KR101722564B1 - Solid dispersion including poorly water-soluble drugs - Google Patents

Solid dispersion including poorly water-soluble drugs Download PDF

Info

Publication number
KR101722564B1
KR101722564B1 KR1020140122813A KR20140122813A KR101722564B1 KR 101722564 B1 KR101722564 B1 KR 101722564B1 KR 1020140122813 A KR1020140122813 A KR 1020140122813A KR 20140122813 A KR20140122813 A KR 20140122813A KR 101722564 B1 KR101722564 B1 KR 101722564B1
Authority
KR
South Korea
Prior art keywords
drug
vst
solid dispersion
polyethylene glycol
water
Prior art date
Application number
KR1020140122813A
Other languages
Korean (ko)
Other versions
KR20160032543A (en
Inventor
조현종
강위수
김대덕
이재영
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020140122813A priority Critical patent/KR101722564B1/en
Publication of KR20160032543A publication Critical patent/KR20160032543A/en
Application granted granted Critical
Publication of KR101722564B1 publication Critical patent/KR101722564B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • A61K9/5057Gelatin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 개체간 변동성이 낮으면서도 현저히 개선된 생체이용률을 나타내는, 수-난용성 약물, 매트릭스(matrix) 및 가소제(plasticizer)를 포함하는 고체분산체를 제공한다.The present invention provides a solid dispersion comprising a water-insoluble drug, a matrix and a plasticizer exhibiting significantly improved bioavailability while having low inter-individual variability.

Description

수-난용성 약물을 포함하는 고체분산체{Solid dispersion including poorly water-soluble drugs}Solid dispersion including poorly water-soluble drugs < RTI ID = 0.0 >

본 발명은 수-난용성 약물, 매트릭스(matrix) 및 가소제(plasticizer)를 포함하는 고체분산체에 관한 것이다.The present invention relates to a solid dispersion comprising a water-insoluble drug, a matrix and a plasticizer.

의약 분야에서 경구 생체이용률을 개선하기 위하여 수-난용성 약물의 경구 제형을 제조하는 많은 시도가 이루어지고 있다(비특허문헌 1-3 참조). 이들 중, 약물 분자가 중합체성 담체에 분산되는 고체분산체(solid dispersion, SD)가 약물의 수 용해도 및 경구 흡수를 개선하는 것으로 밝혀지고 있다(비특허문헌 4, 5 참조).Many attempts have been made to prepare oral formulations of water-insoluble drugs to improve oral bioavailability in the field of medicine (see Non-Patent Documents 1-3). Among them, solid dispersion (SD) in which drug molecules are dispersed in a polymeric carrier has been found to improve water solubility and oral absorption of drugs (see Non-Patent Documents 4 and 5).

SD는 수-난용성 약물에서 약물의 입자 크기를 감소시키고, 습윤성(wettability)을 증가시키며, 응집성(agglomeration)을 감소시키고, 물리적 상태를 변화시킴으로써 이러한 효과가 나타나도록 한다. SD 제형은 몇 가지 방법에 의하여 제조될 수 있지만, 최근 열-용융 압출법(hot-melting extrusion, HME)이 SD를 제조하기에 유용한 방법으로 대두되고 있다(비특허문헌 6, 7 참조).SD allows this effect to be manifested by reducing drug particle size, increasing wettability, reducing agglomeration, and changing physical state in water-insoluble drugs. SD formulations can be prepared by several methods, but hot-melt extrusion (HME) has recently emerged as a useful method for making SD (see Non-Patent Documents 6 and 7).

HME 공정은 연속적이고, 용매가 필요없고, 분진이 발생되지 않는(환경 친화적인) 견고한 생산 공정으로서, 여러 가지 고형 투여 제형(예를 들면, 과립, 펠렛, 또는 정제)을 생산할 수 있다는 장점이 있다(비특허문헌 8 참조). HME 공정에서는, 결정성 약물의 결정 격자 에너지를 극복하고 중합체를 유연하게 하기 위하여 압출기 스크류에 의해 발생되는 전단력이 적용된다. 압출기 내부에서 약물과 중합체의 혼합 및 분산이 일어나고, 그로부터 용융된 생성물이 압출된다.The HME process has the advantage of being able to produce a variety of solid dosage forms (e.g., granules, pellets, or tablets) as a continuous, solvent-free, dust-free (environmentally friendly) (Refer to non-patent document 8). In the HME process, a shear force generated by the extruder screw is applied to overcome the crystal lattice energy of the crystalline drug and to soften the polymer. Mixing and dispersion of drug and polymer takes place inside the extruder, and the molten product is extruded therefrom.

SD는 매트릭스(matrix)와 약물의 상태(결정성, 무정형, 또는 분자 수준의 분산), 및 상(phase)의 개수에 따라 공융체(eutectics), 결정성 분산체(crystalline dispersions), 및 고형 용액(solid solutions)으로 정의될 수 있다(비특허문헌 9 참조). SD의 물리화학적 성질은 사용되는 HME 설비(예를 들어, 공급부, 바렐, 및 다이) 및 압출 공정 파라미터(예를 들어, 바렐 및 다이의 온도, 스크류 속도, 용융 압력, 토크(torque), 스크류 배열 등)에 의해 영향을 받는다. 일반적으로, HME 공정 온도는 약물의 녹는점보다 20 - 30 ℃ 낮게 설정된다(비특허문헌 8 참조). 또한, 중합체의 유리 전이 온도(Tg) 또는 용융 온도(Tm)도 고려하여야 한다.SD is a mixture of eutectics, crystalline dispersions, and solid solutions, depending on the matrix and the state of the drug (crystalline, amorphous, or molecular level dispersion) (see Non-Patent Document 9). The physico-chemical properties of SD are dependent on the HME equipment used (e.g., feed, barrel, and die) and extrusion process parameters (e.g., barrel and die temperature, screw speed, melt pressure, torque, Etc.). Generally, the HME process temperature is set to be 20-30 DEG C lower than the melting point of the drug (see Non-Patent Document 8). The glass transition temperature (T g ) or melting temperature (T m ) of the polymer should also be considered.

발사르탄(valsartan, VST)은 고혈압 치료에 사용되는 선택적 안지오텐신(angiotensin) II 타입 1 수용체 길항제이다. VST은 산성 용액에서의 낮은 용해도로 인하여 비교적 낮은 수 용해도 (<0.1 mg/mL) 및 낮은 경구 생체이용률 (<25%)을 가진다(비특허문헌 14 참조). 이러한 발사르탄의 pH-의존적 약물 용출 양상은 약물 흡수에 있어서 개체간 및 개체내 변동을 가져올 수 있다. 이러한 문제점을 해결하기 위하여, VST 전달을 위한 몇몇 경구 제형이 개발되었고(비특허문헌 14 - 16 참조), VST을 포함하는 SD 제형이 보고된 바 있지만(비특허문헌 17 참조), 개체간 변동성이 낮으면서도 현저히 개선된 생체이용률을 보여주는 제형은 보고된 바 없다.Valsartan (VST) is a selective angiotensin II type 1 receptor antagonist used in the treatment of hypertension. VST has a relatively low water solubility (<0.1 mg / mL) and low oral bioavailability (<25%) due to its low solubility in acidic solutions (see non-patent document 14). This pH-dependent drug elution pattern of valsartan can lead to inter-individual and intra-individual variability in drug absorption. In order to solve this problem, several oral formulations for VST delivery have been developed (see Non-Patent Documents 14 to 16), and SD formulations containing VST have been reported (see Non-Patent Document 17) No formulations have been reported that exhibit significantly improved bioavailability even at low levels.

1. Cho HJ, Park JW, Yoon IS, Kim DD. 2014. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine 9:495-504.1. Cho HJ, Park JW, Yoon IS, Kim DD. 2014. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine 9: 495-504. 2. Kim JE, Yoon IS, Cho HJ, Kim DH, Choi YH, Kim DD. 2014. Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int J Pharm 464(1-2):117-126.2. Kim JE, Yoon IS, Cho HJ, Kim DH, Choi YH, Kim DD. 2014. Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int J Pharm 464 (1-2): 117-126. 3. Yin YM, Cui FD, Mu CF, Choi MK, Kim JS, Chung SJ, Shim CK, Kim DD. 2009. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140(2):86-94.3. Yin YM, Cui FD, Mu CF, Choi MK, Kim JS, Chung SJ, Shim CK, Kim DD. 2009. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140 (2): 86-94. 4. Baek HH, Kim DH, Kwon SY, Rho SJ, Kim DW, Choi HG, Kim YR, Yong CS. 2012. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch Pharm Res 35(4):683-689.4. Baek HH, Kim DH, Kwon SY, Rho SJ, Kim DW, Choi HG, Kim YR, Yong CS. 2012. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch Pharm Res 35 (4): 683-689. 5. Kim SA, Kim SW, Choi HK, Han HK. 2013. Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. Int J Pharm 49(5):800-804.5. Kim SA, Kim SW, Choi HK, Han HK. 2013. Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. Int J Pharm 49 (5): 800-804. 6. Alam MA, Ali R, Al-Jenoobi FI, Al-Mohizea AM. 2012. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates. Expert Opin Drug Deliv 9(11):1419-1440.6. Alam MA, Ali R, Al-Jenoobi FI, Al-Mohizea AM. 2012. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates. Expert Opin Drug Deliv 9 (11): 1419-1440. 7. Lakshman JP, Cao Y, Kowalski J, Serajuddin AT. 2008. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm 5(6):994-1002.7. Lakshman JP, Cao Y, Kowalski J, Serajuddin AT. 2008. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm 5 (6): 994-1002. 8. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. 2013. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84(1):228-237.8. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. 2013. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84 (1): 228-237. 9. Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47-60.9. Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50 (1): 47-60. 10. Guo Z, Lu M, Li Y, Pang H, Lin L, Liu X, Wu C. 2014. The utilization of drug-polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions. J Pharm Pharmcol 66(2):285-296.10. Guo Z, Lu M, Li Y, Pang H, Lin L, Liu X, Wu C. 2014. The utilization of drug-polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions. J Pharm Pharmcol 66 (2): 285-296. 11. Linn M, Collnot EM, Djuric D, Hempel K, Fabian E, Kolter K, Lehr CM. 2012. Soluplus? as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci 45(3):336-343.11. Linn M, Collnot EM, Djuric D, Hempel K, Fabian E, Kolter K, Lehr CM. 2012. Soluplus? as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci 45 (3): 336-343. 12. Shin SC, Kim J. 2003. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm 251(1-2):79-84.12. Shin SC, Kim J. 2003. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm 251 (1-2): 79-84. 13. Van Eerdenbrugh B, Van Speybroeck M, Mols R, Houthoofd K, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, Van den Mooter G. 2009. Itraconazole/TPGS/Aerosil200 solid dispersions: characterization, physical stability and in vivo performance. Eur J Pharm Sci 38(3):270-278.13. The Itraconazole / TPGS / Aerosil200 solid dispersions: characterization, physical stability and in-situ analysis of vanadium and vanadium. vivo performance. Eur J Pharm Sci 38 (3): 270-278. 14. Cao QR, Liu Y, Xu WJ, Lee BJ, Yang M, Cui JH. 2012. Enhanced oral bioavailability of novel mucoadhesive pellets containing valsartan prepared by a dry powder-coating technique. Int J Pharm 434(1-2):325-333.14. Cao QR, Liu Y, Xu WJ, Lee BJ, Yang M, Cui JH. 2012. Enhanced oral bioavailability of novel mucoadhesive pellets containing valsartan prepared by a dry powder-coating technique. Int J Pharm 434 (1-2): 325-333. 15. Beg S, Swain S, Singh HP, Patra ChN, Rao ME. 2012. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech 13(4):1416-1427.15. Beg S, Swain S, Singh HP, Patra ChN, Rao ME. 2012. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems for valsartan using porous carriers. AAPS PharmSciTech 13 (4): 1416-1427. 16. Li DX, Yan YD, Oh DH, Yang KY, Seo YG, Kim JO, Kim YI, Yong CS, Choi HG. 2010. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer. Drug Deliv 17(5):322-329.16. Li DX, Yan YD, Oh DH, Yang KY, Seo YG, Kim JO, Kim YI, Yong CS, Choi HG. 2010. Development of valsartan-loaded gelatin microcapsules without crystal change using hydroxypropylmethylcellulose as a stabilizer. Drug Deliv 17 (5): 322-329. 17. Yan YD, Sung JH, Kim KK, Kim DW, Kim JO, Lee BJ, Yong CS, Choi HG. 2012. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm 422(1-2):202-210.17. Yan YD, Sung JH, Kim KK, Kim DW, Kim JO, Lee BJ, Yong CS, Choi HG. 2012. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm 422 (1-2): 202-210. 18. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C. 2007. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909-926.18. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGill JW, Martin C. 2007. Pharmaceutical applications of hot melt extrusion: part I. Drug Dev Ind Pharm 33 (9): 909- 926. 19. Aharoni SM. 1998. Increased glass transition temperature in motionally constrained semicrystalline polymers. Polym Adv Technol 9(3):169-201.19. Aharoni SM. 1998. Increased glass transition temperature in motionally constrained semicrystalline polymers. Polym Adv Technol 9 (3): 169-201. 20. Nakamichi K, Nakano T, Yasuura H, Izumi S, Kawashima Y. 2002. The role of the kneading paddle and the effects of screw revolution speed and water content on the preparation of solid dispersions using a twin-screw extruder. Int J Pharm 241(2):203-211.20. Nakamichi K, Nakano T, Yasuura H, Izumi S, Kawashima Y. 2002. The role of the kneading paddle and the effects of screw revolution and water content on the preparation of solid dispersions using a twin-screw extruder. Int J Pharm 241 (2): 203-211. 21. Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. 2013. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus? based solid dispersions. Eur J Pharm Sci 48(4-5):758-766.21. Hughey JR, Keen JM, Miller, Kolter K, Langley N, McGinity JW. 2013. The use of inorganic salts to improve dissolution characteristics of tablets containing Soluplus? based solid dispersions. Eur J Pharm Sci 48 (4-5): 758-766. 22. Mu L, Feng SS. 2003. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86(1):33-48.22. Mu L, Feng SS. 2003. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86 (1): 33-48. 23. Bhugra C, Pikal MJ. 2001. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97(4):1329-1349.23. Bhugra C, Pikal MJ. 2001. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97 (4): 1329-1349. 24. Yu L. 2001. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27-42. 24. Yu L. 2001. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 48 (1): 27-42. 25. Flesch G, Muller P, Lloyd P. 1997. Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol 52(2):115-120.25. Flesch G, Muller P, Lloyd P. 1997. Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol 52 (2): 115-120. 26. Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQ. 2014. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci 103(4):1214-1223.26. Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQ. 2014. The effect of drug on physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci 103 (4): 1214-1223. 27. Chen W, Miao YQ, Fan DJ, Yang SS, Lin X, Meng LK, Tang X. 2011. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 12(2):705-711.27. Chen W, Miao YQ, Fan DJ, Yang SS, Lin X, Meng LK, Tang X. 2011. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 12 (2): 705-711. 28. Sokol RJ, Heubi JE, Butler-Simon N, McClung HJ, Lilly JR, Silverman A. 1987. Treatment of vitamin E deficiency during chronic childhood cholestasis with oral d-alpha-tocopheryl polyethylene glycol-1000 succinate. Gastroenterology 93(5):975-985.28. Sokol RJ, Heubi JE, Butler-Simon N, McClung HJ, Lilly JR, Silverman A. 1987. Treatment of vitamin E deficiency during chronic childhood cholestasis with oral d-alpha-tocopheryl polyethylene glycol-1000 succinate. Gastroenterology 93 (5): 975-985. 29. Constantinides PP, Han J, Davis SS. 2006. Advances in the use of tocols as drug delivery vehicles. Pharm Res 23(2):243-255.29. Constantinides PP, Han J, Davis SS. 2006. Advances in the use of tocols as drug delivery vehicles. Pharm Res 23 (2): 243-255.

본 발명은 상기한 바와 같은 문제점을 해결하기 위해, 중합체 매트릭스에서의 약물의 무정형화(amorphization) 및 분산이 이루어져, 약물의 경구 전달시 개체간 변동성이 낮으면서도 생체이용률이 현저히 개선된 SD 제형을 제공하는 것이다.Disclosure of the Invention In order to solve the above-mentioned problems, the present invention provides an SD formulation in which amorphization and dispersion of a drug in a polymer matrix are achieved, and bioavailability is remarkably improved while the inter- .

전술한 기술적 과제를 달성하기 위하여, 본 발명에서는 수-난용성 약물, 매트릭스 및 가소제(plasticizer)를 포함하는 고체분산체를 제공한다.In order to accomplish the above-mentioned technical object, the present invention provides a solid dispersion comprising a water-insoluble drug, a matrix and a plasticizer.

또한, 본 발명에서는 (a) 수-난용성 약물, 매트릭스 및 가소제를 혼합하여 혼합물을 제조하는 단계; 및 (b) 상기 단계 (a)에서 제조된 혼합물을 열-용융 압출기에 공급하여 열-용융 압출법으로 고체분산체를 제조하는 단계를 포함하는 고체분산체의 제조방법을 제공한다.Also, the present invention provides a method for preparing a pharmaceutical composition, which comprises (a) preparing a mixture by mixing a water-insoluble drug, a matrix and a plasticizer; And (b) supplying the mixture prepared in the step (a) to a hot-melt extruder to prepare a solid dispersion by a heat-melt extrusion method.

본 발명에 따른 수-난용성 약물, 매트릭스 및 가소제를 포함하는 고체분산체는, 수-난용성 약물이 중합체 매트릭스에서 무정형화되어 있고 분자 수준의 분산이 이루어져, 개체간 변동성이 낮으면서도 현저히 개선된 생체이용률을 나타내며, 일정 기간 보관 후에도 재결정화가 일어나지 않은 안정한 제형으로서, 수-난용성 약물의 경구 생체이용률을 개선하기 위하여 유용하게 이용될 수 있다.The solid dispersion comprising the water-insoluble drug, matrix and plasticizer according to the present invention is characterized in that the water-insoluble drug is amorphous in the polymer matrix and is dispersed at the molecular level, Is a stable formulation which does not cause recrystallization even after storage for a certain period of time and can be usefully used for improving oral bioavailability of a water-insoluble drug.

도 1a는 열-용융 압출기로 제형을 개발하는 과정을 나타낸 개략도이고, 도 1b는 압출물(F1 및 F2)의 모양을 나타낸 이미지이다.
도 2는 VST, SP, TPGS, F1 및 F2의 FT-IR 스펙트럼을 나타낸 것이다.
도 3은 VST, SP, TPGS, F1 및 F2의 XRD 패턴을 나타낸 것이다.
도 4는 VST, SP, TPGS, F1 및 F2의 DSC 결과를 나타낸 것이다.
도 5는 F1(제조 후 6개월) 및 F2(제조 후 6개월)의 DSC 결과를 나타낸 것이다.
도 6은 pH 1.2 및 pH 6.8에서의 VST의 시험관내 용출 양상을 나타내는 그래프이다(각 점은 평균±표준편차로 표시함, n = 3).
도 7은 랫트에서의 생체내 약물동력학 연구 결과를 나타내는 그래프이다(경구 투여 용량 4 mg/kg; 각 점은 평균±표준편차로 표시함; n ≥ 3; VST: 발사르탄 분말; F1, F2: 고체분산체).
FIG. 1A is a schematic view showing a process of developing a formulation with a heat-melt extruder, and FIG . 1B is an image showing the shape of the extrudates F1 and F2.
Figure 2 shows the FT-IR spectra of VST, SP, TPGS, F1 and F2.
3 shows XRD patterns of VST, SP, TPGS, F1 and F2.
4 shows DSC results of VST, SP, TPGS, F1 and F2.
Figure 5 shows the DSC results for F1 (6 months post-production) and F2 (6 months post-production).
6 is a graph showing the in vitro dissolution profile of VST at pH 1.2 and pH 6.8 (each point is expressed as mean + standard deviation, n = 3).
Figure 7 is a graph showing in vivo pharmacokinetic study results in rats (oral dose: 4 mg / kg, each point expressed as mean ± standard deviation: n ≥ 3 VST: valsartan powder: F1, F2: solid Dispersion).

본 발명에서는 수-난용성 약물, 매트릭스 및 가소제를 포함하는 고체분산체를 제공한다.The present invention provides a solid dispersion comprising a water-insoluble drug, a matrix and a plasticizer.

본 발명의 일 태양에서, 상기 수-난용성 약물은 바람직하게는 케토프로펜(ketoprofen), 이부프로펜(ibuprofen), 인도메타신(indomethacin), 피록시캄(piroxicam), 페노프로펜(fenoprofen), 아세트아미노펜(acetaminophen), 디클로페낙(diclofenac), 클로로페니라민(chloropheniramine), 테오필린(theophylline), 페닐프로판올아민(phenylpropanolamine), 니페디핀(nifedipine), 니카르디핀(nicardipine), 리도케인(lidocaine), 히드로코르티손(hydrocortisone), 카바마제핀(carbamazepine), 발사르탄 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 어느 하나이고, 더욱 바람직하게는 발사르탄이다.In one aspect of the invention, the water-insoluble drug is preferably selected from the group consisting of ketoprofen, ibuprofen, indomethacin, piroxicam, fenoprofen, , Acetaminophen, diclofenac, chloropheniramine, theophylline, phenylpropanolamine, nifedipine, nicardipine, lidocaine, hydrocortisone (see, for example, hydrocortisone, carbamazepine, valsartan, and mixtures thereof, and more preferably valsartan.

본 발명의 일 태양에서, 상기 매트릭스는 바람직하게는 폴리비닐 카프로락탐-폴리비닐 아세테이트-폴리에틸렌 글리콜 그래프트 공중합체(polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, Soluplus), 폴리비닐피롤리돈(poly vinylpyrrolidone, PVP), 폴리비닐아세테이트에틸렌(polyethylene-co-vinylacetate, EVA), 폴리에틸렌글리콜(polyethylene glycol, PEG), 폴리에틸렌 옥사이드 (polyethylene oxide, PEO), 셀룰로오즈에테르(cellulose ether), 아크릴레이트(acrylate), 폴리메타크릴레이트(Poly(meth)acrylates, Eudragit), 폴리(락타이드-co-글라이콜라이드)(poly(lactic-co-glycolic) acid, PLGA), 미세결정셀룰로오스(microcrystalline celluose), 히드록시프로필 셀룰로오스(hydroxypropyl cellulose, Klucel), 히드록시프로필 메틸셀룰로오스(hydroxypropyl methylcellulose) 및 이들의 유도체, 에틸 셀룰로오스(ethyl cellulose, Ethocel), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butylate, CAB), 셀룰로오스 아세테이트 프탈레이트(cellulose acetate phathalate), 폴리비닐알코올(polyvinyl alcohol, PVA), 키토산(chitosan), 폴리카보필(polycarbophil), 폴리카프로락톤(polycaprolactone), 옥수수 전분(corn starch), 감자 전분(potato starch), 말토덱스트린(maltodextrin), 펙틴(pectin), 잔탄검(xanthan gum), 카나우바 왁스(carnauba wax) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 어느 하나이고, 더욱 바람직하게는 폴리비닐 카프로락탐-폴리비닐 아세테이트-폴리에틸렌 글리콜 그래프트 공중합체(polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, Soluplus)이다.In one aspect of the present invention, the matrix is preferably a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus), a polyvinylpyrrolidone (polyvinylpyrrolidone) PVP, polyethylene-co-vinylacetate (EVA), polyethylene glycol (PEG), polyethylene oxide (PEO), cellulose ether, acrylate, poly (Meth) acrylates, Eudragit, poly (lactic-co-glycolic acid), PLGA, microcrystalline cellulose, hydroxypropyl cellulose (hydroxypropyl cellulose, Klucel), hydroxypropyl methylcellulose and derivatives thereof, ethyl cellulose (Ethocel) , Cellulose acetate butylate (CAB), cellulose acetate phathalate, polyvinyl alcohol (PVA), chitosan, polycarbophil, polycaprolactone, Selected from the group consisting of corn starch, potato starch, maltodextrin, pectin, xanthan gum, carnauba wax, and mixtures thereof. And polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus) is more preferable. The term &quot; polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer &quot;

본 발명의 일 태양에서, 상기 가소제는 바람직하게는 트리에틸 시트레이트(triethyl citrate), 트리부틸 시트레이트(tributyl citrate), 아세틸 트리에틸 시트레이트(acetyl triethyl citrate), 또는 아세틸 트리부틸 시트레이트(acetyl tributyl citrate)와 같은 시트레이트 에스테르(citrate ester); 부틸 스테아레이트(butyl stearate), 글리세롤 모노스테아레이트(glycerol monostearate), 스테아릴 알콜(stearyl alcohol)과 같은 지방산 에스테르(fatty acid ester); 디부틸 세바케이트(dibutyl sebacate)와 같은 세바케이트 에스테르(sebacate ester); 디에틸 프탈레이트(diethyl phthalate), 디부틸 프탈레이트(dibutyl phthalate), 디옥틸 포스페이트(dioctyl phosphate)와 같은 프탈레이트 에스테르(phthalate ester); 폴리에틸렌 글리콜(polyethylene glycol), 프로필렌 글리콜(propylene glycol)과 같은 글리콜 유도체(glycol derivatives); 트리아세틴(triacetin); 피마자유(castor oil); 미네랄 오일(mineral oil); d-알파-토코페롤 폴리에틸렌 글리콜 1000 숙신산(d-alpha-tocopherol polyethylene glycol 1000 succinate, TPGS); 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 어느 하나이고, 더욱 바람직하게는 d-알파-토코페롤 폴리에틸렌 글리콜 1000 숙신산(d-alpha-tocopherol polyethylene glycol 1000 succinate, TPGS)이다.In one aspect of the invention, the plasticizer is preferably selected from the group consisting of triethyl citrate, tributyl citrate, acetyl triethyl citrate, or acetyl tributyl citrate. citrate esters such as tributyl citrate; Fatty acid esters such as butyl stearate, glycerol monostearate, and stearyl alcohol; Sebacate esters such as dibutyl sebacate; Phthalate esters such as diethyl phthalate, dibutyl phthalate and dioctyl phosphate; Glycol derivatives such as polyethylene glycol and propylene glycol; Triacetin; Castor oil; Mineral oil; d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS); And mixtures thereof. More preferably, the d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) is one selected from the group consisting of d-alpha-tocopherol polyethylene glycol 1000 succinate.

본 발명의 일 태양에서, 상기 수-난용성 약물은 바람직하게는 1 ∼ 90 중량%, 더욱 바람직하게는 10 ∼ 50 중량%로 포함될 수 있다.In one aspect of the present invention, the water-insoluble drug is preferably contained in an amount of 1 to 90% by weight, more preferably 10 to 50% by weight.

본 발명의 일 태양에서, 상기 매트릭스는 바람직하게는 10 ∼ 90 중량%, 더욱 바람직하게는 40 ∼ 80 중량%로 포함될 수 있다.In one embodiment of the present invention, the matrix is preferably contained in an amount of 10 to 90% by weight, more preferably 40 to 80% by weight.

본 발명의 일 태양에서, 상기 가소제는 바람직하게는 0.1 ∼ 50 중량%, 더욱 바람직하게는 0.1 ∼ 30 중량%로 포함될 수 있다.In one embodiment of the present invention, the plasticizer is preferably contained in an amount of 0.1 to 50% by weight, more preferably 0.1 to 30% by weight.

본 발명의 일 태양에서, 상기 고체분산체는 HME로 제조될 수 있으나, 이에 제한되는 것은 아니다.In one aspect of the present invention, the solid dispersion may be manufactured by HME, but is not limited thereto.

본 발명의 일 태양에서 사용되는 HME 공정에 적당한 중합체들 중에서, 본 발명에서는 SP 및 TPGS를 일 태양으로 선택하여 실시하였다. SP(Tg 약 70 ℃)는 폴리에틸렌 글리콜 6000(polyethylene glycol 6000, PEG 6000), 비닐카프로락탐(vinylcaprolactam), 및 비닐아세테이트(vinyl acetate)로 이루어진 양친매성 공중합체로서, 약물 가용화제(solubilizer) 및 생체막의 투과 개선제로 사용되고 있다(비특허문헌 10, 11 참조). TPGS는 비타민 E로부터 유래된 d-α 비타민 E 에스테르이고, Tm은 약 40 ℃이다(비특허문헌 12 참조). TPGS는 양친매성 성질로 인하여 비-이온성(non-ionic) 계면활성제로 사용될 수 있고, 수-난용성 약물의 용해도 및 투과도를 개선할 수 있으며, SD에서 무정형 약물을 안정화시킬 수 있다(비특허문헌 13 참조). 본 발명의 고형-상태 연구 결과, SP 및 TPGS의 Tg 및 Tm 값은 본 발명의 일 실시예에서 사용된 HME 공정에 적합한 것임을 확인할 수 있었다.Of the polymers suitable for the HME process used in one embodiment of the present invention, SP and TPGS were selected as an embodiment in the present invention. SP (T g About 70 캜) is an amphipathic copolymer consisting of polyethylene glycol 6000 (PEG 6000), vinylcaprolactam, and vinyl acetate and has improved permeation of drug solubilizer and biofilm (See Non-Patent Documents 10 and 11). TPGS is a d-alpha vitamin E ester derived from vitamin E, and T m is about 40 ° C (see Non-Patent Document 12). TPGS can be used as a non-ionic surfactant due to its amphiphilic nature and can improve the solubility and permeability of water-insoluble drugs and stabilize amorphous drugs in SD (non-patent 13). As a result of the solid state study of the present invention, it was confirmed that the T g and T m values of SP and TPGS are suitable for the HME process used in one embodiment of the present invention.

또한, 본 발명에서는, (a) 수-난용성 약물, 매트릭스 및 가소제를 혼합하여 혼합물을 제조하는 단계; 및 (b) 상기 단계 (a)에서 제조된 혼합물을 열-용융 압출기에 공급하여 열-용융 압출법으로 고체분산체를 제조하는 단계를 포함하는 고체분산체의 제조방법을 제공한다.Also, the present invention provides a method for preparing a pharmaceutical composition, comprising: (a) preparing a mixture by mixing a water-insoluble drug, a matrix and a plasticizer; And (b) supplying the mixture prepared in the step (a) to a hot-melt extruder to prepare a solid dispersion by a heat-melt extrusion method.

본 발명의 일 태양에서, 상기 단계 (b)의 열-용융 압출기의 온도는 바람직하게는 60 ∼ 120 ℃, 더욱 바람직하게는 80 ∼ 100 ℃ 범위에서 수행될 수 있다.In one embodiment of the present invention, the temperature of the heat-melt extruder of step (b) may be preferably in the range of 60 to 120 캜, more preferably in the range of 80 to 100 캜.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 이들 실시예는 본 발명을 예시하는 것이며, 본 발명이 이들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are illustrative of the present invention, and the present invention is not limited thereto.

<< 실시예Example >>

(1) 원료 및 재료(1) Raw materials and materials

발사르탄(VST)은 테코란드사(Tecoland Corp., Irvine, CA, USA)로부터 구매하였다. SP 및 TPGS는 바스프(BASF SE, Ludwigshafen, Germany)로부터, 인산(phosphoric acid) 및 염산(hydrochloric acid)은 시그마-알드리치(Sigma-Aldrich Co., St. Louis, MO, USA)로부터 구매하였다. 다른 모든 시료는 분석 등급(analytical grade)을 사용하였다.Valsartan (VST) was purchased from Tecoland Corp. (Irvine, Calif., USA). SP and TPGS were purchased from BASF SE (Ludwigshafen, Germany), and phosphoric acid and hydrochloric acid were purchased from Sigma-Aldrich Co. (St. Louis, Mo., USA). All other samples used analytical grade.

(2) (2) VSTVST -포함 -include SDSD 의 제조Manufacturing

VST (active pharmaceutical ingredient, API)의 가용화 및 흡수를 향상시키기 위하여, SP 및 TPGS를 각각 주요 매트릭스 및 가소제로 사용하여(비특허문헌 10, 12 참조), 다음과 같이 고체분산체를 제조하였다. VST 및 중합체(총 양은 약 250 g)를 하기 표 1에 기재된 비율로 구성하여 압출하기 전에 3분 동안 혼합하였다. In order to improve the solubilization and absorption of VST (active pharmaceutical ingredient, API), SP and TPGS were respectively used as main matrix and plasticizer (see Non-Patent Documents 10 and 12), and solid dispersions were prepared as follows. VST and polymer (total amount of about 250 g) were constituted in the proportions listed in Table 1 below and mixed for 3 minutes before extrusion.

성분ingredient F1F1 F2F2 SPSP 70%70% 60%60% TPGSTPGS -- 10%10% VSTVST 30%30% 30%30%

이 혼합물을 원형 다이(직경 1 mm)가 장착된 트윈-스크류 열-용융 압출기(STS-25HS, Hankook E.M. Ltd., Pyoung-Taek, Korea)에 도 1에 나타난 바와 같이 공급하였다. 가열부의 온도는 하기 표 2에 나타난 바와 같이 유지하였다.This mixture was fed into a twin-screw thermo-melt extruder (STS-25HS, Hankook E.M. Ltd., Pyoung-Taek, Korea) equipped with a circular die (diameter 1 mm) The temperature of the heating portion was maintained as shown in Table 2 below.

제형Formulation 가열부 온도Heating section temperature 1One 22 33 44 55 66 어댑터adapter 다이die F1F1 8080 8080 9090 9090 100100 100100 100100 100100 F2F2 8080 8080 9090 9090 100100 100100 100100 100100

압출 속도를 28 - 30 g/분으로 하고, 압출 압력을 약 100 바(bar)로 하였다. 스크류의 속도는 150 rpm으로 설정하였다. 얻어진 압출물을 상온으로 냉각하여 분쇄하였다. 분쇄 후, 0.21-mm 체선 폭(70 메쉬)의 체를 사용하여 분말을 제조하여 F1 및 F2 제형을 제조하였다.The extrusion speed was 28 - 30 g / min and the extrusion pressure was about 100 bar. The screw speed was set at 150 rpm. The obtained extrudate was cooled to room temperature and pulverized. After grinding, powder was prepared using a sieve of 0.21-mm sagittal width (70 mesh) to prepare Form F1 and Form F2.

(3) 제조된 (3) VSTVST -포함 -include SDSD 의 특성 조사Characterization of

중합체 매트릭스에 약물 분자가 분자 수준으로 분산되었는지 여부 및 결정성/ 무정형 상태 간의 전이를 조사하기 위하여 고형-상태 연구를 수행하였다.Solid-state studies were conducted to investigate whether the drug molecules were dispersed at the molecular level into the polymer matrix and between the crystalline / amorphous state.

(a) 푸리에 변환 적외선 스펙트럼 측정(a) Fourier transform infrared spectral measurement

KBr 방법으로 측정기기(Jasco FT/IR-4200 type A, Jasco Co., Tokyo, Japan)를 사용하여 VST, SP, TPGS, F1, 및 F2의 푸리에 변환 적외선 스펙트럼(Fourier transform infrared spectrum, FT-IR)을 측정하였다. 모든 시료는 600 - 4,000 cm-1 범위에서 스캔하였다.The Fourier transform infrared spectrum (FT-IR) of VST, SP, TPGS, F1, and F2 was measured using a KBr method using a measuring instrument (Jasco FT / IR-4200 type A, Jasco Co., Tokyo, Japan) ) Were measured. All samples were scanned in the range of 600 - 4,000 cm -1 .

측정된 VST, SP, TPGS, F1, 및 F2의 FT-IR 스펙트럼을 도 2에 나타내었다. VST은 1730 cm-1 (C=O group) 및 1603 cm-1 (C=N band)에 2개의 카르보닐(carbonyl) 흡수 밴드를 나타냈다(비특허문헌 14 참조). SP의 스펙트럼에서는 1730 및 1629 cm-1 (C=O stretching)와 함께 2924 cm-1 (지방족 C-H stretching)에 피크가 나타났다(비특허문헌 8 참조). TPGS의 스펙트럼에서는 2885 cm-1 (지방족 C-H stretching) 및 1737 cm-1 (C=O stretching)에 피크가 나타났다. F1 및 F2 제형의 스펙트럼에서는 VST의 대표적인 피크가 변형되어, 약물 및 중합체(SP 및 TPGS) 간의 강한 분자간 상호작용이 있음을 시사하였다.The FT-IR spectra of the measured VST, SP, TPGS, F1, and F2 are shown in FIG. VST showed two carbonyl absorption bands at 1730 cm -1 (C = O group) and 1603 cm -1 (C = N band) (see Non-Patent Document 14). The spectrum of SP showed a peak at 2924 cm -1 (aliphatic CH stretching) with 1730 and 1629 cm -1 (C = O stretching) (see non-patent document 8). The TPGS spectrum showed peaks at 2885 cm -1 (aliphatic CH stretching) and 1737 cm -1 (C = O stretching). The spectra of the F1 and F2 formulations showed that typical peaks of VST were modified to have strong intermolecular interactions between drug and polymer (SP and TPGS).

(b) X-선 (b) X-ray 회절diffraction 분석 측정 Analytical measurement

X-선 회절 분석(X-ray diffraction, XRD)은 상온에서 D5005 모델 회절분석기(D5005 model diffractometer, Brucker, Germany)로 수행하였다. 6°에서부터 40°까지의 2θ-각(angle) 범위에서 0.02°/s로 각 증가(angular increment)시키면서 1°/분의 스캔 속도로 40 mA 및 40 kV에서 단색성 CuKα-방사선(monochromatic CuKα-radiation, λ= 1.5406 Å)을 사용하였다.X-ray diffraction (XRD) was performed at room temperature with a D5005 model diffractometer (D5005 model diffractometer, Brucker, Germany). Monochromatic CuK-radiation at 40 mA and 40 kV at a scan rate of 1 [deg.] / Min with angular increment of 0.02 [deg.] / S in the 2 [ theta] ? -radiation,? = 1.5406?).

측정된 VST, SP, TPGS, F1, 및 F2의 XRD 패턴을 도 3에 나타내었다. VST의 프로파일에서는 결정성을 확인할 수 있었다(비특허문헌 17 참조). 고체분산체 제조에 사용되기 전의 SP는 보고된 바(비특허문헌 21 참조)와 같이 결정화도가 없는 무정형 양상(halo)을 나타내었다. 반면, TPGS의 XRD 패턴으로부터 TPGS는 결정성 물질임을 알 수 있었다(비특허문헌 12 참조). F1 및 F2의 프로파일에서는 결정성 피크가 없었으며, 이는 중합체 매트릭스에서의 약물의 무정형화를 보여주는 것이다.The XRD patterns of the measured VST, SP, TPGS, F1, and F2 are shown in FIG. The crystallinity was confirmed in the profile of VST (see Non-Patent Document 17). The SP before being used for the preparation of the solid dispersion showed an amorphous phase (halo) with no crystallinity as reported (see Non-Patent Document 21). On the other hand, it was found from the XRD pattern of TPGS that TPGS is a crystalline material (see Non-Patent Document 12). There was no crystalline peak in the profiles of F1 and F2, indicating the amorphous form of the drug in the polymer matrix.

(c) 시차주사 열량 측정(c) Differential scanning calorimetry

VST, SP, TPGS, F1, 및 F2의 열 관련 거동을 시차주사 열량측정(differential scanning calorimetry, DSC)으로 평가하였다. DSC 열분해곡선(thermogram)은 DSC-Q100 기기(TA Instruments, UK)를 사용하여 측정하였다. 상온에서 6개월 보관한 후의 SD 제형(F1 및 F2)의 DSC 분석도 수행하였다. 열분해곡선은 질소 기체 공급(50 mL/분) 하에서 10 ℃/분 승온 속도로 30 에서 190 ℃의 범위에서 스캔하였다.The thermal behavior of VST, SP, TPGS, F1, and F2 was evaluated by differential scanning calorimetry (DSC). The DSC pyrolysis curve was measured using a DSC-Q100 instrument (TA Instruments, UK). DSC analysis of SD formulations (F1 and F2) after 6 months storage at room temperature was also performed. The pyrolysis curve was scanned in the range of 30 to 190 ° C at a rate of 10 ° C / min temperature under nitrogen gas feed (50 mL / min).

VST의 Tm은 104.6 ℃로 측정되었고(도 4), 이 값은 문헌에 보고된 값(비특허문헌 17 참조)과 유사하였다. 약물 및 중합체의 Tm 및 Tg 값을 고려하여, 용융 압출 공정의 온도를 표 2에 나타난 바와 같이 80 - 100 ℃로 설정하였다. 일반적으로, 가열부의 온도는 반-결정성 중합체의 Tm 또는 무정형 중합체의 Tg 보다 15 - 60 ℃ 높게 설정할 수 있으므로(비특허문헌 18 참조), 설정된 온도(80 - 100 ℃)는 중합체의 성공적인 압출을 수행하기에 충분한 온도였다. 또한, 전단력 증가에 따라 중합체의 점도가 감소하는 요변성(搖變性, thixotropic) 거동으로 인해 약물과 중합체의 혼합 및 공동-분산(co-dispersing) 과정이 이루어질 수 있다. The T m of VST was measured at 104.6 캜 (Fig. 4), and this value was similar to the value reported in the literature (see Non-Patent Document 17). Taking into account the T m and T g values of the drug and the polymer, the temperature of the melt extrusion process was set at 80-100 ° C as shown in Table 2. In general, the temperature of parts of the heating is semi- it is possible to increase 60 ℃ (see Non-Patent Document 18), the set temperature (80 - - 100 ℃) crystallinity of the polymer T m or amorphous polymer 15 than the T g is successful in the polymer Lt; RTI ID = 0.0 &gt; extrusion &lt; / RTI &gt; Also, the drug-polymer mixing and co-dispersing process can be achieved due to thixotropic behavior in which the viscosity of the polymer decreases with increasing shear force.

F2 제형에 포함된 TPGS와 같은 가소제를 첨가하면 압출 공정 과정에서 중합체의 Tg 및 용융 점도를 감소시킬 수 있는 효과가 있다(비특허문헌 19 참조). 고전단력의 트윈 스크류 및 1-mm 직경의 다이를 사용한 것도 균일한 압출물을 생성하는데 기여하였다. 트윈-스크류 압출기는 약물의 결정화도 및 고체분산체 제형으로부터 약물의 용출 특성을 변화시킬 수 있다는 점에 유의하여야 한다(비특허문헌 20 참조). 더욱이, 스크류 배열에 의해 결정되는 고전단력 속도에 따라 보다 효율적인 용융 공정을 수행할 수 있고, 낮은 점도의 압출물을 얻을 수 있다.The addition of a plasticizer such as a TPGS formulation F2 contained in the effect of reducing the T g and melt viscosity of the polymer in the extrusion process process (see Non-Patent Document 19). The use of high shear twin screws and 1-mm diameter dies also contributed to creating a uniform extrudate. It should be noted that the twin-screw extruder can change the crystallinity of the drug and the dissolution characteristics of the drug from the solid dispersion formulation (see Non-Patent Document 20). Furthermore, a more efficient melting process can be performed according to the high shear rate determined by the screw arrangement, and a low viscosity extrudate can be obtained.

상기 언급한 바와 같이, VST의 DSC 곡선에서는 104.6 ℃에서 뚜렷한 흡열성(endothermic) 피크가 측정되었고, 이는 약물의 결정화도 및 녹는점을 나타내는 것이다(비특허문헌 17 참조). SP의 DSC 열분해곡선은 70 ℃ 근처에서 완만한 피크를 나타냈고, 이는 엔탈피 완화현상을 동반하는 유리질 상태로부터 고무질 상태로의 무정형 중합체의 전이를 나타내는 것이다(비특허문헌 8 참조). TPGS의 열분해곡선은 39.7 ℃에서 흡열성 피크를 포함하고 있고, 이는 TPGS의 결정화도 및 Tm 값을 나타내는 것으로서, 보고된 값과 일치한다(비특허문헌 22 참조). F1 및 F2의 열분해곡선에서 VST의 뚜렷한 흡열성 피크가 사라진 것은 HME 공정 동안에 약물이 결정성에서 무정형 상태로 변화된 것을 나타낸다. As mentioned above, in the DSC curve of VST, a pronounced endothermic peak was measured at 104.6 ° C, which indicates the crystallinity and melting point of the drug (see Non-Patent Document 17). The DSC pyrolysis curve of SP showed a gentle peak near 70 ° C, which indicates the transition of the amorphous polymer from the glassy state to the gummy state accompanied by the enthalpy relaxation phenomenon (see Non-Patent Document 8). The pyrolysis curve of TPGS contains an endothermic peak at 39.7 ° C, which is indicative of the crystallinity and T m of TPGS, which is consistent with reported values (see non-patent reference 22). The disappearance of the pronounced endothermic peak of VST on the pyrolysis curve of F1 and F2 indicates that the drug has changed from crystalline to amorphous during the HME process.

이와 같은 고형-상태 연구의 결과로써, 중합체 매트릭스에서 약물이 무정형화되고 분산되었음을 확인할 수 있었다.As a result of this solid-state study, it was confirmed that the drug was amorphous and dispersed in the polymer matrix.

(d) (d) VSTVST 의 재결정화 여부 확인Whether or not it is recrystallized

물질은 시간 경과에 따라 높은 에너지 수준의 무정형 약물이 낮은 자유 에너지(free energy)를 가지는 결정성 상태로 변형되는 경향이 있다(비특허문헌 23, 24 참조). 대기(atmospheric) 습기 및 잔류 결정성 약물(종 결정으로 작용함)을 포함하는, 몇가지 인자가 물질의 보관 중 무정형으로부터 결정성 상태로의 변형을 가속화시킬 수 있다(비특허문헌 7 참조). 이러한 약물의 재결정화를 억제하는 일반적 방법 중 하나가 고체분산체를 제조하는 것이다. The material tends to be transformed into a crystalline state with a low energy free energy at high energy level over time (see non-patent documents 23 and 24). Several factors, including atmospheric moisture and residual crystalline drugs (acting as seed crystals), can accelerate the transformation of amorphous to crystalline states during storage of the material (see Non-Patent Document 7). One of the common methods for inhibiting the recrystallization of such drugs is to prepare solid dispersions.

본 실시예에서 제조된 F1 및 F2 제형이 보관 중 재결정화가 되는지 여부를 확인하기 위하여, 상온에서 6개월이 지난 후에 DSC 열분해곡선을 측정하였고, 이를 도 5에 나타냈다. 도 5의 열분해곡선에서 VST의 흡열성 피크는 관찰되지 않았고, 이는 F1 및 F2 제형을 6개월 보관한 후에도 약물의 재결정화가 일어나지 않았음을 나타내는 것이다. The DSC pyrolysis curve was measured after 6 months at room temperature to confirm whether the F1 and F2 formulations prepared in this Example were to be recrystallized during storage, which is shown in FIG. The endothermic peak of VST was not observed in the pyrolysis curve of FIG. 5, indicating that recrystallization of the drug did not occur after storage of the F1 and F2 formulations for six months.

F1 및 F2 제형이 6개월 보관 후에도 재결정화가 발생하지 않은 점에 근거하면, 본 발명에서 제조된 SD는 고형 유리질 용액일 수 있다. 약물의 분자 수준의 분산은 약물과 SP와의 상호작용(예를 들어, 수소 결합)을 통하여 고정될 수 있다. 본 연구에서 보고된 HME 공정이 무정형 약물의 동력학적 안정성을 유지시키는 데에 기여하였을 것으로 추정된다.Based on the fact that recrystallization did not occur after the F1 and F2 formulations were stored for 6 months, the SD prepared in this invention may be a solid glassy solution. The molecular level distribution of the drug can be fixed through the interaction of the drug with the SP (e.g., hydrogen bonding). It is presumed that the HME process reported in this study contributed to maintaining the dynamical stability of the amorphous drug.

이상과 같이, 고형-상태 연구를 수행하여 중합체 매트릭스에 약물 분자가 분자 수준으로 분산되었음을 확인하였고, 제조된 실시예에서 약물이 결정성에서 무정형 상태로 변형되는 점과 일정 기간의 보관 후에도 재결정화가 일어나지 않음을 확인하였다.As described above, solid-state studies were conducted to confirm that the drug molecules were dispersed at the molecular level in the polymer matrix. In the prepared examples, the drug was transformed from crystalline to amorphous state and recrystallization occurred after storage for a certain period of time Respectively.

<< 실험예Experimental Example >>

(1) (One) 시험관내In vitro (( inin vitrovitro )) 약물 용출 Drug elution

용출시험기(TDT-08L; Electrolab, Maharashtra, India)를 사용하여 시험관내 약물 용출을 측정하였다. VST 20 mg에 상응하는 각각의 VST 분말 및 실시예 제형(F1 및 F2)을 젤라틴 캡슐에 넣어 충진하였고, 제조된 캡슐을 용출액(염산으로 pH 1.2로 맞춤, 인산으로 pH 6.8로 맞춤) 900 mL에 넣어 37 ℃에서 패들 속도 100 rpm으로 실험하였다. 용출액 일정량(7 mL)을 정해진 시각(15, 30, 45, 60, 90, 및 120 분)에 취하고, 동일 부피의 새로운 용출액을 각 샘플링 시점마다 보충하였다. 역상 C18 컬럼(reverse phase C18 column, UniverSil C18, 150 × 4.6 mm, 5㎛; Fortis Technologies Ltd, Cheshire, UK), 펌프(Waters 1525), 오토인젝터(automatic injector, Waters 717 plus), 및 UV/Vis 검출기(Waters 2487)가 장착된 고속액체크로마토그래피(HPLC) 기기(Waters Co., Milford, MA, USA)를 사용하여 용출된 VST을 정량분석하였다. 이동상은 아세토니트릴 및 DDW (60:40, v/v)로 제조하였고, 인산으로 pH 3.0으로 맞추었다. 검출 파장 및 유속은 각각 247 nm 및 1.0 mL/분이었다. 주입량은 20 ㎕ 였고, 사용한 HPLC 분석법의 분석일간- 및 분석일내- 편차는 허용범위 내였다.In vitro drug elution was measured using a dissolution tester (TDT-08L; Electrolab, Maharashtra, India). Each VST powder corresponding to 20 mg of VST and example formulations (F1 and F2) were filled in gelatin capsules and the resulting capsules were dissolved in 900 mL of eluate (fit to pH 1.2 with hydrochloric acid, pH 6.8 with phosphoric acid) And the paddle speed was 100 rpm at 37 캜. An aliquot (7 mL) of the eluate was taken at a fixed time (15, 30, 45, 60, 90, and 120 minutes) and a new eluate of the same volume was replenished at each sampling time. (Waters 1525), an automatic injector (Waters 717 plus), and UV / Vis &lt; (R) &gt; The eluted VST was quantitatively analyzed using a high performance liquid chromatography (HPLC) instrument (Waters Co., Milford, MA, USA) equipped with a detector (Waters 2487). The mobile phase was prepared with acetonitrile and DDW (60:40, v / v) and adjusted to pH 3.0 with phosphoric acid. The detection wavelength and the flow rate were 247 nm and 1.0 mL / min, respectively. The injection volume was 20 μl, and the analytical and analytical daily deviations of the HPLC analysis used were within acceptable limits.

상기와 같이, pH 1.2(인공 위액) 및 pH 6.8(인공 장액)에서 수행한 시험관내 약물 용출 시험의 결과를 도 6에 나타냈다. SD(F1 및 F2)로부터의 약물 용출 프로파일과 VST 분말의 용출을 비교한 결과, 2개 pH 조건 모두에서 F1 및 F2 제형으로부터의 VST 용출량이 약물 분말로부터의 용출량보다 현저히 높았다. The results of in vitro drug elution tests performed at pH 1.2 (artificial gastric juice) and pH 6.8 (artificial intestinal fluid) as described above are shown in FIG. Comparing the drug elution profile from SD (F1 and F2) to the elution of VST powder, the VST elution from the F1 and F2 formulations was significantly higher than the elution from the drug powders at both pH conditions.

본 발명 실시예의 SD 제형에서 약물의 용출이 개선된 것은 VST의 물에서의 낮은 용해도와 관련된 것으로 보인다. VST은 약물 자체의 약산성으로 인하여 낮은 pH에서 낮은 수 용해도를 나타낸다(비특허문헌 25 참조). VST의 pH-의존적 용해도로 인하여 pH 6.8에서 용출된 약물량은 pH 1.2에서의 용출량보다 높은 것으로 나타났다(도 6). pH 1.2 환경에서는, 120분 동안 F1 및 F2으로부터의 약물의 용출량이 VST 분말로부터의 용출량보다 각각 68.0% 및 69.6% 높았다. pH 6.8 환경에서는, F1 및 F2으로부터의 약물 용출이 15분에 거의 100%에 도달하였다. 따라서, pH 6.8에서는, VST 분말과 비교하여 실시예의 SD 제형으로부터 신속하고 완전한 약물 용출을 관찰할 수 있었다. Improved drug elution in SD formulations of the Examples of the invention appears to be related to the low solubility of VST in water. VST shows a low water solubility at low pH due to the weak acidity of the drug itself (see Non-Patent Document 25). Due to the pH-dependent solubility of VST, the amount of drug eluted at pH 6.8 was higher than the elution at pH 1.2 (FIG. 6). In the pH 1.2 environment, the elution of drug from F1 and F2 for 120 min was 68.0% and 69.6% higher than the elution from VST powder, respectively. In the pH 6.8 environment, drug elution from F1 and F2 reached almost 100% in 15 minutes. Thus, at pH 6.8, rapid and complete drug elution was observed from the SD formulations of the Examples as compared to the VST powder.

약물 흡수의 주요 부위가 대체적으로 소장이라는 점을 고려하면, 실시예 제형으로부터의 약물 용출이 pH 1.2 보다 pH 6.8에서 증가된 것은 약물 흡수에 유리하다고 할 수 있다. F2에만 포함된 TPGS는 pH 1.2 또는 pH 6.8에서의 약물 용출 양상에는 크게 영향을 미치지는 않았다.Considering that the major sites of drug absorption are generally small intestine, it can be said that the drug elution from the formulation of Example is increased at pH 6.8 rather than pH 1.2, which is advantageous for drug absorption. TPGS contained only in F2 did not significantly affect the drug release pattern at pH 1.2 or pH 6.8.

실시예 SD로부터 약물 용출이 개선된 것은 몇가지 인자로 설명될 수 있다. 약물 무정형화는 HME-가공된 생성물에서 수-난용성 약물의 용출이 상승된 것과 관련있을 수 있다. 또한, SP는 수상(aqueous phase)에서 SD로부터의 약물 용출에 기여하는 것으로 보인다. 위장관에서 약물의 투과도 문제가 없다면, 약물의 용출 증진은 위장관에서의 약물 흡수도 상승으로 이어질 수 있다.Improvements in drug elution from Example SD can be explained by several factors. Drug amorphosylation may be associated with increased elution of the water-insoluble drug in the HME-processed product. In addition, SP appears to contribute to drug elution from SD in the aqueous phase. Without the problem of permeability of the drug in the gastrointestinal tract, promotion of drug elution can lead to increased drug uptake in the gastrointestinal tract.

(2) (2) 생체내In vivo (( inin vivovivo )) 약물동력학Pharmacokinetics 연구 Research

수컷 SD 랫트(Sprague-Dawley rat, 무게 250 ± 5 g, Orient Bio, Sungnam, Korea)에서 생체내 약물동력학 연구를 수행하였다. 혈액 채취를 위해 마취 하에서 좌측 대퇴부 동맥에 폴리에틸렌 튜브(polyethylene tube, PE-50, Becton Dickinson Diagnostics, MD, USA)를 삽관하였다. VST 분말 또는 제조된 SD 제형들을 젤라틴 마이크로캡슐(gelatin microcapsule, Torpac Inc., Fairfield, NJ, USA)에 넣어 4 mg/kg 용량으로 경구 투여하였다. VST 투여 후 5, 15, 30, 45, 60, 90, 120, 240, 480 및 1440 분에 200 ㎕의 혈액 시료를 대퇴부 동맥으로부터 채혈하였다. 채혈한 혈액 시료를 4 ℃, 16,000 rpm에서 3분간 원심분리하고, 일정량(70 ㎕)의 혈장 시료를 정량분석 수행 전까지 -70 ℃에 보관하였다.In vivo pharmacokinetic studies were performed in male SD rats (Sprague-Dawley rats, weight 250 ± 5 g, Orient Bio, Sungnam, Korea). A polyethylene tube (PE-50, Becton Dickinson Diagnostics, MD, USA) was inserted into the left femoral artery under anesthesia for blood sampling. VST powder or SD formulations were orally administered at 4 mg / kg in gelatin microcapsules (Torpac Inc., Fairfield, NJ, USA). 200 μl of blood samples were collected from the femoral artery at 5, 15, 30, 45, 60, 90, 120, 240, 480 and 1440 minutes after the administration of VST. Blood samples were centrifuged at 16,000 rpm for 3 minutes at 4 ° C, and a certain amount (70 μl) of plasma samples were stored at -70 ° C until quantitative analysis.

랫트 혈장 중 VST 농도를 액체 크로마토그래피 탠덤 질량분석 시스템(liquid chromatography-tandem mass spectrometry, LC-MS/MS)으로 측정하였다. 혈장 시료 50 ㎕에, 5 ㎕의 로잘탄(LST, internal standard) 용액(15 ㎍/mL) 및 아세토니트릴 145 ㎕를 첨가한 후, 5분간 와류 교반(vortex-mix)하였다. 그 후, 16,000 rpm에서 5분간 원심분리한 후, 상층액(2 ㎕)을 HPLC 시스템(Agilent Technologies 1260 Infinity HPLC system, Agilent Technologies, Wilmington, DE, USA) 및 LC/MS 시스템(Agilent Technologies 6430 Triple Quad LC/MS system)이 장착된 LC-MS/MS 시스템에 주입하였다. 크로마토그래피 분리는 컬럼(SynergiTM 4 μ Hydro-RP 80 Å column, 75 × 2.0 mm, Phenomenex, CA, USA)을 사용하였다. 이동상은 아세토니트릴 및 5 mM 포름산 암모늄 완충액(85:15, v/v)으로 제조하였고, 유속은 0.4 mL/분이었다. ESI 소스(source)는 수동으로 최적화하였다. 가스 온도, 가스 유량, 분무기(nebulizer) 압력 및 모세관 전압(capillary voltage)은, 각각 300 ℃, 11 L/분, 15 psi 및 4000 V 였다. 단편 전이(fragmentation transition)는 VST에 대하여는 m/z 436.2 - 291.2 였으며, LST에 대하여는 m/z 423.4 - 207.3이었다. 단편화 전압(fragmentor voltage) 및 충돌 에너지는 VST에 대하여는 각각 98 V 및 14 eV, LST에 대하여는 각각 115 V 및 20 eV였다. VST 및 LST의 머무름 시간(retention time)은 각각 0.46 분 및 0.47 분이었다. 데이터 수집과 처리는 정량분석 소프트웨어(MassHunter Workstation Software Quantitative Analysis, Version B.05.00; Agilent Technologies, Wilmington, DE, USA)로 수행하였다.The concentration of VST in rat plasma was measured by liquid chromatography-tandem mass spectrometry (LC-MS / MS). 5 μl of LST (internal standard) solution (15 μg / mL) and 145 μl of acetonitrile were added to 50 μl of the plasma sample, followed by vortex-mixing for 5 minutes. The supernatant (2 μl) was then transferred to an HPLC system (Agilent Technologies 1260 Infinity HPLC system, Agilent Technologies, Wilmington, DE, USA) and an LC / MS system (Agilent Technologies 6430 Triple Quad LC / MS system). Chromatographic separation was carried out using a column (Synergi 4 μ Hydro-RP 80 Å column, 75 × 2.0 mm, Phenomenex, CA, USA). The mobile phase was prepared with acetonitrile and 5 mM ammonium formate buffer (85:15, v / v) and the flow rate was 0.4 mL / min. The ESI source was manually optimized. The gas temperature, gas flow rate, nebulizer pressure and capillary voltage were 300 ° C, 11 L / min, 15 psi and 4000 V, respectively. The fragmentation transition was m / z 436.2 - 291.2 for VST and m / z 423.4 - 207.3 for LST. The fragmentor voltage and impinging energy were 98 V and 14 eV for VST and 115 V and 20 eV for LST, respectively. The retention times of VST and LST were 0.46 min and 0.47 min, respectively. Data collection and processing was performed with quantitative analysis software (MassHunter Workstation Software Quantitative Analysis, Version B.05.00; Agilent Technologies, Wilmington, DE, USA).

VST의 약물동력학적 파라미터(시작점부터 무한대까지의 혈장 중 VST 농도-시간 곡선 하 총 면적(total area under VST concentration in the plama-time curve from time zero to infinity, AUC), 소실 반감기(terminal half-life, t1 /2), 시간-평균 총 클리어런스(time-averaged total body clearance, CL), 정상 상태에서의 겉보기 분포 용적(apparent volume of distribution at a steady state, Vss), 및 평균 체류시간 (mean residence time, MRT))는 윈넌린 프로그램(WinNonlin, Version 3.1, Pharsight, Mountain View, CA, USA)으로 산출하였다.The VST concentration in the plasma from the starting point to the infinite-time curve was calculated from the total area under the VST concentration in the platinum-time curve from time to zero to infinity (AUC) , t 1/2), the time-average of the total clearance (time-averaged total body clearance, CL), the apparent volume of distribution at steady state (apparent volume of distribution at a steady state, V ss), and the average residence time (mean residence time, MRT) were calculated using the Winnonlin program (WinNonlin, Version 3.1, Pharsight, Mountain View, CA, USA).

이와 같이 실험한 VST 분말, F1, 및 F2의 랫트에서의 경구 흡수 결과를 하기 표 3 및 도 7에 나타냈다.The oral absorption results of the VST powder, F1, and F2 thus tested in rats are shown in Table 3 and FIG.

파라미터parameter VST 분말VST powder F1F1 F2F2 AUC (㎍·min/mL)AUC (占 퐂 / min / mL) 168.10 ± 28.88* 168.10 ± 28.88 * 482.99 ± 184.77* 482.99 + - 184.77 * 922.89 ± 163.06* 922.89 + 163.06 * Cmax(㎍/mL)C max ([mu] g / mL) 0.72 ± 0.280.72 + 0.28 0.84 ± 0.070.84 + 0.07 4.72 ± 1.72#,+ 4.72 ± 1.72 #, + Tmax(분)T max (min) 60 (45-60)60 (45-60) 30 (15-60)30 (15-60) 45 (30-45)45 (30-45) 상대적 생체이용률(%)Relative bioavailability (%) 100100 287287 549549

데이터는 평균±표준편차로 표시함 (n ≥ 3).Data are expressed as mean ± standard deviation (n ≥ 3).

*: p < 0.05, 다른 군과 통계적으로 상이함.*: p <0.05, statistically different from other groups.

#: p < 0.05, VST 군과 비교함.#: p <0.05, compared with VST group.

+: p < 0.05, F1 군과 비교함.+: p < 0.05, compared with F1 group.

상기 표 3에 나타난 바와 같이, AUC 값은 낮은 값에서 높은 값 순서로 VST < F1 < F2 이었다. 군 간에는 AUC 값에 있어서 현저한 차이가 있었고(p < 0.05), F1 및 F2 군은 VST 분말 군에 비하여 각각 2.87 배 및 5.49 배 높은 AUC 값들을 보였다(p < 0.05). Cmax 값에 있어서, F2 군은 VST 분말 군 및 F1 군에 비하여 각각 6.56 배 및 5.62 배 높은 값을 보였다(p < 0.05). 군 간 Tmax 값에서는 유의적인 차이점이 나타나지 않았다. As shown in Table 3, the AUC values were VST < F1 < F2 in the order from low value to high value. ( P <0.05). The AUC values of the F1 and F2 groups were 2.87 times and 5.49 times higher than those of the VST powder group, respectively ( p <0.05). The C max values of the F2 group were 6.56 and 5.62 times higher than those of the VST powder group and the F1 group, respectively ( p <0.05). There was no significant difference in T max values between groups.

본 실험예에서 측정된 AUC 값으로 SP가 약물 흡수를 증가시킬 수 있다는 것을 알 수 있었다. SP의 가용화 능력으로 인해, SP는 경구 투여된 약물의 흡수를 증진시켰다(비특허문헌 11 참조). The measured AUC value in this experiment shows that SP can increase drug absorption. Due to the solubilizing ability of SP, SP enhanced the absorption of orally administered drug (see non-patent reference 11).

이상과 같이, 약물의 경구 생체이용률이 증가된 것은 약물, SP, 및, 장액(담즙과 인지질(phospholipid)을 포함하고 있어 미셀(micelle)의 원료로 작용할 수 있음)의 생체내 상호작용에 근거하는 것으로 보인다(비특허문헌 11 참조). As described above, the increase in the oral bioavailability of the drug is based on the in vivo interaction of drug, SP, and intestinal fluid (including bile and phospholipid, which may serve as a raw material of micelle) (See Non-Patent Document 11).

F2 제형에 포함된 TPGS는 SP 보다 상대적 경구 생체이용률을 보다 더 현저히 개선시키는 것으로 확인되었다. TPGS는 약물 용출 양상에 어떠한 변화를 주지는 않았지만(도 6), 경구 약물 흡수에 있어서는 예상치 못한 현저한 상승을 가져왔다. 가소제로서, TPGS는 HME 공정 동안에 공정 온도 및 용융 점도를 감소시킬 수 있다.TPGS in the F2 formulation was found to significantly improve relative oral bioavailability over SP. TPGS did not change the drug release pattern (Figure 6), but resulted in an unexpectedly significant increase in oral drug absorption. As a plasticizer, TPGS can reduce the process temperature and melt viscosity during the HME process.

인간에서의 VST 투여용량 중 흡수 분율은 23%(캡슐)에서 39%(용액)까지이고, AUC 및 Cmax 값에서 상당한 개체간 차이가 보고된 바 있다(비특허문헌 25 참조). HME 공정을 통한 SD 제형 개발은, 약물 분말과 비교하여 개체간 낮은 편차를 나타내면서도 높은 VST 경구 생체이용률을 얻을 수 있는 효과적인 방법일 수 있다.The absorption fraction of the VST dose in humans is from 23% (capsule) to 39% (solution), and significant individual differences in AUC and C max values have been reported (see non-patent reference 25). The development of SD formulations through the HME process can be an effective way to achieve high VST oral bioavailability while exhibiting low variability among individuals compared to drug powders.

(3) 통계 분석(3) Statistical analysis

모든 실험은 최소 3회 수행하였고, 데이터는 평균±표준편차(SD) 값으로 나타냈다. 통계학적 분석은 분산 분석(analysis of variance, ANOVA)으로 수행하였다.All experiments were performed at least 3 times and data were expressed as mean ± SD. Statistical analysis was performed by analysis of variance (ANOVA).

(4) 결론(4) Conclusion

SP 및 TPGS에 기초한 VST-포함 경구 SD를 HME 공정을 이용하여 제조하였다. 고전단력 속도를 유발하는 트윈 스크류의 HME 공정을 이용하여 SD를 제조하였고, 이렇게 제조된 SD에서 중합체 매트릭스로의 VST의 무정형화 및 분자 수준에서의 분산을 확인하였다. 제조된 제형내 약물의 무정형화 및 관련된 열역학적 성질은 FT-IR, XRD, 및 DSC로 조사하였다. 제조된 제형으로부터의 약물 용출은 약물 분말과 비교하여 개선되었고, pH 1.2(인공 위액)에 비하여 pH 6.8(인공 장액)에서 약물 용출의 증가가 관찰되었다. 개발된 제형의 랫트에서의 VST의 경구 생체이용률은 약물 분말 투여시와 비교하여 현저히 개선되었다. 본 발명의, SP 및 TPGS에 기초한, HME 공정을 이용한 SD는 난용성 약물의 경구 생체이용률을 개선하기 위하여 효과적으로 이용될 수 있다.VST-containing oral SDs based on SP and TPGS were prepared using the HME process. The SD was prepared using a twin-screw HME process to induce a high shear rate. The amorphization of the VST into the polymer matrix and the dispersion at the molecular level of the SD thus prepared were confirmed. The amorphisation and associated thermodynamic properties of the drugs in the formulations produced were investigated by FT-IR, XRD, and DSC. Drug elution from the prepared formulation was improved compared to drug powder and an increase in drug elution at pH 6.8 (artificial intestinal fluid) was observed compared to pH 1.2 (artificial gastric juice). Oral bioavailability of VST in the rats of the developed formulation was significantly improved as compared to the administration of the drug powder. The SD using the HME process based on SP and TPGS of the present invention can be effectively used to improve the oral bioavailability of a poorly soluble drug.

Claims (9)

케토프로펜(ketoprofen), 이부프로펜(ibuprofen), 인도메타신(indomethacin), 피록시캄(piroxicam), 페노프로펜(fenoprofen), 아세트아미노펜(acetaminophen), 디클로페낙(diclofenac), 클로로페니라민(chloropheniramine), 테오필린(theophylline), 페닐프로판올아민(phenylpropanolamine), 니페디핀(nifedipine), 니카르디핀(nicardipine), 리도케인(lidocaine), 히드로코르티손(hydrocortisone), 카바마제핀(carbamazepine), 발사르탄(valsartan) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 수-난용성 약물, 폴리비닐 카프로락탐-폴리비닐 아세테이트-폴리에틸렌 글리콜 그래프트 공중합체 및 d-알파-토코페롤 폴리에틸렌 글리콜 1000 숙신산을 포함하는 고체분산체.But are not limited to, ketoprofen, ibuprofen, indomethacin, piroxicam, fenoprofen, acetaminophen, diclofenac, chloropheniramine, Theophylline, phenylpropanolamine, nifedipine, nicardipine, lidocaine, hydrocortisone, carbamazepine, valsartan, and the derivatives thereof. A solid dispersion comprising a water-insoluble drug selected from the group consisting of water-insoluble drugs, polyvinylcaprolactam-polyvinylacetate-polyethylene glycol graft copolymer and d-alpha-tocopherol polyethylene glycol 1000 succinic acid. 삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 수-난용성 약물은 10 ∼ 50 중량%, 상기 폴리비닐 카프로락탐-폴리비닐 아세테이트-폴리에틸렌 글리콜 그래프트 공중합체는 40 ∼ 80 중량%, 상기 d-알파-토코페롤 폴리에틸렌 글리콜 1000 숙신산은 0.1 ∼ 30 중량%의 범위인 것을 특징으로 하는 고체분산체.The method of claim 1, wherein the water-insoluble drug is 10-50 wt%, the polyvinylcaprolactam-polyvinyl acetate-polyethylene glycol graft copolymer is 40-80 wt%, the d-alpha-tocopherol polyethylene glycol 1000 And the content of succinic acid is in the range of 0.1 to 30% by weight. 제1항에 있어서, 상기 고체분산체는 열-용융 압출법(hot-melting extrusion, HME)으로 제조되는 것을 특징으로 하는 고체분산체.The solid dispersion according to claim 1, wherein the solid dispersion is prepared by hot-melting extrusion (HME). (a) 케토프로펜(ketoprofen), 이부프로펜(ibuprofen), 인도메타신(indomethacin), 피록시캄(piroxicam), 페노프로펜(fenoprofen), 아세트아미노펜(acetaminophen), 디클로페낙(diclofenac), 클로로페니라민(chloropheniramine), 테오필린(theophylline), 페닐프로판올아민(phenylpropanolamine), 니페디핀(nifedipine), 니카르디핀(nicardipine), 리도케인(lidocaine), 히드로코르티손(hydrocortisone), 카바마제핀(carbamazepine), 발사르탄(valsartan) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 수-난용성 약물, 폴리비닐 카프로락탐-폴리비닐 아세테이트-폴리에틸렌 글리콜 그래프트 공중합체 및 d-알파-토코페롤 폴리에틸렌 글리콜 1000 숙신산을 혼합하여 혼합물을 제조하는 단계; 및
(b) 상기 단계 (a)에서 제조된 혼합물을 열-용융 압출기에 공급하여 열-용융 압출법으로 고체분산체를 제조하는 단계;
를 포함하는 고체분산체의 제조방법.
(a) a compound selected from the group consisting of ketoprofen, ibuprofen, indomethacin, piroxicam, fenoprofen, acetaminophen, diclofenac, such as chloropheniramine, theophylline, phenylpropanolamine, nifedipine, nicardipine, lidocaine, hydrocortisone, carbamazepine, valsartan, Preparing a mixture by mixing a water-insoluble drug, a polyvinylcaprolactam-polyvinylacetate-polyethylene glycol graft copolymer and d-alpha-tocopherol polyethylene glycol 1000 succinic acid selected from the group consisting of polyvinylpyrrolidone and a mixture thereof; And
(b) supplying the mixture prepared in the step (a) to a heat-melt extruder to prepare a solid dispersion by heat-melt extrusion;
&Lt; / RTI &gt;
제 8항에 있어서, 상기 단계 (b)의 열-용융 압출기의 온도는 60 ∼ 120 ℃ 범위에서 수행되는 것을 특징으로 하는 고체분산체의 제조방법.The method according to claim 8, wherein the temperature of the heat-melt extruder in step (b) is in the range of 60 to 120 ° C.
KR1020140122813A 2014-09-16 2014-09-16 Solid dispersion including poorly water-soluble drugs KR101722564B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140122813A KR101722564B1 (en) 2014-09-16 2014-09-16 Solid dispersion including poorly water-soluble drugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140122813A KR101722564B1 (en) 2014-09-16 2014-09-16 Solid dispersion including poorly water-soluble drugs

Publications (2)

Publication Number Publication Date
KR20160032543A KR20160032543A (en) 2016-03-24
KR101722564B1 true KR101722564B1 (en) 2017-04-03

Family

ID=55651430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140122813A KR101722564B1 (en) 2014-09-16 2014-09-16 Solid dispersion including poorly water-soluble drugs

Country Status (1)

Country Link
KR (1) KR101722564B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439250B1 (en) * 2020-07-30 2022-09-01 아주대학교산학협력단 Extended release formulation for oral administration of sildenafil citrate solid dispersion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100134557A (en) * 2008-01-11 2010-12-23 씨아이피엘에이 엘티디. Solid pharmaceutical dosage form
MX2013010306A (en) * 2011-03-08 2013-12-09 Zalicus Pharmaceuticals Ltd Solid dispersion formulations and methods of use thereof.
US9884042B2 (en) * 2011-09-14 2018-02-06 Celgene Corporation Formulations of cyclopropanecarboxylic acid {2-[(1S)-1-(3-ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]-3-oxo-2,3-dihydro-1H-isoindol-4-yl}-amide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1:Pharm. Res.(2006)

Also Published As

Publication number Publication date
KR20160032543A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
Kalivoda et al. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion
Zhang et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension
US20190083403A1 (en) Orally Disintegrating Tablet Formulation For Enhanced Bioavailability
Zhang et al. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets
Vaka et al. Excipients for amorphous solid dispersions
Madan et al. Hot melt extrusion and its pharmaceutical applications.
CN106232144B (en) Solid dispersion
Pardhi et al. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate
AU2016263338A1 (en) SOMCL-9112 solid dispersion and preparation method thereof and SOMCL-9112 solid preparation containing SOMCL-9112 solid dispersion
CN111818921A (en) Improved bromocriptine formulations
Tawfeek et al. Dissolution enhancement and formulation of rapid-release lornoxicam mini-tablets
Strojewski et al. Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions
US20130344116A1 (en) Oral particle consisting of an amorphous structure and a submicron domain
JP2013505222A (en) Fast-dissolving solid pharmaceutical formulations containing amphiphilic copolymers based on polyethers combined with hydrophilic polymers
KR20180102584A (en) A pharmaceutical composition comprising a phenylaminopyrimidine derivative
Mandati et al. Hot-melt extrusion–based fused deposition modeling 3D printing of atorvastatin calcium tablets: impact of shape and infill density on printability and performance
Enose et al. Formulation, characterization and pharmacokinetic evaluation of telmisartan solid dispersions
KR101722564B1 (en) Solid dispersion including poorly water-soluble drugs
EP3261621A1 (en) Immeadiate release oral tablet
Garhy et al. Buccoadhesive gel of carvedilol nanoparticles for enhanced dissolution and bioavailability
Javeer et al. Solubility and dissolution enhancement of HPMC ‑ based solid dispersions of carbamazepine by hot‑melt extrusion technique
Jain et al. Effect of powder processing on performance of fenofibrate formulations
Tascón Otero et al. Enhancement of the dissolution rate of indomethacin by solid dispersions in low-substituted hydroxypropyl cellulose
JP2018123140A (en) Active ingredient (i) containing compositions and methods of making the same
Prajapati et al. Formulation and evaluation of orodispersible tablets of Cilnidipine by spray drying technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200217

Year of fee payment: 4

R401 Registration of restoration