KR101732010B1 - 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유 - Google Patents

매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유 Download PDF

Info

Publication number
KR101732010B1
KR101732010B1 KR1020160099425A KR20160099425A KR101732010B1 KR 101732010 B1 KR101732010 B1 KR 101732010B1 KR 1020160099425 A KR1020160099425 A KR 1020160099425A KR 20160099425 A KR20160099425 A KR 20160099425A KR 101732010 B1 KR101732010 B1 KR 101732010B1
Authority
KR
South Korea
Prior art keywords
cladding layer
hollow
thermal expansion
coefficient
time delay
Prior art date
Application number
KR1020160099425A
Other languages
English (en)
Inventor
이원규
박창용
유대혁
허명선
김휘동
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020160099425A priority Critical patent/KR101732010B1/ko
Priority to PCT/KR2016/013444 priority patent/WO2018026062A1/ko
Application granted granted Critical
Publication of KR101732010B1 publication Critical patent/KR101732010B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02309Structures extending perpendicularly or at a large angle to the longitudinal axis of the fibre, e.g. photonic band gap along fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

본 발명의 일 실시예에 따르면, 공기 또는 진공 매질의 중공 코어층; 복수의 튜브 패턴을 포함하며 코어층을 둘러싸고
Figure 112016075894824-pat00030
미만의 열팽창계수를 가지는 물질로 이루어지는 미세구조 클래딩층; 및 미세구조 클래딩층을 둘러싸며
Figure 112016075894824-pat00031
미만의 열팽창계수를 가지는 물질로 이루어지는 외부 클래딩층(outer cladding)을 포함하는 광밴드갭 중공 광섬유를 제공한다.

Description

매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유{Hollow-core photonic bandgap fiber with ultra-low thermal coefficient of propagation delay}
본 발명의 일실시예는 중공 광섬유에 관한 것으로, 보다 구체적으로는 광섬유 간섭계, 센서, 레이저, 정밀 동기 신호 전송, 이동형 광주파수 표준기 등에 사용될 수 있는 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유에 관한 것이다.
광섬유는 입사된 광선을 길이 방향으로 도파시킬 수 있는 유리 섬유 또는 플라스틱 섬유를 의미하고, 통상적으로 높은 굴절률을 가지는 실리카 코어층과 코어층을 둘러싸고 있으며, 코어층에 비해 상대적으로 낮은 굴절률을 가지는 클래딩층으로 이루어져 있다. 이에 따라 광섬유는 입사된 광선이 내부에서 전반사 현상을 일으키도록 하여 빛을 도파시킬 수 있다.
통상적인 중공 광섬유(hollow optical fiber)는 코어층에서의 흡수로 인한 빛의 통과 손실을 줄이기 위해 코어층을 실리카 없이 빈 형태로 제작한다. 이 경우에는 코어층의 굴절률이 클래딩층의 굴절률보다 낮기 때문에 전반사에 의한 빛의 도파는 불가능하다.
이에 비해 광밴드갭 중공 광섬유(hollow-core photonic bandgap fiber)는 코어층 둘레에 주기적인 격자 모양의 미세구조를 가지는 클래딩층(micro-structured cladding)을 두어서 2차원 광밴드갭을 형성하여 빈 코어층을 따라 길이 방향으로 전반사에 의한 빛의 도파가 가능하다. (R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air", Science, Vol. 285, pp. 1537 (1999)), (L. Forbes, and J. E. Geusic, "Hollow core photonic band gap optical fiber", US patent number 6,950,585 B2 (2005))
빛이 광섬유를 통과하는데 걸리는 시간은 광섬유의 온도 변화에 따라 바뀌게 되는데, 일반적인 광통신이나 광섬유를 통한 빛 에너지의 전달을 목적으로 할 때에는 이러한 변화가 큰 영향이 없다. 그러나, 광섬유를 통해 동기 신호를 전송하는 경우나 광섬유 간섭계를 이용한 센서 등에서는 이러한 지연시간의 온도에 따른 민감도를 얼마나 줄이는 가에 따라 궁극적인 성능이 결정된다.
앞에서 기술한 분야에서의 응용을 위해 지연시간의 온도에 따른 민감도를 줄이려는 다양한 시도들이 이루어져 왔다.
먼저, 일반적인 단일모드 광섬유에 음의 열팽창계수(CTE; coefficient of thermal expansion)를 가지는 물질(예를 들어 특수한 액정 고분자 물질)을 코팅하여 시간지연 온도계수를 보상하는 방법이다(R. Kashyap et al., "Temperature desensitization of delay in optical fibers", US patent number 4,923,278 (1990)). Furukawa Electric 사에서는 이러한 원리로 제품명 <Phase stabilized optical fiber cable>을 개발하였고, 0℃와 35℃ 사이에서 5 ps/km/K의 시간지연 온도계수를 가진다. Linden Photonics 사에서도 유사한 원리를 사용하여 7 ps/km/K 이하의 시간지연 온도계수를 가지는 광섬유 케이블을 개발하였다. (M. Bousonville, M. K. Bock, M. Felber, T. Ladwig, T. Lamb, H. Schlarb, S. Schulz, C. Sydlo, S. Hunziker, P. Kownacki, and S. Jablonski, "New phase stable optical fiber", Proceedings of BIW2012)
한편, 전술한 광밴드갭 중공 광섬유를 이용한 방법이 있다. 실리카로 이루어진 광밴드갭 중공 광섬유를 예로 들면, 99% 이상의 빛이 공기 매질의 중공을 통해 전파하기 때문에, 굴절률이 1에 가깝고, 온도에 따른 굴절률의 변화가 매우 작다. 그리하여 온도에 따른 굴절률 변화가 미치는 영향을 거의 무시할 수 있고, 온도에 의한 길이 변화의 영향도 굴절률의 비만큼 작아지므로 전체적인 시간지연 온도계수가 1.4 ps/km/K로서, 액정 고분자 물질을 코팅하는 것보다 더 좋은 성능을 보일 것으로 기대된다. V. Dangui 등은 이러한 원리를 사용하여 일반적인 실리카 코어층을 가지는 광섬유보다 6배 작은 시간지연 온도계수의 결과를 얻었다(V. Dangui, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers", Opt. Express, Vol. 13, No. 18, pp. 6669 (2005)), (M. J. F. Digonnet, H. K. Kim, V. Dangui, G. S. Kino, "Optical sensor utilizing hollow-core photonic bandgap fiber with low phase thermal constant", US patent numbet 7,619,743 B2 (2009)), (M. J. F. Digonnet, H. K. Kim, V. Dangui, G. S. Kino, "Optical sensor utilizing hollow-core photonic bandgap fiber with low phase thermal constant", US patent numbet 7,911,620 B2 (2011)). 또한, R. Slavik 등은 좀더 큰 중공을 가지는 광밴드갭 중공 광섬유를 제작하여 2.0 ps/km/K 의 값을 얻어 그 당시 가장 낮은 값의 시간지연 온도계수를 가지는 광섬유를 구현하였고 이는 이론적인 기대 성능인 1.4 ps/km/K에 가깝다(R. Slavik, G. Marra, E. N. Fokoua, N. Baddela, N. V. Wheeler, M. Petrovich, F. Poletti, and D. J. Richardson, "Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres", Scientific Reports, Vol 5, 15447 (2015)).
본 발명이 이루고자 하는 기술적 과제는 시간지연 온도계수를 최소화함으로써 신뢰성, 정확성을 크게 향상시킬 수 있는 중공 광섬유를 제공하는데 있다.
또한, 기존의 일반적인 실리카 코어층을 이용한 광섬유에 비교하여 200배 이상의 열적 안정성을 확보할 수 있으며, 실리카로 제작한 중공 광섬유보다 10배 이상의 열적 안정성을 확보할 수 있는 새로운 중공 광섬유를 제공하는데 있다.
본 발명의 실시예에 따르면 공기 또는 진공 매질의 중공 코어층; 복수의 튜브 패턴을 포함하며 상기 중공 코어층을 둘러싸고
Figure 112016075894824-pat00001
미만의 열팽창계수를 가지는 물질로 이루어지는 미세구조 클래딩층; 및 상기 미세구조 클래딩층을 둘러싸며
Figure 112016075894824-pat00002
미만의 열팽창계수를 가지는 물질로 이루어지는 외부 클래딩층(outer cladding)을 포함하는 중공 광섬유를 제공한다.
상기 미세구조 클래딩층 또는 상기 외부 클래딩층은 실리카-티타니아, 합성 쿼츠 및 유리-세라믹 중 적어도 하나로 이루어질 수 있다.
상기 미세구조 클래딩층 또는 상기 외부 클래딩층은 실리카-티타니아로 이루어질 수 있다.
상기 미세구조 클래딩층 또는 상기 외부 클래딩층에서 상기 티타니아의 함유량은 1~10 wt.%일 수 있다.
상기 중공 광섬유는 0℃ 와 35℃ 의 온도 사이에서 0.17 내지0.67 ps/km/K 의 시간지연 온도계수를 가질 수 있다.
본 발명인 광밴드갭 중공 광섬유는 시간지연 온도계수를 최소화함으로써 신뢰성, 정확성을 크게 향상시킬 수 있다.
또한, 기존 실리카를 이용한 광밴드갭 중공 광섬유에 비교하여 전파되는 빛의 지연시간에 대하여 10배 이상의 열적 안정성을 확보할 수 있다.
도1은 본 발명의 일실시예에 따른 광밴드갭 중공 광섬유의 개념도이고,
도2 내지 도5는 본 발명의 실시예에 따른 미세구조 클래딩층 또는 외부 클래딩층의 열팽창계수의 예시도이고,
도6은 영의 값을 가지는 열팽창계수를 보이기 위해 일실시예에 따라 측정된 미세구조 클래딩층 또는 외부 클래딩층의 열팽창계수의 예시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도1은 본 발명의 일실시예에 따른 광밴드갭 중공 광섬유의 개념도이다.
도1을 참조하면, 본 발명의 일실시예에 따른 중공 광섬유는 공기 또는 진공 매질의 중공 코어층(10); 복수의 튜브 패턴을 포함하며 중공 코어층(10)을 둘러싸고
Figure 112016075894824-pat00003
미만의 열팽창계수를 가지는 물질로 이루어지는 미세구조 클래딩층(20); 미세구조 클래딩층(20)을 둘러싸며
Figure 112016075894824-pat00004
미만의 열팽창계수를 가지는 물질로 이루어지는 외부 클래딩층(outer cladding)(30); 및 외부 클래딩층을 둘러싸는 재킷층(jacket)(40)을 포함하여 구성될 수 있다.
중공 광섬유의 형상은 단면을 기준으로 원형이 일반적이나, 타원형이나 다각형(삼각형, 사각형 등)도 가능하며, 특히 얇은 플레이트(박판) 형상도 가능하다.
중공 광섬유의 길이와 직경은 특별히 제한되지 않으며, 예를 들어 약 40mm일 수 있으며, 직경은 100um일 수 있다.
중공 광섬유에서 단일모드로 전파할 수 있는 빛의 파장은 중공 코어층의 크기와 미세구조 클래딩층의 구조에 의해 결정되며 300 nm 에서 2500 nm 사이의 값을 가질 수 있다.
제작된 중공 광섬유에 대하여 더 낮은 열팽창계수를 얻기 위한 열처리(annealing)를 할 수 있다.
미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 실리카-티타니아, 합성 쿼츠 및 유리-세라믹 중 적어도 하나로 이루어질 수 있다.
미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 실리카-티타니아로 이루어질 수 있다.
미세구조 클래딩층(20) 또는 외부 클래딩층(30)에서 티타니아의 함유량은 1~10 wt.%일 수 있다.
중공 광섬유는 0℃ 와 35℃ 의 온도 사이에서 0.17 내지0.67 ps/km/K 의 시간지연 온도계수를 가질 수 있다.
일반적으로 코어층(10)의 굴절률을 n, 중공 광섬유의 길이를 L이라고 했을 때 빛이 통과하는데 소요되는 시간(τ)는 아래 수학식 1에 따라 정의될 수 있다.
[수학식 1]
Figure 112016075894824-pat00005
수학식 1에서 c는 진공 상태에서의 빛의 속도를 의미한다.
이러한 빛의 지연시간은 매질인 광섬유의 총 길이에 비례하며 단위길이당 지연시간은 아래 수학식 2와 같이 정의될 수 있다.
[수학식 2]
Figure 112016075894824-pat00006
수학식 2에서 T는 매질인 중공 광섬유의 온도를 의미한다.
수학식 2를 참조하면 단위길이당 지연시간은 2개의 파라미터에 영향을 받는다. 즉, 단위길이당 지연시간은 온도에 따른 굴절률 변화와 길이 변화에 영향을 받게 됨을 확인할 수 있다. 이를 각각 아래 수학식 3과 수학식 4와 같이 정의하기로 한다.
[수학식 3]
Figure 112016075894824-pat00007
[수학식 4]
Figure 112016075894824-pat00008
수학식 3 내지 4에서 Sn은 온도에 의한 굴절률 변화에 따른 시간지연의 온도계수이고, SL은 길이의 열팽창에 따른 시간지연의 온도계수이다.
일반적인 광섬유 코어층의 매질로 쓰이는 실리카를 예로 들면, 1550 nm의 파장대에서
Figure 112016075894824-pat00009
,
Figure 112016075894824-pat00010
,
Figure 112016075894824-pat00011
로 주어지므로, 실리카 코어층의 Sn과 SL은 각각 아래 수학식 5와 수학식 6과 같이 계산된다.
[수학식 5]
Figure 112016075894824-pat00012
[수학식 6]
Figure 112016075894824-pat00013
따라서, 일반적인 실리카 광섬유의 경우에는 위 두 항의 합인 39 ps/km/K의 시간지연 온도계수를 가지게 된다.
본 발명의 실시예에서 중공 코어층(10)은 진공화되어 있거나 또는 공기, 가스 등에 의해 충진 되어 있을 수 있다. 일반적으로 광밴드갭 중공 광섬유에서는 99% 이상의 빛이 진공, 혹은 공기 매질의 중공 코어층(10)을 통해 전파하기 때문에, 굴절률 n이 1에 가깝고, 온도에 따른 굴절률의 변화가 매우 작으므로 Sn도 매우 작은 값을 가질 수 있다. 일실시예로서 0.5%의 빛이 실리카-티타니아로 이루어진 미세구조 클래딩층(20)을 통해 전파될 경우 온도에 의한 굴절률 변화에 따른 시간지연의 온도계수 (Sn)는 아래 수학식7과 같이 연산된다.
[수학식 7]
Figure 112016075894824-pat00014
위 수학식7의 계산값은 미세구조 클래딩층(20) 구조의 최적화를 통해 더 작은 값을 가질 수 있다.
본 발명의 실시예에서 미세구조 클래딩층(20)는 중공 코어층(10) 안에서 전파 광을 구속하는 광 밴드 갭 구조를 형성하기 위하여 반복적인 패턴으로 배치된 복수의 속이 빈 튜브를 포함할 수 있다. 예를 들면 튜브는 중공 코어층(10)의 주위에 있어서 벌집구조의 복수의 동심 삼각형을 이루도록 배치되어 있다. 예시되는 튜브 패턴은 삼각형이지만 이에 한정되지는 않으며 중공 코어층(10)의 직경, 미세구조 클래딩층(20)의 직경 및 튜브의 사이즈, 형상 및 간격은 다양하게 변경 가능하다. 튜브패턴은 서로 평행하게 중공 광섬유의 길이 방향을 따라 연장되어 있으며, 이에 의해 튜브 패턴은 삼각형 그리드 패턴을 나타낼 수 있다.
미세구조 클래딩층(20)의 재료는 열팽창계수(
Figure 112016075894824-pat00015
)가 실리카의 열팽창계수(
Figure 112016075894824-pat00016
)보다 작으면서 빛의 투과 손실이 작은 유리(glass)와 유리-세라믹(glass ceramic)을 포함한다. 예를 들면, 실리카-티타니아 물질, 합성 쿼츠(synthetic quartz), 또는 유리-세라믹으로 이루어질 수 있다. 도2를 참조하면, 본 발명의 실시예에 따른 미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 실리카-티타니아 물질로 이루어질 수 있고 티타니아의 함유량은 1~10 wt.%일 수 있으며 0℃ 와 35℃ 사이에서
Figure 112016075894824-pat00017
이하의 열팽창계수를 가질 수 있다. 또는 실리카-티타니아 물질로 이루어질 수 있고 0℃ 와 35℃ 사이에서
Figure 112016075894824-pat00018
이하의 열팽창계수를 가진다. 이로부터 이 두 물질의 길이의 열팽창에 따른 시간지연의 온도계수 SL는 각각 0.15 ps/km/K 이하, 0.5 ps/km/K 이하로 주어진다.
도3을 참조하면, 본 발명의 실시예에 따른 미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 합성 쿼츠 물질로 되어 있고 0℃ 와 35℃ 사이에서
Figure 112016075894824-pat00019
이하의 열팽창계수를 가진다. 이로부터 이 물질의 길이의 열팽창에 따른 시간지연의 온도계수 SL는 0.25 ps/km/K 이하로 주어진다.
도4를 참조하면, 본 발명의 실시예에 따른 미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 유리-세라믹으로 되어 있고, 0℃ 와 50℃ 사이에서
Figure 112016075894824-pat00020
이하의 열팽창계수를 가진다. 이로부터 이 물질의 길이의 열팽창에 따른 시간지연의 온도계수 SL는 0.05 ps/km/K 이하로 주어진다.
도5를 참조하면, 본 발명의 실시예에 따른 미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 유리-세라믹으로 되어 있고, 0℃ 와 50℃ 사이에서
Figure 112016075894824-pat00021
이하의 열팽창계수를 가진다. 이로부터 이 물질의 길이의 열팽창에 따른 시간지연의 온도계수 SL는 0.10 ps/km/K 이하로 주어진다.
도2 내지 도5를 참조하면, 실리카-티타니아 물질, 합성 쿼츠(synthetic quartz), 또는 유리-세라믹 물질을 사용한 광밴드갭 중공 광섬유에서 길이의 열팽창에 따른 시간지연의 온도계수 (SL)는 클래딩층을 구성하는 물질의 종류에 따라 0℃ 와 35℃ 사이에서 0.05 ~ 0.5 ps/km/K 이하로 주어진다.
한편, 도2 내지 도5를 참조하면 본 발명의 실시예에 따른 미세구조 클래딩층(20) 또는 외부 클래딩층(30)은 특정 온도에서 열팽창계수가 영의 값이 되는 성질을 가질 수 있다. 도6은 영의 값을 가지는 열팽창계수를 보이기 위해 일실시예에 따라 측정된 본 발명의 실시예에 따른 클래딩층의 열팽창계수의 예시도이다.
도6을 참조하면 이 예에서 CTE(T)=
Figure 112016075894824-pat00022
로 주어지고 열팽창계수가 영의 값이 되는 온도(T0)는 34.7℃이다. 이 경우에 중공 광섬유의 온도를 T0 ± 1℃의 범위 내에서 안정화한다면 열팽창계수의 값은
Figure 112016075894824-pat00023
이하로 주어지고, 이로부터 길이의 열팽창에 따른 시간지연의 온도계수 (SL)는 0.003 ps/km/K 이하로 주어진다. 본 실시예에서 열팽창계수가 영의 값이 되는 온도는 2℃ ~ 40℃ 사이에서 조절 가능하며, 초음파의 진행 속도를 측정함으로써 열팽창계수가 영의 값이 되는 온도를 측정할 수 있다. 본 발명에서 외부 클래딩층(30)은 미세구조 클래딩층(20)을 둘러싸 보호하는 역할을 한다. 외부 클래딩층(30)의 재료는 미세구조 클래딩층(20)과 같이 열팽창계수(
Figure 112016075894824-pat00024
)가 실리카의 열팽창계수(
Figure 112016075894824-pat00025
)보다 작으면서 빛의 투과 손실이 작은 유리(glass)와 유리-세라믹(glass ceramic)을 포함한다. 구체적인 재료의 예시와 길이의 열팽창에 따른 시간지연의 온도계수 SL의 예시는 미세구조 클래딩층(20)에서 설명한 바와 같다.
재킷층(40)의 영향을 무시할 때, 본 발명의 실시예에 따른 광밴드갭 중공 광섬유의 전체적인 시간지연 온도계수(Sn + SL)은 미세구조 클래딩층(20) 또는 외부 클래딩층(30)을 구성하는 물질의 종류에 따라 0℃ 와 35℃ 사이에서 (0.17+0.05) ~ (0.17+0.5) ps/km/K 이하, 즉 0.22 ~ 0.67 ps/km/K 이하로 주어질 수 있다. 열팽창계수가 영의 값이 되는 온도 근처에 한정한다면, 이 때는 주로 굴절률의 열팽창에 따른 시간지연의 온도계수(Sn)의 기여에 의하여 전체적인 시간지연 온도계수(Sn + SL)가 0.17 ps/km/K 이하로 주어지게 된다. 또한, 온도에 의한 굴절률 변화에 따른 시간지연의 온도계수(Sn)는 미세구조 클래딩층(20)의 최적화를 통해 더 작은 값을 가질 수 있다.
본 발명에서 재킷층(40)은 외부 클래딩층(30)의 외주면을 따라 외부 클래딩층(30)을 둘러싸 보호한다. 재킷층(40)의 재료는 주로 아크릴레이트(acrylate) 등의 고분자 물질을 사용하는데, 그 열팽창계수가 실리카의 100 배보다 크므로, 광밴드갭 중공 광섬유에 스트레스를 주어서 광밴드갭 중공 광섬유의 열팽창계수를 커지게 할 수 있다. 그러므로, 본 발명의 실시예에서는 얇은 두께와 낮은 열팽창계수를 가지며 부드러운 (낮은 영의 계수를 가지는) 물질로 재킷층을 만드는 것이 선호된다.
또한, 본 발명에서의 광밴드갭 중공 광섬유는 경우에 따라 재킷층(40)이 생략된 구조를 가질 수 있다. 혹은 음의 열팽창계수를 가지는 물질로 재킷층(40)을 만들어 광섬유의 전체적인 시간지연 온도계수(Sn + SL)를 보상하여 0.17 ps/km/K 이하의 값도 가능할 수 있다.
위에 따른 비교수치는 여러가지 실험 환경에 의해서 소정의 차이가 발생할 수 있다.
본 발명에서는 일반적인 실리카 재질을 대체하여 광밴드갭 중공 광섬유의 매질로서 열팽창계수(CTE; coefficient of thermal expansion;
Figure 112017011571052-pat00026
)가 실리카의 열팽창계수인
Figure 112017011571052-pat00027
보다 작은 초저팽창 물질(ULEM; Ultra-Low Expansion Material)을 사용하여 과제를 해결한다. 초저팽창 물질은 빛의 투과 손실이 작으면서도 낮은 열팽창계수를 가지는 유리(glass)와 유리-세라믹(glass ceramic)을 포함하며, 그 예를 들면, Corning 사의 low expansion glass (상표명 ULE 또는 TSG), Asahi Glass 사의 low thermal expansion glass (상표명 AZ), Ohara Corporation 사의 ultra-low expansion glass-ceramics (상표명 CLEARCERAM®-Z), Schott 사의 low expansion glass ceramic (상표명 Zerodur) 등이 있다.
본 발명의 실시예에 따른 광 밴드갭 중공 광섬유는 예를 들면, 레이저로 동기 신호를 보내는 시스템(선형 입자 가속기, 싱크로트론 가속기, 전파망원경 어레이, 자유전자 레이저 등), 광섬유 간섭계를 이용하는 광센서들(광학 자이로스코프 등), 광섬유를 통한 정확한 시간 및 주파수의 전송, 이동형 광주파수 표준기, 광소자(예를 들어 광전발진기-optoelectronic oscillator), 광섬유레이저, 광섬유 간섭계를 이용한 낮은 주파수 잡음을 가지는 레이저 제작 등에 이용될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
10: 중공 코어층
20: 미세구조 클래딩층
30: 외부 클래딩층
40: 재킷층

Claims (5)

  1. 공기 또는 진공 매질의 중공 코어층;
    복수의 튜브 패턴을 포함하며 상기 중공 코어층을 둘러싸고
    Figure 112017011571052-pat00038
    미만의 열팽창계수를 가지는 물질로 이루어지는 미세구조 클래딩층; 및
    상기 미세구조 클래딩층을 둘러싸며
    Figure 112017011571052-pat00039
    미만의 열팽창계수를 가지는 물질로 이루어지는 외부 클래딩층(outer cladding)을 포함하는 중공 광섬유에 있어서,
    상기 중공 광섬유의 시간 지연 온도계수는 온도에 의한 굴절률 변화에 따른 시간지연의 온도계수 및 길이의 열팽창에 따른 시간지연의 온도계수를 포함하며,
    상기 길이의 열팽창에 따른 시간지연의 온도계수는 상기 미세구조 클래딩층 및 상기 외부 클래딩층의 열팽창 계수에 따라 0℃ 와 35℃ 사이에서 0.5 ps/km/K 이하의 값을 가지는 중공 광섬유.
  2. 제1항에 있어서,
    상기 미세구조 클래딩층 또는 상기 외부 클래딩층은 실리카-티타니아, 합성 쿼츠 및 유리-세라믹 중 적어도 하나로 이루어지는 중공 광섬유.
  3. 제1항에 있어서,
    상기 미세구조 클래딩층 또는 상기 외부 클래딩층은 실리카-티타니아로 이루어지는 중공 광섬유.
  4. 제3항에 있어서,
    상기 미세구조 클래딩층 또는 상기 외부 클래딩층에서 상기 티타니아의 함유량은 1~10 wt%인 중공 광섬유.
  5. 제1항에 있어서,
    상기 중공 광섬유는 0℃ 와 35℃ 의 온도 사이에서 0.17 내지0.67 ps/km/K 의 시간지연 온도계수를 가지는 중공 광섬유.
KR1020160099425A 2016-08-04 2016-08-04 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유 KR101732010B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160099425A KR101732010B1 (ko) 2016-08-04 2016-08-04 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유
PCT/KR2016/013444 WO2018026062A1 (ko) 2016-08-04 2016-11-22 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160099425A KR101732010B1 (ko) 2016-08-04 2016-08-04 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유

Publications (1)

Publication Number Publication Date
KR101732010B1 true KR101732010B1 (ko) 2017-05-04

Family

ID=58743212

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160099425A KR101732010B1 (ko) 2016-08-04 2016-08-04 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유

Country Status (2)

Country Link
KR (1) KR101732010B1 (ko)
WO (1) WO2018026062A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180289B1 (ko) 2011-01-13 2012-09-07 연세대학교 산학협력단 하이브리드 광결정광섬유 및 이의 제조방법.
KR101544683B1 (ko) 2010-06-08 2015-08-13 가부시키가이샤 구라레 복합형 광섬유 및 그 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952735A (ja) * 1995-06-09 1997-02-25 Showa Electric Wire & Cable Co Ltd 光ファイバ
JP2009543065A (ja) * 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ ブラッグファイバーを用いた光ファイバーセンサ
US8385703B2 (en) * 2010-03-02 2013-02-26 Corning Incorporated High numerical aperture multimode optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544683B1 (ko) 2010-06-08 2015-08-13 가부시키가이샤 구라레 복합형 광섬유 및 그 제조 방법
KR101180289B1 (ko) 2011-01-13 2012-09-07 연세대학교 산학협력단 하이브리드 광결정광섬유 및 이의 제조방법.

Also Published As

Publication number Publication date
WO2018026062A1 (ko) 2018-02-08

Similar Documents

Publication Publication Date Title
US20220011502A1 (en) Hollow-core optical fibers
Wadsworth et al. Very high numerical aperture fibers
Yablon et al. Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses
JP6657087B2 (ja) 偏光及び偏波保持漏洩チャネルファイバ
Jin et al. Sensing with hollow-core photonic bandgap fibers
Zhang et al. Polarization-dependent coupling in twin-core photonic crystal fibers
AU2004200003A1 (en) Microstructured optical fiber
JP2009528575A (ja) コア間カップリングを備えたマルチコアフォトニックバンドギャップファイバ
Gupta Optoelectronic Devices and Systems
Song et al. Advanced interferometric fiber optic gyroscope for inertial sensing: A review
CN108919418B (zh) 单层孔低损耗混合导光光子晶体光纤
Bradley et al. Towards low loss hollow core optical fibers
CN113721318A (zh) 一种光纤陀螺的空芯保偏光子晶体光纤及制备方法
KR101732010B1 (ko) 매우 낮은 시간지연 온도계수를 가지는 광밴드갭 중공 광섬유
Gao et al. Low-loss hollow-core photonic bandgap fiber with isolated anti-resonance layer
CN112859235B (zh) 一种具备角向模式选择性的空芯微结构光纤
Amy Van Newkirk et al. Anti-resonant hollow core fiber for precision timing applications
Bourdine et al. Six-core GeO2-doped silica microstructured optical fiber with induced chirality
Borzycki et al. Hollow-Core Optical Fibers for Telecommunications and Data Transmission
Li et al. Bow-tie holes-aided elliptical-core polarization-maintaining fiber with high birefringence
Han et al. Low loss negative curvature fiber with circular internally tangent nested tube in elliptical tubes
Denisov et al. Microstructured fiber with high-birefringence and low mode field non-circularity
Chenard et al. Novel hollow-core chalcogenide fiber with anti-resonant arches for high-power infrared laser transmission
Huy et al. Passive temperature-compensating technique for microstructured fiber Bragg gratings
Yu et al. All fiber Mach-Zehnder interferometer for temperature sensing based on Kagome hollow-core photonic crystal fiber

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant