KR101721511B1 - 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법 - Google Patents

무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법 Download PDF

Info

Publication number
KR101721511B1
KR101721511B1 KR1020170018233A KR20170018233A KR101721511B1 KR 101721511 B1 KR101721511 B1 KR 101721511B1 KR 1020170018233 A KR1020170018233 A KR 1020170018233A KR 20170018233 A KR20170018233 A KR 20170018233A KR 101721511 B1 KR101721511 B1 KR 101721511B1
Authority
KR
South Korea
Prior art keywords
dynamic
key
random number
verification value
gateway
Prior art date
Application number
KR1020170018233A
Other languages
English (en)
Inventor
정재욱
박정환
전재율
Original Assignee
에스지에이솔루션즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스지에이솔루션즈 주식회사 filed Critical 에스지에이솔루션즈 주식회사
Priority to KR1020170018233A priority Critical patent/KR101721511B1/ko
Application granted granted Critical
Publication of KR101721511B1 publication Critical patent/KR101721511B1/ko
Priority to PCT/KR2018/001745 priority patent/WO2018147673A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0618Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
    • H04L9/0631Substitution permutation network [SPN], i.e. cipher composed of a number of stages or rounds each involving linear and nonlinear transformations, e.g. AES algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/068Authentication using credential vaults, e.g. password manager applications or one time password [OTP] applications
    • H04W4/005
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2463/00Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
    • H04L2463/121Timestamp

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

스마트카드, 상기 스마트카드를 읽고 쓸수 있는 사용자 단말, 다수의 센서, 및, 상기 센서와 통신하는 게이트웨이에 의해 수행되는, 대칭키 기반의 사용자 인증 방법에 관한 것으로서, (a) 상기 게이트웨이는 상기 사용자 단말로부터 사용자의 아이디 및 동적 패스워드를 수신하여, 상기 아이디와 동적 패스워드로 암호화된 비밀키와, 상기 동적 패스워드와 상기 비밀키로 구성된 로그인 검증값을 생성하여 상기 스마트카드에 저장하는 단계; (b) 상기 사용자 단말은 입력된 아이디와 패스워드로부터 동적 패스워드를 추출하고, 추출된 동적 패스워드를 이용하여 비밀키를 복호화하고 로그인 검증값을 복원하여, 상기 스마트카드의 로그인 검증값으로 검증하는 단계; (c) 상기 사용자 단말은 동적 아이디를 생성하고, 동적 아이디와 비밀키로 대칭키를 생성하고, 동적 아이디를 대칭키로 암호화하여 제1 메시지를 생성하고, 상기 동적 아이디 및 제1 메시지를 상기 게이트웨이로 전송하는 단계; (d) 상기 게이트웨이는 수신한 동적 아이디와 저장된 비밀키로 대칭키를 복원하고, 복원된 대칭키로 상기 제1 메시지를 복호화하여 동적 아이디를 검증하는 단계; (e) 상기 게이트웨이는 제2 난수를 생성하고, 공유키로 제2 난수를 암호화하고, 수신한 동적 아이디와, 공유키와, 제2 난수로 세션키를 생성하고, 동적아이디, 세션키, 공유키, 센서 아이디로 제2 검증값을 생성하여, 암호화된 제2 난수, 동적 아이디, 및 상기 제2 검증값을 상기 각 센서로 전송하는 단계; (f) 각 센서는 공유키로 제2 난수를 복호화하고, 수신한 동적 아이디, 공유키, 복호화된 제2 난수로 세션키를 추출하여 공유하고, 동적아이디, 추출된 세션키, 공유키, 센서 아이디로 제2 검증값을 추출하여 검증하는 단계; (g) 각 센서는 공유키, 추출된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 생성하여, 상기 게이트웨이로 전송하는 단계; (h) 상기 게이트웨이는 공유키, 생성된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 추출하여, 전송된 제3 검증값과 대비하여 검증하고, 동적 아이디, 센서 아이디, 세션키, 및, 제1 난수를 상기 대칭키로 암호화한 제2 메시지를 전송하는 단계; 및, (i) 상기 사용자 단말은 대칭키로 제2 메시지를 복호화하여, 동적 아이디와 제1 난수를 검증하는 단계를 포함하는 구성을 마련한다.
상기와 같은 사용자 인증 방법에 의하여, 연산량이 매우 작은 해시함수와 대칭키 기반의 암호시스템만을 사용함으로써, 효율성 측면에서 매우 높은 이점을 가질 수 있다.

Description

무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법 { A user authentication method using symmetric key, to guarantee anonymity in the wireless sensor network environment }
본 발명은 다양한 공격법에 안전한 무선센서네트워크 환경에 적합한 사용자 인증 방법을 제공하되, 연산량이 매우 작은 해시함수와 대칭키 기반의 암호 시스템만을 사용하는, 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법에 관한 것이다.
무선센서네트워크는 많은 센서 노드들과 이를 관리하는 게이트웨이 노드로 구성된 네트워크 환경이며, 현재 군사 시설 관리 및 헬스 케어 서비스, 스마트 그리드 환경 등 여러 분야의 다양한 기술들과 융합되어 널리 사용되고 있다.
무선센서네트워크 환경의 중요성이 높아짐에 따라 센서들이 지니고 있는 중요한 정보들에 대한 기밀성 및 무결성을 보장하기 위한 다양한 연구가 수행 중이다. 특히, 무선센서네트워크 환경의 안전성을 보장하기 위한 대표적인 방법으로 사용자 인증 프로트콜 설계 관련 연구가 각광을 받고 있다. 사용자 인증 프로토콜은 사용자가 본인의 스마트카드, ID, 패스워드 정보를 사용하여 해당 게이트웨이 노드 및 센서 노드에 안전하게 접근하여 상호간의 성공적인 인증을 목표로 하는 보안기술이다. 하지만, 에너지 사용측면에서 매우 제한적인 센서노드의 특징을 반드시 염두해야 하기 때문에 안전성 측면뿐만 아니라 효율성 측면도 반드시 고려를 하여 사용자 인증 프로토콜을 설계해야 한다.
Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. Chong, C.Y.; Kumar, S.P. Sensor networks: evolution, opportunities, and challenges. Proc. IEEE. 2003, 91, 1247-1256. Claycomb, W.R.; Shin, D. A novel node level security policy framework for wireless sensor networks. J. Netw. Comput. Appl. 2011, 34, 418-428. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120-126. Watro, R.; Kong, D.; Cuti, S.F.; Gardiner, C.; Lynn, C.; Kruus, P. TinyPK: Securing sensor networks with public key technology. In Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks, Washington, DC, USA, 25 October 2004; pp. 59-64. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203-209. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. In Workshop on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1984; pp. 10-18. Hwang, M.S.; Li, L.H. A new remote user authentication scheme using smart cards. IEEE Trans. Consum. Electron. 2000, 46, 28-30. Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770-772. Wong, K.H.; Zheng, Y.; Cao, J.; Wang, S. A dynamic user authentication scheme for wireless sensor networks. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, 5-7 June 2006; Volume 1, pp. 1-9. Tseng, H.R.; Jan, R.H.; Yang, W. An Improved dynamic user authentication scheme for wireless sensor networks. In Proceedings of the Global Telecommunications Conference, Washington, DC, USA, 26-30 November 2007. Vaidya, B.; SㅄaSilva, J.; Rodrigues, J.J.P.C. Robust dynamic user authentication scheme for wireless sensor networks. In Proceedings of the 5th ACM Symposium on QoS and Security for Wireless and Mobile Networks, New York, NY, USA, 28 October 2009; pp. 88-91. Das, M.L. Two-factor user authentication scheme in wireless sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 1086-1090. Khan, M.K.; Alghathbar, K. Cryptanalysis and security improvements of two-factor user authentication in wireless sensor networks. Sensors 2010, 10, 2450-2459. Vaidya, B.; Makrakis, D.; Mouftah, H.T. Improved two-factor user authentication in wireless sensor networks. In Proceedings of the IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Niagara Falls, ON, USA, 11-13 October 2010; pp. 600-606. Chen, T.H.; Shih, W.K. A Robust Mutual Authentication Protocol for Wireless Sensor Networks. ETRI J. 2010, 32, 704-712. Fan, R.; Ping, L.D.; Fu, J.Q.; Pan, X.Z. A secure and effcient user authentication protocol for two-tiered wireless sensor networks. In Proceedings of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS), Beijing, China, 1-2 August 2010; Volume 1, pp. 425-428. Yeh, H.L.; Chen, T.H.; Liu, P.C.; Kim, T.H.; Wei, H.W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors 2011, 11, 4767-4779. Das, A.K.; Sharma, P.; Chatterjee, S.; Sing, J.K. A dynamic password-based user authentication scheme for hierarchical wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 1646-1656. Xue, K.; Ma, C.; Hong, P.; Ding, R. A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. J. Netw. Comput. Appl. 2013, 36, 316-323. Yuan, J.J. An enhanced two-factor user authentication in wireless sensor networks. Telecommun. Syst. 2014, 55, 105-113. Turkanoviㅄc, M.; Brumen, B.; Hㄸolbl, M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Netw. 2014, 20, 96-112. Farash, M.S.; Turkanoviㅄc, M.; Kumari, S.; Hㄸolbl, M. An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Interne tof Things environment. Ad Hoc Netw. 2014, 36, 152-176. Amin, R.; Islam, S.H.; Biswas, G.P.; Khan, M.K.; Leng, L.; Kumar, N. Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Comput. Netw. 2016, 101, 42-62. Kothmayr, T.; Schmitt, C.; Hu, W.; Brㆌnig, M.; Carle, G. DTLS based security and two-way authentication for the Internet of Things. Ad. Hoc. Netw. 2013, 11, 2710-2723. Schmitt, C.; Noack, M.; Stiller, B. Chapter 13: TinyTO: Two-way Authentication for Constrained Devices in the Internet-of-Things. In Internet-of-Things (Principles and Paradigms); Morgen Kaufmann: Cambridge, MA, USA, 2016; pp. 239-258. Porambage, P.; Schmitt, C.; Kumar, P.; Gurtov, A.; Ylianttila, M. Pauthkey: A pervasive authentication protocol and key establishment scheme for wireless sensor networks in distributed IoT applications. Int. J. Distrib. Sens. Netw. 2014, 2014, doi:10.1155/2014/357430. Chen, L.; Wei, F.; Ma, C. A secure user authentication scheme against smart-card loss attack for wireless sensor networks using symmetric key techniques. Int. J. Distrib. Sens. Netw. 2015, 2015, doi:10.1155/2015/704502. Kang, D.; Jung, J.; Mun, J.; Lee, D.; Choi, Y.; Won, D. Efficient and robust user authentication scheme that achieve user anonymity with a Markov chain. Secur. Commun. Netw. 2016, 9, doi:10.1002/sec.1432. Syverson, P. A taxonomy of replay attacks [cryptographic protocols]. In Proceedings of the Computer Security Foundations Workshop VII, CSFW 7, Franconia, VA, USA, 14-16 June 2014; pp. 187-191. Chien-Ming, C.; Wei-Chi, K. Stolen-verifier attack on two new strong-password authentication protocols. IEICE Trans. Commun. 2002, 85, 2519-2521. Schultz, E.E. A framework for understanding and predicting insider attacks. Comput. Secur. 2002, 21, 526-531. Wei-Chi, K.U.; Chang, S.T. Impersonation attack on a dynamic ID-based remote user authentication scheme using smart cards. IEICE Trans. Commun. 2005, 88, 2165-2167. Gong, L. Optimal authentification protocols resistant to password guessing attacks. In Proceedings of the IEEE 8th Computer Security Foundations Workshop, County Kerry, UK, 13-15 June 1995; pp. 24-29. Kim, J.; Lee, D.; Jeon, W.; Lee, Y.; Won, D. Security Analysis and Improvements of Two-Factor Mutual Authentication with Key Agreement in Wireless Sensor Networks. Sensors 2014, 14, 6443-6462. Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography. Sensors 2014, 14, 10081-10106. Choi, Y.; Nam, J.; Lee, D.; Kim, J.; Jung, J.; Won, D. Security Enhanced Anonymous Multi-Server Authenticated Key Agreement Scheme Using Smart Cards and Biometrics. Sci. World J. 2014, 2014, doi:10.1155/2014/281305. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Advances in Cryptology-CRYPTO'99, LNCS, Santa Barbara, CA, USA, 16 December 1999; Volume 1666, pp. 388-397. Amin, R.; Biswas, G.P. A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks. Ad Hoc Netw. 2016, 36, 58-80. Li, X.; Niu, J.; Khan, M.K.; Liao, J. An enhanced smart card based remote user password authentication scheme. J. Netw. Comput. Appl. 2013, 36, 1365-1371. Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1989, 426, 233-271. Dai, W. Crypto++ Library, 5.6.1. Available online: http://www.cryptopp.com (accessed on 5 April 2011). Li, C.T.; Hwang, M.S.; Chu, Y.P. A secure and efficient communication scheme with authenticated key establishment and privacy preserving for vehicular ad hoc networks. Comput. Commun. 2008, 31, 2803-2814. Li, C.T.; Weng, C.Y.; Lee, C.C. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors 2013, 13, 9589-9603. Chang, C.C.; Le, H.D. A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Trans. Wirel. Commun. 2015, 15, 357-366.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 다양한 공격법에 안전한 무선센서네트워크 환경에 적합한 사용자 인증 방법을 제공하되, 연산량이 매우 작은 해시함수와 대칭키 기반의 암호 시스템만을 사용하는, 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법을 제공하는 것이다.
특히, 본 발명의 목적은 센서의 제한된 하드웨어 자원을 고려하여 대칭키 암호 기술을 이용한 암·복호화와 XOR 연산만을 사용하도록 구성하는, 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은 스마트카드, 상기 스마트카드를 읽고 쓸수 있는 사용자 단말, 다수의 센서, 및, 상기 센서와 통신하는 게이트웨이에 의해 수행되는, 대칭키 기반의 사용자 인증 방법에 관한 것으로서, (a) 상기 게이트웨이는 상기 사용자 단말로부터 사용자의 아이디 및 동적 패스워드를 수신하여, 상기 아이디와 동적 패스워드로 암호화된 비밀키와, 상기 동적 패스워드와 상기 비밀키로 구성된 로그인 검증값을 생성하여 상기 스마트카드에 저장하는 단계; (b) 상기 사용자 단말은 입력된 아이디와 패스워드로부터 동적 패스워드를 추출하고, 추출된 동적 패스워드를 이용하여 비밀키를 복호화하고 로그인 검증값을 복원하여, 상기 스마트카드의 로그인 검증값으로 검증하는 단계; (c) 상기 사용자 단말은 동적 아이디를 생성하고, 동적 아이디와 비밀키로 대칭키를 생성하고, 동적 아이디를 대칭키로 암호화하여 제1 메시지를 생성하고, 상기 동적 아이디 및 제1 메시지를 상기 게이트웨이로 전송하는 단계; (d) 상기 게이트웨이는 수신한 동적 아이디와 저장된 비밀키로 대칭키를 복원하고, 복원된 대칭키로 상기 제1 메시지를 복호화하여 동적 아이디를 검증하는 단계; (e) 상기 게이트웨이는 제2 난수를 생성하고, 공유키로 제2 난수를 암호화하고, 수신한 동적 아이디와, 공유키와, 제2 난수로 세션키를 생성하고, 동적아이디, 세션키, 공유키, 센서 아이디로 제2 검증값을 생성하여, 암호화된 제2 난수, 동적 아이디, 및 상기 제2 검증값을 상기 각 센서로 전송하는 단계; (f) 각 센서는 공유키로 제2 난수를 복호화하고, 수신한 동적 아이디, 공유키, 복호화된 제2 난수로 세션키를 추출하여 공유하고, 동적아이디, 추출된 세션키, 공유키, 센서 아이디로 제2 검증값을 추출하여 검증하는 단계; (g) 각 센서는 공유키, 추출된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 생성하여, 상기 게이트웨이로 전송하는 단계; (h) 상기 게이트웨이는 공유키, 생성된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 추출하여, 전송된 제3 검증값과 대비하여 검증하고, 동적 아이디, 센서 아이디, 세션키, 및, 제1 난수를 상기 대칭키로 암호화한 제2 메시지를 전송하는 단계; 및, (i) 상기 사용자 단말은 대칭키로 제2 메시지를 복호화하여, 동적 아이디와 제1 난수를 검증하는 단계를 포함하는 것을 특징으로 한다.
또, 본 발명은 대칭키 기반의 사용자 인증 방법에 있어서, 동적 패스워드 또는 동적 아이디는 패스워드 또는 아이디에 난수를 연접(concatenation)을 하고 해쉬하여 생성되는 것을 특징으로 한다.
또, 본 발명은 대칭키 기반의 사용자 인증 방법에 있어서, 상기 (a)단계에서, 상기 비밀키는 상기 게이트웨이가 사전에 생성한 비밀값을 해쉬한 값으로 사용되는 것을 특징으로 한다.
또, 본 발명은 대칭키 기반의 사용자 인증 방법에 있어서, 상기 (e)단계에서, 상기 공유키는 상기 게이트웨이와 상기 센서가 사전에 서로 공유하는 비밀값에 센서 아이디를 연접하여 해쉬한 값으로 사용되는 것을 특징으로 한다.
또, 본 발명은 대칭키 기반의 사용자 인증 방법에 있어서, 상기 (d)단계, (f)단계, (h)단계, (i)단계에서, 타임스탬프를 수신하고, 타임스탬프에 의하여 사전에 정해진 유예시간이 경과되면 이후 단계를 수행하지 않는 것을 특징으로 한다.
또, 본 발명은 대칭키 기반의 사용자 인증 방법에 있어서, 상기 (c)단계에서, 제1 난수를 생성하여, 상기 제1 메시지에 제1 난수를 포함하여 전송하고, 상기 (h)단계에서, 상기 제1 메시지의 제1 난수를 상기 제2 메시지에 포함시켜 전송하고, 상기 (i)단계에서, 상기 제2 메시지의 제1 난수를 검증하는 것을 특징으로 한다.
또한, 본 발명은 대칭키 기반의 사용자 인증 방법을 수행하는 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체에 관한 것이다.
상술한 바와 같이, 본 발명에 따른 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법에 의하면, 연산량이 매우 작은 해시함수와 대칭키 기반의 암호시스템만을 사용함으로써, 효율성 측면에서 매우 높은 이점을 가지는 효과가 얻어진다.
도 1은 본 발명을 실시하기 위한 전체 시스템에 대한 구성도.
도 2는 본 발명의 대칭키 기반의 사용자 인증 방법을 설명하기 위한 표기법을 나타낸 표.
도 3은 본 발명의 일실시예에 따른 대칭키 기반의 사용자 인증 방법의 사용자 등록단계를 설명하는 흐름도.
도 4는 본 발명의 일실시예에 따른 대칭키 기반의 사용자 인증 방법의 로그인 및 검증 단계를 설명하는 흐름도.
도 5는 본 발명의 일실시예에 따른 대칭키 기반의 사용자 인증 방법의 패스워드 변경단계를 설명하는 흐름도.
이하, 본 발명의 실시를 위한 구체적인 내용을 도면에 따라서 설명한다.
또한, 본 발명을 설명하는데 있어서 동일 부분은 동일 부호를 붙이고, 그 반복 설명은 생략한다.
먼저, 본 발명을 실시하기 위한 전체 시스템의 구성의 예들에 대하여 도 1을 참조하여 설명한다.
도 1에서 보는 바와 같이, 본 발명을 실시하기 위한 전체 시스템은 스마트카드(11), 스마트카드(11)를 읽거나 기록할 수 있는 사용자 단말(10), 게이트웨이(20), 및, 다수의 센서 또는 센서노드(30)로 구성된다.
사용자 단말(10)은 사용자가 사용하는 컴퓨팅 단말로서, 스마트폰, 태플릿PC, PC, 노트북 등이다. 또한, 사용자 단말(10)은 스마트카드(11)에 접근하여, 카드 내에 기록된 내용을 읽거나 기록 또는 변경할 수 있다.
스마트카드(11)는 보안기능을 구비한 저장매체로서, 통상의 IC칩, 스마트카드 등이다.
게이트웨이(20)는 다수의 센서(30)와 무선을 통하여 데이터를 수집하거나 센서(30)를 제어하는 게이트웨이 장치이다.
센서 또는 센서노드(30)는 온도, 영상, 소리, 습도 등을 측정하는 센서로서, 지그비, 와이파이, 블루투스 등 근거리 통신 프로토콜을 이용하여 통신하는 장치이다.
즉, 스마트폰 등 사용자 단말(10)이 센서(30)에 접근하기 위하여, 사용자 인증정보를 스마트카드에 저장한다. 그리고 사용자 단말(10)은 스마트카드에 의해 게이트웨이의 인증을 통과하면, 게이트웨이를 통해 센서에 접근할 수 있다.
이하에서 명확한 설명을 위하여 사용한 표기들을 도 2의 표와 같이 정리하였다.
다음으로, 본 발명에 따른 사용자 인증 방법에서 충족시킬 수 있는 다양한 보안 요구사항들에 대하여 설명한다. 즉, 무선 센서네트워크 환경에서 고려해야 될 보안 요구사항으로는 아래와 같으며, 본 발명에 따른 사용자 인증 방법 또한 아래와 같은 보안 요구사항을 충족해야 한다.
(1) 사용자 익명성: 사용자의 ID는 프로토콜상의 전송되는 메시지가 도청공격을 통해 노출되었다 하더라도 안전해야 하며, 사용자 스마트카드 공격에도 안전하게 보존되어야 한다.
(2) 상호인증: 무선센서네트워크 환경에 참여한 사용자, 센서 노드, 게이트웨이 노드 간에 주고받은 모든 메시지에 관하여 검증과정을 수행하여 상호인증을 만족하도록 한다.
(3) 세션키 분배: 상호인증을 통하여 최종적으로 세션키 분배과정을 수행한다. 후에 사용자는 분배된 세션키를 사용하여 게이트웨이 및 센서 노드와 안전한 암호통신을 할 수 있다.
(4) 잘못 입력된 패스워드에 대한 빠른 탐지: 사용자는 무선센서네트워크에 로그인할 때 본인의 ID와 패스워드를 입력해야 한다. 하지만 로그인 단계에서 사용자가 입력한 패스워드에 대한 정당성 체크 과정이 수행되지 않으면 로그인 단계 후에 수행되는 검증 단계까지 진행이 된 후에나 패스워드의 정확성 여부를 판단하게 된다. 이는 매우 비효율적이기 때문에, 로그인 단계에서 반드시 사용자가 입력한 패스워드에 대한 정당성 여부가 확인되어야 한다.
(5) 효율적인 패스워드 변경: 사용자 인증 방법에는 일반적으로 사용자의 패스워드를 안전하게 변경할 수 있는 단계가 있다. 이때, 사용자는 서버를 통해 패스워드를 변경하는 것이 아닌 스마트카드 안에서 자체적으로 사용자 패스워드를 변경하게 방법이 수행되어야 한다.
(6) 위장 공격에 안전: 공격자는 해당 인증 방법에 침투할 수 있는 능력을 지니고 있다. 위장공격이란 마치 공격자 본인이 정당한 사용자인 것처럼 행동하여 상대방을 속이는 행위를 일컫는다.
(7) 오프라인 패스워드 공격에 안전: 사용자의 패스워드는 노출되어서는 안될 중요한 정보이다. 오프라인 패스워드 공격은 이러한 사용자의 패스워드를 전수 조사 방법으로 유추하는 공격 방법이다.
(8) 내부자 공격에 안전: 사용자 등록 단계에서 게이트웨이 노드를 관리하는 관리자는 악의적인 마음을 품고 사용자가 등록을 위해 전송한 패킷을 이용하여 사용자의 개인정보를 파악할 수 있다. 일반적으로 패스워드정보가 많이 노출이 되며, 사용자 인증 방법에서 이를 반드시 고려해야 한다.
한편, 본 발명에서는 센서 노드의 제한된 하드웨어 자원을 고려하여 대칭키 기반의 암호기술과 해시함수 연산만을 사용하여 인증 방법을 구성하였다.
다음으로, 본 발명의 일실시예에 따른 대칭키 기반의 사용자 인증 방법을 도 3 내지 도 5를 참조하여 보다 구체적으로 설명한다.
본 발명에 따른 사용자 인증방법은 등록 단계, 로그인 및 검증 단계(또는 인증단계), 패스워드 변경 단계 등으로 구성된다. 또한, 본 발명에 따른 사용자 인증방법은 앞서 설명한 보안 요구사항을 모두 충족시킨다.
먼저, 등록 단계에 대하여 도 3을 참조하여 설명한다.
등록단계는 사용자 또는 사용자 단말(10)이 사용자의 정보를 이용하여 게이트웨이 또는 게이트웨이 노드(20)에 본인(또는 본인의 스마트카드 정보)을 등록하는 단계이다. 도 3은 등록단계를 나타내고 있으며, 이에 따른 자세한 수행 절차는 아래와 같다.
먼저, 사용자 단말(10)은 사용자의 아이디 IDi와 패스워드 PWi를 선택하고, 난수(random number) b를 생성한다(S1). 그리고 동적 패스워드
Figure 112017013703219-pat00001
= h(PWi∥b)를 계산한다. 여기서 i는 사용자를 식별하는 첨자이다.
그리고 게이트웨이 노드(20)에게 <IDi,
Figure 112017013703219-pat00002
>를 전송한다(S2).
다음으로, 게이트웨이 노드(20)는 비밀키 v = h(xa)를 계산하고, v를 데이터 베이스에 저장한다(S3). 그리고 v를 암호화하여 암호화된 비밀키 Ni = h(IDi
Figure 112017013703219-pat00003
)
Figure 112017013703219-pat00004
v, 및, 로그인 검증값 Mi =h(
Figure 112017013703219-pat00005
∥v)를 계산하고 v를 데이터 베이스에 저장한다. 여기서, xa 는 게이트웨이 노드가 생성한 비밀값이다.
게이트웨이 노드(20)는 사용자가 사용할 스마트 카드를 생성하고 스마트카드인증정보(Ni, Mi, h(·))를 스마트 카드에 저장하여 사용자에게 발급한다. 즉, 발급된 스마트 카드 (Ni, Mi, h(·))를 사용자 단말(10)에 전송한다(S4).
다음으로, 스마트카드를 발급받은 사용자 단말(10)은 본인이 생성했던 난수(random number b) b를 스마트카드(11)에 삽입한다(S5). 최종적으로 등록 단계가 끝나면 사용자는 (Ni, Mi, h(·), b)를 저장하고 있는 스마트카드를 얻게 된다.
다음으로, 로그인 및 검증 단계(또는 인증 단계)에 대하여 도 4를 참조하여 설명한다. 도 4와 같이, 로그인 과정 및 검증 과정으로 구성된다.
먼저, 로그인 과정을 설명한다. 로그인 과정은 사용자 단말이 무선센서네트워크 환경으로 접근할 때 수행되는 단계이다.
사용자는 본인의 스마트카드를 단말기에 넣고 IDi와 PWi를 입력한다(S11). 스마트카드는
Figure 112017013703219-pat00006
*= h(PWi∥b), v* = Ni
Figure 112017013703219-pat00007
h(IDi
Figure 112017013703219-pat00008
*), Mi * = h(
Figure 112017013703219-pat00009
*∥v*)를 계산한 후 Mi *값과 스마트카드 안에 저장되어 있던 Mi값을 서로 비교한다(S12). 만약 두 값이 같으면, 사용자는 올바른 패스워드를 입력했음이 증명되고, 만약 두 값이 다르면 로그인 단계가 종료된다.
다음으로, 스마트카드는 난수(random number) 제1 난수 R1을 생성하고, 동적 아이디 DIDi = h(IDi∥R1), 대칭키 k = h(DIDi∥v*∥T1), 제1 메시지 Ai = Ek(DIDi∥R1∥T1)을 계산한다(S13).
최종적으로 스마트카드는 게이트웨이 노드에게 로그인요청 메시지인 <DIDi, Ai, T1>를 전송한다(S14).
다음으로, 검증과정을 설명한다. 검증 과정은 게이트웨이가 사용자로부터 로그인 요청 메시지를 전송 받으면서 시작된다. 본 단계에서는 주고 받는 메시지의 검증을 통한 상호 인증절차가 수행되며, 모든 인증절차가 완료되면 최종적으로 센서 노드와 사용자 간에 세션키 SK를 공유하게 된다. 또한, 공유한 세션키 SK를 이용하여 향후 사용자는 해당 센서 노드와 안전한 비밀 통신을 할 수 있게 된다.
다음으로, 사용자로부터 로그인 요청 메시지인 <DIDi, Ai, T1>를 전송 받은 후 게이트웨이 노드는 타임스탬프 T1값을 이용하여 전송 받은 제1 메시지에 대하여 |T1'- T1| < ΔT를 통해 유효성 여부를 검사한다(S21).
또한, 게이트웨이 노드는 대칭키 k = h(DIDi∥h(xa)∥T1)를 계산하여 암호화 되어있는 Ai값에 대한 복호화 Dk(Ai) = {DIDi, R1, T1}를 수행한다(S22). 로그인 요청 메시지의 유효성을 검증하기 위하여, 복호화 연산을 통해 얻은 DIDi 와 T1값과 전달 받은 로그인 요청 메시지 안에 있는 값을 비교한다. 만약, 두 값이 서로 동일한 값이면 다음 절차가 이어서 수행되며, 두 값이 다르면 단계가 종료된다.
다음으로, 게이트웨이 노드(20)는 제2 난수 R2값을 생성하고 Li = R2
Figure 112017013703219-pat00010
h(xs∥SIDn), 세션키 SK = h(DIDi∥h(xs∥SIDn)∥R2∥T2), 제2 검증값 Bi = h(DIDi∥SK∥h(xs∥SIDn)∥SIDn∥T2)를 계산한다(S23). Li 는 h(xs∥SIDn)로 암호화된 제2 난수이다.
그리고 게이트웨이 노드(20)는 센서 노드(30)에게 <Li, DIDi, Bi, T2>를 전송한다(S24).
다음으로, 센서 노드(30)는 먼저 전송받은 <Li, DIDi, Bi, T2>에 대하여 |T2'- T2| < ΔT를 통해 타임스탬프 검증을 수행한다(S31).
검증이 올바르게 끝나면, 센서 노드(30)는 R2 = Li
Figure 112017013703219-pat00011
h(xs∥SIDn), SK = h(DIDi∥h(xs∥SIDn)∥R2∥T2), Bi * = h(DIDi∥SK∥h(xs∥SIDn)∥SIDn∥T2)을 계산하고, Bi * 과 Bi을 서로 비교하여 전송 받은 메시지 <Li, DIDi, Bi, T2>에 대한 검증을 수행한다(S32). 만약 검증이 정상적으로 끝나면, 센서 노드는 메시지를 전송한 게이트웨이 노드가 정당한 게이트웨이 노드임을 확신한다.
다음으로, 센서 노드(30)는 제3 검증값 Ci = h(h(xs∥SIDn)∥SK∥DIDi∥SIDn∥T3)를 계산하고 게이트웨이 노드에게 <Ci, T3>값을 전송한다(S33).
다음으로, 게이트웨이 노드(20)는 전송 받은 <Ci, T3>에 대하여 |T3'- T3| < ΔT를 통해 타임스탬프 검증을 수행한다(S41).
검증이 올바르게 끝나면, Ci * = h(h(xs∥SIDn)∥SK∥DIDi∥SIDn∥T3)를 계산하고, Ci * 과 Ci을 서로 비교하여 전송 받은 메시지 <Ci, T3>에 대한 검증을 수행한다(S42). 만약 검증이 정상적으로 끝나면, 게이트웨이 노드는 메시지를 전송한 센서 노드가 정당한 센서 노드임을 확신한다.
다음으로, 게이트웨이 노드(20)는 제2 메시지 Di = Ek(DIDi∥SIDn∥SK∥R1∥T4)를 계산하고 사용자에게 <Di, T4>를 전송한다(S43,S44).
다음으로, 사용자 단말(10)은 전송받은 <Di, T4>에 대하여 |T4'- T4| < ΔT를 통해 타임스탬프 검증을 수행한다(S51).
검증이 올바르게 끝나면, 암호화된 Di값에 대한 복호화 연산 Dk(Di) = {DIDi, SIDn, SK, R1, T4}을 수행한다(S52). 또한, 전송 받은 메시지 <Di, T4>에 대한 유효성을 검증하기 위하여 복호화 연산을 통해 얻은 DIDi, R1, T4 값들과 사전에 갖고 있던 DIDi, R1, T4 값들을 비교한다.
만약, 비교한 값들이 모두 일치하면, 사용자는 메시지 <Di, T4>를 전송한 게이트웨이 노드가 정당한 게이트웨이 노드임을 확신하게 되고 성공적으로 검증 단계가 마무리 된다.
다음으로, 패스워드 변경 단계에 대하여 도 5를 참조하여 설명한다.
패스워드 변경 단계는 사용자의 패스워드를 변경하기 위한 단계이다. 사용자 패스워드가 변경되면 스마트카드 안에 있는 값들 중 패스워드에 영향을 받는 값들도 변경이 되어야 한다. 본 발명에 따른 패스워드 변경 단계에서는 서버와의 별도의 통신 없이 스마트카드 자체적으로 패스워드를 변경할 수 있게 설계를 하였기 때문에, 효율성 측면에서 매우 뛰어나다고 할 수 있다. 패스워드 변경 단계의 자세한 설명을 아래와 같다.
먼저, 사용자는 본인의 스마트카드를 단말기에 넣고 IDi 와 기존의 패스워드 PWi old, 그리고 새로운 패스워드 PWi new를 입력한다(S71).
다음으로, 스마트카드는
Figure 112017013703219-pat00012
= h(PWi old∥b), vold = Ni
Figure 112017013703219-pat00013
h(IDi
Figure 112017013703219-pat00014
), Mi old = h(
Figure 112017013703219-pat00015
∥vold)를 계산한 후 Mi old값과 스마트카드 안에 저장되어 있던 Mi값을 서로 비교한다(S72). 만약 두 값이 다르면 패스워드 변경 단계가 종료되고, 같으면 다음 절차가 수행된다.
다음으로, 스마트카드는 새로운 패스워드로 구성된
Figure 112017013703219-pat00016
= h(PWi new∥b), Ni new = h(IDi
Figure 112017013703219-pat00017
)
Figure 112017013703219-pat00018
v, Mi new = h(
Figure 112017013703219-pat00019
∥v)를 계산한다(S73).
그리고 최종적으로 스마트카드는 새롭게 계산한 {Ni new, Mi new}값들과 기존의 스마트카드 안에 저장되어있던 {Ni, Mi}값들을 교체한다(S74). 패스워드 변경 단계가 끝난 후 스마트카드 안에는 (Ni new, Mi new, h(·), b)값들을 지니고 있게 된다.
이상, 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.
10 : 사용자 단말 11 : 스마트카드
20 : 게이트웨이 30 : 센서 또는 센서노드

Claims (7)

  1. 스마트카드, 상기 스마트카드를 읽고 쓸수 있는 사용자 단말, 다수의 센서, 및, 상기 센서와 통신하는 게이트웨이에 의해 수행되는, 대칭키 기반의 사용자 인증 방법에 있어서,
    (a) 상기 게이트웨이는 상기 사용자 단말로부터 사용자의 아이디 및 동적 패스워드를 수신하여, 상기 아이디와 동적 패스워드로 암호화된 비밀키와, 상기 동적 패스워드와 상기 비밀키로 구성된 로그인 검증값을 생성하여 상기 스마트카드에 저장하는 단계;
    (b) 상기 사용자 단말은 입력된 아이디와 패스워드로부터 동적 패스워드를 추출하고, 추출된 동적 패스워드를 이용하여 비밀키를 복호화하고 로그인 검증값을 복원하여, 상기 스마트카드의 로그인 검증값으로 검증하는 단계;
    (c) 상기 사용자 단말은 동적 아이디를 생성하고, 동적 아이디와 비밀키로 대칭키를 생성하고, 동적 아이디를 대칭키로 암호화하여 제1 메시지를 생성하고, 상기 동적 아이디 및 제1 메시지를 상기 게이트웨이로 전송하는 단계;
    (d) 상기 게이트웨이는 수신한 동적 아이디와 저장된 비밀키로 대칭키를 복원하고, 복원된 대칭키로 상기 제1 메시지를 복호화하여 동적 아이디를 검증하는 단계;
    (e) 상기 게이트웨이는 제2 난수를 생성하고, 공유키로 제2 난수를 암호화하고, 수신한 동적 아이디와, 공유키와, 제2 난수로 세션키를 생성하고, 동적아이디, 세션키, 공유키, 센서 아이디로 제2 검증값을 생성하여, 암호화된 제2 난수, 동적 아이디, 및 상기 제2 검증값을 상기 각 센서로 전송하는 단계;
    (f) 각 센서는 공유키로 제2 난수를 복호화하고, 수신한 동적 아이디, 공유키, 복호화된 제2 난수로 세션키를 추출하여 공유하고, 동적아이디, 추출된 세션키, 공유키, 센서 아이디로 제2 검증값을 추출하여 검증하는 단계;
    (g) 각 센서는 공유키, 추출된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 생성하여, 상기 게이트웨이로 전송하는 단계;
    (h) 상기 게이트웨이는 공유키, 생성된 세션키, 수신한 동적 아이디, 센서 아이디로 제3 검증값을 추출하여, 전송된 제3 검증값과 대비하여 검증하고, 동적 아이디, 센서 아이디, 세션키, 및, 제1 난수를 상기 대칭키로 암호화한 제2 메시지를 전송하는 단계; 및,
    (i) 상기 사용자 단말은 대칭키로 제2 메시지를 복호화하여, 동적 아이디와 제1 난수를 검증하는 단계를 포함하는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  2. 제1항에 있어서,
    동적 패스워드 또는 동적 아이디는 패스워드 또는 아이디에 난수를 연접(concatenation)을 하고 해쉬하여 생성되는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  3. 제1항에 있어서,
    상기 (a)단계에서, 상기 비밀키는 상기 게이트웨이가 사전에 생성한 비밀값을 해쉬한 값으로 사용되는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  4. 제1항에 있어서,
    상기 (e)단계에서, 상기 공유키는 상기 게이트웨이와 상기 센서가 사전에 서로 공유하는 비밀값에 센서 아이디를 연접하여 해쉬한 값으로 사용되는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  5. 제1항에 있어서,
    상기 (d)단계, (f)단계, (h)단계, (i)단계에서, 타임스탬프를 수신하고, 타임스탬프에 의하여 사전에 정해진 유예시간이 경과되면 이후 단계를 수행하지 않는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  6. 제1항에 있어서,
    상기 (c)단계에서, 제1 난수를 생성하여, 상기 제1 메시지에 제1 난수를 포함하여 전송하고,
    상기 (h)단계에서, 상기 제1 메시지의 제1 난수를 상기 제2 메시지에 포함시켜 전송하고,
    상기 (i)단계에서, 상기 제2 메시지의 제1 난수를 검증하는 것을 특징으로 하는 대칭키 기반의 사용자 인증 방법.
  7. 제1항 내지 제6항 중 어느 한 항의 대칭키 기반의 사용자 인증 방법을 수행하는 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
KR1020170018233A 2017-02-09 2017-02-09 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법 KR101721511B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170018233A KR101721511B1 (ko) 2017-02-09 2017-02-09 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법
PCT/KR2018/001745 WO2018147673A1 (ko) 2017-02-09 2018-02-09 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170018233A KR101721511B1 (ko) 2017-02-09 2017-02-09 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법

Publications (1)

Publication Number Publication Date
KR101721511B1 true KR101721511B1 (ko) 2017-03-30

Family

ID=58503318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170018233A KR101721511B1 (ko) 2017-02-09 2017-02-09 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법

Country Status (2)

Country Link
KR (1) KR101721511B1 (ko)
WO (1) WO2018147673A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267270A (zh) * 2019-05-07 2019-09-20 国网浙江省电力有限公司电力科学研究院 一种变电站内传感器终端接入边缘网关身份认证智能合约
WO2019182489A1 (en) * 2018-03-20 2019-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for operating and managing a constrained device within a network
CN114338071A (zh) * 2021-10-28 2022-04-12 中能电力科技开发有限公司 一种基于风电场通信的网络安全身份认证方法
CN115085945A (zh) * 2022-08-22 2022-09-20 北京科技大学 一种智慧灯杆设备的认证方法及装置
CN117097489A (zh) * 2023-10-20 2023-11-21 华东交通大学 一种轻量级双因素农业物联网设备持续认证方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522689B (zh) * 2018-10-29 2023-05-30 北京九州云腾科技有限公司 移动办公环境下的多因子强身份认证方法
WO2021076057A1 (en) * 2019-10-18 2021-04-22 Illinois At Singapore Pte Ltd A security device and method of provenance verification
CN110855435B (zh) * 2019-11-14 2022-04-19 北京京航计算通讯研究所 无线传感器网络中基于属性密码体制的访问控制方法
CN113872945B (zh) * 2021-09-07 2023-10-03 杭州师范大学 一种基于无线传感器网络的安全认证方法
CN114205131B (zh) * 2021-12-06 2024-03-22 广西电网有限责任公司梧州供电局 一种面向变电站测控及pmu设备的安全认证方法
CN114339653B (zh) * 2022-03-04 2022-05-24 杭州格物智安科技有限公司 一种基于无线传感器网络的区块链系统及数据记录方法
CN114401514B (zh) * 2022-03-25 2022-07-08 北京邮电大学 面向无线体域网的多因素身份认证方法以及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209803A (ja) * 1995-02-13 2006-08-10 Intertrust Technologies Corp 安全な取引管理装置および電子権利保護のためのシステムおよび方法
KR20130042266A (ko) * 2011-10-18 2013-04-26 동서대학교산학협력단 무선 센서 네트워크를 위한 암호 및 스마트카드 기반의 사용자 인증방법.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951045B1 (ko) * 2007-12-06 2010-04-08 한국전자통신연구원 초소형 저전력 센서 노드의 암호키 분배 방법 및 시스템
KR101531662B1 (ko) * 2013-12-31 2015-06-25 고려대학교 산학협력단 사용자 단말과 서버간 상호 인증 방법 및 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209803A (ja) * 1995-02-13 2006-08-10 Intertrust Technologies Corp 安全な取引管理装置および電子権利保護のためのシステムおよび方法
KR20130042266A (ko) * 2011-10-18 2013-04-26 동서대학교산학협력단 무선 센서 네트워크를 위한 암호 및 스마트카드 기반의 사용자 인증방법.

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
Amin, R.; Biswas, G.P. A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks. Ad Hoc Netw. 2016, 36, 58-80.
Amin, R.; Islam, S.H.; Biswas, G.P.; Khan, M.K.; Leng, L.; Kumar, N. Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Comput. Netw. 2016, 101, 42-62.
Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1989, 426, 233-271.
Chang, C.C.; Le, H.D. A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Trans. Wirel. Commun. 2015, 15, 357-366.
Chen, L.; Wei, F.; Ma, C. A secure user authentication scheme against smart-card loss attack for wireless sensor networks using symmetric key techniques. Int. J. Distrib. Sens. Netw. 2015, 2015, doi:10.1155/2015/704502.
Chen, T.H.; Shih, W.K. A Robust Mutual Authentication Protocol for Wireless Sensor Networks. ETRI J. 2010, 32, 704-712.
Chien-Ming, C.; Wei-Chi, K. Stolen-verifier attack on two new strong-password authentication protocols. IEICE Trans. Commun. 2002, 85, 2519-2521.
Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography. Sensors 2014, 14, 10081-10106.
Choi, Y.; Nam, J.; Lee, D.; Kim, J.; Jung, J.; Won, D. Security Enhanced Anonymous Multi-Server Authenticated Key Agreement Scheme Using Smart Cards and Biometrics. Sci. World J. 2014, 2014, doi:10.1155/2014/281305.
Chong, C.Y.; Kumar, S.P. Sensor networks: evolution, opportunities, and challenges. Proc. IEEE. 2003, 91, 1247-1256.
Claycomb, W.R.; Shin, D. A novel node level security policy framework for wireless sensor networks. J. Netw. Comput. Appl. 2011, 34, 418-428.
Dai, W. Crypto++ Library, 5.6.1. Available online: http://www.cryptopp.com (accessed on 5 April 2011).
Das, A.K.; Sharma, P.; Chatterjee, S.; Sing, J.K. A dynamic password-based user authentication scheme for hierarchical wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 1646-1656.
Das, M.L. Two-factor user authentication scheme in wireless sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 1086-1090.
ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. In Workshop on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1984; pp. 10-18.
Fan, R.; Ping, L.D.; Fu, J.Q.; Pan, X.Z. A secure and effcient user authentication protocol for two-tiered wireless sensor networks. In Proceedings of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS), Beijing, China, 1-2 August 2010; Volume 1, pp. 425-428.
Farash, M.S.; Turkanoviㅄc, M.; Kumari, S.; Hㄸolbl, M. An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Interne tof Things environment. Ad Hoc Netw. 2014, 36, 152-176.
Gong, L. Optimal authentification protocols resistant to password guessing attacks. In Proceedings of the IEEE 8th Computer Security Foundations Workshop, County Kerry, UK, 13-15 June 1995; pp. 24-29.
Hwang, M.S.; Li, L.H. A new remote user authentication scheme using smart cards. IEEE Trans. Consum. Electron. 2000, 46, 28-30.
Junghyun Nam 외 5명, Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation, POLOS One ( 2015.4.7.) *
Kang, D.; Jung, J.; Mun, J.; Lee, D.; Choi, Y.; Won, D. Efficient and robust user authentication scheme that achieve user anonymity with a Markov chain. Secur. Commun. Netw. 2016, 9, doi:10.1002/sec.1432.
Khan, M.K.; Alghathbar, K. Cryptanalysis and security improvements of two-factor user authentication in wireless sensor networks. Sensors 2010, 10, 2450-2459.
Kim, J.; Lee, D.; Jeon, W.; Lee, Y.; Won, D. Security Analysis and Improvements of Two-Factor Mutual Authentication with Key Agreement in Wireless Sensor Networks. Sensors 2014, 14, 6443-6462.
Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203-209.
Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Advances in Cryptology-CRYPTO'99, LNCS, Santa Barbara, CA, USA, 16 December 1999; Volume 1666, pp. 388-397.
Kothmayr, T.; Schmitt, C.; Hu, W.; Brㆌnig, M.; Carle, G. DTLS based security and two-way authentication for the Internet of Things. Ad. Hoc. Netw. 2013, 11, 2710-2723.
Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770-772.
Li, C.T.; Hwang, M.S.; Chu, Y.P. A secure and efficient communication scheme with authenticated key establishment and privacy preserving for vehicular ad hoc networks. Comput. Commun. 2008, 31, 2803-2814.
Li, C.T.; Weng, C.Y.; Lee, C.C. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors 2013, 13, 9589-9603.
Li, X.; Niu, J.; Khan, M.K.; Liao, J. An enhanced smart card based remote user password authentication scheme. J. Netw. Comput. Appl. 2013, 36, 1365-1371.
Porambage, P.; Schmitt, C.; Kumar, P.; Gurtov, A.; Ylianttila, M. Pauthkey: A pervasive authentication protocol and key establishment scheme for wireless sensor networks in distributed IoT applications. Int. J. Distrib. Sens. Netw. 2014, 2014, doi:10.1155/2014/357430.
Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120-126.
Schmitt, C.; Noack, M.; Stiller, B. Chapter 13: TinyTO: Two-way Authentication for Constrained Devices in the Internet-of-Things. In Internet-of-Things (Principles and Paradigms); Morgen Kaufmann: Cambridge, MA, USA, 2016; pp. 239-258.
Schultz, E.E. A framework for understanding and predicting insider attacks. Comput. Secur. 2002, 21, 526-531.
Syverson, P. A taxonomy of replay attacks [cryptographic protocols]. In Proceedings of the Computer Security Foundations Workshop VII, CSFW 7, Franconia, VA, USA, 14-16 June 2014; pp. 187-191.
Tseng, H.R.; Jan, R.H.; Yang, W. An Improved dynamic user authentication scheme for wireless sensor networks. In Proceedings of the Global Telecommunications Conference, Washington, DC, USA, 26-30 November 2007.
Turkanoviㅄc, M.; Brumen, B.; Hㄸolbl, M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Netw. 2014, 20, 96-112.
Vaidya, B.; Makrakis, D.; Mouftah, H.T. Improved two-factor user authentication in wireless sensor networks. In Proceedings of the IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Niagara Falls, ON, USA, 11-13 October 2010; pp. 600-606.
Vaidya, B.; SㅄaSilva, J.; Rodrigues, J.J.P.C. Robust dynamic user authentication scheme for wireless sensor networks. In Proceedings of the 5th ACM Symposium on QoS and Security for Wireless and Mobile Networks, New York, NY, USA, 28 October 2009; pp. 88-91.
Watro, R.; Kong, D.; Cuti, S.F.; Gardiner, C.; Lynn, C.; Kruus, P. TinyPK: Securing sensor networks with public key technology. In Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks, Washington, DC, USA, 25 October 2004; pp. 59-64.
Wei-Chi, K.U.; Chang, S.T. Impersonation attack on a dynamic ID-based remote user authentication scheme using smart cards. IEICE Trans. Commun. 2005, 88, 2165-2167.
Wong, K.H.; Zheng, Y.; Cao, J.; Wang, S. A dynamic user authentication scheme for wireless sensor networks. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, 5-7 June 2006; Volume 1, pp. 1-9.
Xue, K.; Ma, C.; Hong, P.; Ding, R. A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. J. Netw. Comput. Appl. 2013, 36, 316-323.
Yeh, H.L.; Chen, T.H.; Liu, P.C.; Kim, T.H.; Wei, H.W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors 2011, 11, 4767-4779.
Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330.
Yuan, J.J. An enhanced two-factor user authentication in wireless sensor networks. Telecommun. Syst. 2014, 55, 105-113.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182489A1 (en) * 2018-03-20 2019-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for operating and managing a constrained device within a network
CN110267270A (zh) * 2019-05-07 2019-09-20 国网浙江省电力有限公司电力科学研究院 一种变电站内传感器终端接入边缘网关身份认证智能合约
CN110267270B (zh) * 2019-05-07 2022-07-12 国网浙江省电力有限公司电力科学研究院 一种变电站内传感器终端接入边缘网关身份认证方法
CN114338071A (zh) * 2021-10-28 2022-04-12 中能电力科技开发有限公司 一种基于风电场通信的网络安全身份认证方法
CN115085945A (zh) * 2022-08-22 2022-09-20 北京科技大学 一种智慧灯杆设备的认证方法及装置
CN117097489A (zh) * 2023-10-20 2023-11-21 华东交通大学 一种轻量级双因素农业物联网设备持续认证方法及系统
CN117097489B (zh) * 2023-10-20 2024-01-30 华东交通大学 一种轻量级双因素农业物联网设备持续认证方法及系统

Also Published As

Publication number Publication date
WO2018147673A1 (ko) 2018-08-16

Similar Documents

Publication Publication Date Title
KR101721511B1 (ko) 무선 센서 네트워크 환경에서의 익명성을 보장하는 대칭키 기반의 사용자 인증 방법
Li et al. A robust and energy efficient authentication protocol for industrial internet of things
Mohit et al. Design of authentication protocol for wireless sensor network-based smart vehicular system
Wang et al. Efficient multi-factor user authentication protocol with forward secrecy for real-time data access in WSNs
Li et al. Group-based authentication and key agreement with dynamic policy updating for MTC in LTE-A networks
Turkanović et al. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion
Karuppiah et al. A secure authentication scheme with user anonymity for roaming service in global mobility networks
He et al. A strong user authentication scheme with smart cards for wireless communications
US9237133B2 (en) Detecting matched cloud infrastructure connections for secure off-channel secret generation
Chatterjee et al. An Enhanced Access Control Scheme in Wireless Sensor Networks.
Cheikhrouhou et al. A lightweight user authentication scheme for wireless sensor networks
Al Sibahee et al. Stochastic Security Ephemeral Generation Protocol for 5G Enabled Internet of Things
Ma et al. Distributed access control with adaptive privacy preserving property for wireless sensor networks
Wang et al. A provably secure anonymous biometrics-based authentication scheme for wireless sensor networks using chaotic map
Yadav et al. An EAP-based mutual authentication protocol for WLAN-connected IoT devices
Sutrala et al. On the design of secure user authenticated key management scheme for multigateway‐based wireless sensor networks using ECC
Niu et al. A novel user authentication scheme with anonymity for wireless communications
Sadhukhan et al. Cryptanalysis of an elliptic curve cryptography based lightweight authentication scheme for smart grid communication
Ahmed et al. Dynamic reciprocal authentication protocol for mobile cloud computing
Meshram et al. An efficient, robust, and lightweight subtree-based three-factor authentication procedure for large-scale DWSN in random oracle
Wang et al. Cloud‐assisted elliptic curve password authenticated key exchange protocol for wearable healthcare monitoring system
Malina et al. Secure and efficient two-factor zero-knowledge authentication solution for access control systems
Bhattacharya et al. A privacy-preserving efficient location-sharing scheme for mobile online social network applications
Jebri et al. LTAMA-algorithm: light and trust anonymous mutual authentication algorithm for IoT
Tseng et al. A robust user authentication scheme with self‐certificates for wireless sensor networks

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant