KR101762979B1 - Process for production of ketone - Google Patents

Process for production of ketone Download PDF

Info

Publication number
KR101762979B1
KR101762979B1 KR1020127007540A KR20127007540A KR101762979B1 KR 101762979 B1 KR101762979 B1 KR 101762979B1 KR 1020127007540 A KR1020127007540 A KR 1020127007540A KR 20127007540 A KR20127007540 A KR 20127007540A KR 101762979 B1 KR101762979 B1 KR 101762979B1
Authority
KR
South Korea
Prior art keywords
catalyst
ketone
copper
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020127007540A
Other languages
Korean (ko)
Other versions
KR20120089656A (en
Inventor
후미오 야마까와
Original Assignee
이데미쓰 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이데미쓰 고산 가부시키가이샤 filed Critical 이데미쓰 고산 가부시키가이샤
Publication of KR20120089656A publication Critical patent/KR20120089656A/en
Application granted granted Critical
Publication of KR101762979B1 publication Critical patent/KR101762979B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은, 구리계 촉매를 이용하여, 반응 압력 0.1 MPaG 이하에서 지방족 알코올을 탈수소하는 케톤의 제조 방법을 제공한다. The present invention provides a process for producing ketone which dehydrogenates aliphatic alcohols at a reaction pressure of 0.1 MPaG or lower using a copper catalyst.

Description

케톤의 제조 방법 {PROCESS FOR PRODUCTION OF KETONE}PROCESS FOR PRODUCTION OF KETONE [0002]

본 발명은 구리계 촉매를 이용하는 케톤의 제조 방법에 관한 것이다.The present invention relates to a process for producing a ketone using a copper-based catalyst.

케톤류는 용제나 유기 화학품의 원료로서 유용한 물질이다. 특히, 메틸에틸케톤(MEK, 2-부타논)은 무색 투명한 흡습성 액체로서, 우수한 용해 능력을 가지며, 일반적으로 이용되는 유기 용매와 자유롭게 혼화한다. 특히, 합성 수지, 유지, 고급 지방산 등에 대한 용해 능력이 커서, 용제 분야에서 폭넓게 이용되고 있다. 최근에 자기 테이프 결합제용 등의 전자 산업 분야에도 고성능 용제로서 수요가 있다.Ketones are useful materials for solvents and organic chemicals. In particular, methyl ethyl ketone (MEK, 2-butanone) is a colorless and transparent hygroscopic liquid having excellent dissolving ability and freely miscible with commonly used organic solvents. Particularly, it is widely used in the solvent field because of its high ability to dissolve in synthetic resins, oils, higher fatty acids, and the like. Recently, there is a demand for a high performance solvent in the electronic industry such as a magnetic tape binder.

MEK의 합성법에는, sec-부탄올(SBA, 2-부탄올)의 탈수소, n-부텐이나 n-부탄의 산화, 부틸렌옥사이드의 이성화 등이 있지만, 공업적으로는 SBA의 탈수소 반응에 의한 것이 주류이다.The synthesis method of MEK includes dehydrogenation of sec-butanol (SBA, 2-butanol), oxidation of n-butene or n-butane, isomerization of butylene oxide, and the like, but industrially it is the mainstream by dehydrogenation reaction of SBA .

SBA의 탈수소 반응은 Cu, Zn, Cr 등의 금속 산화물을 촉매에 사용하는 기상법과, 스폰지 Ni 촉매를 사용하는 액상법으로 분류된다. 기상법은 반응 온도가 높기 때문에(일반적으로 300 내지 400 ℃), SBA 전화율은 높지만(80 % 이상) MEK 선택률이 낮고(95 내지 99 % 정도), 촉매 수명이 짧다는 결점이 있다. 한편, 액상법은 반응 온도가 낮기 때문에(130 내지 200 ℃), SBA 전화율은 낮아지지만 MEK 선택률이 높고(99.5 % 이상), 촉매 수명이 길다는 이점이 있다.The dehydrogenation reaction of SBA is classified into a vapor phase method using a metal oxide such as Cu, Zn, Cr, etc., and a liquid phase method using a sponge Ni catalyst. The vapor phase method has the drawback that the SBA conversion rate is high (80% or more), the MEK selectivity is low (95% to 99%), and the catalyst life is short because the reaction temperature is high (generally 300 to 400 ° C). On the other hand, the liquid phase process has an advantage that the reaction temperature is low (130 to 200 ° C), the SBA conversion rate is low but the MEK selectivity is high (99.5% or more) and the catalyst life is long.

특허문헌 1은 스폰지(레이니) Ni에 Cu, Ag, Au, Sn, Pb, Zn, Cd, In, Ge 등의 금속을 첨가한 촉매를 이용하여 170 내지 230 ℃에서 반응시키는 방법을 개시하고, 특허문헌 2는 스폰지 Ni 촉매를 이용하여 160 내지 190 ℃, 2 내지 8기압으로 반응시키는 방법을 개시한다.Patent Document 1 discloses a method of performing a reaction at 170 to 230 ° C using a catalyst in which a metal such as Cu, Ag, Au, Sn, Pb, Zn, Cd, In and Ge is added to sponge (Rainey) Document 2 discloses a method of reacting at 160 to 190 캜 and 2 to 8 atm using a sponge Ni catalyst.

또한, 특허문헌 3은 구리, 아연 및 알루미늄 3원 합금을 전개한 구상 변성 레이니 구리 촉매를 이용하여, 제2급 알코올을 탈수소하는 케톤류의 제조 방법을 개시한다. 또한, 특허문헌 4는 구리, 아연 및 철 합금을 전개한 변성 레이니 구리 촉매를 이용하여, 제1 또는 2급 알코올을 탈수소하는 카르보닐 화합물의 제조 방법을 개시한다.Patent Document 3 discloses a process for producing ketones which dehydrogenate secondary alcohols using a spherical modified Raney copper catalyst in which a ternary alloy of copper, zinc and aluminum is developed. Patent Document 4 discloses a method for producing a carbonyl compound dehydrogenating a primary or secondary alcohol using a modified Raney copper catalyst in which copper, zinc and an iron alloy are developed.

이들 기술로도 어느 정도 순도가 좋은 MEK가 얻어지지만, 전자 산업 분야 등에서는 99.95 %를 초과하는 매우 높은 순도가 요구되기 때문에, 고순도의 MEK를 제조하는 기술이 요구되고 있었다.Although these techniques can provide MEK having good purity to a certain degree, a very high purity exceeding 99.95% is required in the field of electronics industry and the like, and therefore, a technique for manufacturing high purity MEK has been required.

미국 특허 제4380673호 명세서U.S. Patent No. 4380673 일본 특허 공개 (소)60-258135호 공보Japanese Patent Application Laid-Open No. 60-258135 일본 특허 공개 (평)7-53433호 공보Japanese Patent Application Laid-Open No. 7-53433 일본 특허 공개 (평)7-316089호 공보Japanese Patent Application Laid-Open No. 7-316089

본 발명의 목적은 고순도의 케톤을 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a process for producing high purity ketones.

본 발명에 따르면, 이하의 케톤의 제조 방법이 제공된다. According to the present invention, the following process for producing ketones is provided.

1. 구리계 촉매를 이용하여, 반응 압력 0.1 MPaG 이하에서 지방족 알코올을 탈수소하는 케톤의 제조 방법.1. A process for producing ketone by dehydrogenating an aliphatic alcohol at a reaction pressure of 0.1 MPaG or less using a copper catalyst.

2. 상기 1에 있어서, 상기 구리계 촉매가 구리와, 크롬 또는 아연을 포함하는 산화물 고체 촉매인 케톤의 제조 방법. 2. The process for producing a ketone according to 1 above, wherein the copper-based catalyst is an oxide solid catalyst containing copper and chromium or zinc.

3. 상기 1에 있어서, 상기 구리계 촉매가 스폰지 구리계 촉매인 케톤의 제조 방법. 3. The method for producing a ketone according to 1 above, wherein the copper-based catalyst is a sponge-based catalyst.

4. 상기 1 내지 3 중 어느 하나에 있어서, 상기 탈수소를 반응 온도 200 ℃ 이하에서, 상기 구리계 촉매를 현탁시킨 용매 중에 상기 지방족 알코올을 연속적으로 취입하여 행하는 케톤의 제조 방법. 4. The process for producing a ketone according to any one of 1 to 3 above, wherein the dehydrogenation is carried out by continuously blowing the aliphatic alcohol into a solvent in which the copper catalyst is suspended at a reaction temperature of 200 ° C or lower.

5. 상기 1 내지 4 중 어느 하나에 있어서, 상기 지방족 알코올이 2-부탄올인 케톤의 제조 방법. 5. The process for producing a ketone according to any one of 1 to 4 above, wherein the aliphatic alcohol is 2-butanol.

6. 상기 1 내지 5 중 어느 하나에 있어서, 상기 케톤이 메틸에틸케톤인 케톤의 제조 방법. 6. The process for producing a ketone according to any one of 1 to 5 above, wherein the ketone is methyl ethyl ketone.

본 발명에 따르면, 고순도의 케톤을 제조하는 방법이 제공된다.According to the present invention, a method for producing a high purity ketone is provided.

본 발명의 케톤의 제조 방법은 지방족 알코올을 구리계 촉매를 이용하여 탈수소하여 케톤을 제조한다.In the method for producing ketones of the present invention, aliphatic alcohols are dehydrogenated using a copper catalyst to produce ketones.

원료의 지방족 알코올로는 2급 알코올이 바람직하다. 2급 알코올로는 2-프로판올, 2-부탄올을 사용할 수 있지만, 2-부탄올이 바람직하다.As the starting aliphatic alcohol, a secondary alcohol is preferred. As the secondary alcohol, 2-propanol and 2-butanol can be used, but 2-butanol is preferable.

생성되는 케톤은 아세톤, 메틸에틸케톤 등이고, 특히 메틸에틸케톤이다.The resulting ketone is acetone, methyl ethyl ketone and the like, in particular methyl ethyl ketone.

구리계 촉매로서, 구리 및 크롬(Cr) 또는 아연(Zn)을 주성분으로 하는 것이 바람직하다. 촉매의 내구성 등을 높이기 위해, 바륨(Ba), 칼슘(Ca), 망간(Mn), 알루미나(Al2O3), 실리카(SiO2) 등을 첨가할 수 있다.As the copper-based catalyst, it is preferable to use copper and chromium (Cr) or zinc (Zn) as a main component. To increase the durability of the catalyst, it can be added for the barium (Ba), calcium (Ca), manganese (Mn), alumina (Al 2 O 3), silica (SiO 2) or the like.

또한, 구리계 촉매로서, 구리와 알루미늄 등의 합금을 전개 처리하여 제조한 스폰지 구리계 촉매를 들 수 있다.As the copper-based catalyst, a sponge-copper catalyst prepared by expanding an alloy such as copper and aluminum can be mentioned.

탈수소 반응으로는 고정상 관형 유통 반응기를 이용하는 기상법, 교반조형의 반응기를 이용하여 고비점 용매 중에 촉매 입자를 현탁시키고, 그 중에 연속적으로 알코올을 취입하여 반응시키는 액상법 등을 들 수 있으며, 액상법이 바람직하다.As the dehydrogenation reaction, there can be mentioned a liquid phase process in which catalyst particles are suspended in a high boiling point solvent by using a vapor-phase or stirred-tank reactor using a fixed-bed tubular flow reactor, and alcohol is continuously blown into the catalyst particles. .

반응 온도는 130 ℃ 이상 200 ℃ 이하가 바람직하다. 130 ℃ 미만이면, 반응 속도 및 화학 평형(평형 전화율)의 측면에서 반응 효율이 저하되는 경우가 있다. 200 ℃ 초과이면, 부반응이 진행되기 쉬워져 선택률(제품 순도)이 저하되는 경우가 있다. 또한, 촉매 열화도 진행하기 쉬워져, 촉매의 재생이나 교환의 빈도가 증대되어 경제성이 악화될 우려가 있다. 보다 바람직하게는 135 ℃ 이상 170 ℃ 이하, 더욱 바람직하게는 140 ℃ 이상 150 ℃ 미만이다.The reaction temperature is preferably 130 ° C or more and 200 ° C or less. If it is less than 130 캜, the reaction efficiency may be lowered in terms of reaction rate and chemical equilibrium (equilibrium conversion rate). If it is higher than 200 DEG C, the side reaction tends to proceed and the selectivity (product purity) may be lowered. Further, the deterioration of the catalyst is also likely to proceed, and the frequency of regeneration or replacement of the catalyst is increased, thereby deteriorating the economical efficiency. More preferably from 135 deg. C to 170 deg. C, further preferably from 140 deg. C to less than 150 deg.

탈수소 반응의 반응 압력은 0.1 MPaG 이하이다. 화학 평형의 측면에서 저압인 것이 유리하다. 바람직하게는 0.05 MPaG 이하, 보다 바람직하게는 0.03 MPaG 이하이다. 하한은 상압일 수도 있고, 0 MPaG 초과일 수도 있다.The reaction pressure of the dehydrogenation reaction is 0.1 MPaG or less. It is advantageous to have low pressure in terms of chemical equilibrium. Preferably 0.05 MPaG or less, and more preferably 0.03 MPaG or less. The lower limit may be normal pressure or may be greater than 0 MPaG.

용매 중 촉매 농도는 특별히 제약은 없지만, 조작성, 효율의 측면에서 1 내지 30 중량%가 바람직하다.The catalyst concentration in the solvent is not particularly limited, but is preferably 1 to 30% by weight in view of operability and efficiency.

용매는 고비점 용매가 바람직하다. 반응 조건하에서 증기압이 낮은 포화탄화수소를 이용하는 것이 바람직하고, 특히 비점이 200 내지 400 ℃ 정도인 탄소수 12 내지 30 정도의 파라핀류가 바람직하다. 용매가 지나치게 경질이면, 반응 조건하에서 휘발하기 쉬워지기 때문에 용매의 회수·리사이클의 부하가 증대될 우려가 있다. 반대로 지나치게 중질이면, 점도가 높아지기 때문에 교반, 혼합면에서 반응 효율이 저하될 우려가 있다.The solvent is preferably a high boiling solvent. Saturated hydrocarbons having a low vapor pressure under the reaction conditions are preferably used, and paraffins having a carbon number of about 12 to 30 and a boiling point of about 200 to 400 캜 are preferred. If the solvent is too hard, it is likely to volatilize under the reaction conditions, which may increase the load of recovery and recycling of the solvent. On the other hand, if it is excessively heavy, the viscosity becomes high, so that there is a fear that the reaction efficiency is lowered in terms of stirring and mixing.

촉매 투입량에 대한 원료 알코올의 공급량은, 중량 기준의 중량마다 시공간 속도(WHSV)로 통상 1 내지 30 h-1이다. 30 h-1 초과이면 반응 속도가 저하되어 제품의 수율(생산성)이 악화될 우려가 있고, 1 h-1 미만이면 경제성이나 생산성이 저하될 우려가 있다.The supply amount of the raw material alcohol to the amount of the catalyst is usually 1 to 30 h -1 in terms of the space-time velocity (WHSV) for each weight by weight. If it is more than 30 h -1, the reaction rate may decrease and the yield (productivity) of the product may be deteriorated. If it is less than 1 h -1 , the economical efficiency and the productivity may be lowered.

본 발명의 방법에서는, 수소화 분해 등의 부반응을 억제하여, 아세톤, 이소프로필알코올 등의 부생물의 생성을 억제함으로써, 선택률이 높고, 고순도의 케톤을 제조할 수 있다. 예를 들면 선택률을 99.95 % 이상으로 하는 것도 가능하다. 또한, 부반응을 억제할 수 있기 때문에, 생성되는 수소 가스 중 불순물(메탄, 에탄, 프로판, 부탄 등)이 감소되어, 순도가 높은 수소 가스도 얻어진다.In the method of the present invention, ketones having a high selectivity and a high purity can be produced by suppressing side reactions such as hydrogenolysis and suppressing the formation of by-products such as acetone and isopropyl alcohol. For example, the selectivity may be 99.95% or more. In addition, since the side reaction can be suppressed, impurities (methane, ethane, propane, butane, etc.) in the generated hydrogen gas are reduced, and hydrogen gas of high purity is also obtained.

[실시예][Example]

실시예 1Example 1

내용적 500 cc의 4구 플라스크에 시판되고 있는 스폰지 구리 촉매(가와껭 파인 케미컬(주) 제조 CDT-60, 전개 처리 완료, Al: 1 %) 24 g을 투입하고, 2-부탄올(SBA)로 수회 치환하였다. 이소파라핀 165 cc를 가하고, 교반기, 원료(SBA) 공급 라인, 생성액 추출용 냉각관을 장착하여 질소 가스로 치환하였다. 1000 rpm으로 교반하면서 플라스크를 맨틀히터로 가열하고, SBA를 120 cc/h(96 g/h)의 유량으로 공급하여, 플라스크 내의 액체 온도를 145 ℃로 하고, 반응 압력은 0.01 MPaG로 하였다. 생성된 메틸에틸케톤(MEK), 미반응된 SBA 및 부생물(이소프로필알코올, 아세톤 등)은 냉각관으로 응축하여 연속적으로 추출하고, 발생한 수소 가스는 벤트 라인에 배출하였다. WHSV는 4 h-1로 하였다.24 g of a commercially available sponge copper catalyst (CDT-60 manufactured by Kawaken Fine Chemicals Co., Ltd., developed and Al: 1%) was introduced into a four-necked flask having an internal volume of 500 cc and charged with 2-butanol Several times. 165 cc of isoparaffin was added, and a stirrer, a raw material (SBA) supply line, and a cooling tube for extracting the product liquid were placed and replaced with nitrogen gas. The flask was heated with a mantle heater while stirring at 1000 rpm, and the SBA was supplied at a flow rate of 120 cc / h (96 g / h) to set the liquid temperature in the flask to 145 캜 and the reaction pressure to 0.01 MPaG. The resulting methyl ethyl ketone (MEK), unreacted SBA and byproducts (isopropyl alcohol, acetone, etc.) were condensed in a cooling tube and continuously extracted, and the generated hydrogen gas was discharged to the vent line. The WHSV was 4 h -1 .

수일 후에 활성이 안정된 상태에서 생성액을 가스 크로마토그래프(GC-FID)로 분석하고, 이하의 수학식 1에 의해 전화율과 선택률을 구하였다. 식 중 [Area]는, 크로마토그램의 피크 면적으로부터 정량한 양을 나타낸다. SBA 전화율은 30 %, MEK 선택률은 99.99 %였다. 결과를 하기 표 1에 나타내었다.After several days, the reaction solution was analyzed with a gas chromatograph (GC-FID) under stable activity, and the conversion and the selectivity were determined by the following equation (1). [Area] represents the amount quantified from the peak area of the chromatogram. The SBA conversion rate was 30% and the MEK selectivity was 99.99%. The results are shown in Table 1 below.

Figure 112012023486695-pct00001
Figure 112012023486695-pct00001

분석 조건을 이하에 나타내었다. The analysis conditions are shown below.

사용 기기: 애질런트 테크놀로지스(Agilent Technologies) 6850GC Equipment used: Agilent Technologies 6850GC

칼럼: HP-이노왁스(INNOWAX)(길이 60 m, 내경 0.25 mm, 막 두께 0.25 ㎛), He 2.0 ml/분.Column: HP-Innoax (INNOWAX) (length 60 m, inner diameter 0.25 mm, film thickness 0.25 탆), He 2.0 ml / min.

주입구: 250 ℃, 스플리트(Split) 1/250Inlet: 250 DEG C, Split 1/250

오븐: 60 ℃에서 10 분간 유지하고 15 ℃/분의 비율로 240 ℃까지 승온 Oven: The temperature was maintained at 60 캜 for 10 minutes, and the temperature was raised to 240 캜 at a rate of 15 캜 /

검출기: FID, 250 ℃Detector: FID, 250 ° C

실시예 2Example 2

실시예 1에서 이용한 촉매 대신에, 시판되고 있는 구리 크롬 촉매(닛키 쇼꾸바이 가세이(주) 제조 N203S, 화학 조성: CuO 46 %, Cr2O3 44 %, MnO2 4 %)를 이용한 것 이외에는 실시예 1과 동일하게 반응, 분석을 하였다. MEK 선택률은 99.99 %였다. 결과를 표 1에 나타내었다.Except that a commercially available copper chromium catalyst (N203S manufactured by Nikkiso Co., Ltd., chemical composition: 46% of CuO, 44% of Cr 2 O 3 , 4% of MnO 2 ) was used instead of the catalyst used in Example 1 The reaction and analysis were carried out in the same manner as in Example 1. The MEK selectivity was 99.99%. The results are shown in Table 1.

실시예 3 Example 3

반응 온도를 165 ℃에서 한 것 이외에는 실시예 2와 마찬가지로 반응, 분석을 하였다. 전화율은 상승하지만 MEK 선택률은 저하되지 않고 99.99 %였다. 결과를 표 1에 나타내었다.The reaction and analysis were carried out in the same manner as in Example 2 except that the reaction temperature was 165 캜. The conversion rate was increased but the MEK selectivity was not lowered to 99.99%. The results are shown in Table 1.

실시예 4Example 4

실시예 1에서 이용한 촉매 대신에, 시판되고 있는 구리아연 촉매(닛키 쇼꾸바이 가세이(주) 제조 E01X, 화학 조성: CuO 46 %, ZnO 48 %, Al2O3 6 %)를 이용하여 행한 것 이외에는 실시예 1과 동일하게 반응, 분석을 하였다. MEK 선택률은 99.99 %였다. 결과를 표 1에 나타내었다.Except that a commercially available copper zinc catalyst (E01X manufactured by Nikkiso Co., Ltd., chemical composition: 46% of CuO, 48% of ZnO, 6% of Al 2 O 3 ) was used instead of the catalyst used in Example 1 The reaction and analysis were carried out in the same manner as in Example 1. The MEK selectivity was 99.99%. The results are shown in Table 1.

비교예 1Comparative Example 1

실시예 1에서 이용한 촉매 대신에, 시판되고 있는 스폰지니켈 촉매(닛코 리카(주) 제조, 전개 처리 완료, Al/Ni=8 %)를 이용하여 행한 것 이외에는 실시예 1과 동일하게 반응, 분석을 하였다. MEK 선택률은 99.90 %였다. 결과를 표 1에 나타내었다.The reaction and analysis were carried out in the same manner as in Example 1 except that the catalyst used in Example 1 was replaced with a commercially available sponge nickel catalyst (developed by Nikkorika Co., Ltd., developed and Al / Ni = 8% Respectively. The MEK selectivity was 99.90%. The results are shown in Table 1.

비교예 1과 비교하여, 실시예 1 내지 4에서는 구리계 촉매를 이용함으로써 추가로 부생물을 감소시켜 높은 MEK 선택률을 실현하고, 매우 순도가 높은 MEK를 제조할 수 있었다.Compared with Comparative Example 1, in Examples 1 to 4, by using a copper-based catalyst, the by-product was further reduced to realize a high MEK selectivity and a highly pure MEK could be produced.

Figure 112012023486695-pct00002
Figure 112012023486695-pct00002

본 발명의 방법으로 제조한 케톤은 용제나 유기 화합물의 원료 등으로서 바람직하게 사용할 수 있다. The ketone prepared by the method of the present invention can be preferably used as a raw material for a solvent or an organic compound.

상기에 본 발명의 실시 형태 및/또는 실시예를 몇가지 상세히 설명하였지만, 당업자는 본 발명의 신규한 교시 및 효과로부터 실질적으로 벗어나지 않으며, 이들 예시인 실시 형태 및/또는 실시예에 많은 변경을 가하는 것이 용이하다. 따라서, 이들 대부분의 변경은 본 발명의 범위에 포함된다.Although the embodiments and / or examples of the invention have been described in some detail above, those skilled in the art will readily recognize that many changes to the illustrative embodiments and / or examples are possible without departing from the novel teachings and advantages of the invention It is easy. Accordingly, many of these modifications are within the scope of the present invention.

이 명세서에 기재된 문헌의 내용을 전부 여기에 원용한다.The entire contents of the document described in this specification are incorporated herein by reference.

Claims (6)

스폰지 구리 촉매(Cu, Al), 구리 크롬 촉매(CuO, Cr2O3, MnO2) 및 구리 아연 촉매(CuO, ZnO, Al2O3)로부터 선택되는 구리계 촉매를 사용하여, 반응 압력 0.1 MPaG 이하, 반응 온도 200 ℃ 이하에서, 상기 구리계 촉매를 현탁시킨 용매 중에, 2-프로판올 및 2-부탄올로부터 선택되는 2급 알코올을 연속적으로 취입하여 상기 2급 알코올을 탈수소하는, 아세톤 및 메틸에틸케톤으로부터 선택되는 케톤의 제조 방법. A copper catalyst selected from a sponge copper catalyst (Cu, Al), a copper chromium catalyst (CuO, Cr 2 O 3 , MnO 2 ) and a copper zinc catalyst (CuO, ZnO, Al 2 O 3 ) MPaG or less and a reaction temperature of not higher than 200 ° C, a secondary alcohol selected from 2-propanol and 2-butanol is continuously blown into a solvent in which the copper catalyst is suspended to dehydrogenate the secondary alcohol, ≪ / RTI > ketone. 제1항에 있어서, 상기 2급 알코올이 2-부탄올인 케톤의 제조 방법.The process for producing a ketone according to claim 1, wherein the secondary alcohol is 2-butanol. 제1항 또는 제2항에 있어서, 상기 케톤이 메틸에틸케톤인 케톤의 제조 방법. 3. The method according to claim 1 or 2, wherein the ketone is methyl ethyl ketone. 제1항 또는 제2항에 있어서, 상기 촉매 투입량에 대한 상기 2급 알코올의 공급량이 중량 기준의 중량마다 시공간 속도(WHSV)로 1 내지 30 h-1인 케톤의 제조 방법.The process for producing a ketone according to claim 1 or 2, wherein the supply amount of the secondary alcohol to the amount of the catalyst is 1 to 30 h -1 in terms of weight hourly space velocity (WHSV). 제1항 또는 제2항에 있어서, 상기 용매가 비점 200 내지 400 ℃의 탄소수 12 내지 30의 파라핀류인 케톤의 제조 방법.The process according to claim 1 or 2, wherein the solvent is a paraffin having 12 to 30 carbon atoms at a boiling point of 200 to 400 ° C. 제1항 또는 제2항에 있어서, 상기 케톤의 선택률이 99.95 % 이상인 케톤의 제조 방법.The method of claim 1 or 2, wherein the selectivity of the ketone is 99.95% or more.
KR1020127007540A 2009-10-23 2010-10-15 Process for production of ketone Active KR101762979B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-244328 2009-10-23
JP2009244328 2009-10-23
PCT/JP2010/006127 WO2011048783A1 (en) 2009-10-23 2010-10-15 Process for production of ketone

Publications (2)

Publication Number Publication Date
KR20120089656A KR20120089656A (en) 2012-08-13
KR101762979B1 true KR101762979B1 (en) 2017-08-04

Family

ID=43900028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127007540A Active KR101762979B1 (en) 2009-10-23 2010-10-15 Process for production of ketone

Country Status (5)

Country Link
JP (1) JP5615834B2 (en)
KR (1) KR101762979B1 (en)
CN (1) CN102596876A (en)
MY (1) MY165490A (en)
WO (1) WO2011048783A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320532B1 (en) 2011-12-01 2013-10-22 지에스칼텍스 주식회사 Preparation method of methyl ethyl ketone using 2-phase reaction system
CN106117025B (en) * 2016-06-23 2019-04-05 九江齐鑫化工有限公司 The secondary butyl ester transfer hydrogenation of sec-butyl alcohol Dichlorodiphenyl Acetate produces the process of methyl ethyl ketone simultaneously

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130708A (en) * 1974-04-04 1975-10-16
FR2485519A1 (en) * 1980-06-26 1981-12-31 Inst Francais Du Petrole Ketone prodn. by liq.-phase alcohol dehydrogenation - using paraffinic solvent and metal-doped Raney nickel catalyst
DE3163066D1 (en) * 1980-06-26 1984-05-24 Inst Francais Du Petrole Process for the preparation of a ketone by dehydrogenation of a secondary alcohol
JPH0734865B2 (en) * 1991-12-17 1995-04-19 花王株式会社 Dehydrogenation reaction catalyst, method for producing the catalyst, and method for producing carbonyl compound using the catalyst
JPH0753433A (en) * 1993-08-20 1995-02-28 Showa Denko Kk Production of ketnoes
JPH07316089A (en) * 1994-05-26 1995-12-05 Showa Denko Kk Production of carbonyl compound
JPH11199539A (en) * 1998-01-08 1999-07-27 New Japan Chem Co Ltd Production of alicyclic diketone
DE10044809A1 (en) * 2000-06-28 2002-01-10 Cognis Deutschland Gmbh Process for the preparation of aldehydes

Also Published As

Publication number Publication date
CN102596876A (en) 2012-07-18
JP5615834B2 (en) 2014-10-29
WO2011048783A1 (en) 2011-04-28
MY165490A (en) 2018-03-23
JPWO2011048783A1 (en) 2013-03-07
KR20120089656A (en) 2012-08-13

Similar Documents

Publication Publication Date Title
US8058484B2 (en) Flexible glycerol conversion process
RU2692254C2 (en) Dehydrogenation of alkanes to alkenes
JPS6311338B2 (en)
JPWO2006009099A1 (en) Process for producing ethylene and propylene
GB2118939A (en) Conversion of alkanes to unsaturated aldehydes
US9938226B2 (en) Gas phase production of alkyl alkanoate
US4123470A (en) Biaryl production
CN102112420A (en) Process for the preparation of perfluorinated cis-alkene
AU2017275468A1 (en) Process for producing methyl mercaptan from dimethyl sulfide
KR101762979B1 (en) Process for production of ketone
CN107406342B (en) Vapor phase manufacture of alkyl alkanoates
WO2013086262A1 (en) Process for the production of chlorinated propanes
US8940948B2 (en) Process for the manufacture of fluorinated olefins
CN108698960B (en) Process for producing high octane components from olefins from catalytic cracking
EP2370379A1 (en) Process for oxidative dehydrogenation of paraffinic lower hydrocarbons
CN102369173A (en) Method for producing high-purity terminal olefin compound
Ipatieff et al. Decomposition of alcohols over nickel-kieselguhr and other catalysts
US6376718B1 (en) Dehydrogenation of alkylene glycol ethers to ether ketones and aldehydes
JPH07215900A (en) Method for producing cyclohexanol
US2481922A (en) Reduction-hydrolysis of nitrobenzenes to cyclohexanols
JP2000327596A (en) Dehydrogenation of diisopropylbenzene
US3159680A (en) kister
JP4586568B2 (en) Method for producing tetralones
Colley Synthesis of ethyl ethanoate from ethanol by heterogeneous catalytic dehydrogenation, hydrogenation and purification
JPH11171811A (en) Production of dibutyl ether

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20120323

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20150827

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170116

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170530

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20170724

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20170724

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20200701

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20210629

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220620

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20230620

Start annual number: 7

End annual number: 7