KR101736720B1 - Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same - Google Patents

Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same Download PDF

Info

Publication number
KR101736720B1
KR101736720B1 KR1020140138955A KR20140138955A KR101736720B1 KR 101736720 B1 KR101736720 B1 KR 101736720B1 KR 1020140138955 A KR1020140138955 A KR 1020140138955A KR 20140138955 A KR20140138955 A KR 20140138955A KR 101736720 B1 KR101736720 B1 KR 101736720B1
Authority
KR
South Korea
Prior art keywords
copolymer
pbo
ndca
fiber
naphthalene
Prior art date
Application number
KR1020140138955A
Other languages
Korean (ko)
Other versions
KR20160044226A (en
Inventor
민병길
왕칭웨이
윤관한
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020140138955A priority Critical patent/KR101736720B1/en
Publication of KR20160044226A publication Critical patent/KR20160044226A/en
Application granted granted Critical
Publication of KR101736720B1 publication Critical patent/KR101736720B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 나프탈렌기의 도입에 의하여 자외선열화 특성이 향상된 폴리파라페닐렌벤조비스옥사졸 공중합체, 상기 공중합체를 포함하는 섬유 및 이들의 제조방법에 관한 것이다.The present invention relates to a polyparaphenylene benzobisoxazole copolymer improved in ultraviolet ray deterioration characteristics by the introduction of a naphthalene group, a fiber containing the copolymer, and a process for producing the same.

Description

나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체, 상기 공중합체를 포함하는 섬유 및 이들의 제조방법 {POLY(P-PHENYLENE BENZOBISOXAZOLE) COPOLYMER HAVING NAPHTHALENE, FIBER COMPISING THE COPOLYMER, AND METHOD FOR PREPARING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a polyparaphenylene benzobisoxazole copolymer to which a naphthalene group is introduced, a fiber comprising the copolymer, and a method for producing the same. BACKGROUND ART [0002] }

본 발명은 나프탈렌기의 도입에 의하여 자외선열화 특성이 향상된 폴리파라페닐렌벤조비스옥사졸 공중합체, 상기 공중합체를 포함하는 섬유 및 이들의 제조방법에 관한 것이다.The present invention relates to a polyparaphenylene benzobisoxazole copolymer improved in ultraviolet ray deterioration characteristics by the introduction of a naphthalene group, a fiber containing the copolymer, and a process for producing the same.

우주항공, 자동차, 선박 등의 산업의 발달에 따라 섬유소재 분야에서도 유연하면서 고강도, 고내열성을 가지는 고기능성섬유에 대한 관심이 증대되고 다. 그 중에서도 1998년 처음으로 일본의 Toyobo사에서 Zylon이라는 상표명으로 출시한 poly(p-phenylene benzobisoxazole)(PBO) 섬유는 상업화된 모든 합성섬유 중에서 최고의 인장 강도와 탄성률을 발휘하는 것으로 잘 알려져 있다. PBO 섬유는 대표적인 헤테로고리 방향족 고분자 (Heterocyclic Aromatic Polymer)로 이루어진 섬유로서 강도가 파라계 아라미드 섬유의 약 2배에 이르며, 탄소섬유와 비슷한 탄성율과 약 650℃의 높은 분해 온도와 LOI가 65인 난연성을 가지고 있을 뿐만 아니라 가볍고 유연한 섬유의 특성 또한 겸비하고 있어 차세대 수퍼섬유라고 불리고 있다.With the development of industries such as aerospace, automobiles, and ships, there is growing interest in high-performance fibers that are flexible and have high strength and high heat resistance in the field of textile materials. Among them, poly (p-phenylene benzobisoxazole) (PBO) fiber, which was firstly marketed by Toyobo in Japan under the trade name Zylon, is known to exhibit the highest tensile strength and elastic modulus among all commercialized synthetic fibers. PBO fiber is a typical heterocyclic aromatic polymer. Its strength is about twice that of para-aramid fibers. It has a modulus of elasticity similar to that of carbon fiber, a high decomposition temperature of about 650 ° C, and a flame retardancy of LOI of 65 In addition to having it, it also combines the characteristics of light and flexible fibers and is called the next generation super fiber.

이러한 PBO 섬유는 우주항공, 군용 및 산업용 분야에서 고성능 복합재료의 보강섬유로서 큰 잠재력을 가지고 있다. 그러나 우수한 강도와 내열성, 내화학성 등의 특성에도 불구하고 PBO 섬유는 압축강도가 인장강도에 비해 매우 낮은 단점을 가지고 있으며, 더욱이 경쟁 재료인 파라계 아라미드 섬유, 초고분자량폴리에틸렌 섬유나 폴리아릴레이트 섬유에 비해 보다 낮은 UV 안정성을 가지는 치명적 단점이 응용 분야에 제약을 가져올 수가 있다. 그 동안 PBO 섬유의 표면에너지를 증대시켜 복합재료에서 수지와의 젖음성(wettability)을 향상시키는 표면처리에 대해서는 많은 연구가 있었으나, UV 조사하에서 PBO 섬유의 기계적 특성이 크게 저하되는 메카니즘에 대한 연구와 UV 저항성을 향상시키기 위한 표면처리기술 개발은 그리 많지 않았다. UV 노출 전 약 33 g/d의 강도를 가지고 있는 Zylon 섬유를 UV에 약 24시간 노출시켰을 때 노출 전에 비해 강도가 약 55% 감소하여 산업용 파라계 아라미드 섬유 보다 낮은 약 15 g/d의 강도를 가진다고 보고되고 있으며, 수산화기를 가지는 dihydroxy poly(p-phenylene benzobisoxazole) 공중합체를 통하여 UV저항성을 향상시키는 연구결과도 발표되고 있다.These PBO fibers have great potential as reinforcing fibers for high performance composites in aerospace, military and industrial applications. However, in spite of its excellent strength, heat resistance and chemical resistance, the PBO fiber has a disadvantage in that the compressive strength is very low compared to the tensile strength. Further, the PBO fiber has a disadvantage in that it can not be used in the competitive aramid fiber, ultra high molecular weight polyethylene fiber or polyarylate fiber The fatal disadvantage of having a lower UV stability than the conventional one can impose limitations on the application field. There have been many researches on the surface treatment which improves the wettability with the resin in the composite material by increasing the surface energy of the PBO fiber. However, the mechanism of the degradation of the mechanical properties of the PBO fiber under UV irradiation and the UV There have been few developments in surface treatment technology to improve resistance. Zylon fiber, which has a strength of about 33 g / d before UV exposure, has a strength of about 15 g / d lower than that of industrial para-aramid fibers when exposed to UV for about 24 hours, by about 55% Research has also been reported on improving the UV resistance through hydroxyl-containing dihydroxy poly (p-phenylene benzobisoxazole) copolymers.

상기 PBO섬유와 다른 합성섬유에는 UV저항성을 증가시키는 특허로서 대한민국특허출원 제10-2007-0140499호에서는 벤조트리아졸계 자외선흡수제, 페놀릭계 및/또는 포스파이트계 산화안정제 및 힌더드 아민계 광안정제를 소정 범위의 량으로 각각 폴리에틸렌테레프탈레이트 베이스 수지에 혼합하되, 그 총량을 제어하여 용융방사함으로서, 자외선에 대한 내광성이 양호하면서도 강도가 거의 저하되지 않는 폴리에틸렌테레프탈레이트의 용융방사방법을 제시하고 있으나, 본 발명의 대상인 PBO섬유에 대해서는 그 방법을 제시하지는 못하고 있다.In Korean Patent Application No. 10-2007-0140499, as a patent for increasing the UV resistance to PBO fibers and other synthetic fibers, benzotriazole-based ultraviolet absorbers, phenolic and / or phosphite-based oxidative stabilizers and hindered amine light stabilizers There is proposed a melt spinning method of polyethylene terephthalate in which the light resistance of the polyethylene terephthalate is good while the light resistance against ultraviolet light is good and the strength is hardly lowered by mixing the polyethylene terephthalate base resin with the polyethylene terephthalate base resin in a predetermined amount, The method of PBO fiber, which is the object of the invention, can not be proposed.

본 발명은 폴리파라페닐렌벤조비스옥사졸을 중합할 때, 나프탈렌 구조를 가진 2,6-나프탈렌디카르복실산(NDCA)를 동시중합법으로 공중합시킴으로써 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체 및 이의 제조방법을 제공하는 것을 목적으로 한다.The present invention relates to a process for producing polyparaphenylene benzobisoxazole, which comprises copolymerizing 2,6-naphthalene dicarboxylic acid (NDCA) having a naphthalene structure with a co-polymerization method to polymerize polyparaphenylene benzobisoxazole Sol-copolymer and a process for producing the same.

또한, 본 발명은 상기 공중합체를 포함하여, 자외선 저항성이 크게 향상된 섬유 및 이의 제조방법을 제공하는 것도 목적으로 한다.It is another object of the present invention to provide a fiber including the above-mentioned copolymer and having a greatly improved ultraviolet resistance, and a method for producing the same.

본 발명은 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체와 테레프탈산(TPA) 및 2,6-나프탈렌디카르복실산(NDCA) 단량체를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계; 상기 단량체들의 탈염화반응을 통한 중합에 의해 폴리파라페닐렌벤조비스옥사졸(PBO)-NDCA 전구체를 형성하는 중합 단계; 및 PBO-NDCA 전구체의 고리화 반응에 의해 PBO-NDCA 공중합체를 형성하는 고리화 단계를 포함하는 것을 특징으로 하는 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체의 제조방법을 제공한다.The invention 4,6-dia Minori SOCIETE play dihydrochloride (DAR) monomer and terephthalic acid (TPA) and 2,6-naphthalenedicarboxylic acid (NDCA) poly monomers include phosphorus pentoxide (P 2 O 5) A dehydrochlorination step of dissolving in a phosphoric acid (PPA) solvent to remove hydrogen chloride; A polymerization step of forming polyparaphenylenebenzobisoxazole (PBO) -NDCA precursor by polymerization through dechlorination of the monomers; And a cyclization step of forming a PBO-NDCA copolymer by a cyclization reaction of the PBO-NDCA precursor. The present invention also provides a method for producing a polyparaphenylene benzobisoxazole copolymer to which a naphthalene group is introduced.

여기서, 상기 2,6-나프탈렌디카르복실산은 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체의 총 중량대비 1 내지 20중량%인 것이 바람직하다.Here, the 2,6-naphthalene dicarboxylic acid is preferably 1 to 20% by weight based on the total weight of the polyparaphenylenebenzobisoxazole copolymer into which the naphthalene group is introduced.

또한, 탈염화수소, 중합 및 고리화 단계의 반응온도는 50 내지 250℃ 범위이며, 폴리인산 용매 내 오산화인의 농도는 60 내지 95%인 것이 바람직하다.The reaction temperature in the dehydrochlorination, polymerization and cyclization steps is in the range of 50 to 250 ° C, and the concentration of phosphorus pentoxide in the polyphosphoric acid solvent is preferably 60 to 95%.

또한, 본 발명은 상기 제조방법에 의해 제조되고, 하기 화학식 1로 표시되는 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체를 제공한다.The present invention also provides a polyparaphenylene benzobisoxazole copolymer having a naphthalene group introduced by the above process and represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014098111515-pat00001
Figure 112014098111515-pat00001

아울러, 본 발명은 상기 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체를 포함하는 섬유 및 이의 제조방법도 제공한다.The present invention also provides a fiber comprising the polyparaphenylene benzobisoxazole copolymer to which the naphthalene group is introduced, and a method for producing the same.

본 발명에 따른 폴리파라페닐렌벤조비스옥사졸 공중합체는 폴리파라페닐렌벤조비스옥사졸을 중합할 때, 나프탈렌 구조를 가진 2,6-나프탈렌디카르복실산(NDCA)를 동시중합법으로 공중합시킴으로써 나프탈렌기가 도입된다. The polyparaphenylene benzobisoxazole copolymer according to the present invention can be obtained by copolymerizing 2,6-naphthalene dicarboxylic acid (NDCA) having a naphthalene structure with polyparaphenylene benzobisoxazole by simultaneous polymerization Whereby a naphthalene group is introduced.

이러한 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체를 이용함으로써, PBO 섬유의 단점인 낮은 UV 안정성을 보완하여 UV에 의한 강도저하를 감소시킬 수 있다.By using the polyparaphenylene benzobisoxazole copolymer having such a naphthalene group introduced therein, it is possible to compensate for the low UV stability, which is a disadvantage of the PBO fiber, and to reduce the decrease in the strength by UV.

도 1은 시간별 온도 및 PPA 농도를 보여주는 실시예 1에 따른 공중합체의 중합과정을 나타낸 그래프이다.
도 2는 실시예에 따른 섬유를 제조하기 위한 건습식 방사기를 도시한 것이다.
도 3은 실시예 및 비교예에 따른 섬유의 자외선 저항성을 측정하기 위한 자외선 조사장치를 나타낸 것이다.
도 4는 비교예 1에 따른 섬유의 자외선 조사 시간에 따른 인장 특성을 나타낸 그래프이다.
도 5는 실시예 1 내지 3 및 비교예 1에 따른 섬유의 자외선 조사 시간에 따른 강도 유지율을 나타낸 그래프이다.
도 6은 실시예 1 내지 3 및 비교예 1에 따른 섬유의 자외선 조사 시간에 따른 직경 감소율을 나타낸 그래프이다.
도 7은 실시예 3 및 비교예 1에 따른 섬유의 자외선 조사 전후 표면 거칠기를 나타낸 것이다.
1 is a graph showing the polymerization process of the copolymer according to Example 1 showing the temperature and the PPA concentration over time.
Figure 2 shows a dry-wet emitter for making fibers according to an embodiment.
3 shows an ultraviolet irradiation apparatus for measuring ultraviolet resistance of fibers according to Examples and Comparative Examples.
FIG. 4 is a graph showing tensile properties of the fibers according to Comparative Example 1 according to ultraviolet irradiation time. FIG.
5 is a graph showing the strength retention ratios of the fibers according to Examples 1 to 3 and Comparative Example 1 according to ultraviolet irradiation time.
6 is a graph showing the diameter reduction rate of the fibers according to Examples 1 to 3 and Comparative Example 1 according to ultraviolet irradiation time.
7 shows the surface roughness of the fiber according to Example 3 and Comparative Example 1 before and after irradiation with ultraviolet rays.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

1. 공중합체 및 이의 제조방법1. Copolymers and methods for their preparation

본 발명은 하기 화학식 1로 표시되는 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸(PBO) 공중합체를 제공한다.The present invention provides a polyparaphenylene benzobisoxazole (PBO) copolymer having a naphthalene group introduced therein.

[화학식 1] [Chemical Formula 1]

Figure 112014098111515-pat00002
Figure 112014098111515-pat00002

본 발명은 상기와 같은 화학식 1의 공중합체를 이용하여 섬유를 제조할 수 있다.The present invention can produce a fiber using the copolymer of the formula (1).

본 발명에 따른 상기 화학식 1로 표시되는 공중합체는 다양한 방법으로 제조될 수 있다.The copolymer represented by Formula 1 according to the present invention can be prepared by various methods.

본 발명의 실시예에 따르면, 하기 반응식 1과 같이, 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체와 테레프탈산(TPA) 및 2,6-나프탈렌디카르복실산(NDCA) 단량체를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계; 상기 단량체들의 중합에 의해 폴리파라페닐렌벤조비스옥사졸(PBO)-NDCA 전구체를 형성하는 중합 단계; 및 PBO-NDCA 전구체의 고리화 반응에 의해 PBO-NDCA 공중합체를 형성하는 고리화 단계를 포함하여 제조될 수 있다.According to an embodiment of the present invention, as shown in the following Reaction Scheme 1, a tetrafluoroethylene (TPA) monomer and a 2,6-naphthalene dicarboxylic acid (NDCA) A dehydrochlorination step of dissolving in a polyphosphoric acid (PPA) solvent containing phosphorus (P 2 O 5 ) to remove hydrogen chloride; A polymerization step of forming a polyparaphenylene benzobisoxazole (PBO) -NDCA precursor by polymerization of the monomers; And a cyclization step of forming a PBO-NDCA copolymer by a cyclization reaction of the PBO-NDCA precursor.

[반응식 1][Reaction Scheme 1]

Figure 112014098111515-pat00003

Figure 112014098111515-pat00003

먼저, 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체와 테레프탈산(TPA) 및 2,6-나프탈렌디카르복실산(NDCA) 단량체를 오산화인(P2O5) 농도가 70~85% 범위인 폴리인산(PPA) 중합용매에 넣고 질소 분위기 하에서 교반하면서 탈염화수소반응을 진행한다. First, 4,6-dia Minori SOCIETE play dihydrochloride (DAR) of phosphorus pentoxide and the monomers terephthalic acid (TPA) and 2,6-naphthalenedicarboxylic acid (NDCA) monomer (P 2 O 5) concentration of 70 to 85 % In a polyphosphoric acid (PPA) polymerization solvent, and the dehydrochlorination reaction proceeds while stirring in a nitrogen atmosphere.

이때, 산화방지제로 SnCl2를 첨가하는 것이 바람직하다.At this time, SnCl 2 is preferably added as an antioxidant.

상기 교반 온도 및 시간은 특별히 한정되지 않으나, 온도는 50 내지 100℃의 범위가 바람직하며, 교반 시간은 2 내지 8시간이 바람직하다.The stirring temperature and time are not particularly limited, but the temperature is preferably in the range of 50 to 100 ° C, and the stirring time is preferably 2 to 8 hours.

탈염화수소반응이 끝난 후, 중합물의 용해도를 향상시키기 위하여 오산화인을 추가로 반응물 내에 투입하고 온도를 올려 질소분위기 하에서 교반과 함께 중합한다. 이때, 상기 폴리인산 용매 내 오산화인의 농도는 85 내지 95%인 것이 바람직하나, 이에 한정되는 것은 아니다. 오산화인의 농도가 80% 미만인 경우, 고분자화 반응이 효율적으로 진행되지 않고, 오산화인의 농도가 95%를 초과할 경우, 단량체의 용해가 쉽지 않아 반응이 진행되기 어렵다.After the dehydrochlorination reaction is completed, phosphorus pentoxide is further added into the reaction mixture to raise the solubility of the polymer, and the temperature is raised to polymerize with stirring in a nitrogen atmosphere. At this time, the concentration of phosphorus pentoxide in the polyphosphoric acid solvent is preferably 85 to 95%, but is not limited thereto. When the concentration of phosphorus pentoxide is less than 80%, the polymerization reaction does not progress efficiently, and when the concentration of phosphorus pentoxide exceeds 95%, the dissolution of the monomers is not easy and the reaction is difficult to proceed.

또한, 상기 중합 온도 및 시간은 특별히 한정되지 않으나, 온도는 100 내지 170℃의 범위가 바람직하며, 중합 시간은 5 내지 10시간이 바람직하다.The polymerization temperature and time are not particularly limited, but the temperature is preferably in the range of 100 to 170 ° C, and the polymerization time is preferably 5 to 10 hours.

반응온도가 100℃ 미만이면 폴리머의 용해도가 낮아 반응성이 떨어지고, 170℃를 중합과 고리화가 동시에 일어나 중합도를 효율적으로 올리기 어렵다. If the reaction temperature is less than 100 ° C, the solubility of the polymer is low and the reactivity is poor. It is difficult to raise the degree of polymerization efficiently because polymerization and cyclization occur simultaneously at 170 ° C.

마지막으로, 질소 분위기 하에서 고온으로 가열하여 고리화 반응을 일어나게 함으로써 본 발명의 공중합체를 제조할 수 있다. 상기 고리화 반응을 위한 가열 온도 및 시간은 특별히 한정되지 않으나, 온도는 170 내지 200℃의 범위가 바람직하며, 시간은 3 내지 15시간이 바람직하다.Finally, the copolymer of the present invention can be prepared by heating at a high temperature in a nitrogen atmosphere to cause a cyclization reaction. The heating temperature and time for the cyclization reaction are not particularly limited, but the temperature is preferably in the range of 170 to 200 ° C, and the time is preferably 3 to 15 hours.

상기 반응식 1에서, 2,6-나프탈렌디카르복실산은 나프탈렌기가 도입된 폴리파라페닐렌벤조비스옥사졸 공중합체의 총 중량대비 1 내지 20중량%인 것이 바람직하나, 이에 한정되는 것은 아니다.
In the above Reaction Scheme 1, the 2,6-naphthalene dicarboxylic acid is preferably 1 to 20% by weight based on the total weight of the polyparaphenylenebenzobisoxazole copolymer into which the naphthalene group is introduced, but is not limited thereto.

2. 섬유 및 이의 제조방법2. Fibers and methods for their manufacture

본 발명은 상기 공중합체(화학식 1)을 포함하는 섬유를 제공한다. 본 발명의 공중합체는 PBO가 자외선(UV) 하에서 강도가 크게 열화되는 단점을 나프탈렌 구조를 가진 2,6-나프탈렌디카르복실산을 동시중합법으로 공중합시켜 제조된다. 본 발명은 이와 같은 특성을 가지는 공중합체를 이용하여 섬유를 제조할 수 있다.The present invention provides a fiber comprising the copolymer (1). The copolymer of the present invention is produced by co-polymerization of 2,6-naphthalene dicarboxylic acid having a naphthalene structure, the disadvantage that the strength of PBO is greatly deteriorated under ultraviolet (UV). The present invention can produce fibers using a copolymer having such properties.

본 발명의 섬유는 상기 화학식 1로 표시되는 공중합체를 포함함으로써, 자외선 저항성이 크게 향상된다.Since the fiber of the present invention contains the copolymer represented by the above formula (1), ultraviolet resistance is greatly improved.

이러한 본 발명의 섬유는 건습식 방사법(dry-jet wet spinning)에 의해 제조될 수 있다. 구체적으로 설명하면, 먼저 상기 화학식 1로 표시되는 공중합체가 얻어진 중합물을 그대로 방사 도프(dope)로 사용한다. 용액중합한 공중합체를 회수한 후, 다시 용해시키는 것은 어렵기 때문에 중합물의 농도를 섬유방사에 적합하도록 PPA내의 중합체의 농도가 중량비로 10~15% 범위로 중합을 행하여야 한다. 이후, 상기 방사 도프를 액정상태에서 건습식 방사법으로 방사구금을 통하여 토출한 후, 응고욕으로 들어가게 하여 고화시킨 다음 세척하고 권취한다. 이때, 액정을 형성하는 방사온도는 100 내지 150℃, 기격(air gap)은 1~10cm가 바람직하다. Such fibers of the present invention can be prepared by dry-jet wet spinning. Specifically, first, the copolymer obtained by the above-mentioned formula (1) is used as a radiation dope. Since it is difficult to dissolve the solution-polymerized copolymer after the recovery, the polymer should be polymerized in the range of 10 to 15% by weight in terms of the concentration of the polymer in the PPA so that the concentration of the polymer is suitable for the fiber spinning. Thereafter, the spinning dope is ejected through a spinneret in a liquid crystal state by a dry-wet spinning method, and then the spinning dope is put into a coagulating bath, solidified, and then washed and wound. At this time, the spinning temperature for forming the liquid crystal is preferably 100 to 150 ° C, and the air gap is preferably 1 to 10 cm.

상기 방사구금의 노즐 직경은 특별히 한정되지 않으나, 본 발명에서는 직경이 0.2mm인 방사구금을 사용하였다.The nozzle diameter of the spinneret is not particularly limited, but a spinneret having a diameter of 0.2 mm is used in the present invention.

또한, 상기 응고욕의 응고액은 특별히 한정되지 않으나, 농도 중량비로 1~20% 인산수용액이 바람직하다The coagulating solution of the coagulating bath is not particularly limited, but a 1 to 20% aqueous solution of phosphoric acid is preferable in terms of concentration weight ratio

상기와 같은 방법을 통해 제조되며, 나프탈렌기가 도입된 PBO 공중합체(화학식 1)을 포함하는 섬유는, PBO 섬유에 비해 자외선 저항성이 향상될 수 있다.
A fiber comprising the PBO copolymer (formula (I)) prepared by the above method and having a naphthalene group introduced therein may have enhanced ultraviolet resistance as compared to PBO fibers.

이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are for illustrating the present invention specifically, and the scope of the present invention is not limited to these examples.

[실시예 1][Example 1]

<단계 1> 공중합체의 합성<Step 1> Synthesis of Copolymer

PBO-NDCA 합성을 위한 용매는 PPA(P2O5 80%)를 사용하였으며, 전체 반응용액에서 PBO-NDCA의 농도는 14.0 중량%로 일정하게 조절하였다. PBO-NDCA 공중합체를 제조하기 위한 모든 반응단계(탈염화수소단계, 중합단계, 고리화단계)는 질소기류 하에서 실시하였다.PPA (P 2 O 5 80%) was used as the solvent for the synthesis of PBO-NDCA, and the concentration of PBO-NDCA in the whole reaction solution was constantly adjusted to 14.0 wt%. All reaction steps (dehydrochlorination step, polymerization step, cyclization step) for preparing the PBO-NDCA copolymer were carried out in a nitrogen stream.

첫 번째 탈염화수소단계에서는 먼저 단량체인 DAR 40.0 mmol과 TPA 41.7 mmol, NDCA 1.3 mmol 및 산화방지제인 SnCl2 2.4중량%을 용매 PPA(P2O5 80%)가 들어있는 3구 둥근 플라스크에 투입한 후, 60℃에서 8시간 교반하여 염화수소를 제거하였다.In the first dehydrochlorination step, 40.0 mmol of DAR, 41.7 mmol of TPA, 1.3 mmol of NDCA and 2.4% by weight of antioxidant SnCl 2 were added to a three-neck round flask containing solvent PPA (P2O5 80%), C for 8 hours to remove hydrogen chloride.

두 번째 중합단계에서는 반응 플라스크에 P2O5를 추가하여 용매 PPA 내 P2O5 농도를 87%로 증가시킨 후 반응온도 110 ℃에서 7시간동안 150 ℃에서 6시간동안 교반함으로써 PBO 및 PBO-NDCA의 전구체를 형성시켰다. 중합단계 중에 P2O5를 추가하여 PPA 용매 내 P2O5 농도를 87%로 상승시키는 이유는, 중합반응 초기에는 P2O5에 대한 용해도가 높은 단량체들이 플라스크 내에 주로 존재하지만, 반응을 통해 P2O5에 대한 용해도가 낮은 중합체들이 합성되기 때문이다. PPA 용매 내 P2O5 농도는 중합반응과 고리화반응에서 물이 생성되므로, 최종적으로는 84중량% 정도로 낮아진다.In the second polymerization step, P 2 O 5 was added to the reaction flask to increase the P2O5 concentration in the solvent PPA to 87%, and then the reaction was carried out at 110 ° C. for 7 hours and 150 ° C. for 6 hours to obtain PBO and PBO- . The reason why the P 2 O 5 concentration in the PPA solvent is increased to 87% by adding P 2 O 5 during the polymerization step is because the monomers having a high solubility for P 2 O 5 are mainly present in the flask at the initial stage of the polymerization, Through which polymers with low solubility to P 2 O 5 are synthesized. The concentration of P 2 O 5 in the PPA solvent is lowered to about 84% by weight because water is produced in the polymerization reaction and the cyclization reaction.

마지막 고리화단계에서는 PBO 및 PBO-NDCA 전구체를 190 ℃에서 12시간 동안 열적 고리화반응시켜 최종적으로 PBO 및 PBO-NDCA를 제조하였다. 도 1은 중합시 시간별 온도 및 PPA 농도를 보여주는 그래프이다.In the final cyclization step, PBO and PBO-NDCA precursors were thermally cyclized at 190 ° C for 12 hours to finally produce PBO and PBO-NDCA. Figure 1 is a graph showing the temperature and PPA concentration over time during polymerization.

얻어진 PBO 및 PBO-NDCA 중합물을 methanesulfonic acid(MSA) 100ml에 0.5g 용해시켜 30℃에서 Ubbelohde 점도계로 고유점도(I.V.)를 측정하고, 하기 식을 이용하여 분자량(Mw)을 얻었으며, 그 결과는 하기 표 1에 나타내었다.0.5 g of the obtained PBO and PBO-NDCA polymer were dissolved in 100 ml of methanesulfonic acid (MSA), and the intrinsic viscosity (IV) was measured at 30 ° C. using a Ubbelohde viscometer. The molecular weight (M w ) Are shown in Table 1 below.

[η] = kMw a (k = 2.77 X 10-7, a = 1.8)
[?] = kM w a (k = 2.77 x 10 -7 , a = 1.8)

<단계 2> 섬유의 제조<Step 2> Production of fiber

상기 <단계 1>에서 합성한 PBO 및 PBO-NDCA 공중합체 용액을 도 2에 도시된 바와 같은 건습식 방사기를 이용하여 섬유로 제조하였다. 방사온도 140 ℃에서 직경이 0.2 mm인 방사구금을 통하여 방사속도는 0.9m/min로 방사하였으며 기격(air gap)은 10 cm로 하였다. 방사된 섬유는 2단계의 응고과정을 거쳤다. 1차 응고욕은 5중량% 인산수용액으로 구성되었으며, 2차 응고욕 및 세척욕은 증류수로 구성되었다. 권취속도는 25.9 m/min로 설정하였으며, 제조된 PBO 섬유 및 PBO-NDCA 섬유는 25 ℃의 진공오븐에서 24시간 동안 건조하였다.
The PBO and PBO-NDCA copolymer solutions synthesized in the above <Step 1> were made into fibers using a dry-wet spinning machine as shown in FIG. The spinning rate was 0.9 m / min through a spinneret with a diameter of 0.2 mm at a spinning temperature of 140 ° C and an air gap of 10 cm. The radiated fibers undergo a two-step coagulation process. The primary coagulation bath consisted of 5 wt% aqueous phosphoric acid solution, and the secondary coagulation bath and wash bath consisted of distilled water. The winding speed was set at 25.9 m / min. The fabricated PBO fibers and PBO-NDCA fibers were dried in a vacuum oven at 25 ° C for 24 hours.

[실시예 2 및 3][Examples 2 and 3]

TPA 및 NDCA의 함량을 하기 표 1에서와 같이 조절한 것을 제외하고는, 실시예 1과 동일한 과정으로 공중합체 및 섬유를 제조하였다.
Copolymers and fibers were prepared by the same procedure as in Example 1 except that the contents of TPA and NDCA were adjusted as shown in Table 1 below.

[비교예 1][Comparative Example 1]

TPA 및 NDCA의 함량을 하기 표 1에서와 같이 조절한 것을 제외하고는, 실시예 1과 동일한 과정으로 공중합체 및 섬유를 제조하였다.
Copolymers and fibers were prepared by the same procedure as in Example 1 except that the contents of TPA and NDCA were adjusted as shown in Table 1 below.

DAR
(mmol)
DAR
(mmol)
TPA
(mmol)
TPA
(mmol)
NDCA
(mmol)
NDCA
(mmol)
SnCl2
(wt%)
SnCl 2
(wt%)
중합용매 PPA 농도(P2O5 %)Polymerization solvent PPA concentration (P 2 O 5 %) 중합물의 PBO농도
(wt%)
PBO concentration of polymer
(wt%)
고유점도(dl/g)Intrinsic viscosity (dl / g) 분자량
(g/mol)
Molecular Weight
(g / mol)
비교예 1Comparative Example 1 40.040.0 43.043.0 0.00.0 2.42.4 80.0 -> 87.080.0 -> 87.0 14.014.0 9.29.2 1508015080 실시예 1Example 1 41.741.7 1.31.3 9.69.6 1544015440 실시예 2Example 2 40.440.4 2.62.6 9.79.7 1553015530 실시예 3Example 3 39.139.1 3.93.9 9.29.2 1508015080

[실험예 1] 자외선 저항성 측정[Experimental Example 1] Measurement of ultraviolet resistance

실시예 1 내지 3 및 비교예 1에서 각각 제조한 섬유의 자외선 저항성을 측정하기 위하여, 도 3에 도시된 바와 같은 자체 제작한 자외선 조사장치 및 하기 표 2와 같은 자외선 램프를 사용하여 섬유에 자외선을 8~24시간 조사하였다.
In order to measure the ultraviolet resistance of the fibers prepared in Examples 1 to 3 and Comparative Example 1, ultraviolet rays were irradiated to the fibers using a self-made ultraviolet irradiation apparatus as shown in Fig. 3 and an ultraviolet lamp as shown in Table 2 below For 8 to 24 hours.

Figure 112014098111515-pat00004
Figure 112014098111515-pat00004

도 4는 순수 PBO 섬유를 자외선 조사하였을 때의 인장강도와 신도를 나타내는 그래프이다. 자외선 조사 시간이 증가할수록 급격하게 강도와 신도가 감소하는 것을 알 수 있다. 자외선에 의한 PBO 섬유의 강도가 저하되는 이유는 자외선에 의하여 하기의 반응식 2와 같이 헤테로환이 깨어지기 때문인 것으로 알려져 있다.
4 is a graph showing tensile strength and elongation when pure PBO fibers are irradiated with ultraviolet rays. It can be seen that as the ultraviolet irradiation time is increased, the intensity and elongation decrease sharply. It is known that the reason that the intensity of PBO fiber due to ultraviolet rays is lowered is that the heterocycle breaks down due to ultraviolet rays as shown in the following reaction formula (2).

[반응식 2][Reaction Scheme 2]

Figure 112014098111515-pat00005

Figure 112014098111515-pat00005

도 5는 실시예 1 내지 3 및 비교예 1에서 각각 제조한 섬유에 자외선을 조사한 후의 인장강도 유지율을 측정한 결과를 나타낸 것이다. NDCA가 도입됨에 따라서 자외선 조사에 따른 강도저하가 완화됨으로써, 자외선 저항성이 향상되는 것을 알 수 있다.Fig. 5 shows the results of measurement of the tensile strength retention ratio after ultraviolet irradiation of the fibers prepared in Examples 1 to 3 and Comparative Example 1, respectively. As the NDCA is introduced, the decrease in strength due to ultraviolet irradiation is alleviated, and it is understood that the ultraviolet resistance is improved.

또한, PBO 섬유는 자외선 조사에 따라 강도가 감소되는 것과 함께 직경이 현저하게 감소하는 현상을 보인다. 하기 표 3 및 도 6은 PBO 및 PBO-NDCA 섬유의 자외선 조사에 따른 직경변화와 직경 감소율을 각각 나타낸 것이다. NDCA 함량에 따라 강도 저하율이 낮아지듯이 직경감소율도 낮아지는 것을 알 수 있다.
In addition, the PBO fiber exhibits a phenomenon in which the diameter is decreased remarkably as the intensity is reduced by ultraviolet irradiation. Table 3 and Fig. 6 show the change in diameter and the reduction rate of diameters of PBO and PBO-NDCA fibers according to ultraviolet irradiation, respectively. It can be seen that the reduction rate of the diameter is lowered as the reduction rate of strength is lowered according to the NDCA content.

자외선 조사 시간(h)Ultraviolet irradiation time (h) 자외선 조사 전후의 섬유직경(㎛)Fiber diameter before and after ultraviolet irradiation (탆) 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 00 15.315.3 16.016.0 15.115.1 13.213.2 88 13.213.2 14.314.3 13.813.8 12.312.3 1616 12.412.4 13.713.7 13.313.3 12.012.0

도 7은 비교예 1과 실시예 3에서 각각 제조한 섬유에 대해서, 자외선 조사 전후의 표면 거칠기를 원자현미경(AFM)으로 관찰하여 비교한 결과를 나타낸 것이다. 도 7에서 알 수 있는 바와 같이, 자외선 조사 후에 NDCA를 함유한 섬유(실시예 3)의 표면이 훨씬 부드러운 것을 알 수 있다.Fig. 7 shows the results of comparing the surface roughness of the fibers prepared in Comparative Examples 1 and 3, respectively, before and after irradiation with ultraviolet rays, using an atomic force microscope (AFM). As can be seen from Fig. 7, it can be seen that the surface of NDCA-containing fiber (Example 3) after ultraviolet irradiation is much smoother.

Claims (4)

4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체와 테레프탈산(TPA) 및 2,6-나프탈렌디카르복실산(NDCA) 단량체를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계;
상기 단량체들의 탈염화반응을 통한 중합에 의해 폴리파라페닐렌벤조비스옥사졸(PBO)-NDCA 전구체를 형성하는 중합 단계;
PBO-NDCA 전구체의 고리화 반응에 의해 PBO-NDCA 공중합체를 형성하는 고리화 단계; 및
상기 PBO-NDCA 공중합체를 포함하는 용액을 건습식 방사기를 이용하여 섬유를 제조하는 단계를 포함하며,
상기 2,6-나프탈렌디카르복실산은 나프탈렌기가 도입된 PBO-NDCA 공중합체의 총 중량대비 1 내지 20중량%이며,
상기 PBO-NDCA 공중합체는 하기 화학식 1로 표시되며,
상기 섬유는 300~500nm의 파장으로 16시간 동안 자외선을 조사한 전후의 섬유 직경감소율이 9.1~14.4%, 강도유지율이 55% 이상인 것을 특징으로 하는 섬유의 제조방법.
[화학식 1]
Figure 112016107148923-pat00014
(TPA) and 2,6-naphthalene dicarboxylic acid (NDCA) monomers are reacted with polyphosphoric acid (PPA) containing phosphorus pentoxide (P 2 O 5 ) and a 4,4'-diaminorisosolic dihydrochloride (DAR) ) A dehydrochlorination step of dissolving in a solvent to remove hydrogen chloride;
A polymerization step of forming polyparaphenylenebenzobisoxazole (PBO) -NDCA precursor by polymerization through dechlorination of the monomers;
A cyclization step of forming a PBO-NDCA copolymer by a cyclization reaction of a PBO-NDCA precursor; And
Preparing a solution containing the PBO-NDCA copolymer by using a dry-wet emitter,
The 2,6-naphthalene dicarboxylic acid is 1 to 20% by weight based on the total weight of the naphthalene-introduced PBO-NDCA copolymer,
The PBO-NDCA copolymer is represented by the following formula (1)
Wherein the fiber has a fiber diameter reduction ratio of 9.1 to 14.4% before and after irradiation of ultraviolet rays at a wavelength of 300 to 500 nm for 16 hours, and a strength retention ratio of 55% or more.
[Chemical Formula 1]
Figure 112016107148923-pat00014
삭제delete 삭제delete 삭제delete
KR1020140138955A 2014-10-15 2014-10-15 Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same KR101736720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140138955A KR101736720B1 (en) 2014-10-15 2014-10-15 Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140138955A KR101736720B1 (en) 2014-10-15 2014-10-15 Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20160044226A KR20160044226A (en) 2016-04-25
KR101736720B1 true KR101736720B1 (en) 2017-05-17

Family

ID=55918663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140138955A KR101736720B1 (en) 2014-10-15 2014-10-15 Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101736720B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685049B2 (en) * 1999-12-06 2005-08-17 東洋紡績株式会社 Polybenzazole and its fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685049B2 (en) * 1999-12-06 2005-08-17 東洋紡績株式会社 Polybenzazole and its fibers

Also Published As

Publication number Publication date
KR20160044226A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6605756B2 (en) Highly uniform colored polyester industrial yarn and method for producing the same
KR101734895B1 (en) Poly(p-phenylene benzobisoxazole) nanocomposite fiber improved uv resistnat and compression strength, and method for preparing the same using modified polyhedral oligomeric silsesquioxane(poss)
JP2017527705A (en) High-strength copolymerized aramid fiber and method for producing the same
JP6474944B2 (en) Ultra-low shrinkage polyester industrial yarn and production method thereof
KR101432876B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101736720B1 (en) Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same
KR101509426B1 (en) Method of manufacturing aramid fiber
KR101716242B1 (en) Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same
KR101245890B1 (en) Aramide Fiber and Method for Manufacturing The Same
KR101387272B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101766903B1 (en) Low melting point polyester fiber and manufacturing method thereof
KR20110075993A (en) Aramid polymer, shaped body and method for manufacturing the same
KR100930204B1 (en) Aramide fiber and method for manufacturing the same
KR101432874B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101432875B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101410544B1 (en) Method for manufacturing aramid fiber
KR101684874B1 (en) Polyketone Fiber with Improved Wearing Property and Method for Preparing the Same
KR101942300B1 (en) Eco-friendly flame retardant polyethylene multi-filament fiber and manufacturing method thereof
KR101881825B1 (en) Polyester Composite Fibers Using materials from biomass and Method Preparing Same
KR101495919B1 (en) Method of manufacturing aromatic polyamide filament and a aromatic polyamide filament by the same
JP2008285767A (en) Highly heat-resistant fiber material for reinforcing rubber and method for producing the same
KR20140133196A (en) Method of manufacturing aramid copolymer and copolymerized aramid fiber
KR20190037664A (en) Method of manufacturing para aramid fiber and para aramid fiber manufactured thereby
KR102432899B1 (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR20140083310A (en) Method of manufacturing aramid copolymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant