KR101722875B1 - Preparing method of MoS2/carbon nanocomposites - Google Patents

Preparing method of MoS2/carbon nanocomposites Download PDF

Info

Publication number
KR101722875B1
KR101722875B1 KR1020160041625A KR20160041625A KR101722875B1 KR 101722875 B1 KR101722875 B1 KR 101722875B1 KR 1020160041625 A KR1020160041625 A KR 1020160041625A KR 20160041625 A KR20160041625 A KR 20160041625A KR 101722875 B1 KR101722875 B1 KR 101722875B1
Authority
KR
South Korea
Prior art keywords
mos
carbon nanocomposite
carbon
precursor
particles
Prior art date
Application number
KR1020160041625A
Other languages
Korean (ko)
Inventor
박경원
이규호
최희선
김시진
김민철
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020160041625A priority Critical patent/KR101722875B1/en
Application granted granted Critical
Publication of KR101722875B1 publication Critical patent/KR101722875B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • C01B31/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Abstract

The present invention relates to a method for producing a MoS_2-carbon nanocomposite. The method for producing the MoS_2-carbon nanocomposite is a novel method enabling the synthesis of both pure MoS_2 and the MoS_2-carbon nanocomposite in a simple and effective way. When the MoS_2-carbon nanocomposite produced by the production method is used in lithium secondary batteries as a negative electrode active material, it is possible to improve electrochemical properties while ensuring excellent circulation stability.

Description

MoS2/카본 나노복합체 제조방법{Preparing method of MoS2/carbon nanocomposites}Preparation method of MoS2 / carbon nanocomposites [

본 발명은 MoS2/카본 나노복합체 제조방법에 관한 것이다.The present invention relates to a method for producing MoS 2 / carbon nanocomposite.

최근 전기자동차의 상용화를 위한 고용량, 고출력 이차전지의 연구가 활발히 진행되고 있다. 리튬 이차전지는 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화, 환원 반응에 의해 전기적 에너지를 생성한다.Recently, researches on high capacity and high power secondary batteries for the commercialization of electric vehicles have been actively conducted. Lithium secondary batteries are produced by charging an organic electrolyte or a polymer electrolyte between an anode and a cathode, and generate electrical energy by oxidation and reduction reactions when lithium ions are inserted and removed from the anode and the cathode.

대표적인 음극재료인 카본재는 372 mAh/g의 낮은 이론용량으로 대용량 어플리케이션에는 적합하지 않아 고용량 음극재료의 개발이 요구된다.The carbon material, which is a typical negative electrode material, is not suitable for high capacity applications with a low theoretical capacity of 372 mAh / g, and development of a high capacity cathode material is required.

이에 카본재를 대체할 수 있는 새로운 물질로서 2성분 황화물이 연구되고 있으며, 특히 이황화몰리브덴(MoS2)은 높은 이론적 용량으로 카본재 대체 음극물질로서 주목받고 있으나, MoS2는 낮은 전기전도도 및 낮은 수명특성이 문제점으로 지적되고 있어 상용화하기 어려운 실정이다.Molybdenum disulfide (MoS 2 ) has attracted attention as a cathode material substituting for carbon materials with a high theoretical capacity, but MoS 2 has a low electric conductivity and low lifetime Characteristics are pointed out as problems and it is difficult to commercialize them.

따라서, 간단한 제조공정을 통해 제조되며 MoS2의 낮은 전기전도도를 보완해주며 리튬 이차전지의 전기화학적 능력을 향상시키기 위한 나노복합체 리튬 이차전지 음극소재에 대한 연구 개발이 절실한 상황이다.Therefore, the research and development of nanocomposite lithium secondary battery anode materials to improve the electrochemical capability of lithium secondary batteries, which are manufactured through a simple manufacturing process and complement the low electric conductivity of MoS 2 , are in desperate situation.

대한민국 공개특허 제2016-0014845호Korean Patent Publication No. 2016-0014845

본 발명의 목적은 제조방법에 의해 제조된 MoS2/카본 나노복합체를 리튬 이차전지의 음극활물질로 이용함으로써 리튬 이차전지의 높은 순환안정성을 제공하며 전기화학적 특성을 개선시키는 데에 있다.An object of the present invention is to improve the electrochemical characteristics of a lithium secondary battery using the MoS 2 / carbon nanocomposite prepared by the production method as a negative electrode active material of a lithium secondary battery, thereby providing a high cyclic stability of the lithium secondary battery.

상기 목적을 달성하기 위하여, 본 발명은 몰리브덴 전구체 및 황 전구체를 산 용액에 넣고 교반시키는 단계(제1단계); 상기 교반된 혼합용액에 아민 화합물을 투입한 후 교반시켜 혼합물을 합성하는 단계(제2단계); 상기 혼합물을 세척한 후 건조하여 이황화몰리브덴(MoS2)전구체 입자를 합성하는 단계(제3단계); 및 상기 합성된 MoS2 전구체 입자를 탄화수소가스로 열처리하여 MoS2/카본 나노 복합체를 합성하는 단계(제4단계);를 포함하는, MoS2/카본 나노 복합체 제조방법을 제공한다.In order to achieve the above object, the present invention provides a process for producing a molybdenum precursor, comprising the steps of: (1) stirring a molybdenum precursor and a sulfur precursor into an acid solution and stirring; Adding an amine compound to the mixed solution and then stirring to synthesize a mixture (second step); Washing and drying the mixture to synthesize molybdenum disulfide (MoS 2 ) precursor particles (Step 3); And the combined MoS 2 precursor comprising the steps of heat-treating the particles with a hydrocarbon gas, synthesizing MoS 2 / carbon nanocomposite (step 4); provides, MoS 2 / carbon nanocomposite production method comprising a.

또한 본 발명은 상기 제조방법에 따라 제조된 것을 특징으로 하는, MoS2/카본 나노 복합체를 제공한다.The present invention also provides an MoS 2 / carbon nanocomposite which is produced according to the above-mentioned production method.

본 발명에 따른 제조방법은 간편한 방법으로 순수한 MoS2와 MoS2/카본 나노복합체를 동시에 합성할 수 있어 매우 간단하면서도 효과적인 방법으로 제조할 수 있으며, 특히 순수한 MoS2와 전기화학적 특성을 비교하였을 때, MoS2/카본 나노복합체는 상당한 수준의 충·방전 용량을 가지 높은 순환안정성을 나타낼 수 있다.The production method according to the present invention can produce pure MoS 2 and MoS 2 / carbon nanocomposite simultaneously by a simple method, and can be manufactured in a simple and effective manner. Especially when electrochemical characteristics are compared with pure MoS 2 , MoS 2 / carbon nanocomposites can exhibit high cycling stability with a significant level of charge / discharge capacity.

도 1은 본 발명의 따른 MoS2/C 복합체 합성과정을 나타낸 모식도이다.
도 2는 MoS2/C 복합체의 X-ray 회절 패턴분석을 나타낸 도면이다.
도 3은 MoS2/C 복합체의 라만분석을 나타낸 도면이다.
도 4는 MoS2-only(a, b), MoS2/C-1(c, d), MoS2/C-3(e, f), 및 MoS2/C-5(g, h)의 TEM 이미지를 나타낸 도면이다.
도 5는 MoS2/C-3의 충·방전 결과를 나타낸 도면이다.
도 6은 MoS2/C-3의 높은 전류밀도에서의 충·방전 결과를 나타낸 도면이다.
1 is a schematic view showing a process of synthesizing an MoS 2 / C composite according to the present invention.
2 is an X-ray diffraction pattern analysis of the MoS 2 / C composite.
Figure 3 shows Raman analysis of the MoS 2 / C complex.
FIG. 4 is a TEM image of the MoS 2 -only (a, b), MoS 2 / C-1 (c, d), MoS 2 / C-3 (e, f) Fig.
5 is a diagram showing the results of charge and discharge of MoS 2 / C-3.
6 is a diagram showing the results of charging / discharging at a high current density of MoS 2 / C-3.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 본 발명에 의해 제조된 MoS2/카본 나노 복합체를 리튬 이차전지의 음극활물질로 이용할 경우 높은 순환안정성을 제공하며 용량 특성이 증가함을 밝혀내어 본 발명을 완성하였다.The present inventors have found that when MoS 2 / carbon nanocomposite prepared according to the present invention is used as an anode active material of a lithium secondary battery, it provides high circulation stability and increases capacity characteristics, thereby completing the present invention.

본 발명은 몰리브덴 전구체 및 황 전구체를 산 용액에 넣고 교반시키는 단계(제1단계); 상기 교반된 혼합용액에 아민 화합물을 투입한 후 교반시켜 혼합물을 합성하는 단계(제2단계); 상기 혼합물을 세척한 후 건조하여 이황화몰리브덴(MoS2)전구체 입자를 합성하는 단계(제3단계); 및 상기 합성된 MoS2 전구체 입자를 탄화수소가스로 열처리하여 MoS2/카본 나노 복합체를 합성하는 단계(제4단계);를 포함하는, MoS2/카본 나노 복합체 제조방법을 제공한다.The present invention relates to a process for producing a molybdenum precursor and a sulfur precursor by stirring the molybdenum precursor and the sulfur precursor in an acid solution (first step); Adding an amine compound to the mixed solution and then stirring to synthesize a mixture (second step); Washing and drying the mixture to synthesize molybdenum disulfide (MoS 2 ) precursor particles (Step 3); And the combined MoS 2 precursor comprising the steps of heat-treating the particles with a hydrocarbon gas, synthesizing MoS 2 / carbon nanocomposite (step 4); provides, MoS 2 / carbon nanocomposite production method comprising a.

상기 제1단계는 몰리브덴 전구체 및 황 전구체를 염산 용액에 넣고 70 내지 90℃에서 20 내지 40분 동안 교반시킬 수 있으며, 이에 제한되는 것은 아니다.In the first step, the molybdenum precursor and the sulfur precursor are placed in a hydrochloric acid solution and stirred at 70 to 90 ° C for 20 to 40 minutes, but the present invention is not limited thereto.

상기 몰리브덴 전구체는 몰리브덴암모늄(Ammonium molybdate), 몰리브덴산나트륨(Sodium molybdate), 및 산화몰리브덴(Molybdenum oxide)로 이루어진 군에서 선택된 어느 하나일 수 있으며, 또한 황 전구체는 황화나트륨·9수화물(Sodium sulfide nonahydrate), 티오요소(thiourea), 과황산암모늄(Ammonium persulfate)로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The molybdenum precursor may be any one selected from the group consisting of ammonium molybdate, sodium molybdate and molybdenum oxide, and the sulfur precursor may be selected from the group consisting of sodium sulfide nonahydrate ), Thiourea, ammonium persulfate, and the like, but the present invention is not limited thereto.

상기 아민 화합물은 하이드록실아민 염산염(Hydroxylamine hydrochloride), 염화망간·4수화물(Manganese(II) Chloride Tetrahydrate), 및 하이드록실아민 설페이트(Hydroxylamine sulfate)로 이루어진 군에서 선택된 어느 하나 일 수 있으며, 이에 제한되는 것은 아니다.The amine compound may be any one selected from the group consisting of a hydroxylamine hydrochloride, a manganese (II) chloride tetrahydrate, and a hydroxylamine sulfate, It is not.

상기 제3단계는 60 내지 80℃에서 건조하여 MoS2전구체 입자를 합성할 수 있으며, 이에 제한되는 것은 아니다.In the third step, MoS 2 precursor particles can be synthesized by drying at 60 to 80 ° C, but the present invention is not limited thereto.

상기 탄화수소가스는 메탄, 에탄, 프로판, 및 부탄으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The hydrocarbon gas may be any one selected from the group consisting of methane, ethane, propane, and butane, but is not limited thereto.

상기 제4단계는 MoS2 전구체 입자를 650 내지 750℃에서 30분 내지 6시간 동안 탄화수소가스로 열처리할 수 있으며, 이에 제한되는 것은 아니다.In the fourth step, the MoS 2 precursor particles can be thermally treated with hydrocarbon gas at 650 to 750 ° C for 30 minutes to 6 hours, but the present invention is not limited thereto.

또한 본 발명은 상기 제조방법에 따라 제조된 것을 특징으로 하는, MoS2/카본 나노 복합체를 제공한다.The present invention also provides an MoS 2 / carbon nanocomposite which is produced according to the above-mentioned production method.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> MoSExample 1 MoS 22 /카본 나노복합체 합성/ Carbon nanocomposite synthesis

새로운 방법으로 MoS2를 합성하고 또한 CH4 가스를 사용하여 MoS2와 카본을 동시에 합성하여 MoS2/C 복합체를 제조하였다. 더욱 상세하게 몰리브덴암모늄(Ammonium molybdate)과 황화나트륨·9수화물(Sodium sulfide nonahydrate)를 0.8 M 염산(HCl) 용액에 넣고 80℃에서 균일하게 혼합하여 30분 동안 교반하였다.Synthesis of MoS 2 in a new way, and also by the MoS 2 composite and the carbon using the CH 4 gas was produced at the same time, the MoS 2 / C composite material. More specifically, ammonium molybdate and sodium sulfide nonahydrate were mixed in a 0.8 M hydrochloric acid (HCl) solution, and the mixture was homogeneously mixed at 80 DEG C and stirred for 30 minutes.

그 뒤 0.7 g의 하이드록실아민 염산염(Hydroxylamine hydrochloride)을 혼합 용액에 넣어 주고 80℃에서 1시간 동안 교반하여 반응을 완료 하였다. 반응 후 증류수와 에탄올을 사용하여 세척한 후 70℃ 오븐에서 건조하여 갈색의 MoS2전구체 입자를 얻었다.Then, 0.7 g of hydroxylamine hydrochloride was added to the mixed solution, and the reaction was completed by stirring at 80 ° C for 1 hour. After the reaction, it was washed with distilled water and ethanol, and then dried in an oven at 70 ° C to obtain brown MoS 2 precursor particles.

마지막으로, MoS2 전구체 입자를 700℃에서 1시간 동안 CH4가스로 열처리하여 MoS2/카본 나노복합체를 합성하였으며, 합성된 MoS2/카본 나노복합체를 'MoS2/C-1'으로 명명하였다.Finally, MoS 2 / carbon nanocomposites were synthesized by annealing MoS 2 precursor particles at 700 ° C for 1 hour with CH 4 gas. The synthesized MoS 2 / carbon nanocomposites were named 'MoS 2 / C-1' .

<실시예 2> MoSExample 2 MoS 22 /카본 나노복합체 합성/ Carbon nanocomposite synthesis

MoS2 전구체 입자를 700℃에서 3시간 동안 CH4가스로 열처리한 것을 제외하고는 상기 실시예 1과 동일한 조건이었으며, 상기 방법으로 합성된 MoS2/카본 나노복합체를 'MoS2/C-3'로 명명하였다.MoS and the above embodiment was the same conditions as in Example 1, the MoS 2 / carbon nanocomposites synthesized by the method 'MoS 2 / C-3', except that heat-treating the precursor particles at 700 ℃ for 3 hours to CH 4 gas Respectively.

<실시예 3> MoSExample 3 MoS 22 /카본 나노복합체 합성/ Carbon nanocomposite synthesis

MoS2 전구체 입자를 700℃에서 5시간 동안 CH4가스로 열처리한 것을 제외하고는 상기 실시예 1과 동일한 조건이었으며, 상기 방법으로 합성된 MoS2/카본 나노복합체를 'MoS2/C-5'로 명명하였다.MoS and the above embodiment was the same conditions as in Example 1, the MoS 2 / carbon nanocomposites synthesized by the method 'MoS 2 / C-5', except that heat-treating the precursor particles at 700 ℃ for 5 hours to CH 4 gas Respectively.

<비교예 1> 순수한 MoS&Lt; Comparative Example 1 > Pure MoS 22 합성 synthesis

몰리브덴암모늄(Ammonium molybdate)과 황화나트륨·9수화물(Sodium sulfide nonahydrate)를 0.8 M 염산(HCl) 용액에 넣고 80℃에서 균일하게 혼합하여 30분 동안 교반하였다.Ammonium molybdate and sodium sulfide nonahydrate were mixed in a 0.8 M hydrochloric acid (HCl) solution, and the mixture was uniformly mixed at 80 ° C and stirred for 30 minutes.

그 뒤 0.7 g의 하이드록실아민 염산염(Hydroxylamine hydrochloride)을 혼합 용액에 넣어 주고 80℃에서 1시간 동안 교반하여 반응을 완료 하였다. 반응 후 증류수와 에탄올을 사용하여 세척한 후 70℃ 오븐에서 건조하여 갈색의 MoS2전구체 입자를 얻었으며, 상기 방법으로 합성된 MoS2전구체 입자를 얻었다.Then, 0.7 g of hydroxylamine hydrochloride was added to the mixed solution, and the reaction was completed by stirring at 80 ° C for 1 hour. After the reaction was washed using distilled water and ethanol and dried at 70 ℃ oven to have gained the MoS 2 precursor particles of brown, thereby obtaining a precursor MoS 2 particles synthesized by the above method.

마지막으로 2시간 동안 500℃에서 질소 분위기 하에서 2시간 동안 가열하여 MoS2를 합성하였으며, 합성된 MoS2를 'MoS2-only'로 명명하였다.Finally, MoS 2 was synthesized by heating at 500 ° C. for 2 hours under nitrogen atmosphere for 2 hours, and the synthesized MoS 2 was named 'MoS 2 -only'.

<실험예 1> X-ray 회절 패턴분석&Lt; Experimental Example 1 > X-ray diffraction pattern analysis

상기 실시예 1 내지 실시예 3에 따라 제조된 각각의 MoS2/카본 나노복합체의 구조를 확인하기 위하여 X선 회절(X-ray diffraction; 이하'XRD') 분석은 XRD(D2 PHASER, Bruker AXS)를 이용하여 진행하였고, 그 결과를 도 2에 나타내었다. XRD (D2 PHASER, Bruker AXS) was used for XRD analysis to confirm the structure of each MoS 2 / carbon nanocomposite prepared according to Examples 1 to 3, , And the results are shown in Fig.

도 2를 참조하면, 상기 패턴에서 14.8˚, 32.6˚, 39.5˚, 49.7˚, 및 58.3˚의 피크는 각각 MoS2의 (002), (100), (103), (105), 및 (110)면에 해당하고, 불순물이 없는 순수한 MoS2의 피크를 나타내고 있다. 추가적으로, 낮은 온도(700℃)에서 생성된 비결정질 카본이기 때문에 XRD 분석에서 결정질 카본의 피크는 관찰되지 않았다.2, the peak of the pattern in 14.8˚, 32.6˚, 39.5˚, 49.7˚, and 58.3˚ is (002), 100, 103 of each of MoS 2, (105), and (110 ) Plane and shows a pure MoS 2 peak free of impurities. Additionally, no peak of crystalline carbon was observed in the XRD analysis due to the amorphous carbon produced at low temperature (700 ° C).

<실험예 2> 라만분광법 분석<Experimental Example 2> Raman spectroscopic analysis

상기 실시예 1 내지 실시예 3에 따라 제조된 각각의 MoS2/카본 나노복합체의 라만 분광법 분석을 수행하였고, 그 결과를 도 3에 나타내었다. 각 샘플에서 카본의 G band와 D band를 나타내는 피크는 ~1592 cm-1, ~1356 cm-1 영역에서 관찰되었다. 라만스펙트럼 분석에서 G band의 경우 Sp2 카본 결정구조의 E2g 진동모드와 관련되어 있으며 D band의 경우 구조의 결함과 비결정 구조에 관련이 있다.Raman spectroscopic analysis of each MoS 2 / carbon nanocomposite prepared according to Examples 1 to 3 was carried out, and the results are shown in FIG. The peaks representing the G band and D band of carbon in each sample were observed in the range of ~ 1592 cm -1 and ~ 1356 cm -1 . In the Raman spectrum analysis, the G band is related to the E2g oscillation mode of the Sp 2 carbon crystal structure, and the D band is related to the structure defects and the amorphous structure.

따라서 ID/IG비율은 생성된 카본의 결정질의 정도를 나타낼 수 있다. 상기 실시예 1 내지 실시예 3에 따라 제조된 MoS2/C-1, MoS2/C-3, 및 MoS2/C-5는 각각 0.98, 1.11, 및 1.14로 측정되었다. 따라서 XRD분석과 라만분석을 통해 결정질의 MoS2와 비결정질 카본이 합성되었음을 확인 할 수 있었다.Thus, the I D / I G ratio can indicate the degree of crystallinity of the carbon produced. MoS 2 / C-1, MoS 2 / C-3 and MoS 2 / C-5 prepared according to Examples 1 to 3 were measured to be 0.98, 1.11 and 1.14, respectively. Therefore, it was confirmed that crystalline MoS 2 and amorphous carbon were synthesized through XRD analysis and Raman analysis.

<실험예 3> 투과전자현미경(TEM)분석<Experimental Example 3> Transmission electron microscope (TEM) analysis

상기 실시예 1 내지 실시예 3에 따라 제조된 각각의 MoS2/카본 나노복합체의 투과전자현미경 분석을 수행하였고, 그 결과를 도 4에 나타내었다.Transmission electron microscopic analysis of each MoS 2 / carbon nanocomposite prepared according to Examples 1 to 3 was carried out, and the results are shown in FIG.

도 4(a)를 참조하면, 비교예 1에 의해 제조된 TEM 이미지에서는 MoS2-only 샘플의 고르지 못한 입자 크기와 곧게 뻗어 있는 시트 형태의 레이어 구조를 나타내고 있으며, 고배율의 TEM 이미지(도 4(b) 참조)에서는 격자 간격 분석을 통해 생성된 격자가 (002)면임을 확인 할 수 있었고 0.62 nm의 간격을 가지는 40층 이상의 두꺼운 적층 구조를 관찰 할 수 있었다.Referring to FIG. 4 (a), the TEM image produced by the comparative example 1 shows the uneven particle size of the MoS 2 -only sample and the layer structure of the straight stretched sheet type, and a high magnification TEM image b), it was confirmed that the lattice generated by the lattice spacing analysis was a (002) plane, and a thick laminated structure having a thickness of 0.62 nm or more was observed.

반면에 MoS2/C-1(c, d), MoS2/C-3(e, f), 및 MoS2/C-5(g, h)에서는 CH4에 의한 비결정질 카본이 MoS2 입자들에 합성되는 동시에 그로 인해 발생하는 내부적 스트레스로 인하여 둥글게 구부러진 격자층과 말린 레이어를 관찰 할 수 있었으며, 또한 MoS2-only와는 달리 전체적으로 10~15 격자층을 가지는 것을 확인 할 수 있었다.In contrast to the MoS 2 / C-1 (c , d), MoS 2 / C-3 (e, f), and the MoS 2 / C-5 (g , h) in the amorphous carbon is MoS 2 particles by CH 4 And it was observed that the curved grating layer and the dried layer were observed due to the internal stress generated therefrom. In addition, unlike MoS 2 -only, it was confirmed that the grating layer had 10 to 15 grating layers as a whole.

< 실험예 4> 충·방전 특성 평가 & Lt; Experimental Example 4 > Charging / discharging characteristics evaluation

도 5는 MoS2/C-3 복합체의 순환 특성 결과를 나타낸 것으로서, 순수한 상태의 MoS2보다 순환안정성이 향상 되었고 방전용량 또한 상승한 것을 확인할 수 있었다. 또한 도 6을 참조하면, 20 A/g의 높은 전류밀도에서도 상당한 수준의 용량이 구현되는 것을 확인 할 수 있었다.FIG. 5 shows the circulation characteristics of the MoS 2 / C-3 composite. It was confirmed that the circulation stability was improved and the discharge capacity was higher than that of pure MoS 2 . Also, referring to FIG. 6, it was confirmed that a considerable level of capacity is realized even at a high current density of 20 A / g.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (8)

몰리브덴암모늄(Ammonium molybdate) 및 황화나트륨·9수화물(Sodium sulfide nonahydrate)을 산 용액에 넣고 교반시키는 단계(제1단계);
상기 교반된 혼합용액에 하이드록실아민 염산염(Hydroxylamine hydrochloride)을 투입한 후 교반시켜 혼합물을 합성하는 단계(제2단계);
상기 혼합물을 세척한 후 건조하여 이황화몰리브덴(MoS2)전구체 입자를 합성하는 단계(제3단계); 및
상기 합성된 MoS2 전구체 입자를 700℃에서 3시간 동안 메탄으로 열처리하여 MoS2/카본 나노 복합체를 합성하는 단계(제4단계);를 포함하는, MoS2/카본 나노 복합체 제조방법.
Ammonium molybdate and sodium sulfide nonahydrate are added to an acid solution and stirred (first step);
Adding a hydroxylamine hydrochloride to the mixed solution and then stirring to synthesize a mixture (second step);
Washing and drying the mixture to synthesize molybdenum disulfide (MoS 2 ) precursor particles (Step 3); And
The composite of MoS 2 particles, the precursor to heat treatment at 700 ℃ for 3 hours methane synthesizing the MoS 2 / carbon nanocomposite (Step 4);, MoS 2 / carbon nanocomposite production method comprising a.
청구항 1에 있어서, 상기 제1단계는 몰리브덴암모늄(Ammonium molybdate) 및 황화나트륨·9수화물(Sodium sulfide nonahydrate)을 염산 용액에 넣고 70 내지 90℃에서 20 내지 40분 동안 교반시키는 것을 특징으로 하는, MoS2/카본 나노 복합체 제조방법.[2] The method according to claim 1, wherein the first step is a step of adding ammonium molybdate and sodium sulfide nonahydrate into a hydrochloric acid solution and stirring at 70 to 90 ° C for 20 to 40 minutes. 2 / carbon nanocomposite manufacturing method. 삭제delete 삭제delete 청구항 1에 있어서, 상기 제3단계는 60 내지 80℃에서 건조하여 MoS2전구체 입자를 합성하는 것을 특징으로 하는, MoS2/카본 나노 복합체 제조방법.The method according to claim 1, wherein the third step is to dry the MoS 2 precursor particles at 60 to 80 ° C to synthesize MoS 2 / carbon nanocomposite particles. 삭제delete 삭제delete 청구항 1의 제조방법에 따라 제조된 것을 특징으로 하는, MoS2/카본 나노 복합체.A MoS 2 / carbon nanocomposite produced according to the process of claim 1.
KR1020160041625A 2016-04-05 2016-04-05 Preparing method of MoS2/carbon nanocomposites KR101722875B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160041625A KR101722875B1 (en) 2016-04-05 2016-04-05 Preparing method of MoS2/carbon nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160041625A KR101722875B1 (en) 2016-04-05 2016-04-05 Preparing method of MoS2/carbon nanocomposites

Publications (1)

Publication Number Publication Date
KR101722875B1 true KR101722875B1 (en) 2017-04-03

Family

ID=58589043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160041625A KR101722875B1 (en) 2016-04-05 2016-04-05 Preparing method of MoS2/carbon nanocomposites

Country Status (1)

Country Link
KR (1) KR101722875B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039459A (en) * 2017-11-20 2018-05-15 复旦大学 A kind of preparation method of yolk-shell structures molybdenum disulfide@carbon electrode materials
KR20200025404A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method for manufacturing carbon nanostructure comprising molybdenum disulfide
KR20200025409A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Cathode for lithium secondary battery comprising carbon nanostructure comprising molybdenum disulfide, and lithium secondary battery comprising thereof
CN114477103A (en) * 2022-01-20 2022-05-13 西安工业大学 MoS with high activity performance at room temperature2-xSexGrading gas-sensitive material and preparation method thereof
US11735718B2 (en) 2018-08-30 2023-08-22 Lg Energy Solution, Ltd. Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069959A (en) * 2010-12-21 2012-06-29 단국대학교 산학협력단 Manufacturing method of molybdenum disulfide nanowire
WO2015189575A1 (en) * 2014-06-09 2015-12-17 University Of Surrey A method for graphene and carbon nanotube growth
KR20160014845A (en) 2014-07-29 2016-02-12 서울대학교산학협력단 Gas sensor comprising nanoparticles and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069959A (en) * 2010-12-21 2012-06-29 단국대학교 산학협력단 Manufacturing method of molybdenum disulfide nanowire
WO2015189575A1 (en) * 2014-06-09 2015-12-17 University Of Surrey A method for graphene and carbon nanotube growth
KR20160014845A (en) 2014-07-29 2016-02-12 서울대학교산학협력단 Gas sensor comprising nanoparticles and manufacturing method of the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. MATER. CHEM., 2012, 22, 12988 *
J. MATER. CHEM., 2012, 22, 12988*
MATERIALS LETTERS 59 (2005) 3452 - 3455 *
MATERIALS LETTERS 59 (2005) 3452 - 3455*

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039459A (en) * 2017-11-20 2018-05-15 复旦大学 A kind of preparation method of yolk-shell structures molybdenum disulfide@carbon electrode materials
KR20200025404A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method for manufacturing carbon nanostructure comprising molybdenum disulfide
KR20200025409A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Cathode for lithium secondary battery comprising carbon nanostructure comprising molybdenum disulfide, and lithium secondary battery comprising thereof
US11735718B2 (en) 2018-08-30 2023-08-22 Lg Energy Solution, Ltd. Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising the same
CN114477103A (en) * 2022-01-20 2022-05-13 西安工业大学 MoS with high activity performance at room temperature2-xSexGrading gas-sensitive material and preparation method thereof
CN114477103B (en) * 2022-01-20 2023-10-24 西安工业大学 MoS with high activity at room temperature 2-x Se x Hierarchical gas-sensitive material and preparation method thereof

Similar Documents

Publication Publication Date Title
Pang et al. Few-layer MoS 2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance
Long et al. Encapsulated vanadium‐based hybrids in amorphous N‐doped carbon matrix as anode materials for lithium‐ion batteries
Liao et al. Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries
Dar et al. Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures
Xu et al. Improved electrochemical performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 by Mg doping for lithium ion battery cathode material
US9413007B2 (en) Graphene powder, production method thereof, and electrochemical device comprising same
KR100896656B1 (en) Preparing method of tin sulfide nanoparticle and manufacturing method of lithium ion battery using the same
Liang et al. Unveiling the solid-solution charge storage mechanism in 1T vanadium disulfide nanoarray cathodes
KR101722875B1 (en) Preparing method of MoS2/carbon nanocomposites
KR101913939B1 (en) Organic additive coating method for improving interfacial stability of cathode material for lithium secondary battery
US20160240851A1 (en) Method of producing triazine-based graphitic carbon nitride films
Xu et al. The improved performance of spinel LiMn2O4 cathode with micro-nanostructured sphere-interconnected-tube morphology and surface orientation at extreme conditions for lithium-ion batteries
US20170054138A1 (en) Ultra-high output power and extremely robust cycle life negative electrode material for lithium secondary battery and method for manufacturing the same, using layer structure of metal oxide nanoparticles and porous graphene
McNulty et al. NaV2O5 from sodium ion-exchanged vanadium oxide nanotubes and its efficient reversible lithiation as a Li-ion anode material
Song et al. HxMoO3@ C nanobelts: green synthesis and superior lithium storage properties
Wei et al. Ultrafast microwave synthesis of MoTe2@ graphene composites accelerating polysulfide conversion and promoting Li2S nucleation for high-performance Li-S batteries
Chen et al. Hydrothermal synthesis and electrochemical properties of TiO2 nanotubes as an anode material for lithium ion batteries
Wang et al. Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode
Shen et al. Layered manganese phosphorus trisulfides for high‐performance lithium‐ion batteries and the storage mechanism
CN117062774A (en) Sodium titanium phosphate and use thereof
Han et al. Evaluation of reduced graphene oxide-supported NiSb2O6 nanocomposites for reversible lithium storage
CN109473634B (en) Method for solid-phase co-thermal synthesis of molybdenum diselenide/nitrogen-doped carbon rod
Biswal et al. Effect of non-ionic surfactants and its role in K intercalation in electrolytic manganese dioxide
Santa Ana et al. Poly (acrylonitrile)–molybdenum disulfide polymer electrolyte nanocomposite
Guo et al. First investigation of the electrochemical performance of γ-LiFeO 2 micro-cubes as promising anode material for lithium-ion batteries

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant