TNFSF10TNFSF10 rs1131568rs1131568 44 CC TT 0.3700.370 0.4790.479 1.5621.562 0.0160.016 > 0.60 BU> 0.60 BU 33 172227199172227199 TNFSF10TNFSF10 rs3815496rs3815496 55 TT CC 0.3240.324 0.4720.472 1.8621.862 0.0010.001 > 0.60 BU> 0.60 BU 44 145040999145040999 GYPAGYPA rs62334652rs62334652 66 TT CC 0.3490.349 0.4600.460 1.5911.591 0.0140.014 > 0.60 BU> 0.60 BU 44 145041750145041750 GYPAGYPA rs45468202rs45468202 77 AA CC 0.2550.255 0.3510.351 1.5841.584 0.0220.022 > 0.60 BU> 0.60 BU 55 4096498540964985 C7C7 rs3805220rs3805220 88 GG AA 0.0460.046 0.0990.099 2.2532.253 0.0340.034 > 0.60 BU> 0.60 BU 77 2277129622771296 IL6IL6 rs13306436rs13306436 99 GG AA 0.0140.014 0.0850.085 6.6056.605 0.0000.000 > 0.60 BU> 0.60 BU 88 8638822886388228 CA2CA2 rs2307075rs2307075 1010 AA CC 0.3220.322 0.4340.434 1.6101.610 0.0130.013 > 0.60 BU> 0.60 BU 88 8638940386389403 CA2CA2 rs703rs703 1111 TT CC 0.3430.343 0.4680.468 1.6901.690 0.0050.005 > 0.60 BU> 0.60 BU 1111 3651424536514245 TRAF6TRAF6 rs16928973rs16928973 1212 CC TT 0.0510.051 0.1130.113 2.3672.367 0.0120.012 > 0.60 BU> 0.60 BU 1111 6077648460776484 CD6CD6 rs2074226rs2074226 1313 CC TT 0.4200.420 0.5150.515 1.4651.465 0.0400.040 > 0.60 BU> 0.60 BU 1212 97472889747288 KLRB1KLRB1 rs10844140rs10844140 1414 CC TT 0.4070.407 0.5250.525 1.6051.605 0.0100.010 > 0.60 BU> 0.60 BU 1616 2735635927356359 IL4RIL4R rs2074572rs2074572 1515 CC TT 0.3660.366 0.4720.472 1.5491.549 0.0160.016 > 0.60 BU> 0.60 BU 1717 7375366173753661 ITGB4ITGB4 rs9367rs9367 1616 TT CC 0.4070.407 0.5070.507 1.4971.497 0.0260.026 > 0.60 BU> 0.60 BU 1919 1409291114092911 RFX1RFX1 rs3816553rs3816553 1717 GG AA 0.0740.074 0.1300.130 1.8721.872 0.0480.048 > 0.60 BU> 0.60 BU 1919 1817188618171886 IL12RB1IL12RB1 rs383483rs383483 1818 AA GG 0.3330.333 0.4260.426 1.4851.485 0.0370.037 > 0.60 BU> 0.60 BU 1717 2686439226864392 FOXN1FOXN1 -- 8787 AA CC 0.0090.009 0.0390.039 4.3114.311 0.0340.034 > 5.00 BU> 5.00 BU 1One 1218324512183245 TNFRSF8TNFRSF8 rs2486316rs2486316 1One GG TT 0.0080.008 0.0550.055 7.1167.116 0.0020.002 > 5.00 BU> 5.00 BU 1One 1219829712198297 TNFRSF8TNFRSF8 rs476488rs476488 22 TT CC 0.4010.401 0.5080.508 1.5441.544 0.0340.034 > 5.00 BU> 5.00 BU 1One 181026031181026031 MR1MR1 rs55700376rs55700376 33 GG AA 0.0320.032 0.0780.078 2.5282.528 0.0330.033 > 5.00 BU> 5.00 BU 33 172223690172223690 TNFSF10TNFSF10 rs1131568rs1131568 44 CC TT 0.4030.403 0.5160.516 1.5751.575 0.0260.026 > 5.00 BU> 5.00 BU 33 172227199172227199 TNFSF10TNFSF10 rs3815496rs3815496 55 TT CC 0.3810.381 0.4840.484 1.5261.526 0.0420.042 > 5.00 BU> 5.00 BU 44 145040999145040999 GYPAGYPA rs62334652rs62334652 66 TT CC 0.3760.376 0.5160.516 1.7661.766 0.0070.007 > 5.00 BU> 5.00 BU 44 145041750145041750 GYPAGYPA rs45468202rs45468202 77 AA CC 0.2730.273 0.4140.414 1.8821.882 0.0030.003 > 5.00 BU> 5.00 BU 55 4096498540964985 C7C7 rs3805220rs3805220 88 GG AA 0.0620.062 0.1170.117 2.0142.014 0.0420.042 > 5.00 BU> 5.00 BU 77 2277129622771296 IL6IL6 rs13306436rs13306436 99 GG AA 0.0350.035 0.1090.109 3.3723.372 0.0020.002 > 5.00 BU> 5.00 BU 88 8638822886388228 CA2CA2 rs2307075rs2307075 1010 AA CC 0.3560.356 0.4680.468 1.5871.587 0.0290.029 > 5.00 BU> 5.00 BU 88 8638940386389403 CA2CA2 rs703rs703 1111 TT CC 0.3790.379 0.5160.516 1.7441.744 0.0080.008 > 5.00 BU> 5.00 BU 1111 3651424536514245 TRAF6TRAF6 rs16928973rs16928973 1212 CC TT 0.0700.070 0.1330.133 2.0382.038 0.0350.035 > 5.00 BU> 5.00 BU 1111 6077648460776484 CD6CD6 rs2074226rs2074226 1313 CC TT 0.4390.439 0.5710.571 1.7051.705 0.0110.011 > 5.00 BU> 5.00 BU 1212 97472889747288 KLRB1KLRB1 rs10844140rs10844140 1414 CC TT 0.4460.446 0.5550.555 1.5461.546 0.0360.036 > 5.00 BU> 5.00 BU 1616 2735635927356359 IL4RIL4R rs2074572rs2074572 1515 CC TT 0.3950.395 0.5160.516 1.6291.629 0.0200.020 > 5.00 BU> 5.00 BU 1717 7375366173753661 ITGB4ITGB4 rs9367rs9367 1616 TT CC 0.4370.437 0.5390.539 1.5081.508 0.0450.045 > 5.00 BU> 5.00 BU 1919 1409291114092911 RFX1RFX1 rs3816553rs3816553 1717 GG AA 0.0890.089 0.1560.156 1.9021.902 0.0370.037 > 5.00 BU> 5.00 BU 1919 1817188618171886 IL12RB1IL12RB1 rs383483rs383483 1818 AA GG 0.3470.347 0.5000.500 1.8841.884 0.0030.003 > 5.00 BU> 5.00 BU 1717 2686439226864392 FOXN1FOXN1 -- 8787 AA CC 0.0110.011 0.0700.070 6.9586.958 0.0010.001 > 0.60 BU> 0.60 BU 1One 158224282158224282 CD1ACD1A rs366316rs366316 2727 AA GG 0.3240.324 0.2320.232 0.6320.632 0.0230.023 > 0.60 BU> 0.60 BU 22 202065462202065462 CASP10CASP10 rs138067550rs138067550 2828 CC TT 0.0560.056 0.0210.021 0.3670.367 0.0400.040 > 0.60 BU> 0.60 BU 33 4647966846479668 LTFLTF rs3213479rs3213479 2929 GG AA 0.4400.440 0.3520.352 0.6920.692 0.0470.047 > 0.60 BU> 0.60 BU 33 4649126746491267 LTFLTF rs17141154rs17141154 3030 GG AA 0.2720.272 0.1670.167 0.5360.536 0.0050.005 > 0.60 BU> 0.60 BU 33 4649129046491290 LTFLTF rs2269443rs2269443 3131 GG AA 0.3040.304 0.2110.211 0.6120.612 0.0190.019 > 0.60 BU> 0.60 BU 55 4092879240928792 C7C7 rs2459467rs2459467 3232 AA TT 0.5560.556 0.4390.439 0.6270.627 0.0100.010 > 0.60 BU> 0.60 BU 55 6647862666478626 CD180CD180 rs2230525rs2230525 3333 TT CC 0.2820.282 0.2040.204 0.6520.652 0.0390.039 > 0.60 BU> 0.60 BU 55 133477711133477711 TCF7TCF7 rs6876997rs6876997 3434 AA GG 0.0830.083 0.0390.039 0.4430.443 0.0430.043 > 0.60 BU> 0.60 BU 55 169468213169468213 DOCK2DOCK2 rs149956505rs149956505 3535 AA TT 0.0650.065 0.0180.018 0.2590.259 0.0060.006 > 0.60 BU> 0.60 BU 1010 3320112833201128 ITGB1ITGB1 rs2504020rs2504020 3636 CC GG 0.1200.120 0.0600.060 0.4650.465 0.0190.019 > 0.60 BU> 0.60 BU 1010 3321144033211440 ITGB1ITGB1 rs2252752rs2252752 3737 TT CC 0.1160.116 0.0630.063 0.5170.517 0.0450.045 > 0.60 BU> 0.60 BU 1111 5983688759836887 MS4A3MS4A3 rs2298584rs2298584 3838 AA GG 0.5150.515 0.3630.363 0.5370.537 0.0010.001 > 0.60 BU> 0.60 BU 1212 6659158266591582 IRAK3IRAK3 rs4762088rs4762088 3939 GG CC 0.1530.153 0.0880.088 0.5350.535 0.0290.029 > 0.60 BU> 0.60 BU 1616 2736415827364158 IL4RIL4R rs3024610rs3024610 4040 CC TT 0.4410.441 0.2980.298 0.5370.537 0.0010.001 > 0.60 BU> 0.60 BU 1818 29172232917223 LPIN2LPIN2 rs1985rs1985 4141 TT AA 0.4680.468 0.3380.338 0.5810.581 0.0040.004 > 0.60 BU> 0.60 BU 1818 29345362934536 LPIN2LPIN2 rs3765622rs3765622 4242 CC GG 0.4720.472 0.3450.345 0.5890.589 0.0040.004 > 0.60 BU> 0.60 BU 1818 29376462937646 LPIN2LPIN2 rs3826637rs3826637 4343 GG AA 0.4680.468 0.3380.338 0.5810.581 0.0040.004 > 0.60 BU> 0.60 BU 1818 29544392954439 LPIN2LPIN2 rs7226624rs7226624 4444 TT CC 0.4720.472 0.3630.363 0.6360.636 0.0150.015 > 0.60 BU> 0.60 BU 1919 16238501623850 TCF3TCF3 rs2240592rs2240592 4545 GG CC 0.3380.338 0.2540.254 0.6650.665 0.0420.042 > 0.60 BU> 0.60 BU 1919 71504187150418 INSRINSR rs2252673rs2252673 4646 CC GG 0.2850.285 0.1930.193 0.5990.599 0.0160.016 > 0.60 BU> 0.60 BU 1919 1046991910469919 TYK2TYK2 rs55882956rs55882956 4747 GG AA 0.0880.088 0.0250.025 0.2620.262 0.0010.001 > 0.60 BU> 0.60 BU 1919 5484851254848512 LILRA4LILRA4 rs56374127rs56374127 4848 CC TT 0.2770.277 0.1640.164 0.5120.512 0.0030.003 > 0.60 BU> 0.60 BU 2222 3758033437580334 C1QTNF6C1QTNF6 rs229525rs229525 4949 AA GG 0.4210.421 0.3280.328 0.6690.669 0.0280.028 > 5.00 BU> 5.00 BU 1One 158224282158224282 CD1ACD1A rs366316rs366316 2727 AA GG 0.3010.301 0.1880.188 0.5360.536 0.0130.013 > 5.00 BU> 5.00 BU 22 202065462202065462 CASP10CASP10 rs138067550rs138067550 2828 CC TT 0.0460.046 0.0080.008 0.1640.164 0.0390.039 > 5.00 BU> 5.00 BU 33 4647966846479668 LTFLTF rs3213479rs3213479 2929 GG AA 0.4250.425 0.2890.289 0.5510.551 0.0050.005 > 5.00 BU> 5.00 BU 33 4649126746491267 LTFLTF rs17141154rs17141154 3030 GG AA 0.2460.246 0.1120.112 0.3870.387 0.0010.001 > 5.00 BU> 5.00 BU 33 4649129046491290 LTFLTF rs2269443rs2269443 3131 GG AA 0.2790.279 0.1720.172 0.5370.537 0.0150.015 > 5.00 BU> 5.00 BU 55 4092879240928792 C7C7 rs2459467rs2459467 3232 AA TT 0.5190.519 0.4050.405 0.6300.630 0.0270.027 > 5.00 BU> 5.00 BU 55 6647862666478626 CD180CD180 rs2230525rs2230525 3333 TT CC 0.2740.274 0.1330.133 0.4050.405 0.0010.001 > 5.00 BU> 5.00 BU 55 133477711133477711 TCF7TCF7 rs6876997rs6876997 3434 AA GG 0.0730.073 0.0160.016 0.2030.203 0.0110.011 > 5.00 BU> 5.00 BU 55 169468213169468213 DOCK2DOCK2 rs149956505rs149956505 3535 AA TT 0.0480.048 0.0080.008 0.1550.155 0.0450.045 > 5.00 BU> 5.00 BU 1010 3320112833201128 ITGB1ITGB1 rs2504020rs2504020 3636 CC GG 0.1050.105 0.0310.031 0.2750.275 0.0080.008 > 5.00 BU> 5.00 BU 1010 3321144033211440 ITGB1ITGB1 rs2252752rs2252752 3737 TT CC 0.1050.105 0.0310.031 0.2750.275 0.0080.008 > 5.00 BU> 5.00 BU 1111 5983688759836887 MS4A3MS4A3 rs2298584rs2298584 3838 AA GG 0.4570.457 0.3480.348 0.6320.632 0.0360.036 > 5.00 BU> 5.00 BU 1212 6659158266591582 IRAK3IRAK3 rs4762088rs4762088 3939 GG CC 0.1340.134 0.0630.063 0.4290.429 0.0310.031 > 5.00 BU> 5.00 BU 1616 2736415827364158 IL4RIL4R rs3024610rs3024610 4040 CC TT 0.3880.388 0.2750.275 0.5990.599 0.0240.024 > 5.00 BU> 5.00 BU 1818 29172232917223 LPIN2LPIN2 rs1985rs1985 4141 TT AA 0.4220.422 0.3130.313 0.6230.623 0.0320.032 > 5.00 BU> 5.00 BU 1818 29345362934536 LPIN2LPIN2 rs3765622rs3765622 4242 CC GG 0.4270.427 0.3200.320 0.6310.631 0.0320.032 > 5.00 BU> 5.00 BU 1818 29376462937646 LPIN2LPIN2 rs3826637rs3826637 4343 GG AA 0.4220.422 0.3130.313 0.6230.623 0.0320.032 > 5.00 BU> 5.00 BU 1818 29544392954439 LPIN2LPIN2 rs7226624rs7226624 4444 TT CC 0.4380.438 0.3280.328 0.6260.626 0.0250.025 > 5.00 BU> 5.00 BU 1919 16238501623850 TCF3TCF3 rs2240592rs2240592 4545 GG CC 0.3150.315 0.2190.219 0.6100.610 0.0370.037 > 5.00 BU> 5.00 BU 1919 71504187150418 INSRINSR rs2252673rs2252673 4646 CC GG 0.2550.255 0.1670.167 0.5830.583 0.0440.044 > 5.00 BU> 5.00 BU 1919 1046991910469919 TYK2TYK2 rs55882956rs55882956 4747 GG AA 0.0670.067 0.0080.008 0.1090.109 0.0040.004 > 5.00 BU> 5.00 BU 1919 5484851254848512 LILRA4LILRA4 rs56374127rs56374127 4848 CC TT 0.2370.237 0.1470.147 0.5530.553 0.0430.043 > 5.00 BU> 5.00 BU 2222 3758033437580334 C1QTNF6C1QTNF6 rs229525rs229525 4949 AA GG 0.3930.393 0.2970.297 0.6540.654 0.0500.050

F8 inversion이 검출된 환자 141명에 대해서 항체생성군 및 고농도 항체생성군에 대한 반복된 통계적 유의성이 관찰된 변이 일람은 표 6과 같으며 위험도를 증가시키는 마커(OR > 1)는 9개, 감소시키는 마커(OR < 1)는 9개로 나타났다.The results are shown in Table 6, and the risk-increasing markers (OR> 1) were 9, and the decrease was statistically significant for the F8 inversion detected in 141 patients with antibody-producing group and high- The number of markers (OR <1) was 9.

F8 inversion 검출군(n=141)에서 항체생성군 및 고농도 항체생성군에 대해 반복된 통계적 유의성이 관찰된 SNP 일람SNPs with repeated statistical significance for the antibody-producing group and the high-antibody-producing group in the F8 inversion detection group (n = 141) 유전형Genotype 변이의 빈도Frequency of mutation PhenotypePhenotype ChrChr Position(hg19)Position (hG19) GeneGene rsIDrsID 서열번호SEQ ID NO: 참조Reference 대립Opposition 대조군Control group 사례군Case group OROR PP > 0.60 BU> 0.60 BU 22 242793433242793433 PDCD1PDCD1 rs2227982rs2227982 1919 GG AA 0.3890.389 0.5060.506 1.6111.611 0.0500.050 > 0.60 BU> 0.60 BU 33 148890137148890137 HPS3HPS3 rs73019023rs73019023 2020 AA GG 0.0410.041 0.1230.123 3.2913.291 0.0120.012 > 0.60 BU> 0.60 BU 55 4094539740945397 C7C7 rs75345202rs75345202 2121 GG AA 0.0560.056 0.1360.136 2.6712.671 0.0230.023 > 0.60 BU> 0.60 BU 55 4096498540964985 C7C7 rs3805220rs3805220 88 GG AA 0.0560.056 0.1300.130 2.5322.532 0.0360.036 > 0.60 BU> 0.60 BU 55 5236766652367666 ITGA2ITGA2 rs2287872rs2287872 2222 TT AA 0.3970.397 0.5310.531 1.7201.720 0.0210.021 > 0.60 BU> 0.60 BU 55 147493872147493872 SPINK5SPINK5 rs3815734rs3815734 2323 TT CC 0.1050.105 0.2070.207 2.2242.224 0.0260.026 > 0.60 BU> 0.60 BU 1616 5741898757418987 CX3CL1CX3CL1 rs2239354rs2239354 2424 GG AA 0.0250.025 0.1170.117 5.1625.162 0.0040.004 > 0.60 BU> 0.60 BU 1818 6002876260028762 TNFRSF11ATNFRSF11A rs8099222rs8099222 2525 GG AA 0.0820.082 0.1840.184 2.5292.529 0.0180.018 > 0.60 BU> 0.60 BU 2020 18962441896244 SIRPASIRPA rs6136376rs6136376 2626 GG AA 0.3500.350 0.5000.500 1.8571.857 0.0120.012 > 5.00 BU> 5.00 BU 22 242793433242793433 PDCD1PDCD1 rs2227982rs2227982 1919 GG AA 0.4290.429 0.5830.583 1.8621.862 0.0480.048 > 5.00 BU> 5.00 BU 33 148890137148890137 HPS3HPS3 rs73019023rs73019023 2020 AA GG 0.0670.067 0.1820.182 3.0963.096 0.0260.026 > 5.00 BU> 5.00 BU 55 4094539740945397 C7C7 rs75345202rs75345202 2121 GG AA 0.0790.079 0.2080.208 3.0613.061 0.0110.011 > 5.00 BU> 5.00 BU 55 4096498540964985 C7C7 rs3805220rs3805220 88 GG AA 0.0750.075 0.2080.208 3.2463.246 0.0100.010 > 5.00 BU> 5.00 BU 55 5236766652367666 ITGA2ITGA2 rs2287872rs2287872 2222 TT AA 0.4460.446 0.6040.604 1.8971.897 0.0480.048 > 5.00 BU> 5.00 BU 55 147493872147493872 SPINK5SPINK5 rs3815734rs3815734 2323 TT CC 0.1360.136 0.2830.283 2.5032.503 0.0200.020 > 5.00 BU> 5.00 BU 1616 5741898757418987 CX3CL1CX3CL1 rs2239354rs2239354 2424 GG AA 0.0620.062 0.1460.146 2.5852.585 0.0500.050 > 5.00 BU> 5.00 BU 1818 6002876260028762 TNFRSF11ATNFRSF11A rs8099222rs8099222 2525 GG AA 0.1010.101 0.3260.326 4.3134.313 0.0000.000 > 5.00 BU> 5.00 BU 2020 18962441896244 SIRPASIRPA rs6136376rs6136376 2626 GG AA 0.4070.407 0.5650.565 1.8931.893 0.0430.043 > 0.60 BU> 0.60 BU 1One 161569893161569893 FCGR2CFCGR2C rs144426992rs144426992 5050 AA GG 0.2940.294 0.1840.184 0.5410.541 0.0290.029 > 0.60 BU> 0.60 BU 33 4649129046491290 LTFLTF rs2269443rs2269443 3131 GG AA 0.3310.331 0.2150.215 0.5550.555 0.0260.026 > 0.60 BU> 0.60 BU 44 7713487077134870 SCARB2SCARB2 rs1465922rs1465922 5151 GG AA 0.3810.381 0.2630.263 0.5780.578 0.0350.035 > 0.60 BU> 0.60 BU 55 5236613852366138 ITGA2ITGA2 rs2112290rs2112290 5252 GG AA 0.5400.540 0.4140.414 0.6020.602 0.0380.038 > 0.60 BU> 0.60 BU 1212 63446006344600 CD9CD9 rs2072372rs2072372 5353 CC AA 0.5240.524 0.3950.395 0.5940.594 0.0280.028 > 0.60 BU> 0.60 BU 1212 97473619747361 KLRB1KLRB1 rs10844141rs10844141 5454 AA GG 0.5480.548 0.4010.401 0.5540.554 0.0150.015 > 0.60 BU> 0.60 BU 1818 7715610377156103 NFATC1NFATC1 rs71359461rs71359461 5555 GG CC 0.3870.387 0.2340.234 0.4840.484 0.0050.005 > 0.60 BU> 0.60 BU 1919 5213232552132325 SIGLEC5SIGLEC5 rs2305372rs2305372 5656 AA TT 0.4680.468 0.3400.340 0.5840.584 0.0250.025 > 0.60 BU> 0.60 BU 2020 18958891895889 SIRPASIRPA rs1057114rs1057114 5757 GG CC 0.5480.548 0.4140.414 0.5830.583 0.0280.028 > 5.00 BU> 5.00 BU 1One 161569893161569893 FCGR2CFCGR2C rs144426992rs144426992 5050 AA GG 0.2540.254 0.1250.125 0.4190.419 0.0500.050 > 5.00 BU> 5.00 BU 33 4649129046491290 LTFLTF rs2269443rs2269443 3131 GG AA 0.2910.291 0.1460.146 0.4170.417 0.0400.040 > 5.00 BU> 5.00 BU 44 7713487077134870 SCARB2SCARB2 rs1465922rs1465922 5151 GG AA 0.3380.338 0.1960.196 0.4780.478 0.0480.048 > 5.00 BU> 5.00 BU 55 5236613852366138 ITGA2ITGA2 rs2112290rs2112290 5252 GG AA 0.5040.504 0.2920.292 0.4050.405 0.0060.006 > 5.00 BU> 5.00 BU 1212 63446006344600 CD9CD9 rs2072372rs2072372 5353 CC AA 0.4790.479 0.3130.313 0.4940.494 0.0320.032 > 5.00 BU> 5.00 BU 1212 97473619747361 KLRB1KLRB1 rs10844141rs10844141 5454 AA GG 0.4920.492 0.3330.333 0.5170.517 0.0480.048 > 5.00 BU> 5.00 BU 1818 7715610377156103 NFATC1NFATC1 rs71359461rs71359461 5555 GG CC 0.3330.333 0.1460.146 0.3420.342 0.0070.007 > 5.00 BU> 5.00 BU 1919 5213232552132325 SIGLEC5SIGLEC5 rs2305372rs2305372 5656 AA TT 0.4250.425 0.2500.250 0.4510.451 0.0200.020 > 5.00 BU> 5.00 BU 2020 18958891895889 SIRPASIRPA rs1057114rs1057114 5757 GG CC 0.5000.500 0.3330.333 0.5000.500 0.0330.033

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

<110> Green Cross Genome Corporation <120> Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof <130> P16-B131 <160> 87 <170> KoPatentIn 3.0 <210> 1 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> K= G or T <400> 1 caaaatgctg tgattacagg tgtgagccaa tgtgcctggc cagcttttcc actttgatct 60 tttgaaacac aaatctgact gtcttagctc ccacggtgtt kcctcgctgg aagccaccag 120 tccctgctgg ttaactcttt cctggagaca ccagcctcct tggcgctggt tctcagatgt 180 tacgtcccct ctgcagatat g 201 <210> 2 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y= C or T <400> 2 agagatgaaa aaaaaaaggg gcctcccagt tcagagactg gtggggaggt tgggggtacc 60 ctgcagcagc acccattccc gtcccacagc agctgaggag yggtgcgtcg gtgacagaac 120 ccgtcgcgga agagcgaggg ttaatgagcc agccactgat ggagacctgc cacagcgtgg 180 gggcagccta cctggagagc c 201 <210> 3 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R= A or G <400> 3 cctttggctt taatcattac agcctcagat aaaggtacct tcagcccggg cacagtggct 60 cacgcctgta atcctagcac tttgggaggc tgaggcaggc rgattccctg agctcaggag 120 ttcaagacca gcctgggcaa cacggtgaaa ccctgtctct actaaaatac aaataattag 180 ctgggcatgg tggcatgtgc c 201 <210> 4 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y= C or T <400> 4 cactgcaacc tctgcctccc gggttcaaac aattctcttg cctcagcctc tcaagtagct 60 gggactacag gcatgtgcca acacacccag ctaatttttg yactttcagt agagatgggg 120 tttcactatg ttggtcacta tggtcttgat ctcttgatct cgtgatctac ccaccttggg 180 ttcccaaaat gttgggatta c 201 <210> 5 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y= C or T <400> 5 ttttgttgct tttctaaaag agaaatgata aagggtcatc aacacttgcc aaactagttc 60 tccaatacct tgctcttcat aggtgttgtc aatcagccat ygtaagcata ctgggcttcc 120 aaagttgatt ctatgagttt tcataaaaat aacattttga tattatgatc aacctacctc 180 agcttatgat caacttgaaa a 201 <210> 6 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y= C or T <400> 6 taggagtggc tgcatatgtg tcccgtttgt gcgtatctgc atataagaga agttgagaaa 60 gggcacaaga atgaggtgac tgcgtggaca tagagcgtat yatgaaagac aaactctccc 120 acatccctcc cagcagcggc tccagaattt cttcttctcc cctgaaaact aacaagagag 180 actgccacca gattactctt a 201 <210> 7 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> M= A or C <400> 7 ctgtgatgag atgtaactct ttgtgactga agaagaagtt gaagtgtgca ttgccacctc 60 agtggtactt aatgctgata tgctcacaat ttctgtataa matagaagtt gagaaaggga 120 ttaagaacga ggtgactgag cggaccataa agcatattgc aaaagacaaa ttccctcaca 180 tccctccagt ccctgagcta a 201 <210> 8 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 8 acttgcaatg aaggatactc tcttattgga aacccagtgg ccagatgtgg agaagattta 60 cggtggcttg ttggggaaat gcattgtcag agtgagtggc rtcagttgta tataatttaa 120 gatgagaaaa ttacgtggaa gagaatgaat caagataaat aacactcacc atatggccca 180 tgtgttggcc ttcctttcct g 201 <210> 9 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 9 gggcacctca gattgttgtt gttaatgggc attccttctt ctggtcagaa acctgtccac 60 tgggcacaga acttatgttg ttctctatgg agaactaaaa rtatgagcgt taggacacta 120 ttttaattat ttttaattta ttaatattta aatatgtgaa gctgagttaa tttatgtaag 180 tcatatttat atttttaaga a 201 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> M (A or C) <400> 10 ttttcaatac tccattggtt ttagaaattt cttttgatca aattgcacag tctcaatgac 60 atgtggtgtt tggatgagca gttagtaaag gtagaatatt mcttaaatat ttaattaacg 120 tttctttcaa caaagttgat cctaatgcta gcataattct aagacttgta tttatttaat 180 cttgctcccc catcatttgg a 201 <210> 11 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 11 ctctgtcaat gtgatagttt gaagctgcgt atttgccttg ttctagggca agagtgctga 60 cttcactaac ttcgatcctc gtggcctcct tcctgaatcc ytggattact ggacctaccc 120 aggctcactg accacccctc ctcttctgga atgtgtgacc tggattgtgc tcaaggaacc 180 catcagcgtc agcagcgagc a 201 <210> 12 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 12 ctgtagggca gtctagatca taatgattag gcatctgaaa tccaaaacaa aggctgaaaa 60 atctcttcct tgcatatcat tttctagttt gatgcgatca yatttaaact gtattgtcaa 120 tggctgcttt gtaccacatt ggcagttgaa taggtgcagc ataaaccatc acccacaaaa 180 attaaaagaa catctacttt c 201 <210> 13 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 13 gcctggagtt agtgccggag aggtggtccc tgcccttgag atgtcacagt tcaggagggg 60 agatgagact gagacaaaca taattcagga gagaaagtgg yaaatgcccc caagaaaggc 120 agtcaggtgg agtctagagg cagcagacca tgcggagctg taggctaagg ctgaccacct 180 cccggaagag gtgacattaa a 201 <210> 14 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 14 tacatgagga actcgcaaga gagtgaaatc catagaagtg gcctaagcaa gatgctttta 60 tgctttttag accaagaatg ataaatttga aaagaaatga yaggatgaag aaaagctggc 120 taggggcaat aaattttcta gaggagtcac taggagatat attggttgcg gggggctgta 180 aaataggtga aagataggtg t 201 <210> 15 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 15 ggtcagtgcg gataactata cactggacct gtgggctggg cagcagctgc tgtggaaggg 60 ctccttcaag cccagcgagc atggtgagca gggcggagtg yggcaggggt ggctgggtgt 120 gttcccacag ctgcctgggc tgagggtggg gtgggcaggg gaggaggtgg ggtcatagca 180 acagcaggag gaagccgcct g 201 <210> 16 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 16 ggagtttgtg agccggacac tgaccaccag cggaaccctt agcacccaca tggaccaaca 60 gttcttccaa acttgaccgc accctgcccc acccccgcca ygtcccacta ggcgtcctcc 120 cgactcctct cccggagcct cctcagctac tccatccttg cacccctggg ggcccagccc 180 acccgcatgc acagagcagg g 201 <210> 17 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 17 ggactttgga ggagcaagtg ggcttggggg gcggggcagg gagccccaaa tatactatgg 60 ggatacattg ctgacctcgg gagacagcag gggggagggc rgccaacagg accaccactt 120 acctctgggg gcgagtgcac ctgctgggta ccatggaccg tcagggagac ctggccacct 180 ttgctgcctg gggctgcgct c 201 <210> 18 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 18 gtctttaaaa tgggaagggg tatggagcac tggttttgga gtccttacct tgatgaattg 60 ggagagaata aaatgagcta atgcgtaacc cttgtccagc rtgtgcaccc aataaaaaga 120 cttggaatta gaaaaggcat ccttacctcc ttccctccag ggaactcaat ggcggagctg 180 gcacagggtg tgggcagcgg c 201 <210> 19 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 19 atactccgtc tgctcaggga cacagggcac ggggggctcc ggggtcttct ctcgccactg 60 gaaatccagc tccccatagt ccacagagaa cacaggcacg rctgaggggt cctccttctt 120 tgaggagaaa gggagaggga gtcagcccca cggcccaccg caggaaggag gcccgcggct 180 ccacagcctg gctgcagtac c 201 <210> 20 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 20 gcatttgaga ctgaatttct aaaaattgaa tgccaaagta caagtagagg agttttttat 60 tttatatatc acacacacac acacacacac acacacacac rcacacatat atgatacaaa 120 tgctttcagg ctgcttacct taccgtgtag tggtaactat tcacttctta atttatgacc 180 tcaatcaatt taattgtcta g 201 <210> 21 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 21 taggtgaaaa taaataatga ttttaattat gaattttaca atagtacttg gtcttatgta 60 aaacatacgt cgacagaaca cacatcatct agtcggaagc rctccttttt tagatcttca 120 tcatcttctt cacgcagtta tacttcacat accaatgaaa tccataaagg aaaggttagt 180 ataaaatgtc agttaacttt t 201 <210> 22 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 22 aagagaggct aaaagcagaa ttaggatgga agaaaagaag cgagagtctt gattattcac 60 aacaaagata ttctacataa ttgagagctg actgtgctct waattgtaaa cacatttgga 120 atcattttct tgttttaatg ttgctatgct ctaataaact gactctgtct ccccctgtat 180 gtttgtgtgt gtgtatgttt a 201 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 23 gtttaatata aattgaacac tataactgcc agaaaaaaaa ttctcaggtc attttctctc 60 tctttttttt ttttctataa agcacttagt aggaacccag yaaactaatt tcccagaaga 120 tactcaagct ttctcctttt cttttccttt taggagacat gcgatgaatt tcggagactt 180 ttgcaaaatg gaaaactttt c 201 <210> 24 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 24 ttttccaacc ctcatcacca acgtctgtgc cattttgtat tttactaata aaatttaaaa 60 gtcttgtgaa tcaatatggg tgatttctct ggggacaagt rcagcaatca gggcttcgga 120 ggggaaggag tggggcaggg ctgggggcaa gacccctttc agccccggag acccctatct 180 ccagttcacc tggggcagaa a 201 <210> 25 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 25 aacaccgtaa tggccctggc tgctctcccg tagagtgaaa ccggactgag cagggctggc 60 tgagattgtg gatctcaccc tttggaatgt gagtgctcgc rgacaaaggg cagccaaggg 120 tggggactgt cacttctgct atcccagacc aacatttttg attctgaggt ttgatttacc 180 gggatttgtt tttcaactgc g 201 <210> 26 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 26 taactcaata ataacaccct ccattctttg agcaatgatc aggtgtggtg gtaggtgctc 60 ctttccatga attgatgtct ccccctttta caaataaggg ragttgaggc ctgaagacgt 120 catgctattt gctgaaggct ccacagctgg taaagggtgg gaacatctgc atccttcatc 180 tgcctggctg tgtagccctg g 201 <210> 27 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 27 ttccatagca gttgaattag gggaaggtga ataagttgga ggttggtgac aaggagagaa 60 gctggaacag agaggagagt cagaaccaga gggaaatgag rgactgagta ggcatctcag 120 ggtttttgaa ggagtggatt ttctttgttg cagtcagggg aggtttgtct gttggctgca 180 gaaagaagtc agaatagaga t 201 <210> 28 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 28 atttgaggga atctcagctt tgggaggcca ctttgtaagt gatcttaaga gattaagtac 60 atccttaatt aaaagaaatg gtaacacctc cgcctgcttg ytgtgagttt attcatttga 120 attccccatc tcccccaatg ggaaataaca cagaattgca attatttata aaatcttaaa 180 ttggcttctt ttctctagga a 201 <210> 29 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 29 tggaataagc aaaacttgtc cgggcagtca gatccatttc tcccaaattt agcctgcgac 60 aaaagggcag acagtgagta gctaaggaaa agaggaattt rtgggttaaa ggaggcaaag 120 gggtatttct tccacccaag aacagccctg agaaaaccat ggggcagaag gagctgagtt 180 ctggagtcat tccacctcct t 201 <210> 30 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 30 gactattctt ttagagacac ctgacctaat ccacagaaga cactcacacc tgcatcaaac 60 ctccacgatg accccacagt gtctgggaaa aggagtgacc rccacaaagt agggccacct 120 gctgggaagt agaagaccac accaggcgga cctcaggacc ctcctgggct cactcacttt 180 tcctcaagtt ctggatggca g 201 <210> 31 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 31 acctaatcca cagaagacac tcacacctgc atcaaacctc cacgatgacc ccacagtgtc 60 tgggaaaagg agtgaccgcc acaaagtagg gccacctgct rggaagtaga agaccacacc 120 aggcggacct caggaccctc ctgggctcac tcacttttcc tcaagttctg gatggcagtg 180 aagtagccgg agccaaggta c 201 <210> 32 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 32 tattcatttt ggtgggattt ataggagagt tccaaagttt ttcaaggtga ggactttttg 60 ggttgtgtgt aaaaatcatt aaatttaaaa aatgttttag waattcttta gtctaatttt 120 gacattgcac tttgaatctg tgtatccctc caacatattt tctctttcca tatttttata 180 aaagacaatg ataacaaaag c 201 <210> 33 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 33 actcacagga gtaagaagct cagaaaagca cagtgagtcc ctgcccagtt ccaggaagca 60 atctgaaaag tctggtctgg tcaccagcag atgacagttc yttcacttag agcaattttg 120 ctaagcacac ttatttgctt tctctggaaa ccttcagcac taaatgtgtt ggtatttcca 180 cctgagaagg tatttaactg c 201 <210> 34 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 34 aaggggacag attcaaaagc tacttgggac ctatgtagta accatctgaa tggcaatcta 60 tgtagatttt tgcagtgtgt ctgtgtagtg tgctgggagc rggtatttgt atttatctct 120 gtgtacttat gtctaggcca gtaggataga gtatctatct gttcacctgt gtcctcaagt 180 tatgtattat gcaggggcct c 201 <210> 35 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 35 tgcctacacg ctccttctcc acacctggct tctcaaggta cagtcacttt gggtgaaggg 60 catttatgct gggatcctga cagggcctca cagcaagttg wagagtgaaa aaagaaaaaa 120 aagaaaaaga atccaaatat tttgttttgc cctgtgtctc caaactcttg agctggcagg 180 atactttttg cactgcttcc c 201 <210> 36 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 36 tctaccaaca cgcccttcat tgcacctgaa gaaacatgcc aaaattgcaa tcacacaaaa 60 caaaaataat ttaagaggtt ccaagatggc caaacaggaa sagctctagt ctacagctcc 120 cagcgtgagc gacacagaag acaggtggtt tctgcatttc caactgaggt actgggttca 180 tctcactggg gcttgctgga c 201 <210> 37 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 37 agcaactttt atctttaaat gccagttccc atgtttcctc ctaactaact ttaggagtca 60 aacctagaaa ccagttttat aatatgtgat taaaaattaa yataaaccac ttttgtaaaa 120 ttcggtttgc ctatctggtg gcattttccc acatttcaat tcagacatga tttgcctcta 180 acaatcaaaa atgtttagaa t 201 <210> 38 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 38 agcttcttcc ccctgtagct acttcacatg cgttgacata gaaatgtgac acatctttct 60 cattagagaa aatgttttca tgcttttaga ttgagatact rtctcttcta cagtgttata 120 tgtgtctctg tctttaattt atggttcact ttgttccact ttacgggagg gagatgttgt 180 agtctggttt cctgctgaca t 201 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 39 atgtgatgca aactcagaac tatatgcccc ggtcaatgtt agagacccta aaaccccagc 60 tcatttggca tctgttcatt catattccag ctgaatctca saaatgtgct taagggaaag 120 catctgatat tagcagtttc tcagccaagt cacaggacgg gacatcccag agtcatggcc 180 tgctgcactt ttaaaaggga a 201 <210> 40 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 40 ccattcttcc cctgtggcca gacacttccc ctggctgagt ctctgggctt ttatatcata 60 ggatgcctct aatggcaatc ctgccattag atacacctgc ygtggtgtat ctgccaggta 120 ggcaggctag gctgcagtaa caaacaagcc cacaatttcc atggcttaac actatgggaa 180 tatatttctt gctcacgtaa c 201 <210> 41 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 41 acaattaact ttggacaact taaaacttat tagtgacatt gctgtctaat aatcaaatac 60 ttcatcatag gctgaacata attattaaaa gagcaaagtt wcccctccct ttcttacttt 120 caaacaaaac caaaagagta gttttcatct ggaaagagca cttacttcag ggaaagactc 180 aatttttaac cagttttatt a 201 <210> 42 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 42 cttttgtgaa cacctgttta aaaaaaaaat cagaggtaag aatttagtta ttcttcattt 60 acagctctgc aaaacacacg cacgtttgca aacagtaaga stgacaagca ggatttgaat 120 agggttttaa ttttaaaggt gtcaaccagc ctttttactt aggttggttc ccagccatcc 180 atgccaatag aagagaagtt c 201 <210> 43 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 43 aaaaaaaaaa aaaaaaaaaa aaaagtgcga cgggtttcga ctggtgaata caaatacaga 60 ggcagccatc acgttatgtg gaacactgaa ataatttacc rtctaatttg agagtacctg 120 gagccaaatt aaacaaacga ttacctttct tctttgacgg cgagtctact ttagctgccg 180 gtttggattc tgagggcgcc t 201 <210> 44 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 44 tcctttttga cagcttagtt cttcaacatg aaactaaagc ttgtcttgcc aacaacagtc 60 ctctgtacaa tcaaccataa aaaactgcta aacggtccgt ytgggccacg taccagaggc 120 ctgagcacac tgtgtaagga gggtgtaacc catgcaaact tacatattct tcttcagtct 180 cctcaacaaa gaaagcttct c 201 <210> 45 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 45 aggctggacc tagggaagga cttccccgcc ttcccttgga ggcggcctcg ggtcagagct 60 cagatcttgg ctcagaaatc acagggggcc tgtccactca sggcccaccc cgccatgtgt 120 gttcccaagc ttcgccagga cacagggcct ggcactgcca ctgacgagct gtggggtccc 180 ttctccctcg tgcgactcac c 201 <210> 46 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 46 cattcatgcc cagatttcat ttcagagtga aggcattgga tttctgaatt ggtgaagcat 60 ctgctctcca gcacagctgc ccgccgcatg caaaaagcca sagaaacccc tgggttctcc 120 gaggcatctg cctggcacgc cgccggccct gcgcggagca ggcaccaggg gtcgcacagg 180 tgagtcatac ctagggtcct c 201 <210> 47 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 47 accgacccag gccccacaca caggccacac accaggtagc tgagggcgct ggccagctgc 60 tgggccacca ccatcttcca agccatgggc acatggcccc rctccctccg cagccacaca 120 tccaggggtc cgtgctccac gtactctgtc accatgatat ctgtaaagac acagctgctc 180 tggggcaacc tgcctgcttc t 201 <210> 48 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 48 gtcctggaga aaagaaggac gggtgagggg ctgccccacc ttgttctgag ctgagacctc 60 cccaccagtc ctctccctgg gaccctcagt ctgtctctgt yttctctgag tctccccctc 120 cccgcccatc ccctgtctct gtctgtctct ccctccctta ggacccccac ccctcatccc 180 ggccatcacc acctgggctc c 201 <210> 49 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 49 ggtgccaggt gaccactggc tgtgcagtga gtgtccccgg ggagagctca ggaacaaatc 60 ctggctccat ccctgacagc tgtgtggccc caggagactg rgtttcccca tctgcaaagt 120 gggaggaata agaaaatatc gacctcacgg gctgttgtgg gcagagacgg acgctaagga 180 tgtcaaggcc tggtcacagc c 201 <210> 50 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 50 ataagcaaaa cttaacttgg atgatttctg gtaaatgctt atgttagaaa taagacaacc 60 ccagccaatc acaagcagcc tactaacata taattaggtg rctagggact ttctaagaag 120 atacctaccc ccaaaaaaca attatgtaat tgaaaaccca tcgattgcct ttattttgct 180 tccacatttt cccaataaat a 201 <210> 51 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 51 cagaggcgtc gaagacccgg gacccttcgg cgccacgccc acgccctccc ggcgcacggt 60 tcgtgcgcgc agctctgggc tccgcggcct ggcgagcgcg rccccgggtg caccgggcgg 120 atggggccgc ggagggacgg gcccggactc ggtttcggtt tccttcgccg ggcagccgtg 180 gcgcccgcct agcgcagctc g 201 <210> 52 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 52 atatggtagt aaatcaagca cagagttgcc ccgagcacat catttatata caggtaaggc 60 ctcaggaaca tcccttttga ctttatttct tcctaaagac ragagagtgg taaaagtcaa 120 aaatggaagc ttatgagtta gaaaatgctc acccttccaa tgaatgcctt tcttatgtaa 180 ttccataaat aagaagcata t 201 <210> 53 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> M (A or C) <400> 53 cgccttggca aagacaccct cctgcgcttt ctccggattg tgtctgcaca cagggtgctg 60 actgcaccag accagtgcaa acattctaat cgtcttctta maatttgttt ctctcatccc 120 catccctgcc ttctcgctgt agttgaactg ctgtggtttg gctgggggcg tggaacagtt 180 tatctcagac atctgcccca a 201 <210> 54 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 54 aagaatgata aatttgaaaa gaaatgacag gatgaagaaa agctggctag gggcaataaa 60 ttttctagag gagtcactag gagatatatt ggttgcgggg rgctgtaaaa taggtgaaag 120 ataggtgttt attaagtatc tttattcagg ttcattgcag catccaattc caggtctctg 180 gcgataagag ctattttctt g 201 <210> 55 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 55 ggcaccgggg cgcgggcagg gctcggagcc accgcgcagg tcctagggcc gcggccgggc 60 cccgccacgc gcgcacacgc ccctcgatga ctttcctccg sggcgcgcgg cgctgagccc 120 ggggcgaggg ctgtcttccc ggagacccga ccccggcagc gcggggcggc cgcttctcct 180 gtgcctccgc ccgccgctcc a 201 <210> 56 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 56 tctctacctc tgctcagaga cagacccaga ggcaggtccc agcttcagag aggaggtctt 60 tcctacctat gccgttcctg aagatggtga tggtctgtgg wgcatctggg ataaaaagat 120 ataaacttgg cttcagcagt gaggagtgag atgggcatgg gcccaggagg tacccaaaga 180 ggagccacag aaacccacca a 201 <210> 57 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 57 tccgtgttgg ttgcagctgg agagacagcc actctgcgct gcactgcgac ctctctgatc 60 cctgtggggc ccatccagtg gttcagagga gctggaccag sccgggaatt aatctacaat 120 caaaaagaag gccacttccc ccgggtaaca actgtttcag acctcacaaa gagaaacaac 180 atggactttt ccatccgcat c 201 <210> 58 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 58 aaatccagga ctacagaccc cacagttctc tcgctgccac ttcaagtcac gaaatgacag 60 cattattcac atccttgtgg aggtgaccac agccccgggt rctgttcaca gctacctggg 120 ctcccctttc tggatccacc aggctggtaa gaactttctt cctcattctt cccacatagt 180 tcccaccccc actgaatctg a 201 <210> 59 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 59 tcccctttct ggatccacca ggctggtaag aactttcttc ctcattcttc ccacatagtt 60 cccaccccca ctgaatctga ccctgtgccc aggatcccca rctctgaccc ttctgaccga 120 tggctctggt ggcacaatgc cttgtgcaca gaaggactta agctgctccc tgctgacatc 180 cctgtagtgc gcctccccac c 201 <210> 60 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 60 gaggagagag gaagtacatc agctgctgcc tgaaggatca gttccccaaa atgcttctgc 60 tctgtcaccc agctcctctt ctctctccca cccctgttct rtggcagctt ctggccaaag 120 ttctgcttct agagccaggg taaccttggc aggtagaggc acctccctgg tgataatgac 180 aggaggcagc caaatgccta g 201 <210> 61 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> M (A or C) <400> 61 atttacaagt gaatttgggg ccttgtgcta gggagaattg ggttctattt ctctacctct 60 gactagctat gaggtcttca ggaagcatag gaaattcccc mataactaac aagtactctg 120 gaactgtcct ttccacagtg tgtcagccgc ctccagaaat cctgcatggt gagcataccc 180 caagccatca ggacaacttt t 201 <210> 62 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 62 ctggtgacaa actccagaac ttcctggttg cttttgctgg ggtatggcat atatccaaga 60 gaaaagattt cccatagcag cactccaaag gacctgggca ygggacagag gacatggaga 120 tggatataga cacacccacc cacattcaca cacacacaca ggcacacaga catacaattt 180 caaccttttt ttcccccatt a 201 <210> 63 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 63 aggctgagaa cggcggctcc cagctgctgc acgctgtcct ggccgccttt tgcgttcctt 60 ttggctcctc caagctcttc tgcccggtct gggcgggaac ygagggcgga ggctgccgtc 120 ttgcgcaccc tcaagctatc tctccgctgc gggaaggctt cggactgtct gcctgctgaa 180 cttctgggcg tgaatcccag c 201 <210> 64 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> K (G or T) <400> 64 acatttccac ttttgatttg gcctacactc atcttggaca ggtcatctag gcacaaaaat 60 gccacaaatt ttacctgata ataagaaccc tctgcctacc kgatgcatgg taagcctgta 120 aaaatgcagt actgaaaccc cactgcaagc acgcaaatgt aaagaacact tacattttac 180 agataagcga gagaattaac a 201 <210> 65 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 65 gaagacgttt ctgtctggtc cgtcgagagt ccttccatca gtggcagaga cagctcggat 60 gagggcacag acgagtcata gatgcctgag tcccgcggca ygtccgaggg gctgccggct 120 ttcaccgtgt gcagcagggg ttgcagggcg gcgctaccgt caagggcagg ccgggcctcc 180 ccgtcttggt ccaggccccc a 201 <210> 66 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 66 ggaaaaatca gccttgtggg tgaacaggag gagagtcaca ttcgccagca ggcagcaccc 60 tgtgcaggca gtgggagaaa tctgagcttc agcagcgtcc rgagcaggat ttgcacgaag 120 tctcccgttt caagttttat gtctcctgga gtcctgggga aggcacccag cccacccaca 180 gctcccttct cagagcccta a 201 <210> 67 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 67 aaaaaaaaaa aaaaaaaaaa accaaaaaaa aaaaaaccaa aatcagtcac ctgttggttt 60 gtggatcaaa caaagtggag gtgacatcac tgaagcctag racatcactc cccttttcca 120 ggcaggcttt gtggttcgac ctgtctcacg ttccaaccca tgcaccctaa ccccctactt 180 ctttacctct tccaattgag a 201 <210> 68 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 68 tgggagagta ctgaatgggc accaagattc cagctttact gtgtcttggc cagtgaggga 60 gatgcaggaa aggcgggctg gggagggtga cagagggtgc rggtgtggca ggcaggtttg 120 ccctcacctt ggaaggggtt gttgttggtc tggatgcgct gactgatagc ctgctccagg 180 tcccgcttct tcacacactg g 201 <210> 69 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 69 ttgcatctgt aaattacaaa agaaaaaaat gacagttccg tataaactta ccttctgtgt 60 atcccaggac tctgtaaata gatctcttct ctctctcctt ytccttctgg aatgcatatt 120 caataaagga tataaagata tgatattcca gtactaatat tatttcgaag actctatacc 180 tcactgtacc cctagcccac a 201 <210> 70 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 70 ctcggttccc cctctgtgaa aagacatggt cggagccctg gagctccacc cgtgggtttg 60 gggatctgtc acccgctgtc ttgttctgca tgtctctgac yggtggacac acgagcagtg 120 ggacctggag gtgctccagc tgcctgcagg caacagtcca ggaggtgcag ccccgggcag 180 aggagccccg gccccaggag c 201 <210> 71 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 71 ccgcaccacc ctcgcctctg cggagacccc gcagccggag ctctggagcc ggtccccgct 60 gcaccccagc ggcctcacct cggctctcat ccacatagat saggtagcgg tccatcccgt 120 cctgctgctc cagcgtgtag gccacccagc agccctctga gtccctctcc ttgcaggtcc 180 tgcccttcac ggggttgttc g 201 <210> 72 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 72 gggccagact cactgcgttc tttcgtcgct ttgtccatcc attcattcat tcaggatcgt 60 tttcactgtc ggtccgggac ttcgaccaga accagggaga rgtggtgaaa cattacaaga 120 tccgtaatct ggacaacggt ggcttctaca tctcccctcg aatcactttt cccggcctgc 180 atgaactggt ccgccattac a 201 <210> 73 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 73 aatccaagaa attttcccgt tcggatccca acttctccat cccacaagca aaccacagtc 60 acagtggtga ttaccactgc acaggaaaca taggctacac rctgtactca tccaagcctg 120 tgaccatcac tgtccaaggt atgcggagtc tgccaagatg taaggagggg agaagagggg 180 atggacaagg gctgaggtca c 201 <210> 74 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 74 ctctccctgt actggaatca ggtccagggc cccccaaaac cccggtggca caaaaacctg 60 gtgaggcctc ccccttccca agtccattcc cactgtaggc ygatgcctgt gcaaaggacg 120 cagtgccata tcagagagga tccttgaaga ggactcaccc caagcaaggg aaaattggtg 180 ggggaacttc tgccttcctg g 201 <210> 75 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 75 ctgcaggtaa tttctgagct tcgggagaag ttggatctgc agcattgtgt tttgccatca 60 cggttacagg cttcccaagt aaagttgaaa agtaaaggac ragcaaggta aagagctcat 120 cctcacacag gatgtcacaa ttttctgaca tcccactgtc agagttagag cttaatacta 180 ctacaaataa tgatactatt a 201 <210> 76 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 76 caaaatcaag aagcctttga tttagatgtt gctgtaaaag aaaataaaga tgatctcaat 60 catgtggatt tgaatgtgtg tacaaggtaa gtgtctgctt rggtctctct tctttttttc 120 ctttaaaaaa tagacttgaa ggtttaatta tgtatagttg tctatatcaa tctaagagtt 180 atattgaaca aagaattcag t 201 <210> 77 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> W (A or T) <400> 77 tacccaaatt ctttttaaac ctgaaagttt acatttatgc tactttttat agctattctt 60 actaacataa tgataaataa tttttgctta tgcttactta wcatgtgtgt ttatttagat 120 atccacatta ttttagagaa agtacctcat taatcgcgta aattttggat tattttgtct 180 tacttagtca cagagatgct g 201 <210> 78 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 78 ttcacacatg atgctttcaa gtgatttttc cattcaggtt gcaagtaatg aaattctcag 60 ggacccatgc tttcatcctg gatataagaa ggtagtgaac rtaagtgacc tttacaagac 120 cccctgcacc aagagatttg agatgactct tccattccag cagtttgaaa tccagggtat 180 tggaaactat caacaatgcc a 201 <210> 79 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 79 cttaggcata gaatatgggg aatggaaagg ttactaaaag ttcacaagat ccccttattg 60 tgtagatgaa ggcctgaagc ccaaagatgt gaagcaattc rcacaggatc acagagctgc 120 ctcgtggcat taagatgctg tgactaaaat cctgctctcc attctccgca ctcattgctt 180 tgtttgtagt acaggctgga c 201 <210> 80 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> M (A or C) <400> 80 tcaggtgcac cgtatcacag gcaagatggt ggccacggcc agctatgaag ccgtagtcag 60 tggcaccaag gtgttggaga tgactctgct gcctgagaac macatggcgg ccaagtaagt 120 cccatgcaac ttcccctcag tccgcaggct ttgtactagc tttctccact gggcctatgc 180 tagcccactt cttccttttc c 201 <210> 81 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> Y (C or T) <400> 81 tttggagctg ggtgggaggg ctcaagggtt gcttccgtta ctgactccct ctggtttctg 60 ggctggccct gccatttccc ttggtctcag tttgcttccc yataccttga ggacagtttt 120 aaaccctacc tcttccactc atattaagtt aacatgcagt gggctcctct gtgtgtcaga 180 ccttctaggg ccttctgaat t 201 <210> 82 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> R (A or G) <400> 82 ttaaagaagg ggacaaagct gaaccagcca cttggaagac gaggttacgc tgtgctttga 60 ataagagccc agattttgag gaagtgacgg accggtccca rctggacatt tccgagccat 120 acaaagttta ccgaattgtt cctgaggaag agcaaaaatg taactatcct ttatgggcat 180 gaaaccttcc agaagctgcc c 201 <210> 83 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> K (G or T) <400> 83 aaataggatg cattcggttt tgtgattcaa aatgtactat gtgttaagta atattggcta 60 ttatttgact tgttgctggt ttggagttta tttgagtatt kctgatcttt tctaaagcaa 120 ggccttgagc aagtaggttg ctgtctctaa gcccccttcc cttccactat gagctgctgg 180 cagtgggttt gtattcggtt c 201 <210> 84 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <222> (101) <223> S (C or G) <400> 84 gctgccccaa gtgctcccct gcagtctggg agtccatgct caagctgcca cctggcctct 60 cacggtggcg tctcacggaa gccctgtcca cgctctgggc sgtgagctcc ggtcaaacgt 120 ggccttggaa gggagatgaa ggagagagag gaacatgaag cacccctttc ccttctgcag 180 gcagacgtcg gttttctcag g 201 <210> 85 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <222> (100) <223> S (C or G) <400> 85 ggcttcggct ctgaagtctt caggattcag tgagtgtccc cagggccatg tgggtgacaa 60 cccgtcactg ttgcttgcag ctgccaagcc cacttcttts cccacccctt cccaggatat 120 ccccttcccc aggggactga gagctgttgt cctaccatgc tggggggcag gggcttctcc 180 agagggtctg gcgggcagac 200 <210> 86 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <222> (100) <223> M (A or C) <400> 86 tgtagctccc ggagctccta tgacatgtac catctatcca gggagggggg agcccatgaa 60 cgtaggctcc ctgcagtgcg caaggtcaac agaacattcm aggcagattt ccctctgggc 120 cctgccaccc acggagggac ctacagatgc ttcggctctt tccgtcactc tccctacgag 180 tggtcagacc cgagtgaccc 200 <210> 87 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <222> (100) <223> M (A or C) <400> 87 gacttggcag ccccgggcag tggtggctcc ggggcactgg gtgacctgca cctcaccacc 60 ctctactctg cctttatgga gctggagccc acgccccccm cggcccctgc aggcccctct 120 gtgtacctca gccccagctc caagcccgtg gccctggcat gagctgtgcc cagcttcgtc 180 agctccagcg tttgcctggt 200 <110> Green Cross Genome Corporation <120> Markers For Predicting Effect of Therapeutic Agent Against          Hemophilia and Use Thereof <130> P16-B131 <160> 87 <170> KoPatentin 3.0 <210> 1 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> K = G or T <400> 1 caaaatgctg tgattacagg tgtgagccaa tgtgcctggc cagcttttcc actttgatct 60 tttgaaacac aaatctgact gtcttagctc ccacggtgtt kcctcgctgg aagccaccag 120 tccctgctgg ttaactcttt cctggagaca ccagcctcct tggcgctggt tctcagatgt 180 tacgtcccct ctgcagatat g 201 <210> 2 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y = C or T <400> 2 agagatgaaa aaaaaaaggg gcctcccagt tcagagactg gtggggaggt tgggggtacc 60 ctgcagcagc acccattccc gtcccacagc agctgaggag yggtgcgtcg gtgacagaac 120 ccgtcgcgga agagcgaggg ttaatgagcc agccactgat ggagacctgc cacagcgtgg 180 gggcagccta cctggagagc c 201 <210> 3 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> R = A or G <400> 3 cctttggctt taatcattac agcctcagat aaaggtacct tcagcccggg cacagtggct 60 cacgcctgta atcctagcac tttgggaggc tgaggcaggc rgattccctg agctcaggag 120 ttcaagacca gcctgggcaa cacggtgaaa ccctgtctct actaaaatac aaataattag 180 ctgggcatgg tggcatgtgc c 201 <210> 4 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y = C or T <400> 4 cactgcaacc tctgcctccc gggttcaaac aattctcttg cctcagcctc tcaagtagct 60 gggactacag gcatgtgcca acacacccag ctaatttttg yactttcagt agagatgggg 120 tttcactatg ttggtcacta tggtcttgat ctcttgatct cgtgatctac ccaccttggg 180 ttcccaaaat gttgggatta c 201 <210> 5 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y = C or T <400> 5 ttttgttgct tttctaaaag agaaatgata aagggtcatc aacacttgcc aaactagttc 60 tccaatacct tgctcttcat aggtgttgtc aatcagccat ygtaagcata ctgggcttcc 120 aaagttgatt ctatgagttt tcataaaaat aacattttga tattatgatc aacctacctc 180 agcttatgat caacttgaaa a 201 <210> 6 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y = C or T <400> 6 taggagtggc tgcatatgtg tcccgtttgt gcgtatctgc atataagaga agttgagaaa 60 gggcacaaga atgaggtgac tgcgtggaca tagagcgtat yatgaaagac aaactctccc 120 acatccctcc cagcagcggc tccagaattt cttcttctcc cctgaaaact aacaagagag 180 actgccacca gattactctt a 201 <210> 7 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> M = A or C <400> 7 ctgtgatgag atgtaactct ttgtgactga agaagaagtt gaagtgtgca ttgccacctc 60 agtggtactt aatgctgata tgctcacaat ttctgtataa matagaagtt gagaaaggga 120 ttaagaacga ggtgactgag cggaccataa agcatattgc aaaagacaaa ttccctcaca 180 tccctccagt ccctgagcta a 201 <210> 8 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 8 acttgcaatg aaggatactc tcttattgga aacccagtgg ccagatgtgg agaagattta 60 cggtggcttg ttggggaaat gcattgtcag agtgagtggc rtcagttgta tataatttaa 120 gatgagaaaa ttacgtggaa gagaatgaat caagataaat aacactcacc atatggccca 180 tgtgttggcc ttcctttcct g 201 <210> 9 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 9 gggcacctca gattgttgtt gttaatgggc attccttctt ctggtcagaa acctgtccac 60 tgggcacaga acttatgttg ttctctatgg agaactaaaa rtatgagcgt taggacacta 120 ttttaattat ttttaattta ttaatattta aatatgtgaa gctgagttaa tttatgtaag 180 tcatatttat atttttaaga a 201 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> M (A or C) <400> 10 ttttcaatac tccattggtt ttagaaattt cttttgatca aattgcacaga tctcaatgac 60 atgtggtgtt tggatgagca gttagtaaag gtagaatatt mcttaaatat ttaattaacg 120 tttctttcaa caaagttgat cctaatgcta gcataattct aagacttgta tttatttaat 180 cttgctcccc catcatttgg a 201 <210> 11 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 11 ctctgtcaat gtgatagttt gaagctgcgt atttgccttg ttctagggca agagtgctga 60 cttcactaac ttcgatcctc gtggcctcct tcctgaatcc ytggattact ggacctaccc 120 aggctcactg accacccctc ctcttctgga atgtgtgacc tggattgtgc tcaaggaacc 180 catcagcgtc agcagcgagc a 201 <210> 12 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 12 ctgtagggca gtctagatca taatgattag gcatctgaaa tccaaaacaa aggctgaaaa 60 atctcttcct tgcatatcat tttctagttt gatgcgatca yatttaaact gtattgtcaa 120 tggctgcttt gtaccacatt ggcagttgaa taggtgcagc ataaaccatc acccacaaaa 180 attaaaagaa catctacttt c 201 <210> 13 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 13 gcctggagtt agtgccggag aggtggtccc tgcccttgag atgtcacagt tcaggagggg 60 agatgagact gagacaaaca taattcagga gagaaagtgg yaaatgcccc caagaaaggc 120 agtcaggtgg agtctagagg cagcagacca tgcggagctg taggctaagg ctgaccacct 180 cccggaagag gtgacattaa a 201 <210> 14 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 14 tacatgagga actcgcaaga gagtgaaatc catagaagtg gcctaagcaa gatgctttta 60 tgctttttag accaagaatg ataaatttga aaagaaatga yaggatgaag aaaagctggc 120 taggggcaat aaattttcta gaggagtcac taggagatat attggttgcg gggggctgta 180 aaataggtga aagataggtg t 201 <210> 15 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 15 ggtcagtgcg gataactata cactggacct gtgggctggg cagcagctgc tgtggaaggg 60 ctccttcaag cccagcgagc atggtgagca gggcggagtg yggcaggggt ggctgggtgt 120 gttcccacag ctgcctgggc tgagggtggg gtgggcaggg gaggaggtgg ggtcatagca 180 acagcaggag gaagccgcct g 201 <210> 16 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 16 ggagtttgtg agccggacac tgaccaccag cggaaccctt agcacccaca tggaccaaca 60 gttcttccaa acttgaccgc accctgcccc acccccgcca ygtcccacta ggcgtcctcc 120 cgactcctct cccggagcct cctcagctac tccatccttg cacccctggg ggcccagccc 180 acccgcatgc acagagcagg g 201 <210> 17 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 17 ggactttgga ggagcaagtg ggcttggggg gcggggcagg gagccccaaa tatactatgg 60 ggatacattg ctgacctcgg gagacagcag gggggagggc rgccaacagg accaccactt 120 acctctgggg gcgagtgcac ctgctgggta ccatggaccg tcagggagac ctggccacct 180 ttgctgcctg gggctgcgct c 201 <210> 18 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 18 gtctttaaaa tgggaagggg tatggagcac tggttttgga gtccttacct tgatgaattg 60 ggagagaata aaatgagcta atgcgtaacc cttgtccagc rtgtgcaccc aataaaaaga 120 cttggaatta gaaaaggcat ccttacctcc ttccctccag ggaactcaat ggcggagctg 180 gcacagggtg tgggcagcgg c 201 <210> 19 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 19 atactccgtc tgctcaggga cacagggcac ggggggctcc ggggtcttct ctcgccactg 60 gaaatccagc tccccatagt ccacagagaa cacaggcacg rctgaggggt cctccttctt 120 tgaggagaaa gggagaggga gtcagcccca cggcccaccg caggaaggag gcccgcggct 180 ccacagcctg gctgcagtac c 201 <210> 20 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 20 gcatttgaga ctgaatttct aaaaattgaa tgccaaagta caagtagagg agttttttat 60 tttatatatc acacacacac acacacacac acacacacac rcacacatat atgatacaaa 120 tgctttcagg ctgcttacct taccgtgtag tggtaactat tcacttctta atttatgacc 180 tcaatcaatt taattgtcta g 201 <210> 21 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 21 taggtgaaaa taaataatga ttttaattat gaattttaca atagtacttg gtcttatgta 60 aaacatacgt cgacagaaca cacatcatct agtcggaagc rctccttttt tagatcttca 120 tcatcttctt cacgcagtta tacttcacat accaatgaaa tccataaagg aaaggttagt 180 ataaaatgtc agttaacttt t 201 <210> 22 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 22 aagagaggct aaaagcagaa ttaggatgga agaaaagaag cgagagtctt gattattcac 60 aacaaagata ttctacataa ttgagagctg actgtgctct waattgtaaa cacatttgga 120 atcattttct tgttttaatg ttgctatgct ctaataaact gactctgtct ccccctgtat 180 gtttgtgtgt gtgtatgttt a 201 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 23 gtttaatata aattgaacac tataactgcc agaaaaaaaa ttctcaggtc attttctctc 60 tctttttttt ttttctataa agcacttagt aggaacccag yaaactaatt tcccagaaga 120 tactcaagct ttctcctttt cttttccttt taggagacat gcgatgaatt tcggagactt 180 ttgcaaaatg gaaaactttt c 201 <210> 24 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 24 ttttccaacc ctcatcacca acgtctgtgc cattttgtat tttactaata aaatttaaaa 60 gtcttgtgaa tcaatatggg tgatttctct ggggacaagt rcagcaatca gggcttcgga 120 ggggaaggag tggggcaggg ctgggggcaa gacccctttc agccccggag acccctatct 180 ccagttcacc tggggcagaa a 201 <210> 25 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 25 aacaccgtaa tggccctggc tgctctcccg tagagtgaaa ccggactgag cagggctggc 60 tgagattgtg gatctcaccc tttggaatgt gagtgctcgc rgacaaaggg cagccaaggg 120 tggggactgt cacttctgct atcccagacc aacatttttg attctgaggt ttgatttacc 180 gggatttgtt tttcaactgc g 201 <210> 26 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 26 taactcaata ataacaccct ccattctttg agcaatgatc aggtgtggtg gtaggtgctc 60 ctttccatga attgatgtct ccccctttta caaataaggg ragttgaggc ctgaagacgt 120 catgctattt gctgaaggct ccacagctgg taaagggtgg gaacatctgc atccttcatc 180 tgcctggctg tgtagccctg g 201 <210> 27 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 27 ttccatagca gttgaattag gggaaggtga ataagttgga ggttggtgac aaggagagaa 60 gctggaacag agaggagagt cagaaccaga gggaaatgag rgactgagta ggcatctcag 120 ggtttttgaa ggagtggatt ttctttgttg cagtcagggg aggtttgtct gttggctgca 180 gaaagaagtc agaatagaga t 201 <210> 28 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 28 atttgaggga atctcagctt tgggaggcca ctttgtaagt gatcttaaga gattaagtac 60 atccttaatt aaaagaaatg gtaacacctc cgcctgcttg ytgtgagttt attcatttga 120 attccccatc tcccccaatg ggaaataaca cagaattgca attatttata aaatcttaaa 180 ttggcttctt ttctctagga a 201 <210> 29 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 29 tggaataagc aaaacttgtc cgggcagtca gatccatttc tcccaaattt agcctgcgac 60 aaaagggcag acagtgagta gctaaggaaa agaggaattt rtgggttaaa ggaggcaaag 120 gggtatttct tccacccaag aacagccctg agaaaaccat ggggcagaag gagctgagtt 180 ctggagtcat tccacctcct t 201 <210> 30 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 30 gactattctt ttagagacac ctgacctaat ccacagaaga cactcacacc tgcatcaaac 60 ctccacgatg accccacagt gtctgggaaa aggagtgacc rccacaaagt agggccacct 120 gctgggaagt agaagaccac accaggcgga cctcaggacc ctcctgggct cactcacttt 180 tcctcaagtt ctggatggca g 201 <210> 31 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 31 acctaatcca cagaagacac tcacacctgc atcaaacctc cacgatgacc ccacagtgtc 60 tgggaaaagg agtgaccgcc acaaagtagg gccacctgct rggaagtaga agaccacacc 120 aggcggacct caggaccctc ctgggctcac tcacttttcc tcaagttctg gatggcagtg 180 aagtagccgg agccaaggta c 201 <210> 32 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 32 tattcatttt ggtgggattt ataggagagt tccaaagttt ttcaaggtga ggactttttg 60 ggttgtgtgt aaaaatcatt aaatttaaaa aatgttttag waattcttta gtctaatttt 120 gacattgcac tttgaatctg tgtatccctc caacatattt tctctttcca tatttttata 180 aaagacaatg ataacaaaag c 201 <210> 33 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 33 actcacagga gtaagaagct cagaaaagca cagtgagtcc ctgcccagtt ccaggaagca 60 atctgaaaag tctggtctgg tcaccagcag atgacagttc yttcacttag agcaattttg 120 ctaagcacac ttatttgctt tctctggaaa ccttcagcac taaatgtgtt ggtatttcca 180 cctgagaagg tatttaactg c 201 <210> 34 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 34 aaggggacag attcaaaagc tacttgggac ctatgtagta accatctgaa tggcaatcta 60 tgtagatttt tgcagtgtgt ctgtgtagtg tgctgggagc rggtatttgt atttatctct 120 gtgtacttat gtctaggcca gtaggataga gtatctatct gttcacctgt gtcctcaagt 180 tatgattat gcaggggcct c 201 <210> 35 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 35 tgcctacacg ctccttctcc acacctggct tctcaaggta cagtcacttt gggtgaaggg 60 catttatgct gggatcctga cagggcctca cagcaagttg wagagtgaaa aaagaaaaaa 120 aagaaaaaga atccaaatat tttgttttgc cctgtgtctc caaactcttg agctggcagg 180 atactttttg cactgcttcc c 201 <210> 36 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 36 tctaccaaca cgcccttcat tgcacctgaa gaaacatgcc aaaattgcaa tcacacaaaa 60 caaaaataat ttaagaggtt ccaagatggc caaacaggaa sagctctagt ctacagctcc 120 cagcgtgagc gacacagaag acaggtggtt tctgcatttc caactgaggt actgggttca 180 tctcactggg gcttgctgga c 201 <210> 37 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 37 agcaactttt atctttaaat gccagttccc atgtttcctc ctaactaact ttaggagtca 60 aacctagaaa ccagttttat aatatgtgat taaaaattaa yataaaccac ttttgtaaaa 120 ttcggtttgc ctatctggtg gcattttccc acatttcaat tcagacatga tttgcctcta 180 acaatcaaaa atgtttagaa t 201 <210> 38 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 38 agcttcttcc ccctgtagct acttcacatg cgttgacata gaaatgtgac acatctttct 60 cattagagaa aatgttttca tgcttttaga ttgagatact rtctcttcta cagtgttata 120 tgtgtctctg tctttaattt atggttcact ttgttccact ttacgggagg gagatgttgt 180 agtctggttt cctgctgaca t 201 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 39 atgtgatgca aactcagaac tatatgcccc ggtcaatgtt agagacccta aaaccccagc 60 tcatttggca tctgttcatt catattccag ctgaatctca saaatgtgct taagggaaag 120 catctgatat tagcagtttc tcagccaagt cacaggacgg gacatcccag agtcatggcc 180 tgctgcactt ttaaaaggga a 201 <210> 40 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 40 ccattcttcc cctgtggcca gacacttccc ctggctgagt ctctgggctt ttatatcata 60 ggatgcctct aatggcaatc ctgccattag atacacctgc ygtggtgtat ctgccaggta 120 ggcaggctag gctgcagtaa caaacaagcc cacaatttcc atggcttaac actatgggaa 180 tatatttctt gctcacgtaa c 201 <210> 41 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 41 acaattaact ttggacaact taaaacttat tagtgacatt gctgtctaat aatcaaatac 60 ttcatcatag gctgaacata attattaaaa gagcaaagtt wcccctccct ttcttacttt 120 caaacaaaac caaaagagta gttttcatct ggaaagagca cttacttcag ggaaagactc 180 aatttttaac cagttttatt a 201 <210> 42 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 42 cttttgtgaa cacctgttta aaaaaaaaat cagaggtaag aatttagtta ttcttcattt 60 acagctctgc aaaacacacg cacgtttgca aacagtaaga stgacaagca ggatttgaat 120 agggttttaa ttttaaaggt gtcaaccagc ctttttactt aggttggttc ccagccatcc 180 atgccaatag aagagaagtt c 201 <210> 43 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 43 aaaaaaaaaa aaaaaaaaaa aaaagtgcga cgggtttcga ctggtgaata caaatacaga 60 ggcagccatc acgttatgtg gaacactgaa ataatttacc rtctaatttg agagtacctg 120 gagccaaatt aaacaaacga ttacctttct tctttgacgg cgagtctact ttagctgccg 180 gtttggattc tgagggcgcc t 201 <210> 44 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 44 tcctttttga cagcttagtt cttcaacatg aaactaaagc ttgtcttgcc aacaacagtc 60 ctctgtacaa tcaaccataa aaaactgcta aacggtccgt ytgggccacg taccagaggc 120 ctgagcacac tgtgtaagga gggtgtaacc catgcaaact tacatattct tcttcagtct 180 cctcaacaaa gaaagcttct c 201 <210> 45 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 45 aggctggacc tagggaagga cttccccgcc ttcccttgga ggcggcctcg ggtcagagct 60 cagatcttgg ctcagaaatc acagggggcc tgtccactca sggcccaccc cgccatgtgt 120 gttcccaagc ttcgccagga cacagggcct ggcactgcca ctgacgagct gtggggtccc 180 ttctccctcg tgcgactcac c 201 <210> 46 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 46 cattcatgcc cagatttcat ttcagagtga aggcattgga tttctgaatt ggtgaagcat 60 ctgctctcca gcacagctgc ccgccgcatg caaaaagcca sagaaacccc tgggttctcc 120 gaggcatctg cctggcacgc cgccggccct gcgcggagca ggcaccaggg gtcgcacagg 180 tgagtcatac ctagggtcct c 201 <210> 47 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 47 accgacccag gccccacaca caggccacac accaggtagc tgagggcgct ggccagctgc 60 tgggccacca ccatcttcca agccatgggc acatggcccc rctccctccg cagccacaca 120 tccaggggtc cgtgctccac gtactctgtc accatgatat ctgtaaagac acagctgctc 180 tggggcaacc tgcctgcttc t 201 <210> 48 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 48 gtcctggaga aaagaaggac gggtgagggg ctgccccacc ttgttctgag ctgagacctc 60 cccaccagtc ctctccctgg gaccctcagt ctgtctctgt yttctctgag tctccccctc 120 cccgcccatc ccctgtctct gtctgtctct ccctccctta ggacccccac ccctcatccc 180 ggccatcacc acctgggctc c 201 <210> 49 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 49 ggtgccaggt gaccactggc tgtgcagtga gtgtccccgg ggagagctca ggaacaaatc 60 ctggctccat ccctgacagc tgtgtggccc caggagactg rgtttcccca tctgcaaagt 120 gggaggaata agaaaatatc gacctcacgg gctgttgtgg gcagagacgg acgctaagga 180 tgtcaaggcc tggtcacagc c 201 <210> 50 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 50 ataagcaaaa cttaacttgg atgatttctg gtaaatgctt atgttagaaa taagacaacc 60 ccagccaatc acaagcagcc tactaacata taattaggtg rctagggact ttctaagaag 120 atacctaccc ccaaaaaaca attatgtaat tgaaaaccca tcgattgcct ttattttgct 180 tccacatttt cccaataaat a 201 <210> 51 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 51 cagaggcgtc gaagacccgg gacccttcgg cgccacgccc acgccctccc ggcgcacggt 60 tcgtgcgcgc agctctgggc tccgcggcct ggcgagcgcg rccccgggtg caccgggcgg 120 atggggccgc ggagggacgg gcccggactc ggtttcggtt tccttcgccg ggcagccgtg 180 gcgcccgcct agcgcagctc g 201 <210> 52 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 52 atatggtagt aaatcaagca cagagttgcc ccgagcacat catttatata caggtaaggc 60 ctcaggaaca tcccttttga ctttatttct tcctaaagac ragagagtgg taaaagtcaa 120 aaatggaagc ttatgagtta gaaaatgctc acccttccaa tgaatgcctt tcttatgtaa 180 ttccataaat aagaagcata t 201 <210> 53 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> M (A or C) <400> 53 cgccttggca aagacaccct cctgcgcttt ctccggattg tgtctgcaca cagggtgctg 60 actgcaccag accagtgcaa acattctaat cgtcttctta maatttgttt ctctcatccc 120 catccctgcc ttctcgctgt agttgaactg ctgtggtttg gctgggggcg tggaacagtt 180 tatctcagac atctgcccca a 201 <210> 54 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 54 aagaatgata aatttgaaaa gaaatgacag gatgaagaaa agctggctag gggcaataaa 60 ttttctagag gagtcactag gagatatatt ggttgcgggg rgctgtaaaa taggtgaaag 120 ataggtgttt attaagtatc tttattcagg ttcattgcag catccaattc caggtctctg 180 gcgataagag ctattttctt g 201 <210> 55 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 55 ggcaccgggg cgcgggcagg gctcggagcc accgcgcagg tcctagggcc gcggccgggc 60 cccgccacgc gcgcacacgc ccctcgatga ctttcctccg sggcgcgcgg cgctgagccc 120 ggggcgaggg ctgtcttccc ggagacccga ccccggcagc gcggggcggc cgcttctcct 180 gtgcctccgc ccgccgctcc a 201 <210> 56 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 56 tctctacctc tgctcagaga cagacccaga ggcaggtccc agcttcagag aggaggtctt 60 tcctacctat gccgttcctg aagatggtga tggtctgtgg wgcatctggg ataaaaagat 120 ataaacttgg cttcagcagt gaggagtgag atgggcatgg gcccaggagg tacccaaaga 180 ggagccacag aaacccacca a 201 <210> 57 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 57 tccgtgttgg ttgcagctgg agagacagcc actctgcgct gcactgcgac ctctctgatc 60 cctgtggggc ccatccagtg gttcagagga gctggaccag sccgggaatt aatctacaat 120 caaaaagaag gccacttccc ccgggtaaca actgtttcag acctcacaaa gagaaacaac 180 atggactttt ccatccgcat c 201 <210> 58 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 58 aaatccagga ctacagaccc cacagttctc tcgctgccac ttcaagtcac gaaatgacag 60 cattattcac atccttgtgg aggtgaccac agccccgggt rctgttcaca gctacctggg 120 ctcccctttc tggatccacc aggctggtaa gaactttctt cctcattctt cccacatagt 180 tcccaccccc actgaatctg a 201 <210> 59 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 59 tcccctttct ggatccacca ggctggtaag aactttcttc ctcattcttc ccacatagtt 60 cccaccccca ctgaatctga ccctgtgccc aggatcccca rctctgaccc ttctgaccga 120 tggctctggt ggcacaatgc cttgtgcaca gaaggactta agctgctccc tgctgacatc 180 cctgtagtgc gcctccccac c 201 <210> 60 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 60 gaggagagag gaagtacatc agctgctgcc tgaaggatca gttccccaaa atgcttctgc 60 tctgtcaccc agctcctctt ctctctccca cccctgttct rtggcagctt ctggccaaag 120 ttctgcttct agagccaggg taaccttggc aggtagaggc acctccctgg tgataatgac 180 aggaggcagc caaatgccta g 201 <210> 61 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> M (A or C) <400> 61 atttacaagt gaatttgggg ccttgtgcta gggagaattg ggttctattt ctctacctct 60 gactagctat gaggtcttca ggaagcatag gaaattcccc mataactaac aagtactctg 120 gaactgtcct ttccacagtg tgtcagccgc ctccagaaat cctgcatggt gagcataccc 180 caagccatca ggacaacttt t 201 <210> 62 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 62 ctggtgacaa actccagaac ttcctggttg cttttgctgg ggtatggcat atatccaaga 60 gaaaagattt cccatagcag cactccaaag gacctgggca ygggacagag gacatggaga 120 tggatataga cacacccacc cacattcaca cacacacaca ggcacacaga catacaattt 180 caaccttttt ttcccccatt a 201 <210> 63 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 63 aggctgagaa cggcggctcc cagctgctgc acgctgtcct ggccgccttt tgcgttcctt 60 ttggctcctc caagctcttc tgcccggtct gggcgggaac ygagggcgga ggctgccgtc 120 ttgcgcaccc tcaagctatc tctccgctgc gggaaggctt cggactgtct gcctgctgaa 180 cttctgggcg tgaatcccag c 201 <210> 64 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> K (G or T) <400> 64 acatttccac ttttgatttg gcctacactc atcttggaca ggtcatctag gcacaaaaat 60 gccacaaatt ttacctgata ataagaaccc tctgcctacc kgatgcatgg taagcctgta 120 aaaatgcagt actgaaaccc cactgcaagc acgcaaatgt aaagaacact tacattttac 180 agataagcga gagaattaac a 201 <210> 65 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 65 gaagacgttt ctgtctggtc cgtcgagagt ccttccatca gtggcagaga cagctcggat 60 gagggcacag acgagtcata gatgcctgag tcccgcggca ygtccgaggg gctgccggct 120 ttcaccgtgt gcagcagggg ttgcagggcg gcgctaccgt caagggcagg ccgggcctcc 180 ccgtcttggt ccaggccccc a 201 <210> 66 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 66 ggaaaaatca gccttgtggg tgaacaggag gagagtcaca ttcgccagca ggcagcaccc 60 tgtgcaggca gtgggagaaa tctgagcttc agcagcgtcc rgagcaggat ttgcacgaag 120 tctcccgttt caagttttat gtctcctgga gtcctgggga aggcacccag cccacccaca 180 gctcccttct cagagcccta a 201 <210> 67 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 67 aaaaaaaaaa aaaaaaaaaa accaaaaaaa aaaaaaccaa aatcagtcac ctgttggttt 60 gtggatcaaa caaagtggag gtgacatcac tgaagcctag racatcactc cccttttcca 120 ggcaggcttt gtggttcgac ctgtctcacg ttccaaccca tgcaccctaa ccccctactt 180 ctttacctct tccaattgag 201 <210> 68 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 68 tgggagagta ctgaatgggc accaagattc cagctttact gtgtcttggc cagtgaggga 60 gatgcaggaa aggcgggctg gggagggtga cagagggtgc rggtgtggca ggcaggtttg 120 ccctcacctt ggaaggggtt gttgttggtc tggatgcgct gactgatagc ctgctccagg 180 tcccgcttct tcacacactg g 201 <210> 69 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 69 ttgcatctgt aaattacaaa agaaaaaaat gacagttccg tataaactta ccttctgtgt 60 atcccaggac tctgtaaata gatctcttct ctctctcctt ytccttctgg aatgcatatt 120 caataaagga tataaagata tgatattcca gtactaatat tatttcgaag actctatacc 180 tcactgtacc cctagcccac 201 <210> 70 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 70 ctcggttccc cctctgtgaa aagacatggt cggagccctg gagctccacc cgtgggtttg 60 gggatctgtc acccgctgtc ttgttctgca tgtctctgac yggtggacac acgagcagtg 120 ggacctggag gtgctccagc tgcctgcagg caacagtcca ggaggtgcag ccccgggcag 180 aggagccccg gccccaggag c 201 <210> 71 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 71 ccgcaccacc ctcgcctctg cggagacccc gcagccggag ctctggagcc ggtccccgct 60 gcaccccagc ggcctcacct cggctctcat ccacatagat saggtagcgg tccatcccgt 120 cctgctgctc cagcgtgtag gccacccagc agccctctga gtccctctcc ttgcaggtcc 180 tgcccttcac ggggttgttc g 201 <210> 72 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 72 gggccagact cactgcgttc tttcgtcgct ttgtccatcc attcattcat tcaggatcgt 60 tttcactgtc ggtccgggac ttcgaccaga accagggaga rgtggtgaaa cattacaaga 120 tccgtaatct ggacaacggt ggcttctaca tctcccctcg aatcactttt cccggcctgc 180 atgaactggt ccgccattac a 201 <210> 73 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 73 aatccaagaa attttcccgt tcggatccca acttctccat cccacaagca aaccacagtc 60 acagtggtga ttaccactgc acaggaaaca taggctacac rctgtactca tccaagcctg 120 tgaccatcac tgtccaaggt atgcggagtc tgccaagatg taaggagggg agaagagggg 180 atggacaagg gctgaggtca c 201 <210> 74 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 74 ctctccctgt actggaatca ggtccagggc cccccaaaac cccggtggca caaaaacctg 60 gtgaggcctc ccccttccca agtccattcc cactgtaggc ygatgcctgt gcaaaggacg 120 cagtgccata tcagagagga tccttgaaga ggactcaccc caagcaaggg aaaattggtg 180 ggggaacttc tgccttcctg g 201 <210> 75 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 75 ctgcaggtaa tttggagct tcgggagaag ttggatctgc agcattgtgt tttgccatca 60 cggttacagg cttcccaagt aaagttgaaa agtaaaggac ragcaaggta aagagctcat 120 cctcacacag gatgtcacaa ttttctgaca tcccactgtc agagttagag cttaatacta 180 ctacaaataa tgatactatt a 201 <210> 76 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 76 caaaatcaag aagcctttga tttagatgtt gctgtaaaag aaaataaaga tgatctcaat 60 catgtggatt tgaatgtgtg tacaaggtaa gtgtctgctt rggtctctct tctttttttc 120 ctttaaaaaa tagacttgaa ggtttaatta tgtatagttg tctatatcaa tctaagagtt 180 atattgaaca aagaattcag t 201 <210> 77 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> W (A or T) <400> 77 tacccaaatt ctttttaaac ctgaaagttt acatttatgc tactttttat agctattctt 60 actaacataa tgataaataa tttttgctta tgcttactta wcatgtgtgt ttatttagat 120 atccacatta ttttagagaa agtacctcat taatcgcgta aattttggat tattttgtct 180 tacttagtca cagagatgct g 201 <210> 78 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 78 ttcacacatg atgctttcaa gtgatttttc cattcaggtt gcaagtaatg aaattctcag 60 ggacccatgc tttcatcctg gatataagaa ggtagtgaac rtaagtgacc tttacaagac 120 cccctgcacc aagagatttg agatgactct tccattccag cagtttgaaa tccagggtat 180 tggaaactat caacaatgcc a 201 <210> 79 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 79 cttaggcata gaatatgggg aatggaaagg ttactaaaag ttcacaagat ccccttattg 60 tgtagatgaa ggcctgaagc ccaaagatgt gaagcaattc rcacaggatc acagagctgc 120 ctcgtggcat taagatgctg tgactaaaat cctgctctcc attctccgca ctcattgctt 180 tgtttgtagt acaggctgga c 201 <210> 80 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> M (A or C) <400> 80 tcaggtgcac cgtatcacag gcaagatggt ggccacggcc agctatgaag ccgtagtcag 60 tggcaccaag gtgttggaga tgactctgct gcctgagaac macatggcgg ccaagtaagt 120 cccatgcaac ttcccctcag tccgcaggct ttgtactagc tttctccact gggcctatgc 180 tagcccactt cttccttttc c 201 <210> 81 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> Y (C or T) <400> 81 tttggagctg ggtgggaggg ctcaagggtt gcttccgtta ctgactccct ctggtttctg 60 ggctggccct gccatttccc ttggtctcag tttgcttccc yataccttga ggacagtttt 120 aaaccctacc tcttccactc atattaagtt aacatgcagt gggctcctct gtgtgtcaga 180 ccttctaggg ccttctgaat t 201 <210> 82 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> &Lt; 223 > R (A or G) <400> 82 ttaaagaagg ggacaaagct gaaccagcca cttggaagac gaggttacgc tgtgctttga 60 ataagagccc agattttgag gaagtgacgg accggtccca rctggacatt tccgagccat 120 acaaagttta ccgaattgtt cctgaggaag agcaaaaatg taactatcct ttatgggcat 180 gaaaccttcc agaagctgcc c 201 <210> 83 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> K (G or T) <400> 83 aaataggatg cattcggttt tgtgattcaa aatgtactat gtgttaagta atattggcta 60 ttatttgact tgttgctggt ttggagttta tttgagtatt kctgatcttt tctaaagcaa 120 ggccttgagc aagtaggttg ctgtctctaa gcccccttcc cttccactat gagctgctgg 180 cagtgggttt gtattcggtt c 201 <210> 84 <211> 201 <212> DNA <213> Homo sapiens <220> <221> variation <101> <223> S (C or G) <400> 84 gctgccccaa gtgctcccct gcagtctggg agtccatgct caagctgcca cctggcctct 60 ccggtggcg tctcacggaa gccctgtcca cgctctgggc sgtgagctcc ggtcaaacgt 120 ggccttggaa gggagatgaa ggagagagag gaacatgaag cacccctttc ccttctgcag 180 gcagacgtcg gttttctcag g 201 <210> 85 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <100> <223> S (C or G) <400> 85 ggcttcggct ctgaagtctt caggattcag tgagtgtccc cagggccatg tgggtgacaa 60 cccgtcactg ttgcttgcag ctgccaagcc cacttcttts cccacccctt cccaggatat 120 ccccttcccc aggggactga gagctgttgt cctaccatgc tggggggcag gggcttctcc 180 agagggtctg gcgggcagac 200 <210> 86 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <100> <223> M (A or C) <400> 86 tgtagctccc ggagctccta tgacatgtac catctatcca gggagggggg agcccatgaa 60 cgtaggctcc ctgcagtgcg caaggtcaac agaacattcm aggcagattt ccctctgggc 120 cctgccaccc acggagggac ctacagatgc ttcggctctt tccgtcactc tccctacgag 180 tggtcagacc cgagtgaccc 200 <210> 87 <211> 200 <212> DNA <213> Homo sapiens <220> <221> variation <100> <223> M (A or C) <400> 87 gacttggcag ccccgggcag tggtggctcc ggggcactgg gtgacctgca cctcaccacc 60 ctctactctg cctttatgga gctggagccc acgccccccm cggcccctgc aggcccctct 120 gtgtacctca gccccagctc caagcccgtg gccctggcat gagctgtgcc cagcttcgtc 180 agctccagcg tttgcctggt 200

Claims (27)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 65, 69 및 70의 염기서열로부터 유래하고, 서열번호 65, 69 및 70의 101 번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들 또는 이의 상보적인 폴리뉴클레오티드들을 검출할 수 있는 제제를 포함하는, 제8인자(Factor VIII, F8)의 혈우병 치료제로서의 효능 예측 조성물.
Polynucleotides composed of 5 or more consecutive bases derived from the nucleotide sequences of SEQ ID Nos. 65, 69, and 70 and comprising the 101st base of SEQ ID Nos. 65, 69, and 70 as SNPs, or complementary polynucleotides thereof (Factor VIII, F8) as an agent for the treatment of hemophilia.
제6항에 있어서, 상기 제제는 프로브인 것을 특징으로 하는 혈우병 치료제의 효능 예측 조성물.
7. The composition according to claim 6, wherein the agent is a probe.
제6항에 있어서, 상기 제제는 프라이머인 것을 특징으로 하는 혈우병 치료제의 효능 예측 조성물.
7. The composition according to claim 6, wherein the agent is a primer.
제6항에 있어서, 상기 제제는 압타머인 것을 특징으로 하는 혈우병 치료제의 효능 예측 조성물.
7. The composition according to claim 6, wherein the preparation is a platemer.
제6항의 조성물을 포함하는 제8인자(Factor VIII, F8)의 혈우병 치료제로서의 효능 예측 키트.
Factor VIII, F8, which comprises the composition of claim 6, as an agent for the treatment of hemophilia.
제10항에 있어서, 상기 키트는 PCR 키트, DNA 칩 키트 또는 형광염료 키트인 것인 혈우병 치료제의 효능 예측 키트.
11. The kit according to claim 10, wherein the kit is a PCR kit, a DNA chip kit or a fluorescent dye kit.
서열번호65, 69 및 70의 염기서열로부터 유래하고, 서열번호 65, 69 및 70의 101 번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들 또는 이의 상보적인 폴리뉴클레오티드들을 포함하는 제8인자(Factor VIII, F8)의 혈우병 치료제로서의 효능 예측 마이크로어레이.
A polynucleotide comprising 5 or more consecutive bases derived from the nucleotide sequences of SEQ ID NOS: 65, 69, and 70 and comprising the 101st base of SEQ ID NOS: 65, 69, and 70 as SNPs, or a complementary polynucleotide Factor VIII, F8, as a therapeutic agent for hemophilia.
(a) 분리된 시료의 DNA로부터 서열번호65, 69 및 70의 염기서열로부터 유래하고, 서열번호 65, 69 및 70의 101 번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들 또는 이의 상보적인 폴리뉴클레오티드들을 증폭하는 단계; 및
(b) 상기 (a) 단계의 증폭된 다형성 부위의 염기를 결정하는 단계를 포함하는, 제8인자(Factor VIII, F8)의 혈우병 치료제로서의 효능 예측을 위한 정보의 제공방법.
(a) polynucleotides composed of 5 or more consecutive bases derived from the nucleotide sequences of SEQ ID NOS: 65, 69, and 70 from the DNA of the separated sample and comprising the 101st base of SEQ ID NOS: 65, 69, Amplifying complementary polynucleotides thereof; And
(b) determining the base of the amplified polymorphic site of step (a). 8. The method according to claim 7, wherein the factor VIII is selected from the group consisting of Factor VIII and Factor VIII.
(a) 분리된 시료의 DNA로부터 서열번호65, 69 및 70의 염기서열로부터 유래하고, 서열번호 65, 69 및 70의 101 번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들 또는 이의 상보적인 폴리뉴클레오티드들을 프로브와 혼성화하는 단계; 및
(b) 상기 (a) 단계의 혼성화된 다형성 부위의 염기를 결정하는 단계를 포함하는, 제8인자(Factor VIII, F8)의 혈우병 치료제로서의 효능 예측을 위한 정보의 제공방법.
(a) polynucleotides composed of 5 or more consecutive bases derived from the nucleotide sequences of SEQ ID NOS: 65, 69, and 70 from the DNA of the separated sample and comprising the 101st base of SEQ ID NOS: 65, 69, Hybridizing complementary polynucleotides thereof with a probe; And
(b) determining the base of the hybridized polymorphic site of step (a). 8. The method of claim 7, wherein the factor VIII, F8 is selected from the group consisting of:
제13항 또는 제14항에 있어서,
상기 (b) 단계에서 결정된 염기서열 중, 서열번호 65, 69 및 70의 염기서열로부터 유래되는 폴리뉴클레오티드들 또는 이의 상보적 폴리뉴클레오티드들을 포함하고, 이의 다형성 부위가 표 1의 대립 유전자인 경우 제8인자(Factor VIII, F8)에 대한 항체 생성 위험도가 높은 것으로 판단하는 것을 특징으로 하는 정보의 제공방법.
The method according to claim 13 or 14,
The polynucleotides derived from the nucleotide sequences of SEQ ID NOS: 65, 69 and 70, or complementary polynucleotides thereof, of the nucleotide sequence determined in the step (b), wherein the polymorphic site is the allele of Table 1, (Factor VIII, F8) is determined to have a high risk of antibody production.
삭제delete 삭제delete 삭제delete 제13항 또는 제14항에 있어서,
상기 (b) 단계의 염기 결정은 서열 분석, 마이크로어레이에 의한 혼성화, 대립 유전자 특이적인 PCR (allele specific PCR), 다이나믹 대립 유전자 혼성화 기법(dynamic allele-specific hybridization, DASH), PCR 연장 분석, PCR-SSCP (PCR-single strand conformation polymorphism), PCR-RFLP (PCR-restriction fragment length polymorphism) 및 TaqMan 기법으로 이루어진 군에서 선택된 하나 이상의 방법에 의해 수행되는 것을 특징으로 하는 정보의 제공방법.
The method according to claim 13 or 14,
The base crystals of step (b) may be analyzed by sequencing, hybridization by microarray, allele specific PCR, dynamic allele-specific hybridization (DASH), PCR extension analysis, PCR- (SSCP), a PCR-restriction fragment length polymorphism (PCR-RFLP), and a TaqMan technique.
삭제delete 제6항에 있어서, 상기 폴리뉴클레오티드는 서열번호 1, 9, 58 내지 64, 66내지 68 및 71의 101번째 염기 및 서열번호 85 및 86의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 조성물.
The polynucleotide of claim 6, wherein the polynucleotide comprises at least 5 consecutive bases comprising the 101st base of SEQ ID NOS: 1, 9, 58-64, 66-68 and 71 and the 100th base of SEQ ID NOS: 85 and 86 as SNPs Wherein the polynucleotide further comprises at least one polynucleotide selected from the set of polynucleotides or complementary polynucleotides thereof.
제6항에 있어서, 상기 폴리뉴클레오티드는 서열번호 72 내지 84의 101번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 조성물.
7. The polynucleotide according to claim 6, wherein the polynucleotide further comprises at least one polynucleotide selected from polynucleotides composed of 5 or more consecutive bases comprising the 101st base of SEQ ID NOS: 72 to 84 as a SNP or a complementary polynucleotide thereof &Lt; / RTI &gt;
제6항에 있어서, 상기 폴리뉴클레오티드는 서열번호 2 내지 8, 10 내지 57의 101번째 염기 및 서열번호 87의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 조성물.
7. The polynucleotide according to claim 6, wherein the polynucleotide comprises at least one polynucleotide selected from polynucleotides composed of 5 or more consecutive bases comprising the 101st base of SEQ ID NOS: 2 to 8, 10 to 57 and the 100th base of SEQ ID NO: 87 as SNPs Lt; RTI ID = 0.0 &gt; polynucleotide &lt; / RTI &gt; or a complementary polynucleotide thereof.
제13항 또는 제14항에 있어서, 상기 폴리뉴클레오티드는 서열번호 1, 9, 58 내지 64, 66내지 68 및 71의 101번째 염기 및 서열번호 85 및 86의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 정보의 제공 방법.
15. The polynucleotide according to claim 13 or 14, wherein the polynucleotide comprises the nucleotide sequence 101 of SEQ ID NO: 1, 9, 58 to 64, 66 to 68 and 71, and the nucleotide sequence of SEQ ID NO: 85 and SEQ ID NO: Wherein the polynucleotide further comprises at least one polynucleotide selected from polynucleotides composed of at least two consecutive bases or complementary polynucleotides thereof.
제13항 또는 제14항에 있어서, 상기 폴리뉴클레오티드는 서열번호 72 내지 84의 101번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 정보의 제공 방법.
15. The polynucleotide according to claim 13 or 14, wherein the polynucleotide comprises at least one polynucleotide selected from polynucleotides composed of 5 or more consecutive bases comprising the 101st base of SEQ ID NOS: 72 to 84 as SNPs or a complementary polynucleotide Further comprising the step of:
제13항 또는 제14항에 있어서, 상기 폴리뉴클레오티드는 서열번호 2 내지 8, 10 내지 57의 101번째 염기 및 서열번호 87의 100번째 염기를 SNP로 포함하는 5개 이상의 연속 염기로 구성된 폴리뉴클레오티드들로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는 정보의 제공 방법.
15. The polynucleotide according to claim 13 or 14, wherein the polynucleotide comprises polynucleotides consisting of 5 or more consecutive bases comprising the 101st base of SEQ ID NOS: 2 to 8, 10 to 57 and the 100th base of SEQ ID NO: 87 as SNPs &Lt; / RTI &gt; or a complementary polynucleotide thereof. &Lt; / RTI &gt;
제25항에 있어서, 상기 서열번호 72 내지 84로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하고, 이의 다형성 부위가 표 2의 대립 유전자인 경우, 혈우병 치료제에 대한 항체 생성 위험도가 낮은 것으로 판단하는 것을 특징으로 하는 정보의 제공방법.26. The method according to claim 25, wherein the polynucleotide comprises at least one polynucleotide selected from the group consisting of SEQ ID NOS: 72 to 84 or a complementary polynucleotide thereof, wherein the polymorphic site is the allele of Table 2, And judging that the risk is low.
KR1020160078447A 2016-06-23 2016-06-23 Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof KR101774996B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160078447A KR101774996B1 (en) 2016-06-23 2016-06-23 Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof
PCT/KR2017/006344 WO2017222247A2 (en) 2016-06-23 2017-06-16 Marker for predicting efficacy of therapeutic agent for hemophilia and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160078447A KR101774996B1 (en) 2016-06-23 2016-06-23 Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof

Publications (1)

Publication Number Publication Date
KR101774996B1 true KR101774996B1 (en) 2017-09-19

Family

ID=60033647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160078447A KR101774996B1 (en) 2016-06-23 2016-06-23 Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof

Country Status (2)

Country Link
KR (1) KR101774996B1 (en)
WO (1) WO2017222247A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131774A1 (en) * 2010-04-21 2011-10-27 Erik Berntorp Genetic factors associated with inhibitor development in hemophilia a

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235820B1 (en) * 2012-02-17 2013-02-21 한국생명공학연구원 SNP for predicting sensitivity to an anti-cancer targeted agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131774A1 (en) * 2010-04-21 2011-10-27 Erik Berntorp Genetic factors associated with inhibitor development in hemophilia a
JP2013529071A (en) * 2010-04-21 2013-07-18 エリック ベルントルプ, Genetic factors associated with the development of inhibitors in hemophilia A

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NCBI dbSNP ss328515293 (2011. 7. 20., DB 제출일)*
NCBI dbSNP ss66857319 (2006. 11. 9., DB 제출일)*
Patel, ZH., et al, Front Genet. Vol.5, Article 16. (2014. 2. 12. 온라인 공개) "The struggle to find reliable results in exome sequencing data: filtering out Mendelian errors"*
R Nielsen et al., Nature Reviews Genetics Vol12, pp.443-451 (2011. 6.), "Genotype and SNP calling from next-generation sequencing data"

Also Published As

Publication number Publication date
WO2017222247A2 (en) 2017-12-28
WO2017222247A3 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
KR20100016568A (en) Method for determination of onset risk of glaucoma
KR101206029B1 (en) Multiple SNP for diagnosing colorectal cancer, microarray and kit comprising the same, and method for diagnosing colorectal cancer using the same
AU2013301606B2 (en) Genetic markers for predicting responsiveness to FGF-18 compound
AU2013301607B2 (en) Prognosis biomarkers in cartilage disorders
AU2014203213A1 (en) Diagnostic markers for ankylosing spondylitis and uses thereof
US20080113346A1 (en) Marker Gene for Arthrorheumatism Test
KR101206028B1 (en) Method for diagnosing a breast cancer using a breast cancer specific polymorphic sequence, polynucleotide specific to a breast cancer and microarray immobilized with the polynucleotide
EP2337863A1 (en) Diagnostic markers for ankylosing spondylitis
US20050233321A1 (en) Identification of novel polymorphic sites in the human mglur8 gene and uses thereof
KR100754398B1 (en) Multiple SNP for diagnosing cardiovascular disease microarray and kit comprising the same and method for diagnosing cardiovascular disease using the same
KR101100437B1 (en) A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
KR101774996B1 (en) Markers For Predicting Effect of Therapeutic Agent Against Hemophilia and Use Thereof
EP2584039A1 (en) Snp for predicting the sensitivity to anticancer targeted therapeutic formulation
EP1709174B1 (en) Use of a polynucleotide associated with a type ii diabetes mellitus comprising single nucleotide polymorphism, use of a microarray and diagnostic kit comprising the same and method for analyzing polynucleotide using the same
WO2010071405A1 (en) Markers for detecting predisposition for risk, incidence and progression of osteoarthritis
CN113166810A (en) SNP marker for diagnosing cerebral aneurysm including single base polymorphism of GBA gene
CA2547033A1 (en) Ntrk1 genetic markers associated with progression of alzheimer&#39;s disease
KR101663171B1 (en) Biomarkers indicative of Down Syndrom and Their uses
KR101167945B1 (en) Polynucleotides derived from ATG16L1 gene comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods for autism spectrum disorders using the same
KR100908125B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
KR101972355B1 (en) Polymorphic Marker of obesity or obesity related diseases in Korean and Method of Predicting obesity or obesity related diseases Risk in Korean Using The Genotype Information
KR101075392B1 (en) Polynucleotides comprising single nucleotide polymorphism derived from FGA gene, microarrays and diagnostic kits comprising the same, and detection methods using the same
US20060246437A1 (en) Genetic susceptibility genes for asthma and atopy and asthma-related and atopic-related phenotypes
KR101167942B1 (en) Polynucleotides derived from ALG12 gene comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods for autism spectrum disorders using the same
KR101167940B1 (en) Polynucleotides derived from FMN2 gene comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods for autism spectrum disorders using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant