KR101735467B1 - Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug - Google Patents

Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug Download PDF

Info

Publication number
KR101735467B1
KR101735467B1 KR1020150160530A KR20150160530A KR101735467B1 KR 101735467 B1 KR101735467 B1 KR 101735467B1 KR 1020150160530 A KR1020150160530 A KR 1020150160530A KR 20150160530 A KR20150160530 A KR 20150160530A KR 101735467 B1 KR101735467 B1 KR 101735467B1
Authority
KR
South Korea
Prior art keywords
tumor
tiba
hyaluronic acid
cancer
acid
Prior art date
Application number
KR1020150160530A
Other languages
Korean (ko)
Inventor
조현종
김대덕
이재영
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020150160530A priority Critical patent/KR101735467B1/en
Application granted granted Critical
Publication of KR101735467B1 publication Critical patent/KR101735467B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/4823
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0438Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drugs; a pharmaceutical composition for tumor-targeted drug delivery and cancer diagnosis comprising the same; and a method for manufacturing the nanoassembly. The nanoassembly, the pharmaceutical composition comprising the same and the manufacturing method can be used as a theranostic nanosystem to cancer.

Description

요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체{Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug}[0001] The present invention relates to a nanoassembly for tumor-targeted drug delivery and cancer diagnosis, including iodinated hyaluronic acid oligomers and hydrophobic drugs,

본 발명은 종양-표적화 약물 전달 및 암 진단용 나노회합체에 관한 것으로, 더욱 상세하게는 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체에 관한 것이다.The present invention relates to a nanocomposite for tumor-targeted drug delivery and cancer diagnosis, and more particularly to a nanocomposite for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and a hydrophobic drug.

항암제를 종양 부위로 선택적으로 전달하거나 암을 진단하기 위하여 지금까지 다양한 접근이 시도되어 왔다[비특허문헌 1-3]. 또한, 항암 약물이 정상적인 조직 및 기관으로 분포되는 것을 최소화하기 위하여, 수동적 및 능동적 표적화 등을 포함한 종양 표적화 전략이 약물 전달 시스템에 도입되어 왔다[비특허문헌 4,5]. A variety of approaches have been attempted so far to selectively deliver chemotherapeutic agents to tumor sites or to diagnose cancer [Non-Patent Documents 1-3]. In addition, tumor targeting strategies including passive and active targeting have been introduced into drug delivery systems to minimize the distribution of anticancer drugs to normal tissues and organs (Non-Patent Documents 4 and 5).

한편, 종양에서의 약물 분포와 관련하여서는, 종양 조직의 신생혈관형성(angiogenesis) 및 미성숙한 림프계에 따른 비정상적 혈관 구조로 인해, 종양 부위에 나노-크기의 입자 및 거대분자(macromolecule) 등이 저류되는 경향이 있다. 이러한 투과 및 저류 증진(Enhanced Permeability and Retention, EPR) 효과는 전달체의 물리화학적 성질(예를 들어, 크기, 모양, 및 표면 전하)과 관련이 있으며, 이러한 성질이 수동적 종양 표적화의 전략으로 사용되어 왔다[비특허문헌 6]. 이러한 비특이적 특성은, 암 세포에 과발현되어 있는 수용체에 대한 리간드로서 종양 표적화 잔기(예를 들어, 저분자 화합물, 펩타이드, 항체)를 사용하는 능동적 표적화 전략으로 그 한계가 보완될 수 있다[비특허문헌 7,8]. 즉, 수동적 및 능동적 표적화 전략의 조합으로 종양 표적화능 및 화학요법 효과를 증가시킬 수 있다. On the other hand, with respect to the distribution of drugs in tumors, nano-sized particles and macromolecules are retained in tumor sites due to angiogenesis of tumor tissue and abnormal vascular structure due to immature lymphatic system There is a tendency. This enhanced permeability and retention (EPR) effect is related to the physicochemical properties (eg size, shape, and surface charge) of the delivery vehicle and has been used as a strategy for passive tumor targeting [Non-Patent Document 6]. Such nonspecific properties can be complemented by an active targeting strategy using tumor targeting residues (e. G., Low molecular weight compounds, peptides, antibodies) as ligands to receptors overexpressed in cancer cells [Non-patent document 7 ,8]. That is, the combination of passive and active targeting strategies can increase tumor targeting capacity and chemotherapy effects.

최근에, X-레이 컴퓨터 단층촬영(CT), 자기 공명(magnetic resonance, MR), 양전자방출단층촬영(positron emission tomography, PET), 및 광학 영상을 위한 다수의 조영제 화합물을 중합체에 화학적으로 공유결합시켜 나노-크기의 입자를 형성하거나 이러한 입자에 물리적으로 봉입시키는 기술이 보고된 바 있다[비특허문헌 9,10]. 암 진단과 동시에 항암화학치료를 수행하는 이러한 기술은 환자 순응도(patient compliance) 및 치료 효능을 개선시킬 수 있다.Recently, a number of contrast agent compounds for X-ray computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) A technique of forming nano-sized particles or physically enclosing these particles has been reported [Non-Patent Documents 9 and 10]. This technique of performing cancer chemotherapy concurrently with cancer diagnosis can improve patient compliance and therapeutic efficacy.

현재 사용가능한 다양한 나노-크기의 약물 전달 시스템 중에서, 종양-표적화 약물 전달 및 암 진단을 위하여 자가-회합성 나노입자(nanoparticles, NP)가 광범위하게 연구되고 있다[비특허문헌 11,15]. 또한, 특화된 진단 및 치료 기능을 갖는 소수성 잔기를 친수성 골격에 화학적으로 공유결합시킨 기술이 보고된 바 있다[비특허문헌 16].Of the various nano-sized drug delivery systems currently available, self-assembling nanoparticles (NP) have been extensively studied for tumor-targeted drug delivery and cancer diagnosis [Non-Patent Documents 11, 15]. In addition, a technique of chemically covalently bonding a hydrophobic moiety having a specialized diagnostic and therapeutic function to a hydrophilic skeleton has been reported [Non-Patent Document 16].

그러나, 현재까지 종양-표적화 약물 전달 및 암 진단의 목적을 달성한 정도는 임상에서 사용되기에 충분하지 못하였으며, 보다 효과적으로 종양-표적화 및 진단 기능을 달성할 수 있는 전달체의 개발이 요구된다.However, to date, the extent to which the goal of tumor-targeted drug delivery and cancer diagnosis has been achieved has not been sufficient for clinical use, and the development of a delivery vehicle capable of achieving more effective tumor-targeting and diagnostic functions is required.

미국 특허공개 제2012-0308481A1호 (2012.12.06)U.S. Patent Publication No. 2012-0308481A1 (2012.12.06) 미국 특허공개 제2014-0056816A1호 (2014.02.27)U.S. Patent Publication No. 2014-0056816A1 (Feb. 대한민국 특허공개 제10-2007-0104574호 (2007.10.26)Korean Patent Publication No. 10-2007-0104574 (October 26, 2007) 미국 특허공개 제2009-0259297A1호 (2009.10.15)U.S. Patent Publication No. 2009-0259297A1 (Oct. 15, 2009)

[1] Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011;44:1114-1122.[1] Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011; 44: 1114-1122. [2] Melancon MP, Stafford RJ, Li C. Challenges to effective cancer nanotheranostics. J Control Release 2012;164:177-182.[2] Melancon MP, Stafford RJ, Li C. Challenges to effective cancer nanotheranostics. J Control Release 2012; 164: 177-182. [3] Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 2014;174:98-108.[3] Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 2014; 174: 98-108. [4] Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161:175-187.[4] Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161: 175-187. [5] Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009;71:409-419.[5] Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71: 409-419. [6] Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505-515.[6] Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5: 505-515. [7] Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25.[7] Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25. [8] Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014;15:1955-1969.[8] Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 2014; 15: 1955-1969. [9] Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010;62:1052-1063.[9] Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62: 1052-1063. [10] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010;62:1064-1079.[10] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62: 1064-1079. [11] Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 2011;32:7181-7190.[11] Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 2011; 32: 7181-7190. [12] Lee JY, Chung SJ, Cho HJ, Kim DD. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Eur J Pharm Biopharm 2015;94:532-541.[12] Lee JY, Chung SJ, Cho HJ, Kim DD. Even acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Eur J Pharm Biopharm 2015; 94: 532-541. [13] Lee JY, Chung SJ, Cho HJ, Kim DD. Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv Funct Mater 2015;25:3705-3717.[13] Lee JY, Chung SJ, Cho HJ, Kim DD. Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv Funct Mater 2015; 25: 3705-3717. [14] Termsarasab U, Yoon IS, Park JH, Moon HT, Cho HJ, Kim DD. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin. Int J Pharm 2014;464:127-134.[14] Termsarasabi, Yoon IS, Park JH, Moon HT, Cho HJ, Kim DD. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin. Int J Pharm 2014; 464: 127-134. [15] Yhee JY, Son S, Kim SH, Park K, Choi K, Kwon IC. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Control Release 2014;193:202-213.[15] Yhee JY, Son S, Kim SH, Park K, Choi K, Kwon IC. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Control Release 2014; 193: 202-213. [16] Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 2011;44:1123-1134.[16] Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44: 1123-1134. [17] Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, et al. Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjug Chem 2011;22:1784-1792.[17] Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, et al. Development and application of a multimodal contrast agent for SPECT / CT hybrid imaging. Bioconjug Chem 2011; 22: 1784-1792. [18] Lei K, Shen W, Cao L, Yu L, Ding J. An injectable thermogel with high radiopacity. Chem Commun 2015;51:6080-6083.[18] Lei K, Shen W, Cao L, Yu L, Ding J. An injectable thermogel with high radiopacity. Chem Commun 2015; 51: 6080-6083. [19] Negussie AH, Dreher MR, Johnson CG, Tang Y, Lewis AL, Storm G, et al. Synthesis and characterization of image-able polyvinyl alcohol microspheres for image-guided chemoembolization. J Mater Sci Mater Med 2015:26:198.[19] Negussie AH, Dreher MR, Johnson CG, Tang Y, Lewis AL, Storm G, et al. Synthesis and characterization of image-able polyvinyl alcohol microspheres for image-guided chemoembolization. J Mater Sci Mater Med 2015: 26: 198. [20] Singhana B, Chen A, Slattery P, Yazdi IK, Qiao Y, Tasciotti E, et al. Infusion of iodine-based contrast agents into poly(p-dioxanone) as a radiopaque resorbable IVC filter. J Mater Sci Mater Med 2015;26:124.[20] Singhana B, Chen A, Slattery P, Writing IK, Qiao Y, Tasciotti E, et al. Infusion of iodine-based contrast agents into poly (p-dioxanone) as a radiopaque resorbable IVC filter. J Mater Sci Mater Med 2015; 26: 124. [21] Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2012;33:1190-1200.[21] Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2012; 33: 1190-1200. [22] Ahrens T, Assmann V, Fieber C, Termeer C, Herrlich P, Hofmann M, et al. CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol. 2001;116:93-101.[22] Ahrens T, Assmann V, Fieber C, Termeer C, Herrlich P, Hofmann M, et al. CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol. 2001; 116: 93-101. [23] Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;61:1303-1313.[23] Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303-1313. [24] Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999;144:789-801.[24] Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144: 789-801. [25] Turley EA, Austen L, Vandeligt K, Clary C. Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol 1991;112:1041-1047.[25] Turley EA, Austen L, Vandeligt K, Clary C. Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol 1991; 112: 1041-1047. [26] Ghosh SC, Alpay SN, Klostergaard J. CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 2012;16:635-650.[26] Ghosh SC, Alpay SN, Klostergaard J. CD44: a validated target for improved treatment of cancer therapeutics. Expert Opin Ther Targets 2012; 16: 635-650. [27] Jin YJ, Termsarasab U, Ko SH, Shim JS, Chong S, Chung SJ, et al. Hyaluronic acid derivative-based self-assembled nanoparticles for the treatment of melanoma. Pharm Res 2012;29:3443-3454.[27] Jin YJ, Termsarasabi, Ko SH, Shim JS, Chong S, Chung SJ, et al. Hyaluronic acid derivative-based self-assembled nanoparticles for the treatment of melanoma. Pharm Res 2012; 29: 3443-3454. [28] Park JH, Lee JY, Termsarasab U, Yoon IS, Ko SH, Shim JS, et al. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery. Int J Pharm 2014;473:426-433.[28] Park JH, Lee JY, Termsarasabi, Yoon IS, Ko SH, Shim JS, et al. Development of poly (lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery. Int J Pharm 2014; 473: 426-433. [29] Neises B, Steglich W. Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 1978;17:522-524.[29] Neises B, Steglich W. Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 1978; 17: 522-524. [30] Lee JY, Kim JS, Cho HJ, Kim DD. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery. Int J Nanomed 2014;9:2803-2813.[30] Lee JY, Kim JS, Cho HJ, Kim DD. Poly (styrene) -b-poly (DL-lactide) copolymer-based nanoparticles for anticancer drug delivery. Int J Nanomed 2014; 9: 2803-2813. [31] Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater 2013:25:2641-2660.[31] Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater 2013: 25: 2641-2660. [32] Termsarasab U, Cho HJ, Kim DH, Chong S, Chung SJ, Shim CK, et al. Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 2013;441:373-380.[32] Termsarasabi, Cho HJ, Kim DH, Chong S, Chung SJ, Shim CK, et al. Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 2013; 441: 373-380. [33] Phillips JN. The energetics of micelle formation. J N Trans Faraday Soc 1995;51:561-569.[33] Phillips JN. The energetics of micelle formation. J N Trans Faraday Soc 1995; 51: 561-569. [34] Lee MJ, Oh NM, Oh KT, Youn YS, Lee ES. Functional poly(l-lysine) derivative nanogels with acidic pH-pulsed antitumor drug release properties. J Pharm Invest 2014;44:351-356.[34] Lee MJ, Oh NM, Oh KT, Youn YS, Lee ES. Functional poly (l-lysine) derivative nanogels with acidic pH-pulsed antitumor drug release properties. J Pharm Invest 2014; 44: 351-356.

본 발명자들은 종양-표적화 및 진단 기능을 동시에 달성할 수 있는 전달체에 대하여 연구하던 중, 요오드 포함 조영 물질, 특히, 2,3,5-트리요오도벤조산(2,3,5-Triiodobenzoic acid, TIBA)을 컴퓨터 단층촬영(CT) 영상화용 기능기 및 소수성 잔기로서 사용하고, 히알루론산(HA) 올리고머를 종양 표적화용 친수성 골격으로 사용하여, 양친매성 요오드화 히알루론산(amphiphilic iodinated hyaluronic acid) 올리고머를 제조하고; 상기 요오드화 히알루론산 올리고머 및 소수성 항암 약물(독소루비신[doxorubicin, DOX] 등)을 포함하는 나노회합체가, 나노-크기의 자가회합체로서 종양 환경에서 유리한 약물 방출 양상을 나타내고, 암 세포에서 항암제의 세포내로의 도입율을 증가시킬 뿐만 아니라, 종양 표적화 및 암 진단 효능이 우수하고, 생체내 항 종양 효능 또한 우수하여 암에 대한 효과적인 치료 진단(theranostic) 나노시스템으로 사용될 수 있다는 것을 발견하였다.The present inventors have been studying a carrier capable of simultaneously achieving tumor-targeting and diagnostic functions, and have found that an iodine-containing contrast agent, especially 2,3,5-triiodobenzoic acid (TIBA ) Was used as a functional unit for CT imaging and hydrophobic residues and hyaluronic acid (HA) oligomer was used as a hydrophilic skeleton for tumor targeting to prepare amphiphilic iodinated hyaluronic acid oligomer ; The nanocomposite comprising the iodinated hyaluronic acid oligomer and the hydrophobic anticancer drug (doxorubicin, DOX, etc.) is a nano-sized self-assembly exhibiting a drug releasing pattern favorable in the tumor environment, Not only increase the incorporation rate into the tumor, but also have excellent tumor targeting and cancer diagnostic efficacy, and are excellent in in vivo antitumor efficacy, and thus can be used as an effective theranostic nano-system for cancer.

따라서, 본 발명은 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체; 이를 포함하는 종양-표적화 약물 전달 및 암 진단용 약학 조성물; 및 상기 나노회합체의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention relates to a nanocomposite for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and a hydrophobic drug; A pharmaceutical composition for tumor-targeted drug delivery and cancer diagnosis comprising the same; And a method for producing the nanocomposite.

본 발명의 일 태양에 따라, 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체가 제공된다.According to one aspect of the present invention, there is provided a nano-aggregate for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and a hydrophobic drug.

일 구현예에서, 상기 요오드화된 히알루론산 올리고머는 트리요오도벤조산, 다이아트리조익산(diatrizoic acid), 메트리조익산(metrizoic acid) 및 요오탈라메이트(iothalamate)로 이루어진 군으로부터 선택된 1종 이상; 및 히알루론산의 공유결합체일 수 있다. 또한, 상기 트리요오도벤조산은 2,3,5-트리요오도벤조산일 수 있으며, 상기 트리요오도벤조산은 히알루론산 1몰 당 10 내지 20몰로 결합할 수 있다.In one embodiment, the iodinated hyaluronic acid oligomer is one or more selected from the group consisting of triiodobenzoic acid, diatrizoic acid, metrizoic acid, and iothalamate; And covalent conjugates of hyaluronic acid. The triiodobenzoic acid may be 2,3,5-triiodobenzoic acid, and the triiodobenzoic acid may be bound to 10 to 20 moles per 1 mole of hyaluronic acid.

일 구현예에서, 상기 요오드화된 히알루론산 올리고머 중 요오드 함량은 30 내지 60 %(w/w)일 수 있으며, 상기 요오드화된 히알루론산 올리고머 및 소수성 약물은 5 : 1 내지 40 : 1의 중량 비율로 포함될 수 있다.In one embodiment, the iodinated hyaluronic acid oligomer may have an iodine content of 30 to 60% (w / w), and the iodinated hyaluronic acid oligomer and the hydrophobic drug are included in a weight ratio of 5: 1 to 40: 1 .

일 구현예에서, 상기 요오드화된 히알루론산 올리고머에 광학 영상용 염료가 추가로 결합될 수 있다.In one embodiment, the iodinated hyaluronic acid oligomer may be further combined with a dye for optical imaging.

또한, 본 발명의 다른 태양에 따라, 상기 나노회합체를 포함하는 종양-표적화 약물 전달 및 암 진단용 약학 조성물이 제공된다.According to another aspect of the present invention, there is provided a pharmaceutical composition for tumor-targeting drug delivery and cancer diagnosis comprising the above nanocomposite.

일 구현예에서, 상기 종양은 CD44 수용체가 발현된 암종으로서 폐암, 유방암, 간암, 뇌종양, 피부암 및 난소암으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In one embodiment, the tumor is a carcinoma in which the CD44 receptor is expressed, and may be at least one selected from the group consisting of lung cancer, breast cancer, liver cancer, brain tumor, skin cancer and ovarian cancer.

또한, 본 발명의 또 다른 태양에 따라, (a) 요오드화된 히알루론산 올리고머 및 소수성 약물을 가용화시켜 용액을 얻는 단계; (b) 단계(a)의 상기 용액으로부터 용매를 제거하여 고형물을 얻는 단계; 및 (c) 단계(b)의 상기 고형물에 수성 용매를 첨가하여 분산체를 얻는 단계를 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체의 제조방법이 제공된다.According to still another aspect of the present invention, there is provided a method for preparing a pharmaceutical composition, comprising: (a) solubilizing an iodinated hyaluronic acid oligomer and a hydrophobic drug to obtain a solution; (b) removing the solvent from the solution of step (a) to obtain a solid; And (c) adding an aqueous solvent to the solids of step (b) to obtain a dispersion. The method includes the steps of: (a) preparing a nanocomposite for tumor-targeted drug delivery and cancer diagnosis;

본 발명에 의해, 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 나노회합체가 207 nm의 평균 입자경을 가져 나노 크기임이 확인되었고, 상기 나노회합체로부터의 약물 방출 양상이 pH 의존성(산성 환경에서 방출 유리) 및 서방성으로 나타나 종양 치료에 적합한 것으로 밝혀졌으며, 히알루론산 및 CD44 수용체 간의 상호작용에 의해 항암제의 세포내 도입율이 증가되었을 뿐만 아니라, 종양 표적화 및 암 진단 효능이 우수하였으며, 종양 부피 증가율을 현저히 감소시켜 우수한 생체내 항 종양 효능을 나타내는 것으로 밝혀졌다.According to the present invention, a nanocomposite comprising an iodinated hyaluronic acid oligomer and a hydrophobic drug has an average particle size of 207 nm and has been confirmed to be nano-sized, and the drug release pattern from the nanocomposite is pH dependent Free, and slow release, and was found to be suitable for the treatment of tumors. The interaction between hyaluronic acid and CD44 receptor not only increased the intracellular induction rate of the anti-cancer agent but also was excellent in tumor targeting and cancer diagnosis, Lt; RTI ID = 0.0 > in vivo < / RTI > antitumor efficacy.

따라서, 본 발명의 요오드화된 히알루론산 기반 나노회합체 및 이를 포함하는 약학 조성물은 종양-표적화 약물 전달 및 암 진단 분야에서, 특히, CD44 수용체를 발현하는 암에 대한 치료 진단 나노시스템으로 유용하게 사용될 것이다.Accordingly, the iodinated hyaluronic acid-based nanocomposite of the present invention and pharmaceutical compositions comprising it are useful as therapeutic diagnostic nanosystems for cancer-expressing drug delivery and cancer diagnosis, particularly for cancer expressing the CD44 receptor .

도 1은 HA-TIBA 공유결합체의 합성에 대한 개략도(A) 및 HA-TIBA의 1H-NMR 스펙트럼(B)이다(HA[a: 1.8 ppm] 및 TIBA[b 및 c: 7.8 및 8.2 ppm]의 이동(shift)이 나타나 있으며, 1H-NMR(500 MHz) 분석을 위하여 HA-TIBA는 DMSO-d6에 용해시킴).
도 2는 공(blank) HA-TIBA 및 HA-TIBA/DOX의 물리화학적 특성을 확인한 결과로서, 미분 강도(differential intensity)로 나타낸, 평균 입자경에 따른 나노회합체의 입도 분포(왼쪽 패널), 및 나노회합체의 TEM 사진(오른쪽 패널)이다(TEM 사진에서의 기준자의 길이는 200 nm임).
도 3은 pH 5.5, 6.8, 및 7.4에서 배양 시간에 따라 HA-TIBA/DOX 나노회합체로부터 방출되는 DOX의 시험관내 방출량(%)을 나타낸 그래프이다(데이터는 평균 ± 표준편차로 나타냄, n = 3).
도 4는 SCC7 세포에서 나노회합체 중 DOX가 세포내로 도입된 정도를 평가한 결과로서, DOX 농도 50 μg/mL에 해당하는 DOX 용액(녹색) 및 HA-TIBA/DOX(분홍색)를 SCC7 세포에서 1 시간 동안 배양시킨 후, 유세포분석기로 측정한 결과(삽입도는 유세포분석에서의 시험군의 형광 강도 값[평균 ± 표준편차]임)(A), 및 CLSM로 측정한 결과(B)(청색 및 적색은 각각 DAPI 및 DOX을 나타내며, 각 시험군의 2D 및 2.5D 이미지로 나타냄)이다.
도 5는 SCC7 종양-이종이식된 마우스 모델에 Cy5.5 및 Cy5.5-HA-TIBA를 정맥 주사한 후, 0(처리 전), 1, 3, 6, 및 24 시간에 실시간 전신 스캔 사진을 촬영한 생체 내 NIRF 영상기법 평가 결과(황색 점선으로 표시된 원이 종양 부위에 해당함)(A) 및 종양 부위에서의 형광 강도(평균 NC[normalized count], photon counts/mm2) 양상을 나타낸 그래프(데이터는 평균 ± 표준편차로 나타냄, n = 3)(B)이다.
도 6은 제조된 나노회합체의 생체분포(biodistribution)를 SCC7 종양-이종이식된 마우스 모델에서 생체 외 NIRF 영상기법으로 평가한 결과로서, Cy5.5 및 Cy5.5-HA-TIBA를 각 마우스 군에 정맥 주사한 후 24 시간에 간, 비장, 신장, 심장, 폐, 및 종양 조직을 적출하여 NIRF 영상기법을 이용해 측정한 결과(A), 및 적출된 기관 또는 조직에서의 형광 강도(평균 NC)를 정량적으로 측정한 그래프(데이터는 평균 ± 표준편차로 나타냄, n = 3, *p < 0.05[Cy5.5 군과 비교시])(B)이다.
도 7은 SCC7 종양-이종이식된 마우스 모델에서의 생체 내 CT 영상 결과로서, SCC7 종양-이종이식된 마우스 모델에 비결합 TIBA 및 HA-TIBA를 정맥 주사한 후, 0(처리 전) 및 24 시간에서의 전신 스캔 사진(A), 및 투여 후 24 시간에 ICP-OES 방법으로 정량 분석한 종양 조직의 요오드 농도(데이터는 평균 ± 표준편차로 나타냄, n = 3, *p < 0.05[비결합 TIBA 군과 비교시])(B)이다.
도 8은 SCC7 종양-이종이식된 마우스 모델에서의 생체 내 항-종양 효능을 시험한 결과로서, 공(blank) HA-TIBA, DOX 용액(solution), 및 HA-TIBA/DOX를 마우스 모델에 5, 7, 9, 11, 및 13일에 정맥 주사한 후, 시간(day)에 따른 종양 부피(mm3)로 나타낸 종양 증식 양상(A); 16일 동안의 마우스의 체중 변화(B)(데이터는 평균 ± 표준편차로 나타냄, n = 4-5, #p < 0.05[대조군과 비교시], *p < 0.05[공 HA-TIBA 군과 비교시], +p < 0.05[DOX 용액 군과 비교시]); 및 16일에 마우스로부터 적출한 종양의 TUNEL 분석 결과(왼쪽 컬럼) 및 심장 조직의 H&E 염색 결과(오른쪽 컬럼)를 나타낸 현미경 사진(C)이다.
Figure 1 is a schematic diagram (A) of the synthesis of HA-TIBA covalent conjugate and a 1 H-NMR spectrum (HA) of HA-TIBA (HA [a: 1.8 ppm] and TIBA [b and c: 7.8 and 8.2 ppm] And HA-TIBA was dissolved in DMSO-d 6 for 1 H-NMR (500 MHz) analysis).
Fig. 2 shows the particle size distribution (left panel) of the nanocomposite according to the average particle size, expressed as differential intensity, as a result of confirming the physicochemical properties of blank HA-TIBA and HA-TIBA / (Right panel) of the nanocomposite (the length of the reference in the TEM photograph is 200 nm).
Figure 3 is a graph showing the in vitro release (%) of DOX released from HA-TIBA / DOX nanocomposite at time of incubation time at pH 5.5, 6.8, and 7.4 (data are shown as mean ± SD, n = 3).
FIG. 4 shows the results of evaluating the extent of DOX incorporation into nano-aggregates in SCC7 cells, showing that DOX solution (green) and HA-TIBA / DOX (pink) corresponding to a DOX concentration of 50 μg / (A) and CLSM (B) (blue fluorescence intensity value [average ± standard deviation]), which was measured by flow cytometry after 1 hour of incubation And red represent DAPI and DOX, respectively, represented by 2D and 2.5D images of each test group).
FIG. 5 shows an in vivo scan of Cy5.5 and Cy5.5-HA-TIBA in SCC7 tumor-xenografted mouse models, and then real-time full-scan photographs at 0 (before treatment), 1, 3, 6, A graph showing the fluorescence intensities (average NC [normalized count], photon counts / mm 2 ) in the in vivo NIRF imaging technique results (the circle indicated by the yellow dotted line corresponds to the tumor site) Data are presented as means ± SD, n = 3) (B).
FIG. 6 shows the results of evaluation of the biodistribution of the prepared nanoclusters by an in vitro NIRF imaging technique in an SCC7 tumor-xenografted mouse model. Cy5.5 and Cy5.5-HA-TIBA were administered to each mouse group (A), and fluorescence intensity (mean NC) in the extracted organs or tissues was measured by NIRF imaging technique after 24 hours of intravenous injection, and the liver, spleen, kidney, heart, lung, (Data are shown as mean ± standard deviation, n = 3, * p <0.05 [compared with Cy5.5 group]) (B).
Figure 7 shows in vivo CT images of SCC7 tumor-xenografted mouse models, in which SCC7 tumor-xenografted mouse models were injected intravenously with unconjugated TIBA and HA-TIBA followed by 0 (before treatment) and 24 hours (Data are mean ± SD, n = 3, * p <0.05 [non-binding TIBA (n = 3)], and the iodine concentration of the tumor tissues quantified by ICP-OES method 24 hours after administration (B).
Figure 8 shows the results of testing in vivo anti-tumor efficacy in a SCC7 tumor-xenografted mouse model, wherein blank HA-TIBA, DOX solution, and HA-TIBA / (A) tumor volume in mm 3 as a function of time after intravenous injection on days 7, 9, 11, and 13; (P <0.05 compared with the control group), p <0.05 compared with the control group (p <0.05). Hour], + p &lt; 0.05 [compared to DOX solution group]); (C) showing the results of TUNEL analysis (left column) and H & E staining (right column) of heart tissues of the tumor taken from the mouse at day 16.

본 발명은 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체를 제공한다.The present invention provides nano-aggregates for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomers and hydrophobic drugs.

본 발명에서는 (ⅰ) EPR 효과에 의한 수동적 종양 표적화 및 (ⅱ) HA 및 CD44 수용체 간의 상호작용에 의한 능동적 종양 표적화를 달성하고, (ⅲ) 종양 진단을 위한 조영제를 도입함으로써, 암으로 약물을 전달함과 동시에 암을 진단하여 CD44 수용체를 발현하는 암에 대한 치료 진단 나노시스템을 제공한다.(I) passive tumor targeting by EPR effect and (ii) active tumor targeting by interaction between HA and CD44 receptors, and (iii) introducing a contrast agent for tumor diagnosis to deliver the drug to the cancer And provides a therapeutic diagnostic nano system for cancer diagnosing cancer and expressing CD44 receptor.

(ⅰ) EPR 효과에 의한 수동적 종양 표적화는 요오드화된 히알루론산 올리고머 및 소수성 약물을 포함하는 상기 나노회합체에 의하여 달성할 수 있다.(I) Passive tumor targeting by EPR effect can be achieved by the above nanocomposite comprising iodinated hyaluronic acid oligomer and hydrophobic drug.

(ⅱ) 능동적 종양 표적화는 암 세포에 발현된 CD44 수용체에 결합한다고 알려져 있는 히알루론산을 친수성 골격(hydrophilic backbone)으로 사용함으로써 달성할 수 있다.(Ii) Active tumor targeting can be achieved by using hyaluronic acid, known to bind to the CD44 receptor expressed on cancer cells, as a hydrophilic backbone.

(ⅲ) 종양 진단을 위한 조영제의 도입은 요오드화된 히알루론산 올리고머 중의 요오드화 부분에 의하여 달성할 수 있다.(Iii) introduction of a contrast agent for tumor diagnosis can be achieved by the iodination moiety in the iodinated hyaluronic acid oligomer.

상기 요오드화된 히알루론산 올리고머에 있어서, 이의 일부분인 히알루론산 올리고머는 상기 (ⅰ)의 나노회합체를 구성하는 친수성 골격 및 (ⅱ) CD44 수용체-발현 종양에 대한 표적화 리간드에 해당한다. 또한, 요오드화된 히알루론산 올리고머의 일부분인 요오드 포함 조영 물질은 상기 (ⅰ)의 나노회합체를 구성하는 소수성 잔기 및 (ⅲ)의 영상화용 기능기에 해당한다. 즉, 친수성 골격인 히알루론산(HA) 올리고머에 소수성 잔기인 요오드 포함 조영 물질을 결합시켜 요오드화된 히알루론산 올리고머를 제조하고, 이를 이용하여 소수성 약물(예를 들어, 항암제인 DOX)의 전달을 위한 나노-크기의 자가회합체를 제조함으로써, 수동적 종양 표적화 및 능동적 종양 표적화를 달성하는 동시에 암에 대한 치료 진단 나노시스템을 제공할 수 있다.In the iodinated hyaluronic acid oligomer, the hyaluronic acid oligomer, which is part of it, corresponds to the hydrophilic backbone constituting the nanocomposite of (i) and the targeting ligand for (ii) CD44 receptor-expressing tumor. The iodine-containing substance, which is a part of the iodinated hyaluronic acid oligomer, corresponds to the hydrophobic moiety constituting the nanocomposite of (i) and the imaging function of (iii). That is, an iodinated hyaluronic acid oligomer is prepared by binding an iodine-containing substance, which is a hydrophobic moiety, to a hyaluronic acid (HA) oligomer, which is a hydrophilic skeleton, and a nano- - sized autologous aggregates, passive tumor targeting and active tumor targeting can be achieved while providing a therapeutic diagnostic nanosystem for cancer.

본 발명의 일 구현예에서, 상기 요오드화된 히알루론산 올리고머는 트리요오도벤조산, 다이아트리조익산, 메트리조익산 및 요오탈라메이트로 이루어진 군으로부터 선택된 1종 이상; 및 히알루론산의 공유결합체일 수 있다. 특히, 상기 트리요오도벤조산으로 2,3,5-트리요오도벤조산을 사용할 수 있다.In one embodiment of the present invention, the iodinated hyaluronic acid oligomer is at least one selected from the group consisting of triiodobenzoic acid, diazotric acid, metrizoic acid, and iothalamate; And covalent conjugates of hyaluronic acid. In particular, 2,3,5-triiodobenzoic acid may be used as the triiodobenzoic acid.

본 발명의 실시예에서는 소수성 잔기인 2,3,5-트리요오도벤조산(2,3,5-triiodobenzoic acid, TIBA)를 친수성 골격인 히알루론산(hyaluronic acid, HA) 올리고머에 결합시켰다(도 1 참조). 구체적으로, 2,3,5-트리요오도벤조산(TIBA)의 카르복시산 기 및 HA의 히드록시 기 간의 에스테르화에 의해 2,3,5-트리요오도벤조산을 히알루론산 올리고머에 공유결합시킴으로써 2,3,5-트리요오도벤조산 결합 히알루론산 올리고머(HA-TIBA)를 합성할 수 있다.In an embodiment of the present invention, a hydrophobic residue, 2,3,5-triiodobenzoic acid (TIBA), was bonded to a hydrophilic skeleton, hyaluronic acid (HA) oligomer Reference). Specifically, by covalently bonding 2,3,5-triiodobenzoic acid to the hyaluronic acid oligomer by esterification between the carboxylic acid group of 2,3,5-triiodobenzoic acid (TIBA) and the hydroxy group of HA, 3,5-triiodobenzoic acid-bonded hyaluronic acid oligomer (HA-TIBA) can be synthesized.

본 발명에서 친수성 골격으로 사용되는 히알루론산은 세포외 기질(extracellular matrix, ECM)에 존재하는 성분으로서 암 증식, 전이, 및 이동과의 관련성이 입증된 바 있다[비특허문헌 22]. 한편, CD44는 히알루로난-매개 운동성에 대한 수용체(receptor for hyaluronan-mediated motility, RHAMM)/세포내 히알루론산 결합 단백질(intracellular hyaluronic acid binding protein, IHABP), 및 림프관 내피성 히알루로난 수용체-1(lymphatic vessel endothelial hyaluronan receptor-1, LYVE-1)으로서, HA의 수용체로 알려져 있다[비특허문헌 23-25]. 이러한 CD44 수용체는 다수의 암 세포에 발현되어 있으며, 따라서 HA에 대한 표적화 수용체로 사용될 수 있다고 보고된 바 있다[비특허문헌 26]. CD44 수용체에 대한 HA의 종양 표적능을 이용한 HA 유도체-기반 자가회합체가 보고된 바 있으며, 화학치료에서 이들의 사용이 개시된 바 있다[비특허문헌 11,21,27,28].In the present invention, hyaluronic acid used as a hydrophilic skeleton is a component existing in an extracellular matrix (ECM) and has been proved to be related to cancer proliferation, metastasis, and migration (Non-Patent Document 22). On the other hand, CD44 is a receptor for hyaluronan-mediated motility (RHAMM) / intracellular hyaluronic acid binding protein (IHABP), and a lymphatic endothelial hyaluronan receptor-1 (lymphatic vessel endothelial hyaluronan receptor-1, LYVE-1), which is known as a receptor for HA [Non-Patent Documents 23-25]. Such CD44 receptors have been expressed in a large number of cancer cells and thus have been reported to be used as targeting receptors for HA [Non-Patent Document 26]. HA derivative-based autologous conjugates using tumor targeting capabilities of HA to the CD44 receptor have been reported and their use in chemotherapy has been disclosed [Non-Patent Literatures 11, 21, 27, 28].

TIBA는 물에 불용성이지만 알칼리성 용액(NaOH, KOH) 및 몇몇 유기 용매(에탄올, 디메틸설폭시드[dimethyl sulfoxide, DMSO] 및 에테르 등)에는 가용성이다. 또한, 소수성 TIBA는 요오드 원자를 포함하여, CT 조영제로 사용될 수 있다. TIBA는 미국 식품의약국(U.S. Food and Drug Administration, FDA)으로부터 임상적 사용에 대한 승인을 받은 상용 조영제인 이오헥솔(iohexol, Omnipaque, GE Healthcare)과 구조적으로 유사하다[비특허문헌 17]. TIBA는 전달체를 제조하기 위하여 중합체 골격에 공유결합될 수 있으며, CT 조영제로서 마이크로스피어(microsphere) 및 NP와 같은 다양한 제형에 봉입될 수 있는 것으로 보고된 바 있다[비특허문헌 18-20]. 진단용 조영제(즉, TIBA)를 약제학적 제형에 물리적으로 도입시키기 보다는 본 발명에서와 같이 중합체 골격에 TIBA를 공유결합시켜 나노-크기 시스템을 제조하는 것이 체내에서의 빠른 소실을 방지하면서 효율적으로 생체 내 추적 효과를 달성할 수 있다. TIBA is insoluble in water but is soluble in alkaline solutions (NaOH, KOH) and in some organic solvents (ethanol, dimethyl sulfoxide, DMSO, and ethers). In addition, hydrophobic TIBA, including iodine atoms, can be used as a CT contrast agent. TIBA is structurally similar to the commercial contrast agent iohexol (Omnipaque, GE Healthcare), which has been approved for clinical use by the United States Food and Drug Administration (FDA) [Non-patent document 17]. It has been reported that TIBA can be covalently bound to the polymer backbone to prepare the delivery vehicle and can be encapsulated in a variety of formulations such as microspheres and NP as CT contrast agents [Non-Patent Literatures 18-20]. It is believed that, rather than physically introducing the diagnostic contrast agent (i. E., TIBA) into the pharmaceutical formulation, the nano-sized system is prepared by covalently binding TIBA to the polymer backbone as in the present invention, Tracking effect can be achieved.

상기 트리요오도벤조산은 히알루론산 1몰 당 10 내지 20몰로 결합할 수 있으며, 바람직하게는 12 내지 18 몰, 더욱 바람직하게는 14 내지 16 몰로 결합할 수 있으나, 이에 제한되는 것은 아니다.The triiodobenzoic acid may be bonded at 10 to 20 moles per 1 mole of hyaluronic acid, preferably at 12 to 18 moles, more preferably at 14 to 16 moles, but is not limited thereto.

일 구현예에서, 상기 요오드화된 히알루론산 올리고머 중 요오드 함량은 30 내지 60 %(w/w)일 수 있으며, 바람직하게는 35 내지 50 %(w/w), 더욱 바람직하게는 40 내지 45 %(w/w)일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the iodide content of the iodinated hyaluronic acid oligomer may be 30 to 60% (w / w), preferably 35 to 50% (w / w), more preferably 40 to 45% w / w). &lt; / RTI &gt;

일 구현예에서, 상기 요오드화된 히알루론산 올리고머 및 소수성 약물은 5 : 1 내지 40 : 1의 중량 비율로 포함될 수 있으며, 바람직하게는 10 : 1 내지 35 : 1, 더욱 바람직하게는 20 : 1 내지 33 : 1의 중량 비율로 포함될 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the iodinated hyaluronic acid oligomer and the hydrophobic drug may be included in a weight ratio of 5: 1 to 40: 1, preferably 10: 1 to 35: 1, more preferably 20: : 1, but is not limited thereto.

일 구현예에서, 상기 요오드화된 히알루론산 올리고머에 광학 영상용 염료가 추가로 결합될 수 있다. 상기 광학 영상용 염료는 폴리메틴 염료(polymethine dye)일 수 있으며, 상업적으로 판매되는 Cy5 및 Cy7 등을 사용할 수도 있다.In one embodiment, the iodinated hyaluronic acid oligomer may be further combined with a dye for optical imaging. The optical image dye may be a polymethine dye, and commercially available Cy5 and Cy7 may be used.

상기 광학 영상용 염료는 근적외선 형광(NIRF) 영상화를 위하여 사용 가능하며, 본 발명의 실시예에서는 선행문헌[비특허문헌 11,21]에서 근적외선 형광(NIRF) 영상기법에 사용된 것으로 보고된 바 있는 Cy5.5를 HA-TIBA에 공유결합시켜 사용하였다. 이중(광학/CT) 영상화 잔기는 각각의 장점을 조합함으로써 진단능을 상승적으로 개선시킬 수 있다.The optical image dyes can be used for NIRF imaging and have been reported to be used in near infrared ray fluorescence (NIRF) imaging techniques in the prior art [Non-Patent Documents 11 and 21] Cy5.5 was covalently linked to HA-TIBA. Dual (optical / CT) imaging moieties can synergistically improve diagnostic capabilities by combining the advantages of each.

본 발명의 나노회합체는 207 nm의 평균 입자경을 가져 나노 크기임이 확인되었고(도 2 참조), 상기 나노회합체로부터의 약물 방출 양상이 중성 pH 보다는 산성 pH에서 더 높은 약물 방출량을 나타내고, 서방성을 나타내어 종양 환경에 유리한 약물 방출 양상을 나타냈다(도 3 참조). 또한, CD44 수용체 양성 편평세포암 세포에서 HA 및 CD44 수용체 간의 상호작용에 기반한 세포내로의 도입에 의해 DOX(항암제)의 나노회합체로부터 세포내로의 도입율을 증가시켰을 뿐만 아니라(도 4 참조), SCC7 종양-이종이식된 마우스 모델에서 시간에 따른 생체내 NIRF 영상화 평가(도 5 참조), 나노회합체의 생체 내 분포(Biodistribution) 평가(도 6 참조), 생체내 CT 영상화 평가(도 7 참조) 결과, HA-TIBA 나노회합체의 종양 표적화 및 암 진단 효능이 우수함이 확인되었으며, SCC7 종양-이종이식된 마우스 모델에서의 생체내 항-종양 효능 시험 결과(도 8 참조), HA-TIBA/DOX 나노회합체가 종양 부피 증가율을 현저히 감소시켜 우수한 생체내 항 종양 효능을 나타내는 것으로 밝혀졌다.The nanocomposite of the present invention had an average particle size of 207 nm and was found to be nano-sized (see FIG. 2), and the drug release pattern from the nanocomposite exhibited a higher drug release at acidic pH than at neutral pH, , Indicating a drug release pattern favorable to the tumor environment (see FIG. 3). In addition, not only did the induction rate of DOX (anticancer drug) from the nanocomposite into the cell increased by the introduction into the cell based on the interaction between HA and CD44 receptor in CD44 receptor positive squamous cell carcinoma cells (see FIG. 4) 6), in vivo CT imaging assessment (see FIG. 7), in vivo NIRF imaging evaluation (see FIG. 5), in vivo in SCC7 tumor-xenografted mouse models, As a result, it was confirmed that HA-TIBA nanocomposite exhibited excellent tumor targeting and cancer diagnostic efficacy. In vivo anti-tumor efficacy test results (see FIG. 8) in HA-TIBA / DOX Nanocomposites have been shown to significantly reduce tumor volume growth and thus exhibit superior in vivo antitumor efficacy.

본 발명은 또한, 상기 나노회합체를 포함하는 종양-표적화 약물 전달 및 암 진단용 약학 조성물을 제공한다.The present invention also provides a pharmaceutical composition for tumor-targeting drug delivery and cancer diagnosis comprising the above nanocomposite.

일 구현예에서, 상기 종양은 CD44 수용체가 발현된 암종으로서, 예를 들어, 폐암, 유방암, 간암, 뇌종양, 피부암 및 난소암으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In one embodiment, the tumor is a carcinoma in which the CD44 receptor is expressed, for example, one or more selected from the group consisting of lung cancer, breast cancer, liver cancer, brain tumor, skin cancer and ovarian cancer.

본 발명은 또한, (a) 요오드화된 히알루론산 올리고머 및 소수성 약물을 가용화시켜 용액을 얻는 단계; (b) 단계(a)의 상기 용액으로부터 용매를 제거하여 고형물을 얻는 단계; 및 (c) 단계(b)의 상기 고형물에 수성 용매를 첨가하여 분산체를 얻는 단계를 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체의 제조방법을 제공한다.The present invention also provides a method for preparing a pharmaceutical composition comprising: (a) solubilizing an iodinated hyaluronic acid oligomer and a hydrophobic drug to obtain a solution; (b) removing the solvent from the solution of step (a) to obtain a solid; And (c) adding a water-soluble solvent to the solid of step (b) to obtain a dispersion. The present invention also provides a method of producing a nanocomposite for tumor-targeted drug delivery and cancer diagnosis.

단계(a)는 소수성 약물을 포함하는 나노회합체를 제조하기 위하여 요오드화된 히알루론산 올리고머(예를 들어, HA-TIBA)와 소수성 약물을 계면활성제(예를 들어, DMSO) 및 적절한 용매(예를 들어, 물)를 사용하여 가용화시키는 단계이다.Step (a) comprises reacting iodinated hyaluronic acid oligomer (e.g., HA-TIBA) and a hydrophobic drug with a surfactant (e.g., DMSO) and a suitable solvent (e. G., DMSO) in order to prepare a nanocomposite comprising a hydrophobic drug For example, water).

단계(b)는 요오드화된 히알루론산 올리고머 및 소수성 약물이 가용화되어 있는 용액으로부터 적절한 방법(예를 들어, 용매 증발법)을 사용하여 용매를 제거하여 고형물(예를 들어, 막(film)의 형태)을 얻는 단계이다.Step (b) may be carried out by removing the solvent from the solution in which the iodinated hyaluronic acid oligomer and the hydrophobic drug have been solubilized using an appropriate method (e.g. solvent evaporation method) to obtain a solid (e.g. in the form of a film) .

단계(c)는 상기 고형물에 수성 용매(예를 들어, 물)를 첨가하여 나노회합체의 분산체를 얻는 단계이다.Step (c) is a step of adding a water-soluble solvent (for example, water) to the solid to obtain a dispersion of the nanocomposite.

이하, 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예 및 시험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and test examples. However, the following examples and test examples are provided for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예Example 1. HA- 1. HA- TIBATIBA 공유결합체의 합성 및 확인 Synthesis and identification of covalent conjugates

(1) 재료(1) Material

HA 올리고머(평균 분자량: 4.7 kDa)는 바이오랜드사(Bioland Co., Ltd., Cheonan, Korea)에서 구입하였다. 2,3,5-트리요오도벤조산(2,3,5-Triiodobenzoic acid, TIBA)은 도쿄화학사(Tokyo Chemical Industry Co., Ltd., Tokyo, Japan)에서 입수하였다. 염산 독소루비신(Doxorubicin hydrochloride, DOX HCl)은 보령제약(Boryung Pharmaceutical Co., Ltd., Seoul, Korea)에서 구입하였다. N, N´- 디시클로헥실카르보디이미드(N, N´-dicyclohexylcarbodiimide, DCC), 4-(디메틸아미노)피리딘[4-(dimethylamino)pyridine, DMAP], 및 트리에틸아민(trimethylamine, TEA)은 시그마-알드리치(Sigma-Aldrich Co., St. Louis, MO, USA)에서 입수하였다. 아민 작용기를 갖는 Cy5.5(Amine-functionalized Cy5.5, FCR-675 amine)는 바이오액트(BioActs, Incheon, Korea)에서 구입하였다. RPMI 1640(Roswell Park Memorial Institute에서 개발함), 페니실린(penicillin), 스트렙토마이신(streptomycin), 및 열-불활성화된 소태아혈청(heat-inactivated fetal bovine serum, FBS)은 집코 라이프 테크놀로지(Gibco Life Technologies, Inc., Grand Island, NY, USA)에서 입수하였다. 기타 다른 시약은 분석 등급으로 구매하여 사용하였다.HA oligomer (average molecular weight: 4.7 kDa) was purchased from Bioland Co., Ltd., Cheonan, Korea. 2,3,5-Triiodobenzoic acid (TIBA) was obtained from Tokyo Chemical Industry Co., Ltd., Tokyo, Japan. Doxorubicin hydrochloride (DOX HCl) was purchased from Boryung Pharmaceutical Co., Ltd., Seoul, Korea. N, N'- dicyclohexylcarbodiimide (N, N'-dicyclohexylcarbodiimide, DCC) , 4- ( dimethylamino) pyridine [4- (dimethylamino) pyridine, DMAP ], and triethylamine (trimethylamine, TEA) is Sigma-Aldrich Co., St. Louis, Mo., USA. Cy5.5 (Amine-functionalized Cy5.5, FCR-675 amine) with amine functional groups was purchased from BioActs, Incheon, Korea. RPMI 1640 (developed by Roswell Park Memorial Institute), penicillin, streptomycin, and heat-inactivated fetal bovine serum (FBS) were purchased from Gibco Life Technologies , Inc., Grand Island, NY, USA). Other reagents were purchased at analytical grade.

데이터의 통계적 분석은 양측검정(two-tailed t-test) 및 분산분석(ANOVA)을 사용하여 수행하였다. 모든 실시예 및 시험예는 최소 3회 수행하였고, 데이터는 평균±표준편차(SD)로 나타내었다.Statistical analysis of the data was performed using two-tailed t-test and ANOVA. All examples and test examples were performed at least 3 times and the data are expressed as mean ± standard deviation (SD).

(2) HA-(2) HA- TIBA의TIBA 합성 synthesis

DCC를 커플링 시약(coupling reagent)으로 사용하고 DMAP를 촉매로 사용하여, TIBA의 카르복시산 기 및 HA의 히드록시 기 간의 에스테르화에 의해 하기와 같이 HA-TIBA를 합성하였다[비특허문헌 29]. HA(17.24 μmol)는 포름아미드(formamide, FA) 40 mL에 용해시켰고, TIBA(1.00 mmol), DCC(2.00 mmol), 및 DMAP(0.20 mmol)는 N,N-디메틸포름아미드(DMF) 40 mL에 가용화시켜 15분 동안 교반하였다. 이 후, 얻어진 TIBA/DCC/DMAP 용액을 상기 HA 용액에 천천히 첨가하여 그 혼합물을 실온에서 20 시간 동안 교반하였다. 얻어진 용액을 투석막(분자량 컷-오프: 3.5 kDa)에 넣은 후 메탄올에서 2일, 메탄올/2차 증류수(DDW) 혼합물(1:1, v/v)에서 1일, DDW에서 1일 동안 투석시켰다. 동결건조 한 후, 얻어진 결과물인 HA-TIBA를 2-8 ℃에 보관하였고, 이후 시험에 사용하였다.HA-TIBA was synthesized as follows by using DCC as a coupling reagent and DMAP as a catalyst, by esterification between a carboxylic acid group of TIBA and a hydroxy group of HA [Non-Patent Document 29]. TIBA (1.00 mmol), DCC (2.00 mmol) and DMAP (0.20 mmol) were dissolved in 40 mL of N, N -dimethylformamide (DMF) And stirred for 15 minutes. The resulting TIBA / DCC / DMAP solution was then slowly added to the HA solution and the mixture was stirred at room temperature for 20 hours. The obtained solution was put on a dialysis membrane (molecular weight cut-off: 3.5 kDa) and then dialyzed in methanol for 2 days, in a methanol / secondary distilled water (DDW) mixture (1: 1, v / v) . After lyophilization, the resultant HA-TIBA was stored at 2-8 ° C and used for subsequent testing.

1H-NMR(Varian FT-500 MHz, Varian Inc., Palo Alto, CA, USA) 분석을 위하여, HA-TIBA를 헥사듀테로디메틸 술폭사이드(hexadeuterodimethyl sulfoxide, DMSO-d6)에 용해시켰다. 유도결합플라즈마 광학분광광도계(inductively coupled plasma optical emission spectrometry, ICP-OES, Optima-4300 DV, PerkinElmer Inc., Waltham, MA, USA) 분석법을 사용하여 HA-TIBA의 요오드 함량을 측정함으로써 HA-TIBA 중 TIBA의 치환 정도(degree of substitution, DS)를 결정하였다. For analysis, HA-TIBA was dissolved in hexadeuterodimethyl sulfoxide (DMSO-d 6 ) for 1 H-NMR (Varian FT-500 MHz, Varian Inc., Palo Alto, The iodine content of HA-TIBA was measured by inductively coupled plasma optical emission spectrometry (ICP-OES, Optima-4300 DV, PerkinElmer Inc., Waltham, The degree of substitution (DS) of TIBA was determined.

(3) HA-(3) HA- TIBA의TIBA 특성 확인 Identify characteristics

상기와 같이, 양친매성 HA-TIBA 공유결합체를 합성하기 위하여 요오드-포함 화합물인 TIBA(소수성 잔기로서)를 HA 올리고머(친수성 골격으로서)에 연결시켰다. HA 및 TIBA는 각각 CD44 수용체에 대한 종양 표적화 리간드 및 CT 조영제로 사용되고 있다. 요오드는 CT 조영제로서 사용되고 있지만, 혈관 내 및 혈관 외 공간에 비특이적으로 분포하고 신장을 통하여 신속히 배출된다[비특허문헌 31]. 따라서, 비변형 요오드화 분자는 투여 후에 짧은 영상화 시간에 따른 불명확한 CT 영상을 제공한다. 이러한 한계를 극복하고 종양 표적화능을 개선하기 위하여 HA-TIBA를 합성하여 HA-TIBA 나노회합체를 제조하였다. HA-TIBA의 양친매성으로 인하여 HA-TIBA는 임계 회합 농도(critical aggregation concentration, CAC) 이상의 상태에서 수상(aqueous phase) 중에 나노-크기의 자가회합체로 존재할 수 있다. DOX(본 발명에서 사용된 소수성 약물)는 HA-TIBA 나노회합체의 내부 소수성 공간으로 들어갈 수 있다.As described above, an iodine-containing compound, TIBA (as a hydrophobic moiety), was linked to the HA oligomer (as the hydrophilic backbone) to synthesize the amphiphilic HA-TIBA covalent conjugate. HA and TIBA have been used as tumor targeting ligands and CT contrast agents for the CD44 receptor, respectively. Although iodine is used as a CT contrast agent, it is nonspecifically distributed in intravascular and extravascular spaces and rapidly released through the kidney [Non-Patent Document 31]. Thus, unmodified iodinated molecules provide unascertained CT images with short imaging time after administration. HA-TIBA nanocomposites were prepared by synthesizing HA-TIBA to overcome these limitations and improve tumor targeting ability. Due to the amphipathic nature of HA-TIBA, HA-TIBA can exist as a nano-sized self-aggregate in the aqueous phase at conditions above the critical aggregation concentration (CAC). DOX (the hydrophobic drug used in the present invention) can enter the internal hydrophobic space of the HA-TIBA nanocomposite.

TIBA의 카르복시산 기를 HA 올리고머의 히드록시기에 공유결합시켜 HA-TIBA를 합성하였다(도 1(A) 참조). HA 골격에 TIBA를 결합시키기 위하여 -COOH 및 -OH 기 사이의 DCC 및 DMAP-매개 에스테르화를 통한 단일단계(one-step) 합성을 이용하였다. HA-TIBA의 합성은 1H-NMR 분석으로 확인하였고, 그 결과를 도 1(B)에 나타내었다. 도 1(B)에 나타난 바와 같이, 최종 산물(HA-TIBA)의 1H-NMR 스펙트럼에서 TIBA의 대표적 신호(b 및 c: 7.8 및 8.2 ppm[페닐 환의 4 및 6 위치의 2H])는 HA-TIBA가 성공적으로 합성되었음을 나타낸다. HA에의 TIBA 치환 정도는 ICP-OES로 측정하였다. HA의 몰 당 도입된 TIBA의 평균 몰 수(몰 치환, molar substitution, MS)는 14.9이고, HA-TIBA 중 요오드 함량은 42.8%(w/w)였다.HA-TIBA was synthesized by covalently bonding the carboxylic acid group of TIBA to the hydroxyl group of the HA oligomer (see Fig. 1 (A)). One-step synthesis via DCC and DMAP-mediated esterification between -COOH and -OH groups was used to attach TIBA to the HA backbone. The synthesis of HA-TIBA was confirmed by 1 H-NMR analysis, and the results are shown in Fig. 1 (B). Representative signals (b and c: 7.8 and 8.2 ppm [2H at positions 4 and 6 of the phenyl ring]) of TIBA in the 1 H-NMR spectrum of the final product (HA-TIBA) - Indicates that the TIBA has been synthesized successfully. The extent of TIBA substitution in HA was measured by ICP-OES. The average molar substitution (molar substitution, MS) of the introduced TIBA per mole of HA was 14.9 and the iodine content of HA-TIBA was 42.8% (w / w).

제조된 HA-TIBA 공유결합체의 수용액 중에서의 자가회합체를 입자 크기 분석으로 확인하였다. 피렌(pyrene)을 형광 프로브(fluorescence probe)로서 사용한 선행문헌[비특허문헌 11, 32]의 방법과는 다르게, 본 발명의 실시예에서는 DW 중 HA-TIBA 분산체의 평균 입자경의 변화를 농도의 함수로서 측정하였다. DW 중 HA-TIBA 분산체의 평균 입자경은 농도 2.5 μg/mL까지는 거의 0이었다. 그러나, 농도 5 μg/mL에서는 입자 크기가 약 198 nm로 증가하였다. HA-TIBA의 5-500 μg/mL 범위에서 평균 입자경은 155 내지 198 nm로 측정되었다. 따라서, HA-TIBA의 임계 회합 농도는 2.5-5 μg/mL의 범위에 해당하는 것으로 추정된다. 이 값은 선행문헌[비특허문헌 11]에 보고된 바 있는 다른 양친매성 HA 유도체(예를 들어, 히알루론산-세라마이드)에 대하여 얻어진 값보다 낮은 것이다. 저분자량 계면활성제 대비 상대적으로 낮은 CAC 값을 갖는 점으로부터, 본 발명의 나노회합체를 정맥내 주사할 경우에 생체 내 체액에서 희석이 된 후에도 나노회합체의 구조를 유지할 것임을 유추할 수 있다[비특허문헌 11,33].The autocomber in the aqueous solution of the prepared HA-TIBA covalent bond was identified by particle size analysis. Unlike the method of non-patent documents 11 and 32 in which pyrene is used as a fluorescence probe, in the examples of the present invention, the change of the average particle size of the HA-TIBA dispersion in DW As a function. The average particle size of the HA-TIBA dispersion in the DW was almost zero up to a concentration of 2.5 μg / mL. However, at a concentration of 5 μg / mL, the particle size increased to about 198 nm. The average particle size was measured at 155 to 198 nm in the range of 5-500 μg / mL of HA-TIBA. Therefore, it is assumed that the critical association concentration of HA-TIBA is in the range of 2.5-5 μg / mL. This value is lower than the value obtained for other amphiphilic HA derivatives (for example, hyaluronic acid-ceramide) reported in the prior art [non-patent document 11]. It can be deduced that the nanocomposite of the present invention will maintain the structure of the nanocomposite even after dilution in body fluids when the nanocomposite of the present invention is injected intravenously in view of having a relatively low CAC value compared to a low molecular weight surfactant Patent Documents 11 and 33].

실시예Example 2.  2. DOXDOX -포함 -include 나노회합체의Nano-aggregate 제조 및 특성 확인 Manufacturing and characterization

(1) (One) DOXDOX -포함 -include 나노회합체의Nano-aggregate 제조 Produce

본 발명의 실시예에서는 소수성 모델 약물로서 DOX 염기를 사용하였다. DOX 염기를 제조하기 위하여 DOX HCl(100 mg)을 DMSO 10 mL에 용해시킨 후, TEA 0.12 mL을 첨가하였다[비특허문헌 21]. 얻어진 용액을 실온에서 12 시간 동안 교반한 후, 냉동 건조하여 건조 상태로 보관하였다. DOX-포함 나노회합체를 제조하기 위하여, HA-TIBA(30 mg) 및 DOX(1 mg)을 DMSO/DDW(1:1, v/v) 1 mL에 가용화시켰다. 용매는 8 시간 동안 70 ℃ 의 약한 질소 가스 기류 하에서 제거하였다. NP를 제조하기 위하여, DDW(1 mL)를 HA-TIBA/DOX 막(film)에 첨가하여 얻어진 분산체를 프로브 소니케이터(probe sonicator, VC-750, Sonics & Materials, Inc., Newtown, CT, USA)를 사용하여 1분 동안 초음파처리하였다.In the examples of the present invention, a DOX base was used as a hydrophobic model drug. To prepare the DOX base, DOX HCl (100 mg) was dissolved in 10 mL of DMSO and 0.12 mL of TEA was added [Non-Patent Document 21]. The resulting solution was stirred at room temperature for 12 hours, freeze-dried and stored in a dry state. HA-TIBA (30 mg) and DOX (1 mg) were solubilized in 1 mL of DMSO / DDW (1: 1, v / v) to prepare DOX-containing nanocomposites. The solvent was removed under a weak stream of nitrogen gas at 70 DEG C for 8 hours. To prepare NP, DDW (1 mL) was added to HA-TIBA / DOX film and the resulting dispersion was applied to a probe sonicator (VC-750, Sonics & Materials, Inc., Newtown, CT , USA) for 1 minute.

약물-포함된 나노회합체의 형태학적 모양은 투과전자현미경(transmission electron microscopy, TEM)으로 관측하였다. 나노회합체의 분산액을 2%(w/v) 포스포텅스텐산(phosphotungstic acid)으로 염색하고, 필름과 함께 구리 그리드(copper grid)에 놓은 후, 10분간 건조시켜 TEM(JEM 1010; JEOL, Tokyo, Japan)으로 관측하였다.Morphological shapes of the drug-containing nanocomposites were observed by transmission electron microscopy (TEM). The nanocomposite dispersion was dyed with 2% (w / v) phosphotungstic acid, placed on a copper grid along with the film, and dried for 10 minutes to prepare a TEM (JEM 1010; JEOL, Tokyo , Japan).

(2) (2) DOXDOX -포함 -include 나노회합체의Nano-aggregate 규명 Identification

상기와 같이, DOX를 소수성 약물의 모델 약물로서 HA-TIBA 나노회합체에 도입시켰다. 본 발명에서는 DOX-포함 HA-TIBA 나노회합체를 제조하기 위하여 용매 증발법을 사용하였다[비특허문헌 11-13,21,27,32]. HA-TIBA/DOX의 물리화학적 특성을 확인하여 도 2 및 하기 표 1에 나타내었다. As described above, DOX was introduced into the HA-TIBA nanocomposite as a model drug of a hydrophobic drug. In the present invention, a solvent evaporation method was used to prepare DOX-containing HA-TIBA nanocomposite [Non-Patent Documents 11-13, 21, 27, 32]. Physical and chemical properties of HA-TIBA / DOX were confirmed and are shown in FIG. 2 and Table 1 below.

구성 성분Constituent HA-TIBAHA-TIBA HA-TIBA/DOXc HA-TIBA / DOX c 평균 입자경(nm)Average particle diameter (nm) 156.0 ± 2.6156.0 ± 2.6 206.6 ± 5.0206.6 ± 5.0 다분산성 지수Polydispersity Index 0.13 ± 0.030.13 + 0.03 0.10 ± 0.020.10 0.02 제타 전위(mV)Zeta potential (mV) -14.89 ± 2.59-14.89 ± 2.59 -9.73 ± 0.62-9.73 + -0.62 봉입률(%)a Inclusion rate (%) a -- 91.30 ± 1.0091.30 ± 1.00 약물 함량(%)b Drug content (%) b -- 3.04 ± 0.033.04 + 0.03

Figure 112015111466762-pat00001
Figure 112015111466762-pat00001

Figure 112015111466762-pat00002
Figure 112015111466762-pat00002

c: HA-TIBA 및 DOX 간의 중량비는 30:1임.c: The weight ratio between HA-TIBA and DOX is 30: 1.

데이터는 평균 ± SD로 나타냄(n ≥ 3).Data are expressed as means ± SD (n ≥ 3).

상기 표 1에 나타난 바와 같이, 공(약물 비 도입) HA-TIBA는 156 nm의 평균 입자경, 좁은 입도 분포(< 0.2 다분산성 지수), 및 음의 제타 전위 값을 나타냈다. HA-TIBA에 DOX를 포함시킨 후에는, 공 HA-TIBA과 비교하여 평균 입자경이 207 nm로 약간 증가하였으나, 좁은 입도 분포 및 음의 제타 전위 값은 그대로 유지되었다. 또한, 제조된 HA-TIBA/DOX로의 높은 약물 봉입률(> 90%)을 나타내었다. HA-TIBA 나노회합체의 입자 크기 및 구형(spherical) 모양을 TEM으로 관측하여 도 2에 나타내었다. 제조된 DOX-포함 HA-TIBA 나노회합체의 입자 크기 범위가 약 200 nm로 측정되어, HA-TIBA 나노회합체를 정맥 주사 시에 수동적 종양 표적화(EPR 효과에 기반함)에 적합한 것으로 확인되었다.As shown in Table 1 above, the coarse (drug-free) HA-TIBA exhibited an average particle size of 156 nm, a narrow particle size distribution (< 0.2 polydispersity index), and negative zeta potential values. After incorporation of DOX in HA-TIBA, the mean particle size slightly increased to 207 nm compared to HA-TIBA, but the narrow particle size distribution and negative zeta potential remained unchanged. It also showed a high drug loading rate (> 90%) in the prepared HA-TIBA / DOX. The particle size and spherical shape of the HA-TIBA nanocomposite were observed by TEM and are shown in Fig. The particle size range of the prepared DOX-containing HA-TIBA nanocomposite was measured to be about 200 nm, confirming that the HA-TIBA nanocomposite was suitable for passive tumor targeting (based on the EPR effect) during intravenous injection.

시험예Test Example 1.  One. 시험관내In vitro DOXDOX 방출 평가 Emission evaluation

나노회합체 제형으로부터 약물 방출 양상을 평가하기 위하여, HA-TIBA/DOX 나노회합체(HA-TIBA:DOX=30:1)의 분산체(75 μL)를 미니-GeBAflex 튜브(Mini-GeBAflex tube, 분자량 컷-오프: 14 kDa, Gene Bio-Application Ltd., Kfar Hanagide, Israel)에 넣었다. 이 후, 각 튜브를 37 ℃, 50 rpm의 교반조(shaking bath) 중의 10 mL 용출시험액(인산염 완충 식염수, PBS, 인산으로 pH 5.5, 6.8 및 7.4로 조정함)에 넣었다. 정해진 시간((2, 4, 6, 8, 10, 24, 48, 72, 96, 120, 및 144 시간)에 일정량(200 μL)의 용출시험액을 채취하고, 매 채취시마다 동일한 부피의 새로운 용출시험액을 보충하였다. DOX의 방출량은 고속 액체 크로마토그래피(HPLC) 방법을 사용하여 측정하였고, 역상 C-18 컬럼(Xbridge® RP-18, 250 × 4.6 mm, 5 μm, Waters Co.), 분리 모듈(separation module, Waters e2695), 및 형광검출기(fluorescence detector, Waters 2475)가 장착된 HPLC 시스템(Waters HPLC system, Waters Co., Milford, MA, USA)을 사용하였다[비특허문헌 21]. 이동상은 0.1 M 소듐 아세테이트 완충액(아세트산으로 pH 4.0로 조정함) 및 아세토니트릴로 구성되었고(71:29, v/v), 유속은 1.0 mL/min, 각각 470 및 565 nm의 여기(excitation) 및 방출(emission) 파장에서 검측하였다. 약물 분석의 주입 부피는 20 μL였고, 정량의 하한치(lower limit of quantification, LLOQ)는 50 ng/mL였다. 상기 HPLC 방법의 일간(interday) 및 일내(intraday) 편차(variance)는 허용범위 내였다.To evaluate the drug release pattern from the nanocomposite formulation, a dispersion (75 μL) of HA-TIBA / DOX nanocomposite (HA-TIBA: DOX = 30: 1) was transferred to a Mini- GeBAflex tube Molecular weight cut-off: 14 kDa, Gene Bio-Application Ltd., Kfar Hanagide, Israel). Each tube was then placed in a 10 mL dissolution test solution (phosphate buffered saline, adjusted to pH 5.5, 6.8 and 7.4 with PBS, phosphate buffered saline) in a shaking bath at 37 ° C and 50 rpm. A predetermined amount (200 μL) of the elution test solution was collected at a fixed time ((2, 4, 6, 8, 10, 24, 48, 72, 96, 120 and 144 hours) was supplemented. emissions of DOX is high performance liquid chromatography (HPLC) was measured by using the method, the reverse phase C-18 column (Xbridge ® RP-18, 250 × 4.6 mm, 5 μm, Waters Co.), the separation module ( (Waters HPLC system, Waters Co., Milford, Mass., USA) equipped with a separation module (Waters e2695) and a fluorescence detector (Waters 2475) (71:29, v / v) at a flow rate of 1.0 mL / min, excitation and emission of 470 and 565 nm, respectively, consisting of M sodium acetate buffer (adjusted to pH 4.0 with acetic acid) and acetonitrile The injection volume of the drug analysis was 20 μL and the lower limit of quantification (LLOQ) was 50 ng / mL. Day group (interday) and days (intraday) deviation (variance) of the HPLC method, was within the allowable range.

상기와 같이, HA-TIBA 나노회합체로부터의 DOX 방출을 다수 pH 값(pH 5.5, 6.8, 및 7.4)에서 평가하여, 그 결과를 도 3에 나타내었다. 항암제의 정맥내 주사 제형의 개발에서는 나노전달체의 서방성 및 pH-의존성 약물 방출이 선호된다. 암 치료를 위한 정맥내 제형에서의 서방성 약물 방출 양상은 약물의 생체 내 소실을 감소시켜, 전신 순환에서의 체류 시간을 향상시키고, 이에 따라 종양 부위에서의 약물의 축적을 증가시킬 수 있다. 약물 투여 빈도의 감소 또한 환자의 순응도를 개선하는데 기여할 수 있다. 5.5, 6.8 및 7.4의 pH 값은 엔도좀 및 리소좀, 종양 미세환경(microenvironment), 및 정상 생리적 환경을 나타내는 pH 값이므로[비특허문헌 34], 도 3의 결과와 같이, 중성 pH 보다는 산성 pH에서 약물 방출의 개선이 확인되었다는 것은 항암제의 항암 활성을 증가시키고 원하지 않는 효과를 감소시킬 수 있다는 추가적인 장점이 있다. 본 발명에서는 도 3의 결과에서와 같이, HA-TIBA/DOX로부터의 DOX 방출이 서방성 및 pH-의존성이라는 점이 확인되었다. 특히, pH 5.5에서는 HA-TIBA/DOX로부터의 약물 방출이 4일 동안 유지되었다. 6일되는 시점에서는, pH 5.5 및 6.8에서 나노회합체로부터의 DOX의 방출량이 pH 7.4에 비하여 각각 2.2- 및 1.3-배 더 높았다(p < 0.05). 이러한 DOX의 pH-의존성 방출은 약물 및 나노회합체 구조 간의 약한 상호작용; 및 산성 pH에서의 증가된 DOX 용해도에 근거하는 것으로 추정된다[비특허문헌 21].As above, DOX release from the HA-TIBA nanocomposite was evaluated at multiple pH values (pH 5.5, 6.8, and 7.4) and the results are shown in FIG. In the development of intravenous injection formulations of anticancer drugs, sustained release and pH-dependent drug release of nanotransporters is preferred. The sustained drug release pattern in intravenous formulations for cancer treatment may reduce the in vivo loss of the drug, improve the residence time in the systemic circulation, and thus increase the accumulation of drug at the tumor site. Decreased frequency of drug administration can also contribute to improve patient compliance. Since the pH values of 5.5, 6.8 and 7.4 are pH values indicating endosomes and lysosomes, tumor microenvironment, and normal physiological environment [Non-Patent Document 34], as shown in Fig. 3, Identification of improvements in drug release has the additional advantage of increasing the anticancer activity of anticancer drugs and reducing unwanted effects. In the present invention, it was confirmed that the release of DOX from HA-TIBA / DOX was slow and pH-dependent, as shown in the results of Fig. Especially at pH 5.5, drug release from HA-TIBA / DOX was maintained for 4 days. At 6 days, the release of DOX from nanocomposites at pH 5.5 and 6.8 was 2.2- and 1.3-fold higher, respectively, than pH 7.4 (p <0.05). This pH-dependent release of DOX is associated with weak interactions between drug and nanocomposite structures; And increased DOX solubility at acidic pH [Non-Patent Document 21].

시험예Test Example 2.  2. 세포내로의Intracellular 도입율Introduction rate 평가 evaluation

SCC7(squamous cell carcinoma, 편평세포암) 세포는 미국의 ATCC(American Type Culture Collection, Rockville, MD, USA)에서 입수하였다. SCC7 세포 중 DOX-포함 나노회합체의 세포내로의 도입률은 하기와 같이 유세포분석법으로 평가하였다. SCC7 세포를 6-웰 플레이트에 웰당 6.0 × 105 세포의 밀도로 접종하고(seed), 37 ℃에서 24 시간 배양한 다음, 세포 배양 배지를 DOX 용액 또는 DOX-포함 나노회합체의 분산체(50 μg/mL DOX)로 교체한 후 1 시간 동안 배양하였다. 그 후 PBS(pH 7.4)로 세척하고 세포를 수집하였다. 수집한 세포 펠렛을 FBS(2%, v/v) 포함 PBS로 재현탁시켰다. 측정 프로그램(CellQuest software, Becton Dickinson Biosciences, San Jose, CA, USA)이 장착된 유세포분석기(FACSCalibur fluorescence-activated cell sorter, FACSTM)를 사용하여, 형광 강도로 표시된 DOX의 세포내로의 도입률을 측정하였다.SCC7 (squamous cell carcinoma) cells were obtained from ATCC (American Type Culture Collection, Rockville, Md., USA). The incorporation rate of DOX-containing nanocomposite into cells into SCC7 cells was evaluated by flow cytometry as follows. SCC7 cells were seeded in a 6-well plate at a density of 6.0 × 10 5 cells per well and cultured at 37 ° C. for 24 hours. Then, the cell culture medium was inoculated into a DOX solution or a dispersion of a DOX-containing nanocomposite μg / mL DOX) and incubated for 1 hour. The cells were then washed with PBS (pH 7.4) and collected. The collected cell pellet was resuspended in PBS containing FBS (2%, v / v). Using FACSCalibur fluorescence-activated cell sorter (FACS TM ) equipped with a measurement program (CellQuest software, Becton Dickinson Biosciences, San Jose, Calif., USA), the introduction rate of DOX labeled with fluorescence intensity was measured .

DOX-포함 나노회합체의 세포내 분포를 평가하기 위하여, 공초점 주사 레이져 현미경(confocal laser scanning microscopy, CLSM)을 사용하였다. 70-80%의 세포 밀집도(confluency)에 도달한 후, 세포를 트립신 처리하여 배양 슬라이드(BD Falcon, Bedford, MA, USA)에 웰당 1.0 × 105 세포(웰당 표면적 1.7 cm2)의 밀도로 접종하고(seed) 37 ℃에서 24 시간 배양하였다. 단독 상태 또는 HA-TIBA 나노회합체에 도입된 상태의 DOX(50 μg/mL)를 37 ℃에서 1 시간 동안 배양한 후, PBS(pH 7.4)로 3회 세척하고, 4% 포름알데히드 용액으로 10분 동안 고정시켰다. 배양 슬라이드 상의 세포를 건조시키고 4',6-디아미디노-2-페닐인돌(4',6-diamidino-2-phenylindole, DAPI, H-1200, Vector laboratories, Inc., Burlingame, CA, USA) 포함 봉입제(VECTASHIELD mounting medium)를 첨가하여 퇴색(fading)을 억제하고 세포 핵을 염색하였다. DOX 형광을 CLSM(LSM 710, Carl-Zeiss, Thornwood, NY, USA)으로 검측하였다.Confocal laser scanning microscopy (CLSM) was used to evaluate the intracellular distribution of DOX-containing nanocomposites. After reaching 70-80% of the cell density (confluency), the cells inoculated per well at a density of 1.0 × 10 5 cells (per well surface area 1.7 cm 2) on the trypsinized culture slide (BD Falcon, Bedford, MA, USA) And seeded at 37 ° C for 24 hours. DOX (50 μg / mL) alone or in the state of HA-TIBA nanocomposite was incubated at 37 ° C for 1 hour, washed three times with PBS (pH 7.4), and 10 times with 4% formaldehyde solution Min. The cells on the culture slides were dried and incubated with 4 ', 6-diamidino-2-phenylindole, DAPI, H-1200, Vector laboratories, Inc., Burlingame, VECTASHIELD mounting medium was added to inhibit fading and to stain the cell nuclei. DOX fluorescence was detected with CLSM (LSM 710, Carl-Zeiss, Thornwood, NY, USA).

상기와 같이, 유세포분석기 및 CLSM 분석에 의하여 HA-TIBA/DOX에서의 DOX의 세포내로의 도입률 및 세포내 분포를 평가한 결과를 도 4에 나타내었다. 선행문헌에 보고된 바에 따라[비특허문헌 21], HA-기반 나노입자의 종양 표적화능을 평가하기 위하여 CD44 수용체-양성 세포로서 SCC7 세포를 선택하였다. HA 및 CD44 수용체에 기반한 능동적 종양 표적화 전략을 활용하는 것은, 본 발명의 발명자들의 HA-기반 나노입자를 사용한 선행문헌에서 평가된 바 있다[비특허문헌 3,11,21,27]. 도 4(A)에 나타난 바와 같이, 나노회합체 및 DOX 용액을 SCC7 세포와 1 시간 동안 배양한 후에, 나노회합체부터의 DOX의 도입률은 DOX 용액으로부터의 값보다 2.3-배 더 높았다(p < 0.05). 선행문헌에 보고된 바와 같이[비특허문헌 27], DOX-포함된 나노입자 및 DOX 용액은 수용체-매개 식세포작용(endocytosis)과 수동적 확산이라는 서로 상이한 세포내로의 도입 기전을 갖는다. 주목할 점은 HA 및 CD44 수용체 간의 상호작용이 약물 용액 군에 비하여 HA-TIBA/DOX의 세포내로의 도입률에 있어서의 증가를 가져온다는 것이다. 또한, CLSM 영상에 있어서도(도 4(B) 참조), DOX 용액 군에 비하여 나노회합체 군에서의 DOX의 형광이 더 강하게 나타난 것을 확인할 수 있다. 나노회합체 군에서의 약물의 세포내 도입의 증가는 종양 부위에 도달한 후에 암 세포에 대한 독성 증가에 기여할 수 있다.As described above, the results of evaluating the introduction rate and intracellular distribution of DOX into HA-TIBA / DOX by flow cytometry and CLSM analysis are shown in FIG. As reported in the prior art [Non-patent document 21], SCC7 cells were selected as CD44 receptor-positive cells to evaluate the tumor targeting ability of HA-based nanoparticles. Utilization of an active tumor targeting strategy based on HA and CD44 receptors has been evaluated in previous literature using HA-based nanoparticles of the inventors of the present invention [Non-Patent Documents 3, 11, 21, 27]. As shown in Fig. 4 (A), after the incubation of the nanoclusters and the DOX solution with SCC7 cells for 1 hour, the rate of introduction of DOX from the nanoclusters was 2.3-fold higher than that from the DOX solution (p < 0.05). As reported in the prior art [Non-patent Document 27], DOX-containing nanoparticles and DOX solutions have different mechanisms of introducing into cells, namely, receptor-mediated endocytosis and passive diffusion. Notably, the interaction between HA and CD44 receptors leads to an increase in the rate of HA-TIBA / DOX incorporation into cells compared to the drug solution group. Also, in the CLSM image (see Fig. 4 (B)), it can be confirmed that the fluorescence of DOX in the nano-association group is stronger than that in the DOX solution group. Increased intracellular uptake of the drug in the nanoclase group can contribute to increased toxicity to cancer cells after reaching the tumor site.

시험예Test Example 3. 생체 내  3. In vivo NIRFNIRF 영상화 평가 Imaging assessment

제조된 HA-TIBA 나노회합체의 생체 내 분포를 관찰하기 위하여, 하기와 같이 Cy5.5-공유결합된 HA-TIBA를 합성하여 종양-이종이식된 마우스 모델에서의 실시간 NIRF 영상기법 평가에 사용하였다[비특허문헌 11, 21]. 아민 작용기를 갖는 Cy5.5(Cy5.5-NH2)를 HA의 카르복시산 기에 아미드 결합 형성을 통하여 연결시켰다. Cy5.5-HA-TIBA를 합성하기 위하여, HA-TIBA(80 mg), EDC(9.9 mg), 및 NHS(5.9 mg)를 DMSO(20 mL)에 용해시킴으로써 HA의 카르복시산 기를 활성화시켰다. DMSO(0.1 mL)에 가용화된 Cy5.5-NH2(0.1 mg)를 상기 용액에 첨가하고 16 시간 동안 교반하였다. 이 후, 얻어진 혼합물을 DW에 대하여 2일간 투석한 다음 동결건조하였다.In order to observe the in vivo distribution of the HA-TIBA nanocomposite prepared, Cy5.5-covalently bound HA-TIBA was synthesized as described below and used for real-time NIRF imaging evaluation in a tumor-xenografted mouse model [Non-Patent Documents 11, 21]. The Cy5.5 (Cy5.5-NH 2) with an amine functional group carboxylic acid groups of HA were connected via the amide bond formation. To synthesize Cy5.5-HA-TIBA, the carboxylic acid groups of HA were activated by dissolving HA-TIBA (80 mg), EDC (9.9 mg), and NHS (5.9 mg) in DMSO (20 mL). Adding the Cy5.5-NH 2 (0.1 mg) solubilized in DMSO (0.1 mL) to the solution and stirred for 16 hours. Thereafter, the obtained mixture was dialyzed against DW for 2 days and lyophilized.

Cy5.5 용액(대조군) 및 Cy5.5-HA-TIBA/DOX를 마우스에 정맥 주사하기 전에, Cy5.5 용액(대조군) 및 Cy5.5-HA-TIBA/DOX의 형광 강도를 화상 관찰 시스템(Optix MX3, ART Advanced Research Technologies Inc., Saint-Laurent, QC, Canada)으로 표준화하였다. The fluorescence intensities of Cy5.5 solution (control) and Cy5.5-HA-TIBA / DOX were measured using an imaging observation system (Fig. 4B) before intravenous injection of Cy5.5 solution (control) and Cy5.5-HA- TIBA / Optix MX3, ART Advanced Research Technologies Inc., Saint-Laurent, QC, Canada).

SCC7 종양-이종이식된 마우스 모델을 제작하기 위하여, 암컷 BALB/c 누드 마우스(5 주령, Charles River, Wilmington, MA, USA)를 사용하였다. SCC7 세포(0.1 mL 중 2 × 106 세포) 현탁액을 상기 마우스의 등에 피하주사로 투여하였다. 종양 부피(V, mm3)는 하기 식을 사용하여 계산하였다: V = 0.5 × 최대 지름 × (최소 지름)2. 종양 부피가 200 mm3을 초과하면, Cy5.5 용액 또는 Cy5.5-HA-TIBA 나노회합체를 마우스의 꼬리 정맥으로 60 μg/kg 용량으로 투여하였다. Cy5.5 염료의 여기를 위하여 670 nm 파장의 레이저를 사용하였고, 투여 후 1, 3, 6, 및 24 시간에 전신 NIRF 영상을 스캔하였다. 투여 후 24 시간에 종양을 포함한 조직 및 기관을 적출하여 생체 외 NIRF 영상을 얻었다. 생체 내 및 생체 외 영상화로 종양 부위에서의 형광 강도를 비교함으로써 제조된 나노회합체를 이용한 종양 표적화능을 평가하였다.Female BALB / c nude mice (5 weeks old, Charles River, Wilmington, Mass., USA) were used to generate SCC7 tumor-xenografted mouse models. SCC7 cells (2 x 10 &lt; 6 &gt; cells in 0.1 mL) were administered by subcutaneous injection of the mice. Tumor volume (V, mm 3 ) was calculated using the following equation: V = 0.5 × maximum diameter × (minimum diameter) 2 . When the tumor volume exceeds 200 mm 3 , Cy5.5 solution or Cy5.5-HA-TIBA nanocomposite was administered to the tail vein of mice at a dose of 60 μg / kg. For excitation of Cy5.5 dye, 670 nm wavelength laser was used and whole body NIRF images were scanned at 1, 3, 6, and 24 hours after administration. At 24 hours after administration, tissues and organs including the tumor were extracted to obtain in vitro NIRF images. The tumor targeting potency was evaluated using the nanocomposites prepared by comparing fluorescence intensities at the tumor site with in vivo and in vitro imaging.

상기와 같이, 제조된 HA-TIBA-기반 나노회합체의 생체 내 분포를 실시간 NIRF 영상화에 의해 관측한 결과를 도 5 및 도 6에 나타내었다. NIRF 영상기법을 위하여, Cy5.5-NH2(NIRF 염료로서)를 HA 올리고머의 -COOH 기에 아미드 결합 형성으로 공유결합시켰다. Cy5.5-HA-TIBA 나노회합체를 SCC7 종양-이종이식된 마우스에 정맥 주사하고, 24 시간까지 마우스의 전신을 스캔하였다(도 5 참조). 나노회합체-처리 군에서의 종양 부위의 형광 강도는 24 시간 동안의 모든 측정 시점에서 Cy5.5 군의 형광 강도보다 강하였다. 투여 후 24 시간에, 나노회합체 군의 형광 강도는 Cy5.5 군의 값보다 1.8-배 더 높았다(p < 0.05). Cy5.5-HA-TIBA 나노회합체 군에서, 투여 후 3 시간에는 형광 신호가 다른 조직 및 기관(즉, 간 및 비장)에서 검출되었지만, 시간이 경과할수록 나노회합체가 체내에서는 소실되는 반면 주로 종양 부위에 축적되는 것을 알 수 있다. 또한, 생체 외 영상화 시험 결과는 생체 내 영상화 데이터를 뒷받침하였다. 즉, 도 6에 나타난 바와 같이, HA-TIBA 나노회합체가 다른 정상 조직 및 기관 보다는 종양 조직에 주로 축적되는 것으로 나타났다. 또한, 종양 조직에서 Cy5.5-HA-TIBA 나노회합체의 형광 강도가 Cy5.5 군보다 2.4-배 높은 것으로 측정되었다(p < 0.05). 상기 NIRF 영상기법 측정 결과로부터 HA-TIBA 나노회합체의 종양 표적화능이 우수하다는 것을 알 수 있다.The in vivo distribution of the prepared HA-TIBA-based nanocomposite was observed by real-time NIRF imaging as described above, and the results are shown in FIG. 5 and FIG. For the NIRF imaging, Cy5.5-NH 2 (as the NIRF dye) was covalently attached to an amide bond forming groups -COOH of HA oligomer. Cy5.5-HA-TIBA nanoclusters were intravenously injected into SCC7 tumor-xenografted mice and the whole body of the mice was scanned for up to 24 hours (see FIG. 5). The fluorescence intensity of tumor sites in the nano-aggregate-treated group was stronger than the fluorescence intensity of Cy5.5 group at all measurement times for 24 hours. At 24 hours after administration, the fluorescence intensity of the nano-associate group was 1.8-fold higher than that of the Cy5.5 group (p <0.05). In the Cy5.5-HA-TIBA nanoassociative group, fluorescence signals were detected in other tissues and organs (ie, liver and spleen) 3 hours after administration, but the nanocomplexes disappeared in the body over time And accumulate in the tumor area. In addition, in vitro imaging results support in vivo imaging data. That is, as shown in FIG. 6, the HA-TIBA nanocomposite was found to accumulate mainly in tumor tissues rather than other normal tissues and organs. In addition, the fluorescence intensity of Cy5.5-HA-TIBA nanocomposite in tumor tissues was 2.4-fold higher than that of Cy5.5 (p <0.05). From the results of the NIRF imaging technique, it can be seen that the tumor targeting ability of the HA-TIBA nanocomposite is excellent.

시험예Test Example 4. 생체 내 CT 영상화 평가 4. In vivo CT imaging evaluation

생체 내 μCT 스캐닝을 영상측정 장비(IVIS® Spectrum CT, PerkinElmer, Waltham, MA, USA)로 수행하였다. 시험 X-레이 조건은 하기와 같다[전압: 50 kVp, 양극 전류: 1 mA, 해상도: 425 μm, 여과: 알루미늄]. DMSO/폴리에틸렌글리콜 400(PEG400)/DDW(1:1:1, v/v/v) 중 1.77 mg/mL의 대조군 TIBA 용액 또는 HA-TIBA 나노회합체(30 mg/mL 중합체 농도) 군으로 처리한 SCC7 종양-이종이식된 암컷 BALB/c 누드 마우스(5 주령, Charles River, Wilmington, MA, USA; >200 mm3 종양 부피)로 구성된 대조군 및 시험 개체의 4개 쌍에 대하여 스캐닝 과정을 수행하였다. 마우스를 이소플루레인(isoflurane)으로 마취시킨 후, 정맥 주사로 TIBA 용액 또는 HA-TIBA 나노회합체를 요오드 용량 125 mg/kg으로 투여하였다. 투여 후 0 시간(비처리) 및 24 시간에 전신 영상을 측정하였다. 측정 소프트웨어(Living Image® Software, ver. 4.3.1)를 사용하여 μCT 영상을 얻었다. 투여 후 24 시간에, 모든 군의 종양 조직을 적출하여 측정기기(ICP-OES, Optima-4300 DV, PerkinElmer Inc.)로 요오드 함량을 정량 분석하였다.In vivo μCT scanning was performed with an imaging instrument (IVIS ® Spectrum CT, PerkinElmer, Waltham, Mass., USA). The test X-ray conditions are as follows (voltage: 50 kVp, anodic current: 1 mA, resolution: 425 μm, filtration: aluminum). Treated with 1.77 mg / mL of control TIBA solution or HA-TIBA nanocomposite (30 mg / mL polymer concentration) in DMSO / polyethylene glycol 400 (PEG400) / DDW (1: 1: 1, v / A scanning procedure was performed on four pairs of control and test subjects consisting of one SCC7 tumor-xenografted female BALB / c nude mice (5 weeks old, Charles River, Wilmington, MA, USA;> 200 mm 3 tumor volume) . Mice were anesthetized with isoflurane and intravenously injected with TIBA solution or HA-TIBA nanocomposite at an iodine dose of 125 mg / kg. Systemic images were measured at 0 hour (untreated) and 24 hours after administration. ΜCT images were obtained using measurement software (Living Image ® Software, ver. 4.3.1). At 24 hours after administration, tumor tissues from all groups were extracted and quantitatively analyzed for iodine content with a measuring instrument (ICP-OES, Optima-4300 DV, PerkinElmer Inc.).

상기와 같이 SCC7 종양-이종이식된 마우스 모델에서 CT 영상화에 의해 HA-TIBA 나노회합체의 생체 내 종양 표적화능을 시험한 결과를 도 7에 나타내었다. 나노-크기의 자가회합체 제조를 위한 소수성 잔기이면서, 또한, 포함되어 있는 요오드 분자로 인해 CT 조영제로서 동시에 사용되는 TIBA를 HA 올리고머에 공유결합시켰다. HA에 공유결합된 TIBA는 정맥내 투여 후에 자가회합체를 형성함으로써 용액 중의 비결합 TIBA에 비교하여 체내에서 좀 더 느리게 소실되고 혈액 중에서 좀 더 장시간 순환할 것으로 예상되었다. 도 7(A)에 나타난 바와 같이, HA-TIBA 나노회합체는 투여 후 24 시간에 정상 조직 및 기관 보다는 종양 조직에 주로 존재하는 것으로 나타났다. 반면에, 비결합 TIBA는 투여 후 24 시간에 종양 조직 및 체내의 다른 부위에서 검출되지 않았다. HA-TIBA 나노회합체의 혈중에서의 낮은 소실률 및 긴 반감기로 인해 이들은 보다 효과적으로 종양 조직에 축적될 수 있는 것이다. 상기 결과는 또한, HA 및 CD44 수용체 상호작용에 기반한 능동적 표적화 전략에 기인한 것으로 추정된다. 투여 후 24 시간에 종양 조직을 적출하여 종양 조직 중 요오드 함량을 ICP-OES로 정량 분석하였다. 도 7(B)에 나타난 바와 같이, HA-TIBA-처리 군의 종양 조직 중 요오드 함량은 비결합 TIBA 군에서보다 10.1-배 높았다(p < 0.05). 이러한 결과는 수동적 및 능동적 종양 표적화 전략에 기반한 HA-TIBA 나노회합체의 높은 표적화능을 나타낸다.FIG. 7 shows the in vivo tumor targeting ability of HA-TIBA nanocomposite by CT imaging in SCC7 tumor-xenografted mouse model as described above. TIBA, which is a hydrophobic moiety for the preparation of nano-sized self-assemblies and also used as CT contrast agent due to the contained iodine molecules, is covalently bound to the HA oligomer. TIBA covalently bound to HA was expected to form a self-assembled complex after intravenous administration, resulting in a slower disappearance in the body and a longer circulation in blood than unconjugated TIBA in solution. As shown in Fig. 7 (A), the HA-TIBA nanocomposite was found to exist mainly in tumor tissues rather than normal tissues and organs at 24 hours after administration. On the other hand, unconjugated TIBA was not detected in tumor tissue and other parts of the body at 24 hours after administration. HA-TIBA nanocomposites can be more efficiently accumulated in tumor tissues because of their low blood loss and long half-life in the blood. The results are also presumably due to an active targeting strategy based on HA and CD44 receptor interactions. Tumor tissues were extracted 24 hours after administration and the iodine content in tumor tissues was quantitatively analyzed by ICP-OES. As shown in FIG. 7 (B), the iodine content in the tumor tissues of the HA-TIBA-treated group was 10.1-fold higher than that in the non-conjugated TIBA group (p <0.05). These results demonstrate the high targeting potential of HA-TIBA nanocomposites based on passive and active tumor targeting strategies.

시험예Test Example 5. 생체 내 항-종양 효능 평가 5. Evaluation of anti-tumor efficacy in vivo

생체 내 항암 활성 시험을 위하여, 암컷 BALB/c 누드 마우스(5주령, Charles River)를 사용하여 SCC7 종양-이종이식된 마우스 모델을 제작하였다. 마우스는 22±2 ℃의 온도, 55±5%의 상대습도에서 사육하였고, 실험 과정은 관련 기관(Animal Care and Use Committee of the College of Pharmacy, Seoul National University)의 승인을 받아 수행하였다. SCC7 세포 현탁액(0.1 mL 세포 배양 배지 내 2 × 106세포)을 마우스의 등에 피하주사 하였다. 종양 부피가 50-100 mm3에 도달한 후에, 종양 크기 및 체중을 측정하였다. 종양 부피(mm3)는 하기 식을 사용하여 계산하였다: V = 0.5 × 최대 지름 × (최소 지름)2. 시험군은 대조군, 공(blank) HA-TIBA 군, DOX 용액 군, 및 HA-TIBA/DOX 군으로 구성하였다. 5 mg/kg 용량에 해당하는 DOX 용액 및 HA-TIBA/DOX을 5, 7, 9, 11, 및 13 일에 각 군 마우스의 꼬리 정맥으로 주사하였다. HA-TIBA/DOX 중 HA-TIBA의 양에 해당되는 공 HA-TIBA를 동일한 방법으로 투여하였다. 투여 후 16일 동안 마우스의 종양 부피 및 체중을 측정하였고, 투여 후 16일에 조직학적 염색을 위하여 종양 및 심장을 적출하였다. 적출된 검체를 4%(v/v) 포름알데히드에서 1일간 고정시킨 후 6-μm 절편을 얻어 디파라핀화(deparaffinize)하고, 에탄올로 수화시켰다. 표준 절차를 사용하여, 종양 조직을 말단 데옥시뉴클레오티딜 전이 효소 dUTP 닉 앤드 라벨링(terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL) 분석에 사용하였고, 심장 조직을 헤마톡실린(hematoxylin) 및 에오신(eosin)(H&E)으로 염색하였다. TUNEL 분석을 위하여, 크로모젠 디아미노벤젠(Chromogen diaminobenzene, DAB)을 사용하였고, 세포자살 신호전달체계(apoptotic signaling cascade)에 의해 생성된 DNA 단편화(fragmentation)를 검출하기 위하여 시료를 인큐베이션하여 발색시켰다.For in vivo anticancer activity studies, SCC7 tumor-xenografted mouse models were prepared using female BALB / c nude mice (5 weeks old, Charles River). The mice were raised at a temperature of 22 ± 2 ° C and a relative humidity of 55 ± 5%. The experimental procedure was carried out with the approval of the relevant institution (Animal Care and Use Committee of the College of Pharmacy, Seoul National University). SCC7 cell suspension (2 x 10 &lt; 6 &gt; cells in 0.1 mL cell culture medium) was subcutaneously injected into the mice. After the tumor volume reached 50-100 mm 3 , tumor size and body weight were measured. Tumor volume (mm 3 ) was calculated using the following equation: V = 0.5 × maximum diameter × (minimum diameter) 2 . Test groups consisted of control, blank HA-TIBA, DOX, and HA-TIBA / DOX groups. DOX solution and HA-TIBA / DOX corresponding to a dose of 5 mg / kg were injected into the tail vein of each group on days 5, 7, 9, 11, and 13. The same HA-TIBA / DOX HA-TIBA amount of HA-TIBA was administered by the same method. Tumor volume and body weight of mice were measured for 16 days after administration, and tumors and hearts were harvested for histological staining 16 days after administration. The extracted specimens were fixed in 4% (v / v) formaldehyde for one day, and 6-μm sections were then deparaffinized and hydrated with ethanol. Tumor tissues were used for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis using standard procedures and heart tissue was treated with hematoxylin and eosin ) &Lt; / RTI &gt; (H &amp; E). Chromogen diaminobenzene (DAB) was used for TUNEL analysis and the samples were incubated and developed to detect DNA fragmentation caused by the apoptotic signaling cascade.

상기와 같이 SCC7 종양-이종이식된 마우스 모델에서 HA-TIBA/DOX의 생체 내 항암 활성을 평가하여 도 8에 그 결과를 나타내었다. 제조한 각 제형을 마우스에 다중 투여한 후에 종양 증식 억제, 체중 변화, 종양 조직에서의 세포자살, 및 심장독성 정도를 평가하였다. 전체 시험 기간에 있어서, 대조군 및 공 HA-TIBA 군 간에는 종양 증식 양상에 있어서 유의성있는 차이가 없었다(도 8(A) 참조). 또한, 상기 2개 군 간의 체중에도 유의성 있는 차이가 나타나지 않았다(도 8(B) 참조). 이는 HA-TIBA 공유결합체 자체는 시험한 농도 범위에서 심각한 항-종양 효과 또는 전신 독성을 나타내지 않았다는 것을 의미한다. DOX 용액 군의 종양 부피의 평균 값은 대조군의 값보다 낮았지만 유의성있는 차이는 아니었으나, HA-TIBA/DOX 군의 종양 증식 억제 효과는 다른 군과 비교하여 유의성있는 차이가 있는 것으로 나타났다(p < 0.05). 16일에 측정한 HA-TIBA/DOX 군의 종양 부피는 대조군의 값과 비교하여 41.1%에 해당하였다. HA-TIBA/DOX의 세포자살 효과는 TUNEL 분석으로 평가하였고, 그 결과, 다른 군에 비하여 HA-TIBA/DOX 군에서 높은 세포자살율이 관측되었다(도 8(C) 왼쪽 컬럼 참조). 대조군 및 HA-TIBA/DOX 군의 H&E 염색 결과를 살펴보면, DOX의 주요 부작용으로 알려져 있는 심장독성은 심각하지 않은 것으로 보였다(도 8(C) 오른쪽 컬럼 참조). 상기 결과로부터, 본 발명의 나노회합체가 증가된 항종양 효능 및 최소화된 부작용을 나타낸다는 것을 알 수 있다.The in vivo antitumor activity of HA-TIBA / DOX in the SCC7 tumor-xenografted mouse model was evaluated, and the results are shown in FIG. Each of the formulations prepared was administered to mice in multiple doses to evaluate tumor growth inhibition, weight change, apoptosis in tumor tissue, and cardiac toxicity. There was no significant difference in tumor growth pattern between the control and co-HA-TIBA groups during the entire test period (see Fig. 8 (A)). In addition, there was no significant difference in body weight between the two groups (see Fig. 8 (B)). This means that the HA-TIBA covalent bond itself did not exhibit severe anti-tumor effects or systemic toxicity at the concentration range tested. The mean tumor volume of the DOX solution group was lower than that of the control group, but there was no significant difference, but the tumor growth inhibitory effect of the HA-TIBA / DOX group was significantly different from that of the other groups (p <0.05 ). The tumor volume of the HA-TIBA / DOX group measured at 16 days was 41.1% of that of the control group. The cell suicide effect of HA-TIBA / DOX was evaluated by TUNEL analysis, and as a result, high cell suicide rate was observed in the HA-TIBA / DOX group compared to the other groups (see left column of FIG. The H & E staining results of the control and HA-TIBA / DOX groups showed that cardiac toxicity, known as the major side effect of DOX, was not severe (see right column of FIG. 8 (C)). From the above results, it can be seen that the nanocomposite of the present invention exhibits increased antitumor efficacy and minimized side effects.

Claims (11)

삭제delete 트리요오도벤조산, 다이아트리조익산, 메트리조익산 및 요오탈라메이트로 이루어진 군으로부터 선택된 1종의 화합물의 카르복시산 기와 히알루론산의 히드록시 기가 에스테르 공유결합된 히알루론산 올리고머의 에스테르 공유결합체; 및 소수성 항암제를 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체.An ester covalent bond of a hyaluronic acid oligomer in which a carboxylic acid group of a compound selected from the group consisting of triiodobenzoic acid, diazotric acid, metrizoic acid, and iothalamate is ester-covalently bonded to a hydroxy group of hyaluronic acid; And nano-aggregates for tumor-targeted drug delivery and cancer diagnosis, including hydrophobic anticancer agents. 제2항에 있어서, 트리요오도벤조산의 카르복시산 기와 히알루론산의 히드록시 기가 에스테르 공유결합된 히알루론산 올리고머의 에스테르 공유결합체; 및 소수성 항암제를 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체.3. The composition of claim 2, wherein the ester covalent bond of a hyaluronic acid oligomer in which a carboxylic acid group of triiodobenzoic acid and a hydroxy group of hyaluronic acid are ester covalently bonded; And nano-aggregates for tumor-targeted drug delivery and cancer diagnosis, including hydrophobic anticancer agents. 제3항에 있어서, 상기 트리요오도벤조산이 히알루론산 1몰 당 10 내지 20몰로 결합하는 것을 특징으로 하는 나노회합체.4. The nanocomposite according to claim 3, wherein the triiodobenzoic acid is bonded at 10 to 20 moles per mole of hyaluronic acid. 제3항에 있어서, 상기 히알루론산 올리고머의 에스테르 공유결합체 중 요오드 함량이 30 내지 60 %(w/w)인 것을 특징으로 하는 나노회합체.4. The nanocomposite according to claim 3, wherein the iodine content of the ester covalent bond of the hyaluronic acid oligomer is 30 to 60% (w / w). 제3항에 있어서, 상기 히알루론산 올리고머의 에스테르 공유결합체 및 소수성 항암제가 5 : 1 내지 40 : 1의 중량 비율로 포함되는 것을 특징으로 하는 나노회합체.4. The nanocomposite according to claim 3, wherein the ester covalent bond of the hyaluronic acid oligomer and the hydrophobic anticancer agent are contained in a weight ratio of 5: 1 to 40: 1. 제2항에 있어서, 상기 히알루론산 올리고머의 에스테르 공유결합체에 폴리메틴 염료가 추가로 결합된 것을 특징으로 하는 나노회합체.The nanocomposite according to claim 2, wherein a polymethine dye is further bound to the ester covalent bond of the hyaluronic acid oligomer. 제2항 내지 제7항 중 어느 한 항의 나노회합체를 포함하는 종양-표적화 약물 전달 및 암 진단용 약학 조성물.7. A pharmaceutical composition for tumor-targeted drug delivery and cancer diagnosis comprising the nanocoating complex of any one of claims 2-7. 제8항에 있어서, 상기 종양이 CD44 수용체가 발현된 암종인 것을 특징으로 하는 약학 조성물.9. The pharmaceutical composition according to claim 8, wherein the tumor is a carcinoma in which the CD44 receptor is expressed. 제8항에 있어서, 상기 종양이 폐암, 유방암, 간암, 뇌종양, 피부암 및 난소암으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 약학 조성물.[Claim 9] The pharmaceutical composition according to claim 8, wherein the tumor is at least one selected from the group consisting of lung cancer, breast cancer, liver cancer, brain tumor, skin cancer and ovarian cancer. (a) 트리요오도벤조산, 다이아트리조익산, 메트리조익산 및 요오탈라메이트로 이루어진 군으로부터 선택된 1종의 화합물의 카르복시산 기와 히알루론산의 히드록시 기가 에스테르 공유결합된 히알루론산 올리고머의 에스테르 공유결합체 및 소수성 항암제를 가용화시켜 용액을 얻는 단계;
(b) 단계(a)의 상기 용액으로부터 용매를 제거하여 고형물을 얻는 단계; 및
(c) 단계(b)의 상기 고형물에 수성 용매를 첨가하여 분산체를 얻는 단계
를 포함하는 종양-표적화 약물 전달 및 암 진단용 나노회합체의 제조방법.
(a) an ester covalent bond of a hyaluronic acid oligomer in which a carboxylic acid group of a compound selected from the group consisting of triiodobenzoic acid, diazotric acid, metrizoic acid and iothalamate is ester-covalently bonded with a hydroxy group of hyaluronic acid, and Solubilizing the hydrophobic anticancer agent to obtain a solution;
(b) removing the solvent from the solution of step (a) to obtain a solid; And
(c) adding an aqueous solvent to the solids of step (b) to obtain a dispersion
Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt; tumor-targeted drug delivery and cancer diagnosis.
KR1020150160530A 2015-11-16 2015-11-16 Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug KR101735467B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150160530A KR101735467B1 (en) 2015-11-16 2015-11-16 Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150160530A KR101735467B1 (en) 2015-11-16 2015-11-16 Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug

Publications (1)

Publication Number Publication Date
KR101735467B1 true KR101735467B1 (en) 2017-05-15

Family

ID=58739511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150160530A KR101735467B1 (en) 2015-11-16 2015-11-16 Nanoassembly for tumor-targeted drug delivery and cancer diagnosis comprising iodinated hyaluronic acid oligomer and hydrophobic drug

Country Status (1)

Country Link
KR (1) KR101735467B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273327B2 (en) * 2003-08-11 2012-09-25 Pathak Holdings, Llc Radio-opaque compounds, compositions containing same and methods of their synthesis and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273327B2 (en) * 2003-08-11 2012-09-25 Pathak Holdings, Llc Radio-opaque compounds, compositions containing same and methods of their synthesis and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biomaterials Science, 3, 1386-1394, 2015.
Molecules, 19, 3193-3230, 2014.

Similar Documents

Publication Publication Date Title
Lee et al. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging
Xia et al. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy
Zhong et al. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy
Koo et al. Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery
Zhong et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts
Huo et al. Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles
Zhou et al. Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity
Zhu et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles
Lee et al. Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine)
Lin et al. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics
Zhu et al. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors
Seo et al. Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery
US9295734B2 (en) Branched amphipathic block polymer and molecular aggregate and drug delivery system using same
US20150320890A1 (en) Nanoparticles for brain tumor imaging
Yang et al. pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin
Li et al. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment
EP2228074A1 (en) A tumor targeting protein conjugate and a method for preparing the same
Lee et al. Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging
Ke et al. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles
EP2670780B1 (en) Cellulose-based nanoparticles for drug delivery
Zhang et al. Poly (ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release
Yang et al. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-L-lysine)-grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy
US9623122B2 (en) Molecular assembly using branched amphiphilic block polymer, and drug transportation system
Xin et al. Stearic acid-grafted chitooligosaccharide nanomicelle system with biocleavable gadolinium chelates as a multifunctional agent for tumor imaging and drug delivery
KR101429668B1 (en) Nanoparticles comprising amphiphilic low molecular weight hyaluronic acid complex and a process for the preparation thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant