KR101735100B1 - Blue light-emitting phosphor - Google Patents

Blue light-emitting phosphor Download PDF

Info

Publication number
KR101735100B1
KR101735100B1 KR1020100020837A KR20100020837A KR101735100B1 KR 101735100 B1 KR101735100 B1 KR 101735100B1 KR 1020100020837 A KR1020100020837 A KR 1020100020837A KR 20100020837 A KR20100020837 A KR 20100020837A KR 101735100 B1 KR101735100 B1 KR 101735100B1
Authority
KR
South Korea
Prior art keywords
blue light
powder
ray diffraction
range
lattice strain
Prior art date
Application number
KR1020100020837A
Other languages
Korean (ko)
Other versions
KR20100102064A (en
Inventor
도루 이나가키
마사토 야마우치
세이지 노구치
고이치 후쿠다
아키라 우에키
Original Assignee
우베 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우베 고산 가부시키가이샤 filed Critical 우베 고산 가부시키가이샤
Publication of KR20100102064A publication Critical patent/KR20100102064A/en
Application granted granted Critical
Publication of KR101735100B1 publication Critical patent/KR101735100B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER

Abstract

(과제) 발광 강도가 높고, 열에 대한 안정성이 높은 청색 발광 형광체를 제공한다.
(해결 수단) 기본 조성식이 Sr3 - xMgSi2O8 : Eux (단, x 는 0.008 ∼ 0.110 의 범위의 수치) 로 나타내어지고, 메르위나이트와 동일한 결정 구조를 가지며, 입사각이 θ 인

Figure 112010014925411-pat00019
선을 사용하여 측정된, 회절각 2θ 가 20 ∼ 130 도의 범위인 X 선 회절 패턴으로부터 Le Bail 법에 의해 구해지는 결정 격자 변형이 0.055 % 이하인 청색 발광 형광체.A blue light-emitting phosphor having high emission intensity and high stability against heat is provided.
Wherein the base composition is represented by Sr 3 - x MgSi 2 O 8 : Eu x (where x is a value in the range of 0.008 to 0.110), has the same crystal structure as that of merwinite, and has an incident angle of?
Figure 112010014925411-pat00019
Wherein the crystal lattice strain obtained by the Le Bail method from an X-ray diffraction pattern having a diffraction angle 2? In the range of 20 to 130 degrees is 0.055% or less.

Description

청색 발광 형광체{BLUE LIGHT-EMITTING PHOSPHOR}Blue light-emitting phosphor {BLUE LIGHT-EMITTING PHOSPHOR}

본 발명은, 기본 조성식이 Sr3 - xMgSi2O8 : Eux 로 나타내어지는 청색 발광 형광체에 관한 것이다.The present invention relates to a blue light emitting phosphor in which the basic composition formula is represented by Sr 3 - x MgSi 2 O 8 : Eu x .

메르위나이트(Ca3MgSi2O8) 의 결정 구조를 갖는 Sr3MgSi2O8 을 모체로서 Eu2 를 부활 (付活) 시킨, 조성식이 Sr3 - xMgSi2O8 : Eux 로 나타내어지는 청색 발광 형광체 (이하, SMS 청색 발광 형광체라고도 한다) 가 알려져 있다. 이 SMS 청색 발광 형광체는, 자외선이나 진공 자외선에 의해 여기되어 청색의 발광을 나타낸다는 점에서, 수은 방전등이나 플라스마 디스플레이 패널 등의 각종 형광 발광 장치의 청색 발광원으로서 이용하는 것이 검토되고 있다.Mer above nitro (Ca 3 MgSi 2 O 8) of which, the composition formula is Sr 3 resurrection (付活) the Eu 2 + a Sr 3 MgSi 2 O 8 as a host a crystal structure - x MgSi 2 O 8: with Eu x (Hereinafter, also referred to as SMS blue-emitting phosphors) are known. The SMS blue light-emitting fluorescent substance is considered to be used as a blue light emitting source of various fluorescent light emitting devices such as a mercury discharge lamp or a plasma display panel in that it emits blue light by being excited by ultraviolet rays or vacuum ultraviolet rays.

특허문헌 1 에는, 조성식이, 3(Sr1 -p·Eup)O·1MgO·2SiO2 (0.003

Figure 112010014925411-pat00001
p
Figure 112010014925411-pat00002
0.05) 로 나타내어지는 SMS 청색 발광 형광체가 기재되어 있다. 이 특허문헌 1 에는, SMS 청색 발광 형광체의 제조 방법으로서, SrCO3 과 SrF2 와 Eu2O3 과 MgCO3 과 SiO2 를 함유하는 원료 분말 혼합물을, 질소와 수소의 혼합 기체의 분위기하에서 소성하는 방법이 기재되어 있다.Patent Document 1 discloses that the composition formula is 3 (Sr 1 -p揃 Eu p ) O 揃 1MgO 揃 2SiO 2 (0.003
Figure 112010014925411-pat00001
p
Figure 112010014925411-pat00002
0.05). ≪ / RTI > Patent Document 1 discloses a method for producing an SMS blue light-emitting phosphor, which comprises firing a raw material powder mixture containing SrCO 3 , SrF 2 , Eu 2 O 3 , MgCO 3 and SiO 2 in an atmosphere of a mixed gas of nitrogen and hydrogen Method is described.

특허문헌 2 에는, 조성식이, xSrO·yEuO·MgO·zSiO2 (2.970

Figure 112010014925411-pat00003
x
Figure 112010014925411-pat00004
3.500, 0.006
Figure 112010014925411-pat00005
y
Figure 112010014925411-pat00006
0.030, 1.900
Figure 112010014925411-pat00007
z
Figure 112010014925411-pat00008
2.100) 로 나타내어지는 SMS 청색 발광 형광체가 기재되어 있다. 이 특허문헌 2 에는 추가로, SMS 청색 발광 형광체는 파장 0.773 Å 의 X 선으로 측정한 X 선 회절 패턴의 2θ 로 22.86 도 부근의 회절 피크의 1/5 값 폭이 0.17 도 이하이면, 정상 위치로부터의 Sr 원자의 어긋남이 작고, 발광 장치의 청색 발광원으로서 사용했을 때의 시간 경과적인 내열화성이 높아진다는 기재가 있다. 또, 이 특허문헌 2 에는, SMS 청색 발광 형광체의 제조 방법으로서, 원료 분말 혼합물을, 산소 분압을 특정 범위로 조정한 약 (弱) 환원성 기체의 분위기하에서 소성하는 방법이 기재되어 있다.In Patent Document 2, a composition formula, xSrO · yEuO · MgO · zSiO 2 (2.970
Figure 112010014925411-pat00003
x
Figure 112010014925411-pat00004
3.500, 0.006
Figure 112010014925411-pat00005
y
Figure 112010014925411-pat00006
0.030, 1.900
Figure 112010014925411-pat00007
z
Figure 112010014925411-pat00008
2.100). ≪ / RTI > In this patent document 2, the SMS blue light-emitting fluorescent substance has a 1/5 value width of the diffraction peak near 22.86 degrees in terms of 2? Of the X-ray diffraction pattern measured with an X-ray having a wavelength of 0.773 angstroms, Of the present invention has a small shift of Sr atoms and improves the heat resistance over time when it is used as a blue light emitting source of a light emitting device. In Patent Document 2, as a method for producing an SMS blue light-emitting fluorescent substance, a method of firing a raw material powder mixture in an atmosphere of a weakly reducing gas whose oxygen partial pressure is adjusted to a specific range is described.

일본특허공보소48-37715호Japanese Patent Publication No. 48-37715 국제공개07/091603호팜플렛International publication 07/091603 pamphlet

수은 방전등이나 플라스마 디스플레이 패널 등의 형광 발광 장치에서는, 형광체는 기체 (基體) 상에 형광체층으로서 형성된다. 기체 상의 형광체층은, 형광체의 분산액을 기체에 도포하고, 이어서 그 도포막을 건조, 소성함으로써 형성하는 것이 일반적이다. 따라서, 형광체는 도포막의 건조, 소성에 의해 발광 강도가 저하되지 않게, 열에 대한 안정성이 높은 것이 요구된다. 그러나, 지금까지 SMS 청색 발광 형광체의 열적인 안정성에 대해서는 검토되어 있지 않다.In a fluorescent light emitting device such as a mercury discharge lamp or a plasma display panel, a phosphor is formed as a phosphor layer on a substrate. The gaseous-phase phosphor layer is generally formed by applying a dispersion of the phosphor to a substrate, and then drying and firing the coating film. Therefore, the phosphor is required to have high heat stability so as not to lower the light emission intensity by drying and firing of the coating film. However, the thermal stability of the SMS blue light-emitting phosphor has not been studied so far.

따라서, 본 발명의 목적은, 발광 강도가 높고, 열에 대한 안정성이 높은 SMS 청색 발광 형광체를 제공하는 것에 있다.Accordingly, an object of the present invention is to provide an SMS blue light-emitting phosphor having high emission intensity and high heat stability.

본 발명자는, Sr3 - xMgSi2O8 : Eux 로 나타내는 기본 조성식의 x 가 0.008 ∼ 0.110 의 범위에 있고, 또한 입사각이 θ 인

Figure 112010014925411-pat00009
선을 사용하여 측정된 회절각 2θ 가 20 ∼ 130 도의 범위에 있는 X 선 회절 패턴으로부터 Le Bail 법에 의해 구해지는 결정 격자 변형이 0.055 % 이하에 있는 SMS 청색 발광 형광체는 높은 발광 강도와 열에 대한 높은 안정성을 나타낸다는 것을 알아내어, 본 발명을 완성시켰다.The present inventors have found that when x in the basic composition formula represented by Sr 3 - x MgSi 2 O 8 : Eu x is in the range of 0.008 to 0.110 and the incident angle is θ
Figure 112010014925411-pat00009
Ray diffraction pattern of the present invention has a crystal lattice strain of 0.055% or less as determined by the Le Bail method from an X-ray diffraction pattern in which the diffraction angle 2 &thetas; measured in the range of 20 to 130 degrees is high, The present inventors have accomplished the present invention.

따라서, 본 발명은, 기본 조성식이 Sr3 - xMgSi2O8 : Eux (단, x 는 0.008 ∼ 0.110 의 범위의 수치) 로 나타내어지고, 메르위나이트와 동일한 결정 구조를 가지며, 입사각이 θ 인

Figure 112010014925411-pat00010
선을 사용하여 측정된, 회절각 2θ 가 20 ∼ 130 도의 범위인 X 선 회절 패턴으로부터 Le Bail 법에 의해 구해지는 결정 격자 변형이 0.055 % 이하인 청색 발광 형광체에 있다.Therefore, the present invention relates to a ferroelectric crystal having a basic composition represented by Sr 3 - x MgSi 2 O 8 : Eu x (where x is a value in the range of 0.008 to 0.110), has the same crystal structure as that of merwinite, sign
Figure 112010014925411-pat00010
Ray diffraction pattern is 20 to 130 degrees, and the crystal lattice strain obtained by the Le Bail method is 0.055% or less from an X-ray diffraction pattern having a diffraction angle 2 &thetas;

본 발명의 바람직한 양태는 다음과 같다.Preferred embodiments of the present invention are as follows.

(1) 결정 격자 변형이 0.045 % 이하이다.(1) The crystal lattice strain is 0.045% or less.

(2) 기본 조성식의 x 가 0.033 ∼ 0.095 의 범위의 수치에 있다.(2) The value x in the basic composition formula is in the range of 0.033 to 0.095.

본 발명의 SMS 청색 발광 형광체는, 높은 발광 강도와 열에 대한 높은 안정성을 나타낸다는 점에서, 수은 방전등이나 플라스마 디스플레이 패널 등의 각종 형광 발광 장치의 청색 발광원으로서 유리하게 이용할 수 있다.The SMS blue light-emitting fluorescent substance of the present invention can be advantageously used as a blue light emitting source of various fluorescent light emitting devices such as a mercury discharge lamp or a plasma display panel in that it exhibits high light emission intensity and high stability against heat.

본 발명의 SMS 청색 발광 형광체는, 기본 조성식이 Sr3 - xMgSi2O8 : Eux (단, x 는 0.008 ∼ 0.110 의 범위의 수치) 로 나타낸다. x 는, 0.033 ∼ 0.095 의 범위의 수치인 것이 바람직하고, 0.043 ∼ 0.070 의 범위의 수치인 것이 특히 바람직하다.The SMS blue light emitting phosphor of the present invention is represented by Sr 3 - x MgSi 2 O 8 : Eu x (where x is a value in the range of 0.008 to 0.110) as the basic composition formula. x is preferably a numerical value in the range of 0.033 to 0.095, and particularly preferably in the range of 0.043 to 0.070.

본 발명의 SMS 청색 발광 형광체는,

Figure 112010014925411-pat00011
선을 사용하여 측정된 2θ 가 20 ∼ 130 도의 범위에 있는 X 선 회절 패턴으로부터 Le Bail 법에 의해 구해지는 결정 격자 변형이 0.055 % 이하에 있다. 결정 격자 변형은, 0.045 % 이하인 것이 바람직하고, 0.040 % 이하인 것이 특히 바람직하다. 결정 격자 변형의 하한은, 일반적으로 0.025 % 이다.The SMS blue light-emitting phosphor of the present invention,
Figure 112010014925411-pat00011
Ray diffractometry, the crystal lattice strain obtained by the Le Bail method is 0.055% or less from the X-ray diffraction pattern in which 2? Is in the range of 20 to 130 degrees. The crystal lattice strain is preferably 0.045% or less, and particularly preferably 0.040% or less. The lower limit of the crystal lattice strain is generally 0.025%.

본 발명에 있어서 결정 격자 변형은,

Figure 112010014925411-pat00012
선을 사용하여 측정된 2θ 가 20 ∼ 130 도의 범위에 있는 X 선 회절 패턴 중의 메르위나이트 결정 구조를 갖는 SMS 청색 발광 형광체에서 기인하는 회절 피크로부터 구한 값이다. 즉, 본 발명에 있어서 규정하는 결정 격자 변형은, 이상적인 SMS 청색 발광 형광체 결정의 망면 (網面) 간격으로부터의 어긋남의 크기를 의미한다.In the present invention,
Figure 112010014925411-pat00012
Ray diffraction pattern of the SMS blue light-emitting phosphor having a merwynite crystal structure in the X-ray diffraction pattern in which the 2 &thetas; measured in the range of 20 to 130 degrees. That is, the crystal lattice strain defined in the present invention means the magnitude of deviation from the interval of the network plane of the ideal SMS blue light-emitting phosphor crystal.

본 발명에서는 결정 격자 변형을 Le Bail 법에 의해 구한다. 본 발명에 있어서 Le Bail 법이란, X 선 회절 패턴 중의 회절 피크의 θ 와 강도와 반치폭 (FWHM) 으로부터, Le Bail 피팅법에 의해, Cagliotti 의 식의 파라미터 U, V, W 를 얻고, 얻어진 파라미터의 U 와 W 로부터, Pseudo-Voigt 함수에 의해, 결정 격자 변형 (%) 을 산출하는 방법이다. Le Bail 피팅법은, 구조 모델을 사용하지 않고, 파라미터 U, V, W 를 얻을 수 있는 프로파일 피팅법으로서 알려져 있다. Le Bail 피팅법에 의해, 파라미터 U, V, W 를 얻는 방법은, A. Le Bail 등의 연구 보고 Mat.Res.Bull., vol.23, pp.447-452, 1988 에 기재되어 있다 (단, 이 연구 보고에서는, Le Bail 피팅법을, 수정 리트벨트법 (modified Rietveld method) 이라고 칭하고 있다).In the present invention, crystal lattice strain is determined by the Le Bail method. In the present invention, the Le Bail method is a method of obtaining the parameters U, V, and W of the Cagliotti's equation by the Le Bail fitting method from the diffraction peaks θ, the intensity and the half width (FWHM) in the X-ray diffraction pattern, From U and W, the crystal lattice strain (%) is calculated by the Pseudo-Voigt function. The Le Bail fitting method is known as a profile fitting method in which parameters U, V, and W can be obtained without using a structural model. A method of obtaining the parameters U, V and W by the Le Bail fitting method is described in A. Le Bail et al., Mat. Res. Bull., Vol.23, pp.447-452, 1988 In this report, the Le Bail fitting method is referred to as the modified Rietveld method).

SMS 청색 발광 형광체의 결정 격자 변형을 구할 때에는, X 선 회절 장치에서 유래하는 반치폭의 확대를, 격자 변형을 갖지 않는 X 선 회절용 표준 시료를 사용하여 교정한다. SMS 청색 발광 형광체의 결정 격자 변형은, 예를 들어, 이하와 같이 하여 구할 수 있다.When determining the crystal lattice strain of the SMS blue light-emitting fluorescent substance, the half-width of the X-ray diffraction apparatus derived from the X-ray diffraction apparatus is corrected using a standard sample for X-ray diffraction without lattice strain. Crystal lattice strain of the SMS blue light-emitting fluorescent substance can be obtained, for example, as follows.

먼저, SMS 청색 발광 형광체와 X 선 회절용 표준 시료에 대해,

Figure 112010014925411-pat00013
선을 사용하여 2 θ 가 20 ∼ 130 도의 범위에 있는 X 선 회절 패턴을 측정한다. X 선 회절 패턴은, 분말 X 선 회절법을 사용하여 측정한다.First, with respect to the SMS blue light-emitting fluorescent substance and the standard sample for X-ray diffraction,
Figure 112010014925411-pat00013
Ray is used to measure an X-ray diffraction pattern in which 2 &thetas; is in the range of 20 to 130 degrees. The X-ray diffraction pattern is measured by a powder X-ray diffraction method.

다음으로, SMS 청색 발광 형광체와 X 선 회절용 표준 시료의 X 선 회절 패턴 중의 회절 피크의 θ 와 강도와 반치폭 (FWHM) 으로부터, Le Bail 피팅법에 의해, 하기의 식 (I) 로 정의되는 Cagliotti 의 식의 파라미터 U, V, W 를 얻는다.Next, from the X-ray diffraction peaks of the X-ray diffraction patterns of the SMS blue light-emitting fluorescent substance and the X-ray diffraction pattern, the intensity and the half width (FWHM) of the diffraction peaks were measured by Le Bail fitting method using Cagliotti To obtain the parameters U, V, W of the equation of FIG.

FWHM = (Utan2θ+Vtanθ+W)1/2 (I) FWHM = (Utan 2 ? + V tan? + W) 1/2 (I)

단, FWHM 은 회절 피크의 반치폭, θ 는 회절 피크의 브래그각, U 는 결정 격자 변형에 관한 파라미터, V 와 W 는 결정자에 관한 파라미터이다.Where FWHM is the half width of the diffraction peak,? Is the Bragg angle of the diffraction peak, U is the parameter related to the crystal lattice strain, and V and W are the parameters related to the crystallite.

그리고, 얻어진 SMS 청색 발광 형광체와 X 선 회절용 표준 시료의 파라미터의 U 와 W 로부터, 하기의 식 (Ⅱ) 로 정의되는 Pseudo-Voigt 함수에 의해, 결정 격자 변형 (%) 을 산출한다.The crystal lattice strain (%) is calculated from the U and W parameters of the obtained SMS blue light-emitting fluorescent substance and the X-ray diffraction standard sample by the Pseudo-Voigt function defined by the following formula (II).

Figure 112010014925411-pat00014
Figure 112010014925411-pat00014

단, Ui 와 Wi 는, SMS 청색 발광 형광체의 파라미터 U 와 W, Ustd 와 Wstd 는, X 선 회절용 표준 시료의 파라미터 U 와 W 이다.Where U i and W i are the parameters U and W of the SMS blue light emitting phosphor, and U and U std and W std are the parameters U and W of the standard sample for X-ray diffraction.

본 발명의 SMS 청색 발광 형광체는, 예를 들어, 스트론튬 원분말, 마그네슘 원분말, 규소 원분말 및 유로퓸 원분말의 각 원료 분말을, SMS 청색 발광 형광체를 생성하는 비율로 혼합하여 얻어진 분말 혼합물을 염소 화합물의 존재하에서 소성함으로써 제조할 수 있다.The SMS blue light-emitting fluorescent substance of the present invention is obtained by mixing the raw material powders of, for example, strontium raw powder, magnesium raw powder, silicon raw powder and europium raw powder at a ratio to produce SMS blue light-emitting fluorescent substance, Followed by firing in the presence of a compound.

스트론튬 원분말, 마그네슘 원분말, 규소 원분말 및 유로퓸 원분말의 각 원료 분말은 각각, 산화물 분말이어도 되고, 수산화물, 할로겐화물, 탄산염 (염기성 탄산염을 함유한다), 질산염, 옥살산염 등의 가열에 의해 산화물을 생성하는 화합물의 분말이어도 된다. 원료 분말은 각각 1 종을 단독으로 사용해도 되고, 2 종 이상을 병용해도 된다.Each raw material powder of the strontium raw powder, the magnesium raw powder, the silicon raw powder and the europium raw powder may be an oxide powder or a mixture of a hydroxide, a halide, a carbonate (containing a basic carbonate), a nitrate, Or a powder of a compound which generates an oxide. Each of the raw material powders may be used alone or in combination of two or more.

원료 분말은, 순도가 99 질량% 이상인 것이 바람직하다. 특히, 마그네슘 원분말은, 순도가 99.95 질량% 이상인 것이 바람직하다.The raw material powder preferably has a purity of 99 mass% or more. Particularly, it is preferable that the purity of the magnesium original powder is 99.95% by mass or more.

스트론튬 원분말, 마그네슘 원분말, 규소 원분말 및 유로퓸 원분말의 배합 비율은, 분말 혼합물 중의 스트론튬과 유로퓸의 합계량을 3 몰로 하여, 일반적으로 마그네슘이 0.9 ∼ 1.1 몰의 범위, 규소가 1.9 ∼ 2.1 몰의 범위가 되는 비율이다.The blend ratio of strontium source powder, magnesium source powder, silicon source powder and europium source powder is generally in the range of 0.9 to 1.1 moles of magnesium and 1.9 to 2.1 moles of silicon in terms of the total amount of strontium and europium in the powder mixture, Of the total.

염소 화합물은, 분말 상태로 분말 혼합물에 첨가되어 있는 것이 바람직하다. 염소 화합물 분말은, 스트론튬, 마그네슘, 규소 및/또는 유로퓸의 염화물의 분말인 것이 바람직하고, 염화 스트론튬 분말인 것이 특히 바람직하다. 염소 화합물 분말의 첨가량은, 분말 혼합물 중의 스트론튬과 유로퓸의 합계량을 3 몰로 하여, 염소량이 0.02 ∼ 0.5 몰의 범위가 되는 양인 것이 바람직하다.The chlorine compound is preferably added to the powder mixture in a powder state. The chlorine compound powder is preferably a powder of strontium, magnesium, silicon and / or europium chloride, particularly preferably a strontium chloride powder. The amount of the chlorine compound powder to be added is preferably such that the total amount of strontium and europium in the powder mixture is 3 mol and the chlorine amount is in the range of 0.02 to 0.5 mol.

원료 분말의 혼합 방법에는, 건식 혼합법 및 습식 혼합법 중 어느 방법을 채용할 수 있다. 습식 혼합법으로 원료 분말을 혼합하는 경우에는, 회전 볼 밀, 진동 볼 밀, 유성 밀, 페인트 쉐이커, 록킹 밀, 록킹 믹서, 비즈 밀, 교반기 등을 사용할 수 있다. 용매에는, 물이나, 에탄올, 이소프로필알코올 등의 저급 알코올을 사용할 수 있다.Any of the dry mixing method and the wet mixing method may be employed as the mixing method of the raw material powder. When the raw material powder is mixed by a wet mixing method, a rotary ball mill, a vibrating ball mill, a planetary mill, a paint shaker, a locking mill, a rocking mixer, a bead mill, a stirrer and the like can be used. As the solvent, water or a lower alcohol such as ethanol or isopropyl alcohol can be used.

분말 혼합물의 소성은, 0.5 ∼ 5.0 체적% 의 수소와 99.5 ∼ 95.0 체적% 의 불활성 기체로 이루어지는 환원성 기체의 분위기하에서 실시된다. 불활성 기체의 예로서는, 아르곤 및 질소를 들 수 있다. 소성 온도는, 일반적으로 900 ∼ 1300 ℃ 의 범위이다. 소성 시간은, 일반적으로 0.5 ∼ 100 시간의 범위이다.The calcination of the powder mixture is carried out in an atmosphere of a reducing gas comprising 0.5 to 5.0% by volume of hydrogen and 99.5 to 95.0% by volume of an inert gas. Examples of the inert gas include argon and nitrogen. The firing temperature is generally in the range of 900 to 1300 占 폚. The firing time is generally in the range of 0.5 to 100 hours.

원료 분말에 가열에 의해 산화물을 생성하는 화합물의 분말을 사용하는 경우에는, 환원성 기체 분위기하에서 소성하기 전에, 분말 혼합물을 대기 분위기하에서, 600 ∼ 850 ℃ 의 온도에서 0.5 ∼ 100 시간 예비 소성하는 것이 바람직하다.In the case of using a powder of a compound capable of generating an oxide by heating in a raw material powder, it is preferable to preliminarily sinter the powder mixture at a temperature of 600 to 850 ° C for 0.5 to 100 hours in an air atmosphere before firing in a reducing gas atmosphere Do.

소성에 의해 얻어진 SMS 청색 발광 형광체는, 필요에 따라 분급 처리, 염산이나 질산 등의 광산 (鑛酸) 에 의한 산세정 처리, 베이킹 처리를 실시해도 된다.The SMS blue light-emitting fluorescent substance obtained by firing may be subjected to classifying treatment, acid washing treatment with baking acid such as hydrochloric acid or nitric acid, and baking treatment, if necessary.

실시예Example

[실시예 1 ∼ l6, 비교예 1 ∼ 3][Examples 1 to 16, Comparative Examples 1 to 3]

SrCO3 분말 (순도 99.99 질량%, 평균 입자경 2.73 ㎛), SrCl2 분말 (순도 99.99 질량%), SrF2 분말 (순도 99.5 질량%), 염기성 MgCO3 분말 (4MgCO3·Mg(OH)2·4H2O 분말, 순도 99.99 질량%, 평균 입자경 11.08 ㎛), SiO2 분말 (순도 99.9 질량%, 평균 입자경 3.87 ㎛), Eu2O3 분말 (순도 99.9 질량%, 평균 입자경 2.71 ㎛) 을 각각, 하기 표 1 에 기재된 몰량으로 칭량하였다. 또한, 각 원료 분말의 평균 입자경은, 모두 레이저 회절 산란법에 의해 측정한 값이다.SrCO 3 powder (purity: 99.99% by mass, average particle diameter 2.73 ㎛), SrCl 2 powder (purity: 99.99 mass%), SrF 2 powder (purity: 99.5 mass%), basic MgCO 3 powder (4MgCO 3 · Mg (OH) 2 · 4H to 2 O powder, 99.99% by mass, average particle size 11.08 ㎛), SiO 2 powder (purity: 99.9 mass%, average particle size 3.87 ㎛), Eu 2 O 3 powder (purity: 99.9% by mass, average particle diameter 2.71 ㎛), respectively, And weighed in the molar amounts shown in Table 1. [ The average particle diameter of each raw material powder is a value measured by a laser diffraction scattering method.

칭량된 각 원료 분말을, 순수 750 ㎖ 와 함께 볼 밀에 투입하고, 24 시간 습식 혼합한 후, 가열에 의해 수분을 제거하여, 분말 혼합물을 얻었다. 얻어진 분말 혼합물을 알루미나 도가니에 넣어, 대기 분위기에서, 800 ℃ 의 온도에서 3 시간 소성하고, 이어서, 실온까지 방랭한 후, 2 체적% 수소-98 체적% 아르곤의 혼합 가스 분위기에서, 1200 ℃ 의 온도에서 3 시간 소성하여, 분말 소성물을 얻었다. 얻어진 분말 소성물을, 메시 20 ㎛ 의 폴리아미드제 체로 습식 체질하여, 거칠고 큰 입자를 제거한 후, 건조시켰다.Each weighed raw material powder was poured into a ball mill together with 750 ml of pure water, wet mixed for 24 hours, and then water was removed by heating to obtain a powder mixture. The powder mixture thus obtained was placed in an alumina crucible and calcined at a temperature of 800 DEG C for 3 hours in an air atmosphere. The crucible was then cooled to room temperature and then calcined in a mixed gas atmosphere of 2 vol% hydrogen-98 vol% For 3 hours to obtain a powder calcined product. The obtained powdery sintered material was wet-sieved with a polyamide material having a mesh of 20 占 퐉 to remove coarse and large particles, and then dried.

Figure 112010014925411-pat00015
Figure 112010014925411-pat00015

실시예 1 ∼ 16 및 비교예 1 ∼ 3 에서 얻어진 분말 소성물에 대해, X 선 회절 패턴과 파장 254 ㎚ 의 자외선 여기에 의한 발광 스펙트럼을 측정하였다. 그 결과, 실시예 1 ∼ 16 및 비교예 1 ∼ 3 에서 얻어진 분말 소성물은 모두 메르위나이트 결정 구조를 갖고, 자외선 여기에 의해 청색의 발광을 나타내어지는 SMS 청색 발광 형광체인 것이 확인되었다.For the powder sintered bodies obtained in Examples 1 to 16 and Comparative Examples 1 to 3, an X-ray diffraction pattern and an emission spectrum by ultraviolet ray excitation at a wavelength of 254 nm were measured. As a result, it was confirmed that all of the powdery sintered bodies obtained in Examples 1 to 16 and Comparative Examples 1 to 3 were SMS blue-emitting phosphors having a merwynite crystal structure and exhibiting blue light emission by ultraviolet excitation.

실시예 1 ∼ 16 및 비교예 1 ∼ 3 에서 얻어진 SMS 청색 발광 형광체에 대해, 하기 방법에 의해, 결정 격자 변형, 초기 발광 강도, 가열 처리 후의 발광 강도 유지율을 측정하였다. 이들 결과를, SMS 청색 발광 형광체의 조성과 함께 하기의 표 2 에 나타낸다.The crystal lattice strain, the initial luminescence intensity, and the luminescence intensity retention after heat treatment were measured for the SMS blue light-emitting phosphors obtained in Examples 1 to 16 and Comparative Examples 1 to 3 by the following method. These results are shown in Table 2 together with the composition of the SMS blue light emitting phosphor.

[결정 격자 변형의 측정][Measurement of crystal lattice strain]

SMS 청색 발광 형광체와 X 선 회절용 표준 시료 [NIST (National Institute of Standards and Technology) 의 LaB6 분말] 의 X 선 회절 패턴을 측정한다. 측정 조건은 X 선 회절 장치 : X' PertProMPD, 스펙트리스 (주) 제조, X 선 :

Figure 112010014925411-pat00016
, 검출기 : X' Clelerator (모노크로미터 부착), 관전압 : 45 kV, 관전류 : 40 mA, 측정 범위 : 2θ = 20 ∼ 130 도, 스텝 사이즈 : 0.0167 도, 발산 슬릿 : 1/2 도 고정 슬릿, 주사 속도 : 25.06 도/분으로 한다.An X-ray diffraction pattern of an SMS blue light-emitting phosphor and a standard sample for X-ray diffraction (LaB 6 powder of National Institute of Standards and Technology (NIST)) is measured. Measurement conditions were X-ray diffraction apparatus: X 'PertProMPD, manufactured by Parent Company, X-ray:
Figure 112010014925411-pat00016
, Detector: X 'Clelerator (with monochrometer), tube voltage: 45 kV, tube current: 40 mA, measuring range: 2θ = 20 to 130 degrees, step size: 0.0167 degrees, diverging slit: Speed: 25.06 degrees / minute.

SMS 청색 발광 형광체와 표준 시료의 X 선 회절 패턴으로부터, X 선 회절 장치에 부속의 소프트웨어 [X' Pert Highscore Plus (Ver 2.2)] 를 사용하여, Le Bail 법에 의해 결정 격자 변형을 산출한다.From the X-ray diffraction pattern of the SMS blue light-emitting fluorescent substance and the standard sample, the crystal lattice strain is calculated by the Le Bail method using the software [X 'Pert Highscore Plus (Ver 2.2)] attached to the X-ray diffraction apparatus.

[초기 발광 강도의 측정][Measurement of initial light emission intensity]

SMS 청색 발광 형광체에 파장 254 ㎚ 의 자외선을 조사하여, 발광 스펙트럼을 측정한다. 얻어진 발광 스펙트럼의 최대 피크값을 구하고, 이것을 초기 발광 강도로 한다. 또한, 표 2 중의 값은, 비교예 3 에서 얻어진 SMS 청색 발광 형광체의 초기 발광 강도를 100 으로 한 상대값이다.The SMS blue light-emitting phosphor is irradiated with ultraviolet light having a wavelength of 254 nm, and the emission spectrum is measured. The maximum peak value of the obtained luminescence spectrum is obtained and used as the initial luminescence intensity. The values in Table 2 are relative values obtained by setting the initial light emission intensity of the SMS blue light-emitting fluorescent substance obtained in Comparative Example 3 to 100.

[가열 처리 후의 발광 강도 유지율의 측정][Measurement of luminescence intensity retention after heat treatment]

SMS 청색 발광 형광체를 500 ℃ 의 온도에서 1 시간 가열한 후, 실온까지 방랭한다. 방랭 후의 SMS 청색 발광 형광체에 파장 254 ㎚ 의 자외선을 조사하여, 발광 스펙트럼을 측정한다. 얻어진 발광 스펙트럼의 최대 피크값을 구하고, 상기의 초기 발광 강도에 대한 백분율을 산출하고, 이것을 발광 강도 유지율로 한다.The SMS blue phosphorescent phosphor is heated at a temperature of 500 DEG C for 1 hour and then cooled to room temperature. The emulsions of the SMS blue light-emitting fluorescent substance after being cooled are irradiated with ultraviolet light having a wavelength of 254 nm. The maximum peak value of the obtained luminescence spectrum is obtained, and the percentage with respect to the initial luminescence intensity is calculated, and this is used as the luminescence intensity retention rate.

Figure 112010014925411-pat00017
Figure 112010014925411-pat00017

표 2 의 결과로부터 명확한 바와 같이, Sr3 - xMgSi2O8 : Eux 로 나타내는 기본 조성식의 x 가 0.008 ∼ 0.110 의 범위에 있고, 또한 결정 격자 변형이 0.055 % 이하에 있는, 본 발명의 SMS 청색 발광 형광체는 모두, 결정 격자 변형이 0.055 % 보다 큰 SMS 청색 발광 형광체와 비교하여, 초기 발광 강도가 높고, 가열 처리 후의 발광 강도 유지율이 높다.As is clear from the results of Table 2, the SMS of the present invention, in which x in the basic composition formula represented by Sr 3 - x MgSi 2 O 8 : Eu x is in the range of 0.008 to 0.110 and the crystal lattice strain is 0.055% All of the blue light emitting phosphors have higher initial luminescence intensities and higher luminescence intensity retention ratios after heat treatment as compared with SMS blue light emitting phosphors having a crystal lattice strain of more than 0.055%.

Claims (3)

기본 조성식이 Sr3 - xMgSi2O8 : Eux (단, x 는 0.008 ∼ 0.110 의 범위의 수치)로 나타내어지고, 메르위나이트와 동일한 결정 구조를 가지며, 입사각이 θ 인
Figure 112010014925411-pat00018
선을 사용하여 측정된, 회절각 2θ 가 20 ∼ 130 도의 범위인 X 선 회절 패턴으로부터 Le Bail 법에 의해 구해지는 결정 격자 변형이 0.055 % 이하인, 청색 발광 형광체.
Wherein the basic composition formula is represented by Sr 3 - x MgSi 2 O 8 : Eu x (where x is a value in the range of 0.008 to 0.110), and has the same crystal structure as that of merwinite,
Figure 112010014925411-pat00018
Wherein the crystal lattice strain obtained by the Le Bail method as measured from an X-ray diffraction pattern having a diffraction angle 2 &thetas; in the range of 20 to 130 degrees is 0.055% or less.
제 1 항에 있어서,
결정 격자 변형이 0.045 % 이하인, 청색 발광 형광체.
The method according to claim 1,
And a crystal lattice strain of 0.045% or less.
제 1 항 또는 제 2 항에 있어서,
기본 조성식의 x 가 0.033 ∼ 0.095 의 범위의 수치에 있는, 청색 발광 형광체.
3. The method according to claim 1 or 2,
Wherein x in the basic composition formula is in the range of 0.033 to 0.095.
KR1020100020837A 2009-03-10 2010-03-09 Blue light-emitting phosphor KR101735100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056511A JP5154481B2 (en) 2009-03-10 2009-03-10 Blue light emitting phosphor
JPJP-P-2009-056511 2009-03-10

Publications (2)

Publication Number Publication Date
KR20100102064A KR20100102064A (en) 2010-09-20
KR101735100B1 true KR101735100B1 (en) 2017-05-12

Family

ID=42715514

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100020837A KR101735100B1 (en) 2009-03-10 2010-03-09 Blue light-emitting phosphor

Country Status (3)

Country Link
JP (1) JP5154481B2 (en)
KR (1) KR101735100B1 (en)
CN (1) CN101831294B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766454B2 (en) * 2011-02-01 2015-08-19 宇部マテリアルズ株式会社 Blue light emitting phosphor
JP5971620B2 (en) * 2011-02-28 2016-08-17 宇部興産株式会社 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
CN102344809A (en) * 2011-07-20 2012-02-08 彩虹集团公司 White light LED (Light Emitting Diode) fluorescent powder and preparation method thereof
JP6729393B2 (en) * 2015-01-07 2020-07-22 宇部興産株式会社 Phosphor, light emitting device, and method for manufacturing phosphor
JP6776556B2 (en) * 2016-03-02 2020-10-28 三菱ケミカル株式会社 Fluorescent material, light emitting device, image display device and lighting device
US20230107808A1 (en) * 2020-03-18 2023-04-06 Denka Company Limited Phosphor plate and light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132803A (en) 2001-10-30 2003-05-09 Hitachi Ltd Light emission device and display device using the same
JP2006012770A (en) 2004-05-27 2006-01-12 Hitachi Ltd Light-emitting device and image display device using this light-emitting device
WO2007091603A1 (en) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. Phosphor, light emitting device, and plasma display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6714518A (en) * 1967-10-26 1969-04-29
JPS61174291A (en) * 1985-01-29 1986-08-05 Sony Corp Phosphor emitting blue light
JPS646078A (en) * 1987-06-30 1989-01-10 Asahi Chemical Ind Static crushing agent
TW200528537A (en) * 2004-02-27 2005-09-01 Sumitomo Chemical Co Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting devicemethod for producing silicate phosphor and vacuum ultraviolet excited light-emitting device
CN101448916B (en) * 2006-05-18 2012-03-28 松下电器产业株式会社 Method for producing silicate blue phosphor, silicate blue phosphor and light-emitting device
JP2008050523A (en) * 2006-08-28 2008-03-06 Hitachi Ltd Plasma display device and light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132803A (en) 2001-10-30 2003-05-09 Hitachi Ltd Light emission device and display device using the same
JP2006012770A (en) 2004-05-27 2006-01-12 Hitachi Ltd Light-emitting device and image display device using this light-emitting device
WO2007091603A1 (en) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. Phosphor, light emitting device, and plasma display panel

Also Published As

Publication number Publication date
JP5154481B2 (en) 2013-02-27
KR20100102064A (en) 2010-09-20
JP2010209206A (en) 2010-09-24
CN101831294B (en) 2014-09-10
CN101831294A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP3837588B2 (en) Phosphors and light emitting devices using phosphors
JP5206941B2 (en) Phosphor, method for producing the same, and light emitting device
KR101843216B1 (en) Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device
KR101789856B1 (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
KR101660618B1 (en) Oxynitride phosphor powder
Parganiha et al. Near UV–blue emission from Ce doped Y2SiO5 phosphor
KR101735100B1 (en) Blue light-emitting phosphor
JP2005255895A (en) Phosphor and its manufacturing method
KR102585911B1 (en) Suspension of a magnesium silicate, method for making same and use thereof as a phosphor
JP6512070B2 (en) Red phosphor
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
Pradal et al. Investigation on combustion derived BaMgAl 10 O 17: Eu 2+ phosphor powder and its corresponding PVP/BaMgAl 10 O 17: Eu 2+ nanocomposite
Pradal et al. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17: Eu2+ blue phosphors for solid-state lighting
Li et al. Synthesis, structure and photoluminescence properties of Ce 3+-doped SrSc 2 O 4: a new scandate green-emitting phosphor with blue excitation
TW202106858A (en) Surface-coated phosphor particle and light emitting device
Diao et al. Prepare high efficiency Mn2+-doped Zn2SiO4 green phosphors in air using nano-particles
US10538702B2 (en) Fluorescent material, light-emitting device, and method for producing fluorescent material
US20140084780A1 (en) Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor
JP6350123B2 (en) Method for producing sulfide phosphor
JP2014037452A (en) Fluorescent material and method for manufacturing the same and fluorescent material-containing composition using the fluorescent material
Samsudin et al. Optical and structural properties of Zn2SiO4: Mn2+ from SLS waste bottle obtained by a solid state method
Akasaka et al. New violet phosphor Sr7Al12O25: Eu2+ synthesized from Sr–Al–O: Eu powder mounted on polycrystalline alumina
JP5066104B2 (en) Blue phosphor
JP5002819B2 (en) Sialon phosphor and white light emitting diode using the same
JP2011207934A (en) Ultraviolet-emitting phosphor

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant