KR101732659B1 - Functional water producing device using reversible polymer electrolyte membrane fuel cell - Google Patents

Functional water producing device using reversible polymer electrolyte membrane fuel cell Download PDF

Info

Publication number
KR101732659B1
KR101732659B1 KR1020160134356A KR20160134356A KR101732659B1 KR 101732659 B1 KR101732659 B1 KR 101732659B1 KR 1020160134356 A KR1020160134356 A KR 1020160134356A KR 20160134356 A KR20160134356 A KR 20160134356A KR 101732659 B1 KR101732659 B1 KR 101732659B1
Authority
KR
South Korea
Prior art keywords
fuel cell
water
hydrogen
mode
gas
Prior art date
Application number
KR1020160134356A
Other languages
Korean (ko)
Inventor
정석관
권영준
Original Assignee
한동하이드로 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한동하이드로 주식회사 filed Critical 한동하이드로 주식회사
Priority to KR1020160134356A priority Critical patent/KR101732659B1/en
Application granted granted Critical
Publication of KR101732659B1 publication Critical patent/KR101732659B1/en
Priority to PCT/KR2017/011452 priority patent/WO2018074811A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B9/10
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/30H2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/528
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a functional water manufacturing device using a reversible polymer electrolyte membrane fuel cell and, more specifically, relates to a functional water manufacturing device using a reversible polymer electrolyte membrane fuel cell, capable of calculating and displaying a dissolved hydrogen concentration of functional water by selectively generating oxygen water and hydrogen water in an electrolysis mode and measuring generated electromotive force in a fuel cell mode. The functional water manufacturing device includes: a fuel cell part (110) including an anode, a cathode, and a polymer electrolyte membrane between the anode and the cathode, generating hydrogen gas or oxygen gas in an electrolysis mode, and generating electromotive force in a fuel cell mode; a functional water storage part (120) generating and storing hydrogen water or oxygen water by dissolving the hydrogen gas or oxygen gas in water; an ultrasonic part (130) generating mist by making ultrasonic vibrations in the water; a gas collecting part (140) collecting the hydrogen gas or oxygen gas undissolved in the functional water storage part (120); and a control part (150) controlling the fuel cell part (110) and the ultrasonic part (130). A dissolved hydrogen concentration of the hydrogen water, stored in the functional water storage part (120), is measured by using the electromotive force generated in the fuel cell mode executed by the fuel cell part (110).

Description

가역 고분자전해질막 연료전지를 이용한 기능수 제조장치{Functional water producing device using reversible polymer electrolyte membrane fuel cell}Technical Field [0001] The present invention relates to a functional water producing device using a reversible polymer electrolyte membrane fuel cell,

본 발명은 휴대용 기능수 제조장치에 관한 것으로서, 상세하게는 가역 고분자전해질막 연료전지를 이용하여, 전기분해모드에서는 수소수와 산소수를 선택적으로 생성하고, 연료전지모드에서는 발생한 기전력을 측정하여 기능수의 용존수소농도를 산출하여 표시하도록 하는, 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치에 관한 것이다.More particularly, the present invention relates to a portable functional water producing apparatus, and more particularly to a reversible polymer electrolyte membrane fuel cell that selectively generates hydrogen and oxygen in an electrolysis mode, measures electromotive force generated in a fuel cell mode, And more particularly, to a functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell.

일반적으로 수소는 "H"로 표시하며 원자 상태의 수소를 말하지만, 우리가 말하는 수소라고 하는 것은 "H₂"를 말하는 것으로 분자 상태의 수소이다. 수소는 활성산소와 쉽게 결합하여 각종 질병의 원인이 되는 활성산소를 무해화 시키는 것으로 알려지고 있다. 체내에서 에너지를 만들 때 사용되는 산소의 2%가 활성산소화 된다고 하지만, 만약 활성산소화 되는 현장에 활성 수소가 항상 존재하면 활성산소가 원인이 되는 질병(모든 질병의 원인의 90%가 활성 산소라고 한다.)이 원칙적으로 발생하지 않을 것이다. Generally, hydrogen is represented by "H" and refers to atomic hydrogen, but what we are referring to as "H2" is hydrogen in the molecular state. Hydrogen is known to easily combine with active oxygen to detoxify active oxygen causing various diseases. Although 2% of the oxygen used to make energy in the body is active oxygenated, if active hydrogen is always present in the active oxygenation site, active oxygen is the cause of the disease (90% of the causes of all diseases are active oxygen .) Will not occur in principle.

이러한 수소수를 제조(또는 생성/발생)하기 위한 종래의 발명으로, 등록특허공보 제0274106호에는 0.1 ppm 이상의 농도의 용존 수소를 포함하는 순수이며, 상기 물은 인산나트륨 또는 양극에서 얻어진 양극수에 의해, pH 7.2 내지 7.3으로 조정되어 있고, 또한, 상기 물의 산화 환원 전위는 +100mV 이하로 되어 있는 전해수소 용존수에 있어서, 가)~바)의 군에서 선택된 용도에 사용하는 것을 특징으로 하는 전해수소 용존수에 관하여 개시되어 있으며, 통상적인 전기분해방법에 의한 전해수소 용존수를 생성한다.As a conventional invention for producing (or generating / generating) such hydrogenated water, Japanese Patent No. 0274106 discloses a pure water containing dissolved hydrogen at a concentration of 0.1 ppm or more, and the water is added to the anode water obtained from sodium phosphate or an anode Electrolytic hydrogen dissolved water whose pH is adjusted to 7.2 to 7.3 and the oxidation-reduction potential of the water is +100 mV or lower is used for the application selected from the group of a) to b) Hydrogen dissolved water is disclosed and produces electrolytic hydrogen dissolved water by a conventional electrolysis method.

한편, 등록특허공보 제1076631호에서는 원수를 정수한 후 전기분해를 하여 수소를 발생시키거나 마그네슘과 같은 금속염을 물에 녹여 수소를 발생시키거나 봄베(압력용기)에 충진된 수소를 정수된 물에 용해시켜 먹는 물, 음료, 의료, 농업 및 산업용으로 사용될 수 있는 수소수를 제조하는 수소수 제조장치에 관하여 개시하고 있는데, 상기의 발명에서는 전기분해를 수행함에 있어 양극판 또는 음극판으로 구분하여 동일한 전극을 계속 공급함에 따라 음극판에 스케일이 발생하는 문제점이 있으며, 생성된 수소수에 잔류염소 및 차아염소산이온을 제거함에 있어 한계가 있고, 총트리할로메탄의 생성을 억제하지 못하는 문제점이 있다.On the other hand, in Patent Publication No. 1076631, hydrogen is generated by purifying raw water and then electrolyzed, or hydrogen is generated by dissolving a metal salt such as magnesium in water or hydrogen filled in a bomb (pressure vessel) The present invention discloses a hydrogen-water producing apparatus for producing hydrogen-water which can be used for water, beverage, medical, agricultural and industrial purposes to be melted and consumed. In the above-mentioned invention, There is a problem in that scale is generated in the negative electrode plate according to the supply box continuously and there is a limit in removing residual chlorine and hypochlorite ions to the produced hydrogen water and the production of total trihalomethane can not be suppressed.

한편, 종래의 수소수 제조장치에 있어서, 수소수 내의 용존수소의 농도측정은 폴라로그래피 센서와 산화환원전위차 센서에 의한 방법을 사용하고 있는데, 이러한 측정방식은 센서구조가 복잡하고 고가이므로 기능수 제조장치에 적용하기 어려우며 센서 보관 및 센서 보정 등 범용에 적용하기엔 많은 문제점을 가지고 있다.On the other hand, in the conventional hydrogen water producing apparatus, the concentration of dissolved hydrogen in the hydrogen water is measured by a polarography sensor and a redox potential difference sensor. Since the sensor structure is complicated and expensive, And it has many problems to be applied to general purpose such as sensor storage and sensor correction.

상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은 가역 고분자전해질막 연료전지의 연료전지모드를 이용하므로, 고가의 용존수소농도 측정 센서를 추가로 설치할 필요가 없이 저렴하고 간편하게 기능수의 용존수소농도를 측정하여 표시하기 위한 목적이 있다.In order to solve the problems of the prior art as described above, the present invention uses a fuel cell mode of a reversible polymer electrolyte membrane fuel cell, so that it is unnecessary to additionally install an expensive dissolved hydrogen concentration measuring sensor, It is aimed to measure and display dissolved hydrogen concentration.

또한, 본 발명은 일반적인 고분자전해질막 연료전지의 구성요소인 전극막결합체(MEA, Membrane Electrode Assembly)에서와 달리, 가스확산층을 채택하지 않으며 연료전지기능은 용존수소농도를 측정함에 국한하도록 최소화하고 기능수의 생성을 목적으로 하기에 전기분해기능을 극대화하도록 하는 다른 목적이 있다.Unlike the conventional membrane electrode assembly (MEA), which is a component of a general polymer electrolyte membrane fuel cell, the present invention does not employ a gas diffusion layer. The fuel cell function is minimized to limit the concentration of dissolved hydrogen, There is another purpose of maximizing the electrolysis function for the purpose of generating water.

또한, 본 발명은 일반적인 전극막접합체의 전해질막이 방향성이 있어 전기 극성이 바뀌면 전해질막이 손상되는 것과 달리, 전해질막의 양면에 동일한 백금 촉매를 코팅한 전극막접합체로 구성함으로써 간단하게 (+)극과 (-)극을 바꾸어 사용자가 원하는 기능수(수소수 또는 산소수)를 얻을 수 있도록 하는 다른 목적이 있다.In addition, unlike a conventional electrolyte membrane of a conventional electrode membrane assembly, the electrolyte membrane is damaged when the polarity of the electrolyte is changed, and the electrolyte membrane is composed of an electrode membrane assembly coated with the same platinum catalyst on both sides of the electrolyte membrane. -) pole to change the polarity so that the user can obtain the desired number of functions (water or oxygen).

본 발명의 상기 목적은 기능수 제조장치에 있어서, 산화전극과 환원전극 및 상기 산화전극과 상기 환원전극 사이에 위치하는 고분자전해질막을 포함하며, 전기분해모드에서 수소기체 또는 산소기체를 생성하고 연료전지모드에서 기전력을 생성하는 연료전지부(110); 상기 수소기체 또는 상기 수소기체를 물속에 용해하여 수소수 또는 산소수를 생성하고 저장하는 기능수저장부(120); 물을 초음파 진동하여 미스트를 생성하는 초음파부(130); 상기 기능수저장부(120)에 용해되지 않은 수소기체 또는 산소기체를 포집하는 기체포집부(140); 및 상기 연료전지부(110) 및 상기 초음파부(130)를 제어하는 제어부(150)를 포함하며, 상기 연료전지부(110)에서 실행되는 연료전지모드에서 발생하는 기전력을 이용하여 상기 기능수저장부(120)에 저장된 상기 수소수의 용존수소농도를 측정하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치에 의해 달성된다.The above object of the present invention can be also achieved by a functional water producing apparatus comprising a polymer electrolyte membrane positioned between an oxidizing electrode and a reducing electrode and between the oxidizing electrode and the reducing electrode and generating hydrogen gas or oxygen gas in an electrolysis mode, A fuel cell unit 110 for generating an electromotive force in a mode; A functional water reservoir 120 for dissolving the hydrogen gas or the hydrogen gas in water to generate and store hydrogen or oxygen water; An ultrasonic wave unit 130 for ultrasonic vibration of water to generate a mist; A gas capture container (140) for capturing hydrogen gas or oxygen gas not dissolved in the functional water reservoir (120); And a control unit 150 for controlling the fuel cell unit 110 and the ultrasonic unit 130. The electromotive force generated in the fuel cell mode performed by the fuel cell unit 110 may be used to control the function of the functional water- And the dissolved hydrogen concentration of the hydrogen stored in the hydrogen storage tank (120) is measured. The functional water producing apparatus using the reversible polymer electrolyte membrane fuel cell.

따라서, 본 발명의 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치는 고가의 용존수소농도 측정 센서를 추가로 구성할 필요가 없이 저렴하고 간편하게 기능수의 용존수소농도를 측정하고 표시할 수 있는 효과가 있다.Therefore, the functional water producing apparatus using the reversible polymer electrolyte membrane fuel cell of the present invention is capable of measuring and displaying the dissolved hydrogen concentration of functional water inexpensively and easily, without needing to further constitute an expensive dissolved hydrogen concentration measuring sensor .

또한, 본 발명은 기능수의 생성을 목적으로 하므로 고분자전해질막 연료전지의 연료전지기능은 용존수소농도를 측정함에 국한하도록 최소화하고 전기분해기능을 극대화하여 양질의 기능수 생성을 유도하는 다른 효과가 있다.In addition, since the present invention aims at the production of functional water, the fuel cell function of the polymer electrolyte membrane fuel cell is minimized so as to be limited to the measurement of the dissolved hydrogen concentration, and other effects of maximizing the electrolysis function and inducing production of high quality functional water have.

또한, 본 발명은 전해질막의 양면에 동일하게 백금 촉매를 코팅한 전극막접합체로 구성함으로써 간단하게 (+)극과 (-)극을 바꾸어 원하는 기능수(수소수 또는 산소수)를 얻을 수 있는 다른 효과가 있다.In addition, the present invention can be applied to an electrode membrane assembly in which a platinum catalyst is coated on both surfaces of an electrolyte membrane, thereby making it possible to easily obtain a desired functional number (hydrogen or oxygen number) by changing the (+ It is effective.

도 1은 본 발명에 따른 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치의 구성도,
도 2는 본 발명에 따른 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치의 작동 개략도,
도 3은 본 발명의 일실시예에 따른 전기분해모드에서 두 개의 전극에 (+)극과 (-)극을 바꾸어 실행된 작동 시간별 용존산소 및 용존수소의 농도의 관계를 나타내는 그림,
도 4는 본 발명의 일실시예에 따른 연료전지모드에서 측정한 용존수소농도와 전압값의 상관관계를 나타내는 그림,
도 5는 본 발명의 일실시예에 따른 초음파모드 작동 유무에 따른 용존수소농도를 나타내는 그림이다.
1 is a configuration diagram of a functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell according to the present invention,
2 is an operational schematic diagram of a functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell according to the present invention,
FIG. 3 is a graph showing the relationship between the concentration of dissolved oxygen and dissolved hydrogen for each operation time, which is obtained by changing the (+) and (-) poles at two electrodes in the electrolysis mode according to an embodiment of the present invention,
FIG. 4 is a graph showing a correlation between a dissolved hydrogen concentration and a voltage value measured in a fuel cell mode according to an embodiment of the present invention. FIG.
FIG. 5 is a graph showing the dissolved hydrogen concentration according to whether the ultrasonic mode is operated according to an embodiment of the present invention. FIG.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치의 구성도이고, 도 2는 본 발명에 따른 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치의 작동 개략도이다. 또한, 도 3은 본 발명의 일실시예에 따른 전기분해모드에서 두 개의 전극에 (+)극과 (-)극을 바꾸어 실행된 작동 시간별 용존산소 및 용존수소의 농도의 관계를 나타내는 그림이고, 도 4는 본 발명의 일실시예에 따른 연료전지모드에서 측정한 용존수소농도와 전압값의 상관관계를 나타내는 그림이며, 도 5는 본 발명의 일실시예에 따른 초음파모드 작동 유무에 따른 용존수소농도를 나타내는 그림이다. 도 1 내지 2에 도시된 바와 같이, 본 발명의 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치(100)는 산화전극과 환원전극 및 상기 산화전극과 상기 환원전극 사이에 위치하는 고분자전해질막을 포함하며, 전기분해모드에서 수소기체 또는 산소기체를 생성하고 연료전지모드에서 기전력을 생성하는 연료전지부(110)와, 상기 수소기체 또는 상기 수소기체를 물속에 용해하여 수소수 또는 산소수를 생성하고 저장하는 기능수저장부(120)와, 물을 초음파 진동하여 미스트를 생성하는 초음파부(130)와, 상기 기능수저장부(120)에 용해되지 않은 수소기체 또는 산소기체를 포집하는 기체포집부(140), 및 상기 연료전지부(110) 및 상기 초음파부(130) 등을 제어하는 제어부(150)를 포함하여 구성되며, 상기 연료전지부(110)에서 실행되는 연료전지모드에서 발생하는 기전력을 이용하여 상기 기능수저장부(120)에 저장된 상기 수소수의 용존수소농도를 측정하도록 하는 기술적 특징이 있다.FIG. 1 is a configuration diagram of a functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell according to the present invention, and FIG. 2 is a schematic operational view of a functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell according to the present invention. 3 is a graph showing the relationship between the concentration of dissolved oxygen and dissolved hydrogen for each operation time, which is obtained by changing the (+) and (-) poles to two electrodes in the electrolysis mode according to an embodiment of the present invention, FIG. 4 is a graph showing a correlation between a dissolved hydrogen concentration and a voltage value measured in a fuel cell mode according to an embodiment of the present invention. FIG. 5 is a graph showing a relationship between dissolved hydrogen concentration and a voltage value according to an embodiment of the present invention. Fig. 1 and 2, the functional water production apparatus 100 using the reversible polymer electrolyte membrane fuel cell of the present invention includes an oxidation electrode, a reduction electrode, and a polymer electrolyte membrane positioned between the oxidation electrode and the reduction electrode A fuel cell unit 110 for generating hydrogen gas or oxygen gas in an electrolysis mode and generating an electromotive force in a fuel cell mode, and a fuel cell unit 110 for dissolving the hydrogen gas or hydrogen gas in water to generate hydrogen or oxygen water An ultrasonic wave generator 130 for ultrasonic vibration of water to generate a mist and a gas catcher 140 for collecting hydrogen gas or oxygen gas not dissolved in the functional water catcher 120 And a control unit 150 for controlling the fuel cell unit 110 and the ultrasonic unit 130. The control unit 150 controls the operation of the fuel cell unit 110 in the fuel cell mode The number by using the electromotive force stored in the function carrying water bottom 120 may have technical features to measure dissolved hydrogen concentration of the minority.

연료전지부(110)는 가역 고분자전해질막 연료전지로 구성되어 하나의 장치에 전기분해와 연료전지의 기능을 결합한 것으로서, 직류전류를 가하면 물로부터 수소와 산소를 생성하는 전기분해모드로 동작하게 되고, 수소가스를 주입하면 수소로부터 전기를 발생시키는 연료전지모드로 동작하게 된다. The fuel cell unit 110 is composed of a reversible polymer electrolyte membrane fuel cell and combines the functions of the electrolysis and the fuel cell in one device. When the direct current is applied, the fuel cell unit 110 operates in an electrolysis mode in which hydrogen and oxygen are generated from water When the hydrogen gas is injected, it operates in a fuel cell mode in which electricity is generated from hydrogen.

일반적으로 사용되는 고분자전해질막 연료전지는 산화전극/환원전극, 전해질막, 촉매층 및 가스확산층을 일체화하여 사용하는 전극막결합체(MEA, Membrane Electrode Assembly)로 구성되고, 산화전극은 Pt/Ru 촉매를 함유하는 다공성 탄소전극을, 환원전극은 Pt 촉매를 함유하는 다공성 탄소전극을 이용하고, 고분자전해질막은 불소수지계 이온교환막을 적용하고 있다.Generally, a polymer electrolyte membrane fuel cell is composed of a membrane electrode assembly (MEA) that uses an oxidizing electrode / reducing electrode, an electrolyte membrane, a catalyst layer, and a gas diffusion layer as an integrated unit. A porous carbon electrode containing a Pt catalyst is used as the reducing electrode, and a fluorine resin ion exchange membrane is used as the polymer electrolyte membrane.

하지만, 본 발명에서는 기능수 제조를 목적으로 하므로, 전극막결합체의 구성요소인 가스확산층을 제거하여 산화전극/환원전극, 전해질막, 촉매층으로 전극막결합체를 구성함으로써, 전기분해기능을 극대화하는 한편 연료전지 기능은 용존수소농도의 측정에 국한하도록 최소화하였다.However, in the present invention, for the purpose of producing functional water, the gas diffusion layer, which is a component of the electrode membrane assembly, is removed to constitute the electrode membrane assembly with the oxidizing electrode / reducing electrode, the electrolyte membrane and the catalyst layer, The fuel cell function was minimized to limit the measurement of dissolved hydrogen concentration.

또한, 일반적인 가역 고분자전해질막 연료전지에서의 전해질막은 방향성이 있어 전기 극성이 바뀌면 전해질막이 손상되는 문제가 있지만, 본 발명에서 사용하는 전해질막은 막의 양면에 동일하게 백금 촉매를 코팅하여 구성함으로써 간단하게 (+)극과 (-)극을 바꾸면 사용자가 원하는 기능수(수소수 또는 산소수)를 선택적으로 얻을 수 있게 된다.In addition, although the electrolyte membrane in a general reversible polymer electrolyte membrane fuel cell has a directionality, there is a problem that the electrolyte membrane is damaged if the polarity of the electrolyte is changed. However, since the electrolyte membrane used in the present invention is formed by coating a platinum catalyst on both sides of the membrane, If you change the + and - poles, you can get the desired number of functions (water or oxygen) selectively.

즉, 상기 연료전지부(110)의 전기분해모드에서 두 개의 전극에 대하여 (+)극과 (-)극을 바꾸어 부여함으로써, 사용자가 원하는 기능수인 수소수 또는 산소수를 선택적으로 생성할 수 있으며, 상기 연료전지부(110)의 상기 연료전지모드에서는 상기 용존수소농도를 측정하기 위한 만큼의 소정의 기전력만을 발생하도록 한다.That is, in the electrolysis mode of the fuel cell unit 110, the positive electrode and the negative electrode are alternately given to the two electrodes to selectively generate hydrogen or oxygen as a desired function number And in the fuel cell mode of the fuel cell unit 110, only a predetermined electromotive force for measuring the dissolved hydrogen concentration is generated.

본 발명의 일실시예에 따르면, 전기분해모드에서 두 개의 전극에 (+)극과 (-)극을 바꾸어 실행된, 작동 시간별 용존산소 및 용존수소의 농도값은 아래의 표 1과 같으며(입력전압 4V DC, 입력전류 0.8A), 도 3에 아래의 표 1의 내용을 그래프로 도시하였다.According to one embodiment of the present invention, the concentration values of dissolved oxygen and dissolved hydrogen by operating time, which are obtained by changing the (+) and (-) poles of two electrodes in the electrolysis mode, are as shown in Table 1 Input voltage 4V DC, input current 0.8A), and the contents of the following Table 1 are shown in FIG. 3 as a graph.

  TEST 0TEST 0 TEST 1TEST 1 TEST 2TEST 2 TEST 3TEST 3 TEST 4TEST 4 TEST 5TEST 5 TEST 6TEST 6 TEST 7TEST 7 TEST 8TEST 8 TEST 9TEST 9 TEST 10TEST 10 작동시간(min)Operating time (min) 00 1One 22 33 44 55 66 77 88 99 1010 산소수농도(ppm)Oxygen water concentration (ppm) 2.90 2.90 4.00 4.00 4.90 4.90 5.90 5.90 6.70 6.70 7.30 7.30 7.90 7.90 8.00 8.00 8.01 8.01 8.10 8.10 8.12 8.12 수소수농도(ppm)Hydrophilic concentration (ppm) 0.00 0.00 0.56 0.56 0.92 0.92 0.95 0.95 0.96 0.96 0.97 0.97 0.99 0.99 1.02 1.02 1.03 1.03 1.10 1.10 1.12 1.12

전기분해모드에서 생성된 수소기체가 물속에 용존하게 되고, 전기분해가 끝나면 가역 고분자전해질막은 연료전지로 상태로 바뀌게 되고, 이에 따라 물속의 수소분자를 이용하여 전기를 만들게 된다. 이때 물속에 용존된 수소농도에 따라 기전력의 크기가 다르게 나타나게 되는데, 이러한 원리를 이용하여 기능수의 기전력(또는 전압)을 측정하여 용존수소농도로 환산하여 그 값을 수치 또는 기타 표시방법으로 나타내도록 한다.The hydrogen gas produced in the electrolysis mode is dissolved in the water, and when the electrolysis is completed, the reversible polymer electrolyte membrane is converted into a fuel cell state, and electricity is generated using hydrogen molecules in water. In this case, the magnitude of the electromotive force varies depending on the concentration of dissolved hydrogen in the water. Using this principle, the electromotive force (or voltage) of the functional water is measured and converted into the dissolved hydrogen concentration, do.

한편, 종래 용존수소농도의 측정은 폴라로그래피 센서와 산화환원전위차 센서에 의한 방법을 사용하고 있으며, 이러한 측정방식은 센서의 구조가 복잡하고 고가이므로 기능수 제조장치에 적용하기 어렵고 센서 보관 및 보정 등 범용에 적용하기에 다소 문제점을 가지고 있는데, 본원 발명은 가역 고분자전해질막 연료전지의 연료전지모드를 이용하므로 고가의 수소농도측정 센서를 추가로 설치할 필요가 없이 저렴하고 간편하게 용존수소의 농도를 산출하고 산출한 값을 별도로 구비되는 디스플레이부를 통해 나타낼 수 있다.Conventionally, the dissolved hydrogen concentration is measured by a polarography sensor and a redox potential difference sensor. Since the sensor structure is complicated and expensive, it is difficult to apply it to a functional water producing apparatus, Since the present invention utilizes the fuel cell mode of the reversible polymer electrolyte membrane fuel cell, it is not necessary to additionally provide an expensive hydrogen concentration measuring sensor and the concentration of dissolved hydrogen can be easily calculated and calculated A value may be displayed through a separate display unit.

본 발명의 일실시예에 따르면, 연료전지모드에서 측정한 용존수소농도와 전압값의 상관관계는 아래의 표 2 및 도4에 도시된 바와 같다.According to an embodiment of the present invention, the correlation between the dissolved hydrogen concentration and the voltage value measured in the fuel cell mode is as shown in Table 2 and FIG.

  TEST 1TEST 1 TEST 2TEST 2 TEST 3TEST 3 TEST 4TEST 4 TEST 5TEST 5 TEST 6TEST 6 TEST 7TEST 7 TEST 8TEST 8 TEST 9TEST 9 수소농도(ppb)Hydrogen concentration (ppb) 10001000 895895 793793 665665 602602 545545 410410 275275 00 전압(V)Voltage (V) 0.959 0.959 0.910 0.910 0.896 0.896 0.847 0.847 0.510 0.510 0.224 0.224 0.098 0.098 0.035 0.035 0.000 0.000

따라서 물을 소정 시간의 전기분해가 끝나는 순간 또는 용존수소농도를 알고자할 때의 기전력을 측정하여 상기의 표를 반영한 그래프에서 수소수의 농도로 환산된 값을 수치 또는 기타 표시(LED 칼라 또는 개수 등)로 나타낼 수 있게 된다.Therefore, by measuring the electromotive force at the moment when the electrolysis of water is finished for a predetermined time or when the dissolved hydrogen concentration is to be known, the value converted to the concentration of hydrogen in the graph reflecting the above table is displayed as a numerical value or other indication (LED color or number Etc.).

한편, 본 발명에서는 연료전지모드를 실행하여 실시간 전압을 체크함으로써, 일정 수소농도 이하의 전압에서 자동으로 전기분해모드를 실시하도록 프로그램하여 수소수의 농도를 소정 범위(1,000ppb 이상)로 유지할 수 있는 기능도 부여할 수 있다.Meanwhile, in the present invention, by executing the fuel cell mode and checking the real-time voltage, it is possible to automatically program the electrolysis mode at a voltage equal to or lower than a predetermined hydrogen concentration to maintain the concentration of hydrogenated water in a predetermined range (1,000 ppb or more) Function can also be given.

기능수저장부(120)는 내부에 물을 포함할 수 있도록 하며, 상기 연료전지부(110)의 상측에 구비되어 하측의 상기 연료전지부(110)에서 발생되는 산소기체 또는 수소기체를 선택적으로 물속에 용해하도록 함으로써 기능수를 생성하고 저장한다.The functional water reservoir 120 may contain water therein and selectively supply oxygen gas or hydrogen gas generated in the fuel cell unit 110 provided at the upper side of the fuel cell unit 110 to water To generate and store the function number.

초음파부(130)는 물을 초음파 진동하여 미스트를 생성하게 되는데, 상기 기체포집부(140)의 상측을 개폐하도록 구비되는 캡부(160)에 의해, 상기 캡부(160)가 열린 상태에서는 생성된 미스트를 외부로 분사하도록 함으로써 가습 기능 또는 휴대용 미스트장치 기능을 하도록 하며(도 2의 (a) 참조), 또는 상기 캡부(160)가 닫힌 상태에서는 상기 기체포집부(140)의 내부에 포집되어 있는 수소기체와 접촉하여 미세한 물분자속에 수소기체가 용해되도록 함으로써 하측에 구비된 상기 기능수저장부(120)의 기능수의 용존수소농도를 증가하도록 하여 동일한 시간에 더 높은 농도의 기능수를 얻을 수 있도록 한다(도 2의 (b) 참조).The ultrasonic wave unit 130 ultrasonically vibrates the water to generate a mist. The cap unit 160 opens and closes the upper side of the air catcher 140. When the cap unit 160 is opened, (See FIG. 2 (a)), or when the cap portion 160 is closed, the hydrogen trapped in the gas capture container 140 The hydrogen gas is dissolved in the fine water molecules by contacting with the gas so that the dissolved hydrogen concentration of the functional water of the functional water tank 120 provided at the lower side is increased so that the functional water of higher concentration can be obtained at the same time (See Fig. 2 (b)).

이때, 생성된 물방울입자의 표면적은 생성된 수소분자와의 접촉면으로서, 초음파모드에서 발생하는 물방울의 표면적을 계산하면 하기와 같다.At this time, the surface area of the droplet particles generated is a contact surface with the generated hydrogen molecules, and the surface area of water droplets generated in the ultrasonic mode is calculated as follows.

초음파장치에 의한 1시간당 물방울 방출능력: 50cc(= 50㎤) -(1)Water droplet discharge capacity per hour by ultrasonic device: 50cc (= 50cm3) - (1)

초당 물방울 방출능력: 50㎤/(60×60)=1.38×10-2 ㎤/sec -(2)Water droplet discharging ability per second: 50 cm 3 / (60 × 60) = 1.38 × 10 -2 cm 3 / sec - (2)

물방울의 직경: 5Micron = 5×10-4㎝ (범용 제품기준) -(3)Diameter of water drop: 5Micron = 5 × 10 -4 ㎝ (for general purpose product) - (3)

물방울의 개당 체적(4/3πr3): 4/3×3.14×(5×10- 4)3=1.67×10-10 ㎤/n-H2O -(4)Of water droplets per unit volume (4 / 3πr 3): 4 /3 × 3.14 × (5 × 10 - 4) 3 = 1.67 × 10 -10 ㎤ / nH 2 O - (4)

초당 발생 물방울의 개수(n-H2O): 1.38×10-2/1.67×10-10=3.33×108 n-H2O/sec -(5)The number of water droplets generated per second (nH 2 O): 1.38 × 10 -2 /1.67 × 10 -10 = 3.33 × 10 8 nH 2 O / sec - (5)

초당 발생 물방울의 총 표면적(4πr2): (4×3.14×(5×10- 4)2 × 3.33×108 = 1.05×103 ㎠/sec -(6)The total surface area of the water droplets generated per second (4πr 2): (4 × 3.14 × (5 × 10 - 4) 2 × 3.33 × 10 8 = 1.05 × 10 3 cm 2 / sec - (6)

본 발명의 물 경계면의 표면적(πr2): 3.14 × 32 = 28 ㎠ -(7)(? R 2 ) of the water interface of the present invention: 3.14 x 3 2 = 28 cm 2 - (7)

따라서, 초음파 분무를 함으로써 (6)의 표면적이 (7)의 표면적보다 약 37.5배에 달하는 방대한 면적이 수소분자와 접촉하므로 용존율이 크게 향상됨은 자명하며, 수소수를 제조함에 있어 용존수소량을 높여주는 효과가 우수하다.Therefore, it is obvious that the surface area of (6) is about 37.5 times larger than the surface area of (7) by the ultrasonic spray, so that the dissolution rate is greatly improved because of the contact with the hydrogen molecule. In the production of hydrogenated water, The effect to raise is excellent.

본 발명의 일실시예에 따르면, 초음파모드 작동 유무에 따른 용존수소농도 값은 아래의 표 3 및 도 5에 도시된 바와 같다.According to one embodiment of the present invention, the dissolved hydrogen concentration value depending on the presence or absence of the operation of the ultrasonic mode is as shown in Table 3 and FIG.

  TEST 0TEST 0 TEST 1TEST 1 TEST 2TEST 2 TEST 3TEST 3 TEST 4TEST 4 작동시간(SEC)Operating Time (SEC) 00 3030 6060 9090 120120 초음파모드 OFFUltrasonic Mode OFF 0 0 170 170 416 416 728 728 942 942 초음파모드 ONUltrasonic Mode ON 0 0 210 210 458 458 776 776 1,008 1,008

한편, 제어부(150)는 상기 연료전지부(110) 및 초음파부(130) 등을 제어하며, 사용자의 선택에 의해 기능수선택모드, 전기분해모드, 연료전지모드(용존수소농도표시모드) 또는 초음파모드를 구동하도록 하는 회로 모듈을 구비하도록 한다. 즉, 사용자의 요청에 따라 상기 연료전지부(110)에서 생성되는 기체를 선택적으로 발생시키도록 하여 기능수를 수소수 또는 산소수로 생성하도록 하는 기능수선택모드, 상기 기능수선택모드에 의해 선택되는 기능수를 생성하기 위하여 해당 기체를 발생하도록 하는 전기분해모드, 용존수소농도의 측정을 위하여 연료전지부(110)를 구동하도록 하는 연료전지모드, 및 초음파를 이용해 미스트를 생성하여 가습을 위해 또는 용존수소농도의 증가를 위해 사용하도록 하는 초음파모드를 실행하도록 하는 회로 모듈(미도시)을 구비한다.The control unit 150 controls the fuel cell unit 110 and the ultrasonic unit 130 and controls the function selection mode, the electrolysis mode, the fuel cell mode (dissolved hydrogen concentration display mode) And a circuit module for driving the ultrasonic wave mode. That is, a function selection mode in which the gas generated in the fuel cell unit 110 is selectively generated according to a user's request to generate a functional water as hydrogen water or oxygen water, A fuel cell mode in which the fuel cell unit 110 is driven for measurement of the dissolved hydrogen concentration, and a fuel cell mode in which mist is generated by using ultrasonic waves to be used for humidification And a circuit module (not shown) for executing an ultrasonic mode to be used for increasing the dissolved hydrogen concentration.

또한, 상기 연료전지부(110), 상기 초음파부(130) 및 상기 제어부(150)에 전원을 공급하는 전원부(170)를 포함하는데, 상기 전원부(170)는 배터리 타입으로 구성될 수 있으며, 전기분해모드일 경우 상기 연료전지부(110)에 입력전압 2.1~4V DC, 입력전류 0.8A를 인가하여 수소기체 생산속도가 5 mL/분, 산소기체 생산속도는 2.5 mL/분 정도를 형성하도록 한다. The power supply unit 170 may be a battery type, and may include a power supply unit 170 and a power supply unit 170. The power supply unit 170 may include a power supply unit 170 for supplying power to the fuel cell unit 110, the ultrasonic unit 130, In the decomposition mode, an input voltage of 2.1 to 4 V DC and an input current of 0.8 A are applied to the fuel cell unit 110 to form a hydrogen gas production rate of 5 mL / min and an oxygen gas production rate of 2.5 mL / min .

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

110 : 연료전지부 120 : 기능수저장부
130 : 초음파부 140 : 기체포집부
150 : 제어부 160 : 캡부
170 : 전원부
110: fuel cell unit 120: functional water reservoir
130: ultrasonic section 140:
150: control unit 160:
170:

Claims (7)

기능수 제조장치에 있어서,
산화전극과 환원전극 및 상기 산화전극과 상기 환원전극 사이에 위치하는 고분자전해질막을 포함하며, 전기분해모드에서 수소기체 또는 산소기체를 생성하고 연료전지모드에서 기전력을 생성하는 연료전지부(110);
상기 수소기체 또는 상기 산소기체를 물속에 용해하여 수소수 또는 산소수를 생성하고 저장하는 기능수저장부(120);
물을 초음파 진동하여 미스트를 생성하는 초음파부(130);
상기 기능수저장부(120)에 용해되지 않은 상기 수소기체 또는 상기 산소기체를 포집하는 기체포집부(140); 및
상기 연료전지부(110) 및 상기 초음파부를 제어하는 제어부(150)를 포함하며,
상기 연료전지부(110)의 상기 고분자전해질막은 불소수지계 이온교환막을 적용하되, 전해질막의 양 측면에 동일하게 백금 촉매 코팅을 하며,
상기 기체포집부(140)의 상측을 개폐하는 캡부(160)를 구비하되, 상기 캡부(160)가 열린 상태에서는 상기 초음파부(130)에 의해 생성된 미스트를 외부로 분사하여 가습하도록 하며, 상기 캡부(160)가 닫힌 상태에서는 상기 미스트에 의해 상기 기체포집부(140)의 수소기체를 용해하여 상기 기능수저장부(120)의 용존수소농도를 증가하도록 하고,
용존수소농도에 따라 기전력의 크기가 다르게 되는 관계에 따라, 상기 전기분해모드가 끝나는 순간 또는 용존수소농도를 알고자할 때의 기전력을 측정함으로써, 측정된 기전력에 따른 상기 수소수의 용존수소농도를 표시하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치.
In the functional water producing apparatus,
A fuel cell unit 110 including an oxidizing electrode, a reducing electrode, and a polymer electrolyte membrane disposed between the oxidizing electrode and the reducing electrode, the fuel cell unit 110 generating hydrogen gas or oxygen gas in an electrolysis mode and generating an electromotive force in a fuel cell mode;
A functional water reservoir 120 for dissolving the hydrogen gas or the oxygen gas in water to generate and store hydrogen or oxygen water;
An ultrasonic wave unit 130 for ultrasonic vibration of water to generate a mist;
A gas capture container (140) for capturing the hydrogen gas or the oxygen gas that is not dissolved in the functional water reservoir (120); And
And a control unit (150) for controlling the fuel cell unit (110) and the ultrasonic unit,
The polymer electrolyte membrane of the fuel cell unit 110 is made of a fluorocarbon resin ion exchange membrane, platinum catalyst coating is applied to both sides of the electrolyte membrane,
And a cap unit 160 for opening and closing an upper side of the air catcher 140. When the cap unit 160 is opened, the mist generated by the ultrasonic unit 130 is sprayed to the outside to humidify the air, When the cap portion 160 is closed, the hydrogen gas in the gas capture container 140 is dissolved by the mist to increase the dissolved hydrogen concentration in the functional water jacket 120,
The dissolved hydrogen concentration of the hydrogen water according to the measured electromotive force is measured by measuring the electromotive force at the end of the electrolysis mode or when the dissolved hydrogen concentration is known according to the relationship of the magnitude of the electromotive force depending on the dissolved hydrogen concentration. Wherein the fuel cell comprises a reversible polymer electrolyte membrane fuel cell.
삭제delete 제1항에 있어서,
상기 연료전지부(110)의 상기 전기분해모드에서 두 개의 전극에 대하여 (+)극과 (-)극을 바꾸어 부여함으로써, 사용자가 원하는 기능수인 수소수 또는 산소수를 선택적으로 생성하도록 하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치.
The method according to claim 1,
(+) Pole and (-) pole are alternately given to the two electrodes in the electrolysis mode of the fuel cell unit 110 so that the user can selectively generate hydrogen or oxygen as the desired function number Functional water producing apparatus using a reversible polymer electrolyte membrane fuel cell.
제1항에 있어서,
상기 연료전지부(110)의 상기 연료전지모드에서는 상기 용존수소농도를 측정하기 위한 만큼의 소정의 기전력만을 발생하도록 하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치.
The method according to claim 1,
Wherein the fuel cell unit generates the predetermined electromotive force for measuring the dissolved hydrogen concentration in the fuel cell mode of the fuel cell unit (110).
삭제delete 제1항에 있어서,
상기 제어부(150)는 사용자의 요청에 따라 상기 연료전지부(110)에서 생성되는 기체를 선택적으로 발생시키도록 하여 수소수 또는 산소수를 생성하도록 하는 기능수선택모드, 상기 기능수선택모드에 의해 선택되는 기능수를 생성하기 위하여 해당 기체를 발생하도록 하는 전기분해모드, 용존수소농도를 측정하고 표시하기 위하여 기전력을 측정하도록 하는 연료전지모드, 및 초음파를 통해 미스트를 생성하여 가습을 위해 또는 용존수소농도의 증가를 위해 사용하도록 하는 초음파모드를 실행하도록 하는 회로 모듈을 구비하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치.
The method according to claim 1,
The control unit 150 may include a function selection mode for selectively generating gas generated in the fuel cell unit 110 according to a user's request to generate hydrogen or oxygen water, An electrolysis mode that allows the gas to be generated to produce a selected number of functions, a fuel cell mode that allows the measurement of electromotive force to measure and display the dissolved hydrogen concentration, and the generation of mist via ultrasonic waves, And a circuit module for performing an ultrasonic mode to be used for increasing the concentration of the polymer electrolyte fuel cell.
제1항에 있어서,
상기 연료전지모드를 실행하여 실시간 전압을 체크함으로써, 소정 용존수소농도 이하의 기전력에서 자동으로 상기 전기분해모드를 실시하도록 구성함으로써, 용존수소농도를 소정 범위 이상으로 유지하도록 하는 것을 특징으로 하는 가역 고분자전해질막 연료전지를 이용한 기능수 제조장치.


















The method according to claim 1,
And the electrolytic mode is automatically performed at an electromotive force lower than a predetermined dissolved hydrogen concentration by checking the real-time voltage by executing the fuel cell mode, whereby the dissolved hydrogen concentration is maintained at a predetermined range or more. Functional water producing device using an electrolyte membrane fuel cell.


















KR1020160134356A 2016-10-17 2016-10-17 Functional water producing device using reversible polymer electrolyte membrane fuel cell KR101732659B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160134356A KR101732659B1 (en) 2016-10-17 2016-10-17 Functional water producing device using reversible polymer electrolyte membrane fuel cell
PCT/KR2017/011452 WO2018074811A1 (en) 2016-10-17 2017-10-17 Apparatus for manufacturing functional water using reversible polymer electrolyte membrane fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160134356A KR101732659B1 (en) 2016-10-17 2016-10-17 Functional water producing device using reversible polymer electrolyte membrane fuel cell

Publications (1)

Publication Number Publication Date
KR101732659B1 true KR101732659B1 (en) 2017-05-24

Family

ID=59051333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160134356A KR101732659B1 (en) 2016-10-17 2016-10-17 Functional water producing device using reversible polymer electrolyte membrane fuel cell

Country Status (2)

Country Link
KR (1) KR101732659B1 (en)
WO (1) WO2018074811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074811A1 (en) * 2016-10-17 2018-04-26 한동하이드로 주식회사 Apparatus for manufacturing functional water using reversible polymer electrolyte membrane fuel cell
WO2020141699A1 (en) * 2018-12-31 2020-07-09 (주)마그테크놀러지 Method for producing hydrogen water for beverages, beverage making equipment using same, and beverage produced thereby
WO2020185055A1 (en) * 2019-03-08 2020-09-17 김형석 Apparatus and method for generating/supplying cosmetic water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI128890B (en) * 2019-09-12 2021-02-26 Lappeenrannan Lahden Teknillinen Yliopisto Lut A system and a method for alkaline water electrolysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082212A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Cosmetic appliance incorporating reduced water mist generating device
KR101408885B1 (en) 2007-06-15 2014-06-19 삼성에스디아이 주식회사 Fuel composition for polymer electrolyte fuel cell polymer electrolyte fuel cell system comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938653A (en) * 1995-07-27 1997-02-10 Nec Corp Production of electrolyzed ionic water and device therefor
JP5545378B2 (en) * 2011-02-16 2014-07-09 トヨタ自動車株式会社 Fuel cell system and vehicle equipped with the same
KR101278455B1 (en) * 2011-05-23 2013-07-01 문상봉 The portable water generator containing hydrogen gas or containing oxygen gas
ES2727794T3 (en) * 2015-03-30 2019-10-18 Nantenergy Inc Water management system in electrochemical cells with steam return comprising air electrodes
KR101732659B1 (en) * 2016-10-17 2017-05-24 한동하이드로 주식회사 Functional water producing device using reversible polymer electrolyte membrane fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408885B1 (en) 2007-06-15 2014-06-19 삼성에스디아이 주식회사 Fuel composition for polymer electrolyte fuel cell polymer electrolyte fuel cell system comprising same
JP2010082212A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Cosmetic appliance incorporating reduced water mist generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074811A1 (en) * 2016-10-17 2018-04-26 한동하이드로 주식회사 Apparatus for manufacturing functional water using reversible polymer electrolyte membrane fuel cell
WO2020141699A1 (en) * 2018-12-31 2020-07-09 (주)마그테크놀러지 Method for producing hydrogen water for beverages, beverage making equipment using same, and beverage produced thereby
WO2020185055A1 (en) * 2019-03-08 2020-09-17 김형석 Apparatus and method for generating/supplying cosmetic water

Also Published As

Publication number Publication date
WO2018074811A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
KR101732659B1 (en) Functional water producing device using reversible polymer electrolyte membrane fuel cell
EP2857555B1 (en) High-concentration hydrogen gas supply device for living bodies
JP3689541B2 (en) Seawater electrolyzer
ATE509143T1 (en) ELECTROCHEMICAL CELL WITH GAS DIFFUSION ELECTRODES
RU2011103517A (en) SYSTEM OF SOUND CHEMICAL PRODUCTION OF HYDROGEN USING CAVITATION
JP2011526965A5 (en)
KR20160133617A (en) Ultrasonic generating apparatus for hydrogen water mist
JP2007007591A (en) Electrolylic water and its production method
KR100761099B1 (en) An apparatus and method for manufacturing reducing hydrogen water using brown's gas, and an apparatus and method for manufacturing for reducing hydrogen drinking water using brown's gas
AU2004293566B2 (en) Method and device for producing one or several gases
US20220282382A1 (en) Unlimited Energy Storage of Ammonia
KR101900752B1 (en) Device and method for treating indoor carbon dioxide
CN102897874A (en) Method for preparing bactericide
JP5100911B1 (en) High concentration hydrogen gas supply device for living body
CN214734714U (en) Electrolytic tank and device for preparing metal ion-free EOW
JPH0938653A (en) Production of electrolyzed ionic water and device therefor
EP3929329A1 (en) Portable hydrogen-containing ozone water humidifier
CN1249361A (en) Apparatus and method for electrochemically producing oxygen with air cathode
CN207811883U (en) The hydrogen-rich cup of electrolysis is participated in using activated carbon
CN111411369A (en) Device and process for preparing acid-base water by electrochemical method and capable of reducing cost
KR20160097177A (en) Electrochemical reduction method of carbon dioxide and apparatus therefor
CN213460477U (en) Negative oxygen ion generating device containing hydrogen
CN206486607U (en) A kind of hypochlorite generator
CN213569644U (en) Electrolytic hydrogen-rich water machine
CN104047018A (en) Hydrogen-rich electrolysis method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant