KR101718367B1 - Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof - Google Patents

Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof Download PDF

Info

Publication number
KR101718367B1
KR101718367B1 KR1020140081445A KR20140081445A KR101718367B1 KR 101718367 B1 KR101718367 B1 KR 101718367B1 KR 1020140081445 A KR1020140081445 A KR 1020140081445A KR 20140081445 A KR20140081445 A KR 20140081445A KR 101718367 B1 KR101718367 B1 KR 101718367B1
Authority
KR
South Korea
Prior art keywords
nanosilicon
conductive material
carbon
composite
mixture
Prior art date
Application number
KR1020140081445A
Other languages
Korean (ko)
Other versions
KR20160002281A (en
Inventor
유시철
Original Assignee
주식회사 지엘비이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엘비이 filed Critical 주식회사 지엘비이
Priority to KR1020140081445A priority Critical patent/KR101718367B1/en
Publication of KR20160002281A publication Critical patent/KR20160002281A/en
Application granted granted Critical
Publication of KR101718367B1 publication Critical patent/KR101718367B1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질은, 나노실리콘(2)과 전도성 물질(3) 및 코크(4)를 포함하여 구성되며, 나노실리콘 입자들이 전도성 물질(3) 중에 분산되어 있고, 상기 나노실리콘(2)과 상기 전도성 물질(3)의 상대적인 중량비율은 1 : 0.3 ~ 1 : 5의 범위에 있다. 그리고 본 발명에 따른 리튬이온이차전지용 음극활물질의 제조방법은 나노 실리콘을 전도성 카본블랙이나 탄소나노튜브에 분산시킨 후 피치에 혼합하고 600~1500 oC에서 열처리하여 나노실리콘과 탄소의 복합체를 형성한 것으로, 복합체내의 나노실리콘이 전도체에 둘러싸여 부피팽창에 따른 수명저하를 현저히 개선하는 효과가 있다. The anode active material for a lithium ion secondary battery composed of a composite of nanosilicon and carbon dispersed in a conductive material according to the present invention comprises a nanosilicon 2, a conductive material 3 and a coke 4, Is dispersed in the conductive material (3), and the relative weight ratio of the nanosilicone (2) and the conductive material (3) is in the range of 1: 0.3 to 1: 5. The method for manufacturing an anode active material for a lithium ion secondary battery according to the present invention comprises dispersing nanosilicon in a conductive carbon black or a carbon nanotube, mixing the mixture in a pitch, and heat-treating the composite at a temperature of 600 to 1500 ° C to form a composite of nanosilicon and carbon There is an effect that the nanosilicon in the composite is surrounded by the conductor and the lifetime shortening due to the volume expansion is remarkably improved.

Description

전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온 이차전지용 음극활물질 및 그 제조방법{Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material and an anode active material for a lithium ion secondary battery,

본 발명은 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질 및 그 제조방법에 관한 것으로서, 실리콘의 부피팽창에 따른 실리콘계 음극의 수명 열화를 해결하기 위한 것이다. 특히 본 발명은 나노실리콘를 전도성 물질에 분산시키고 그 분산체를 탄소와 열처리하여 복합화시킴으로써 나노실리콘-탄소의 복합체 내에 존재하는 전도체로 인해 부피팽창 및 구조붕괴에 따른 실리콘의 사용할 수 없는 부분을 줄이는 획기적인 효과를 거둘 수 있다. The present invention relates to a negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material and a method of manufacturing the same, and is intended to solve the deterioration of the service life of a silicon negative electrode according to the volume expansion of silicon. Particularly, the present invention relates to a novel effect of dispersing nanosilicon in a conductive material and complexing the dispersion by heat treatment with carbon to thereby reduce the unusable portion of silicon due to volume expansion and structural collapse due to the conductors present in the nanosilicon- .

리튬이온 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬이온이차전지에 대한 수요가 나날이 증가하고 있다. Lithium ion secondary batteries have been widely used as power sources for portable devices since they appeared in 1991 as small-sized, lightweight, and large-capacity batteries. 2. Description of the Related Art In recent years, with the rapid development of the electronics, communication, and computer industries, camcorders, mobile phones, notebook PCs, and the like have been remarkably developed and demand for lithium ion secondary batteries as power sources for driving these portable electronic information communication devices .

특히 최근에는 국제유가의 불안정, 지구온난화에 따른 세계 각국의 환경규제에 따라 친환경 자동차 시장이 급성장과 대형발전소에 의존한 발전/송배전 체계인 기존의 중앙집중형 대신에 분산형 발전 시스템 특별히 스마트 그리드(Smart Grid)시스템의 미래 도입가능성의 확대 등으로 에너지 저장용 2차전지의 개발 특히 고에너지 밀도의 전극 소재 개발이 매우 중요하게 되었다. In recent years, the global eco-friendly automobile market has grown rapidly in response to instability of global oil prices and global environmental regulations due to global warming. In addition to the existing centralized, distributed power generation system that relies on large power plants, Smart Grid) system, the development of rechargeable batteries for energy storage, especially the development of high energy density electrode materials, has become very important.

또한 휴대전화와 테블릿 PC, 노트북 PC, PDA등 휴대용 전자기기의 기능이 다양화되고 소형화 추세로 인해 사용전원인 배터리의 고에너지 밀도화가 요구되고 있다. In addition, portable electronic devices such as mobile phones, tablet PCs, notebook PCs, PDAs, and the like are becoming more diverse, and miniaturization trends are required to increase the energy density of batteries used as power sources.

모바일 기기용 리튬이차전지의 음극재료는 흑연이 지속적으로 사용되어 왔으며, 특별히 천연흑연이 근래에 가격 장점 때문에 인조흑연을 대체해가고 있다. 하지만 흑연은 371mAh/g이라는 이론 용량 한계를 갖고 있어, 이러한 용량의 한계를 극복하고 고에너지 밀도화를 달성하기 위해서는 4200mAh/g의 큰 이론용량을 갖고 있는 실리콘 소재에 대한 연구가 집중되었지만, 실리콘 소재는 이론용량은 크지만 충전시에 부피가 4배까지 증가해 실리콘 내부의 응력이 균열을 일으켜 구조가 붕괴되는 현상이 일어나게 되는 단점이 있었다. 실리콘의 이러한 구조 붕괴는 전극의 전자 전달을 막아 전극 내 사용할 수 없는 공간이 발생하고 그 결과 실리콘의 용량 감소 및 수명의 저하가 문제가 되었다. Graphite has been continuously used as an anode material for lithium secondary batteries for mobile devices. In particular, natural graphite has recently been replacing artificial graphite because of its price advantage. However, graphite has a theoretical capacity limit of 371 mAh / g. In order to overcome this capacity limit and achieve high energy density, research on silicon material having a large theoretical capacity of 4200 mAh / g has been concentrated, Has a disadvantage in that although the theoretical capacity is large, the volume increases up to four times at the time of filling, and the stress inside the silicon is cracked to cause the structure to collapse. This structural collapse of the silicon prevents the electron transfer of the electrode, resulting in a space that can not be used in the electrode, resulting in a decrease in the capacity of the silicon and a reduction in the life span.

이러한 실리콘소재의 단점을 극복하고 장점을 활용하기 위한 방법으로 실리콘을 흑연표면에 코팅하는 기술이 대한민국특허 제1219171호(특허출원번호 제10-2006-0061064호)에 개시되었으나, 표면 코팅 두께가 커지면 저항이 증가하므로 두께를 얇게 하여야 하고, 그 결과 수명유지를 위해서는 500 mAh/g이하의 용량 한계를 갖는 문제점이 있었다. A technique for coating silicone on the surface of graphite as a method for overcoming the disadvantages of such a silicon material and utilizing its advantages has been disclosed in Korean Patent No. 1219171 (Patent Application No. 10-2006-0061064). However, As the resistance increases, the thickness must be reduced. As a result, there is a problem that the capacity limit of 500 mAh / g or less is required for maintaining the life.

실리콘과 비정질 탄소의 복합화에 관해서는 대한민국특허 제595896호, 특허 제1365112호, 특허 제830612호, 특허출원 제10-2011-0097597호, 특허출원 제 10-2012-0048236호에 게시되어 있으나, 부피팽창을 억제하고 수명유지 특성을 갖기 위해서는 작은 양의 실리콘이 포함되어야 하며, 이는 실리콘의 전도성하락에 기인한다. The composite of silicon and amorphous carbon is disclosed in Korean Patent No. 595896, Patent No. 1365112, Patent No. 830612, Patent Application No. 10-2011-0097597, and Patent Application No. 10-2012-0048236, A small amount of silicon should be included in order to suppress the expansion and maintain the life-span characteristics, which is due to the conductive drop in silicon.

본 발명은, 상기와 같은 부피팽창에 따른 실리콘계 음극의 수명 열화를 해결하기 위하여 제안된 것으로, 본 발명은 나노실리콘를 전도성 물질에 분산시키고 그 분산체를 탄소와 열처리하여 복합화시킴으로써 나노실리콘-탄소의 복합체 내에 존재하는 전도체로 인해 부피팽창 및 구조붕괴에 따른 실리콘의 사용할 수 없는 부분을 줄이는 것을 목적으로 한다. The present invention has been proposed in order to solve the deterioration of the service life of a silicon-based anode according to the above-mentioned volume expansion. The present invention relates to a method of dispersing nanosilicon in a conductive material and heat- To reduce the unusable part of the silicon due to volume expansion and structural collapse due to the conductors present in the cavity.

그리고 본 발명은, 전도체와 복합체 내에 존재하는 비정질 카본으로 인해 부피팽창에 따른 구조붕괴를 억제하는 완충제 역할을 할 수 있도록 하며, 특히 나노실리콘을 카본블랙 또는 탄소나노튜브와 혼합하고 볼밀 작업을 수행해서 전도체 내에 나노실리콘을 분산시킨 후 피치와 혼합하여 500 ~ 1400 oC로 열처리함으로써, 탄소-나노실리콘 복합체를 제조한다. In addition, the present invention makes it possible to serve as a buffer for suppressing the structural collapse due to volume expansion due to the amorphous carbon existing in the conductor and the composite. Particularly, the nanosilicon is mixed with carbon black or carbon nanotubes, Nanosilicon is dispersed in the conductor, mixed with pitch, and annealed at 500 to 1400 o C to produce a carbon-nanosilicon composite.

본 발명은 수명특성이 현격히 개선된 리튬2차전지용 음극물질을 제공하는 것을 목적으로 할 뿐만 아니라, 이러한 리튬이차전지용 음극활물질의 제조방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a negative electrode material for a lithium secondary battery with remarkably improved life characteristics, and a method for manufacturing such a negative electrode active material for a lithium secondary battery.

상기 목적을 달성하기 위하여 본 발명에 의해 제공된 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질은, 나노실리콘(2)과 전도성 물질(3) 및 코크(4)를 포함하여 구성되며, 나노실리콘 입자들이 전도성 물질(3) 중에 분산되어 있고, 상기 나노실리콘(2)과 상기 전도성 물질(3)의 상대적인 중량비율은 1 : 0.3 ~ 1 : 5의 범위에 있는 것을 특징으로 한다. In order to achieve the above object, a negative electrode active material for a lithium ion secondary battery composed of a composite of nanosilicon and carbon dispersed in a conductive material provided by the present invention includes nanosilicon (2), a conductive material (3), and a coke Wherein the nanosilicon particles are dispersed in the conductive material 3 and the relative weight ratio of the nanosilicon 2 and the conductive material 3 is in the range of 1: 0.3 to 1: 5 do.

또한, 상기 목적을 달성하기 위하여 본 발명에 의해 제공된 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법은, 나노실리콘(2)과 전도성 물질(3)을 혼합하여 나노실리콘(2)의 입자들이 전도성 물질(3) 중에 균질하게 분산된 제1혼합물을 만드는 제1단계; 및 상기 제1혼합물을 피치류 물질과 혼합한 후 500~1400 ℃에서 비활성 분위기에서 열처리하여 나노실리콘과 탄소의 복합체(1)를 제조하는 제2단계;를 포함하는 것을 특징으로 한다. In order to achieve the above object, the present invention also provides a method for manufacturing a negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material provided by the present invention, comprising mixing a nanosilicon (2) and a conductive material Thereby forming a first mixture in which the particles of the nanosilicon (2) are dispersed homogeneously in the conductive material (3); And a second step of mixing the first mixture with a pitch material and then heat-treating the mixture in an inert atmosphere at 500 to 1400 ° C to produce a composite (1) of nanosilicon and carbon.

그리고 상기 목적을 달성하기 위하여 본 발명에 의해 제공된 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법은, 나노실리콘(2)과 전도성 물질(3)을 혼합하여 나노실리콘(2)의 입자들이 전도성 물질(3) 중에 균질하게 분산된 제1혼합물을 만드는 제1단계; 및 상기 제1혼합물을 고분자 물질과 혼합한 후 500~1400 ℃에서 비활성 분위기에서 열처리하여 나노실리콘과 탄소의 복합체(1)를 제조하는 제2단계;를 포함하는 것을 특징으로 한다. In order to accomplish the above object, the present invention provides a method for manufacturing a negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material provided by the present invention, which comprises mixing nanosilicon (2) and a conductive material A first step of making particles of the nanosilicon (2) to be homogeneously dispersed in the conductive material (3); And a second step of mixing the first mixture with a polymer material and then heat-treating the composite material in an inert atmosphere at 500 to 1400 ° C to produce a composite material (1) of nanosilicon and carbon.

또한, 본 발명에 의한 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법은, 상기 제2단계에서 제조된 나노실리콘과 탄소의 복합체(1)에 천연흑연을 3 : 7 ~ 7 : 3의 중량비율로 혼합하는 제3단계;를 더 포함하는 것을 특징으로 한다. In addition, a method for manufacturing a negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material according to the present invention is characterized in that natural graphite is added to the composite of nanosilicon and carbon produced in the second step 3: 7 to 7: 3 by weight.

그리고 본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법에 있어서, 상기 나노실리콘(2)은 입자의 크기가 10~500㎚의 범위에 있으며, 상기 전도성 물질(3)은 탄소나노튜브, 카본블랙, 그래핀 시트(graphene sheet), 분쇄된 카본류 등을 포함하는 군에서 선택된 적어도 하나의 물질을 포함하는 것을 특징으로 한다. In the method for manufacturing a negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material according to the present invention, the nanosilicon (2) has a particle size in a range of 10 to 500 nm, The conductive material 3 is characterized by including at least one material selected from the group consisting of carbon nanotubes, carbon black, graphene sheet, ground carbon, and the like.

본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질에 의하면, 전도성 물질에 분산된 나노실리콘과 탄소의 복합체는 실리콘의 전도성을 잘 유지시켜 주고 넓은 표면적과 빈 공간을 형성 완충제 역할을 함으로서 리튬이온 이차전지의 수명을 획기적으로 향상시킬 수가 있다.According to the negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in the conductive material according to the present invention, the composite of nanosilicon and carbon dispersed in the conductive material maintains the conductivity of silicon well, By acting as a space buffering agent, the lifetime of the lithium ion secondary battery can be remarkably improved.

도1은 본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법과 그 시험방법을 순서도 형태로 정리한 것이다.
도2는 탄소-나노실리콘 복합체의 이상도이다.
도3은 본 발명의 실시예들(실시예1~4) 및 비교예에서 사용된 전도체 물질의 종류와 각 혼합물질들간의 조성비, 효율, 용량 및 수명을 정리한 표이다.
도4는 본 발명의 실시예1에 있어서 전도성 물질인 탄소나노튜브(3)에 분산된 나노실리콘(2)의 전자주사현미경(SEM) 사진이다.
도5는 본 발명의 실시예1에 있어서 전도성 물질인 탄소나노튜브(3)에 나노실리콘 입자들(2)이 분산되어 있는 상태의 나노실리콘-탄소 복합체(1)의 전자주사현미경(SEM) 사진이다.
도6은 본 발명의 실시예3에 있어서 전도성 물질에 분산된 나노실리콘(2)과 나노실리콘-탄소복합체(1)의 SEM 사진이다.
도7은 본 발명의 실시예4에 있어서 전도성 물질인 카본블랙(3a)에 나노실리콘(2)이 분산되어 있는 상태를 보이는 SEM사진이다.
도8은 본 발명의 실시예4에 있어서 전도성 물질인 카본블랙(3a)에 나노실리콘(2)이 분산되어 있는 나노실리콘과 탄소 복합체(1)의 SEM사진이다.
도9는 비교예1에 따른 나노실리콘(2)과 탄소복합체(100)에 대한 SEM사진이다.
도10은 본 발명의 실시예1, 실시예2, 실시예3, 실시예4와 비교예1의 용량곡선을 대비하여 도시한 그래프이다.
도11은 본 발명의 실시예1, 실시예2, 실시예3, 실시예4 및 비교예1의 수명곡선들을 도시한 그래프이다.
FIG. 1 is a flowchart illustrating a method for manufacturing a negative electrode active material for a lithium ion secondary battery and a method for testing the same, the composite comprising nanosilicon and carbon dispersed in a conductive material according to the present invention.
2 is an anomaly of a carbon-nanosilicon composite.
FIG. 3 is a table summarizing the types of conductor materials used in Examples of the present invention (Examples 1 to 4) and Comparative Examples, and the composition ratio, efficiency, capacity, and service life between the mixed materials.
4 is a scanning electron microscope (SEM) photograph of a nanosilicone 2 dispersed in a carbon nanotube 3 as a conductive material in Example 1 of the present invention.
5 is a scanning electron micrograph (SEM) photograph of a nanosilicon-carbon composite material 1 in which nanosilicon particles 2 are dispersed in a carbon nanotube 3 as a conductive material in Example 1 of the present invention to be.
6 is an SEM photograph of nanosilicon (2) and nanosilicon-carbon composite (1) dispersed in a conductive material in Example 3 of the present invention.
7 is an SEM photograph showing a state in which nanosilicon 2 is dispersed in a carbon black 3a as a conductive material in Example 4 of the present invention.
8 is an SEM photograph of a nanosilicon and carbon composite 1 in which nanosilicon 2 is dispersed in carbon black 3a as a conductive material in Example 4 of the present invention.
9 is an SEM photograph of the nanosilicon (2) and the carbon composite material (100) according to Comparative Example 1.
10 is a graph showing the capacity curves of Examples 1, 2, 3, 4 and Comparative Example 1 in comparison with the capacity curves of Examples 1, 2, 3 and 4. FIG.
11 is a graph showing life curves of Examples 1, 2, 3, 4 and Comparative Example 1 of the present invention.

이하 첨부한 도면들을 참고하여, 본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질 및 그 제조방법의 구성 및 작용효과를 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The negative electrode active material for a lithium ion secondary battery comprising a composite of nanosilicon and carbon dispersed in a conductive material according to the present invention and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.

도1은 본 발명에 따른 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온이차전지용 음극활물질의 제조방법과 그 시험방법을 순서도 형태로 정리한 것이다. 도1을 참고하여, 본 발명의 음극활물질 제조방법에 관한 구성을 설명한다.
FIG. 1 is a flowchart illustrating a method for manufacturing a negative electrode active material for a lithium ion secondary battery and a method for testing the same, the composite comprising nanosilicon and carbon dispersed in a conductive material according to the present invention. 1, the structure of a negative electrode active material manufacturing method of the present invention will be described.

1. 전구체의 제조 (S1 단계)1. Preparation of precursor (step S1)

우선, 나노실리콘과 전도성 물질을 볼밀(ball mill)로 혼합하여 나노실리콘이 전도성물질에 전체적으로 균질하게 분산되도록 한다. 볼 밀링은 소프트한 용기에 활물질과 볼(ball)의 비율을 1:1에서 1:50까지 섞어 혼합하고, 볼은 직경 0.1 ~ 3㎜로하고, 볼밀의 회전속도는 50 ~ 300 rpm으로 한다. First, the nanosilicon and the conductive material are mixed with a ball mill to uniformly disperse the nanosilicon in the conductive material as a whole. Ball milling is performed by mixing a mixture of active material and ball in a soft container in a ratio of 1: 1 to 1:50, the diameter of the ball is 0.1 to 3 mm, and the rotation speed of the ball mill is 50 to 300 rpm.

상기의 나노실리콘은 10 ~ 500nm의 크기로서 제조방식, 형태에는 제한받지 않으며, 상기의 전도성 물질로는 카본블랙류, 탄소나노튜브, 그래핀시트(graphene sheet), 분쇄된 카본류 등이 포함된다. The nanosilicon has a size of 10 to 500 nm and is not limited to a manufacturing method and a form. Examples of the conductive material include carbon black, carbon nanotube, graphene sheet, ground carbon, and the like .

그리고 상기의 볼밀 용기로는 소프트한 재질의 HDPE, PE, PP, TEFLON 및 PTFE 등을 적용할 수 있다. As the ball mill container, soft material such as HDPE, PE, PP, TEFLON and PTFE can be applied.

볼밀 후에는 전도성 물질 내에 나노실리콘이 균등하게 흡착되어 있어야 하며, 나노실리콘 입자가 서로 일정한 사이즈로 전도성 물질 내에 응집된 형태를 갖게 된다.
After the ball mill, the nanosilicon particles must be uniformly adsorbed in the conductive material, and the nanosilicon particles are coagulated in the conductive material with a certain size.

2. 나노실리콘, 전도체 혼합물과 카본 복합체의 제조 (S2 단계)2. Preparation of nanosilicon, conductor mixture and carbon composite (S2)

나노실리콘과 전도체의 혼합물를 피치류 또는 고분자류와 혼합한후 500 ~ 1400 oC에서 비활성 분위기에서 열처리하여 나노실리콘과 카본복합체를 제조한다.The mixture of nanosilicon and conductor is mixed with pitch or polymer and heat treated at 500 ~ 1400 o C in inert atmosphere to produce nanosilicon and carbon composite.

상기의 피치류는 콜타르 피치, 석유계 피치(petroleum pitch)를 포함하고, 상기의 고분자류는 PVA, PVC, PVdF, PS 등을 포함한다.The above-mentioned pitch type includes coal tar pitch, petroleum pitch, PVA, PVC, PVdF, PS, and the like.

상기의 전구체와 피치류 또는 고분자류와 혼합방식은 고상혼합과 액상혼합이 모두 가능하며, 액상혼합의 용매로는 물, 알콜류, NMP, 벤젠, 퀴놀린 등을 사용할 수 있다.
The precursor and the pitch or polymer may be mixed with the precursor in the solid phase or the liquid phase, and water, alcohols, NMP, benzene, quinoline or the like may be used as the solvent for the liquid phase mixing.

3. 전극 및 테스트용 전지의 제조 (S3 단계)3. Preparation of electrode and test cell (step S3)

제조된 나노실리콘과 카본 복합체를 음극 활물질로 하고, 바인더로 PVdF, 도전제로 카본블랙(Super-P)을 사용하여 이들의 혼합비율을 60:25:15의 중량비율로 해서 음극을 제조하였다. 제조된 음극에 대극으로 리튬금속을 사용하고, 양 전극사이에 분리막을 사용하였으며, 전해액을 주입하여 파우치형 셀을 제조하여 테스트하였다. The prepared nanosilicon and carbon composite were used as a negative electrode active material, PVdF as a binder and carbon black (Super-P) as a conductive agent, and their mixing ratios were set at a weight ratio of 60:25:15 to prepare a negative electrode. Lithium metal was used as a counter electrode in the prepared cathode, a separator was used between both electrodes, and an electrolyte was injected to manufacture a pouch type cell.

상기에 사용가능한 전해액의 용매로는 에스테르(ester)로서, 예를 들면 에틸렌 카보네이트(ethylene carbornate)(EC), 프로필렌 카보네이트(propylene carbonate)(PC), 부틸렌 카보네이트(butylene carbonate)(BC) 및 비닐렌 카보네이트(carbonate)(VC)등의 환상 카보네이트(carbonate), 디메틸 카보네이트(dimethyl carbonate)(DMC), 디에틸 카보네이트(diethyl carbonate)(DEC), 에틸 메틸 카보네이트(ethyl methyl carbonate)(EMC) 및 디프로필카보네이트(DPC)등의 비환상 카보네이트(carbonate), 포름산 메틸, 초산메틸(MA), 프로피온산 메틸(methyl)(MP) 및 프로피온산 에틸(ethyl)(MA)등의 지방족 카르본산 에스테르(ester), 부틸로 락톤(lactone)(GBL)등의 환상 카르본산 에스테르(ester)등을 들 수 있다. 이중에 특히 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC)의 환상 카보네이트와 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 에틸 메틸 카보네이트(EMC)의 고리형 카보네이트의 혼합이 바람직하다.Examples of the solvent of the electrolytic solution usable as the above include esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and vinyl (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and di (methyl ethyl ketone) Aliphatic carboxylic acid esters such as noncyclic carbonate such as propylene carbonate (DPC), methyl formate, methyl acetate (MA), methyl propionate (MP) and ethyl propionate (MA) And cyclic carboxylic acid esters such as butylolactone (GBL) and the like. In particular, a mixture of a cyclic carbonate of ethylene carbonate (EC), propylene carbonate (PC) and a cyclic carbonate of dimethyl carbonate (DMC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) is preferred.

이러한 용매에 용해하는 리튬염으로는 LiClO₄, LiBF₄,LiPF6, LiAlCl4, LiSbF6, LiSCN, LiCF3SO₃, LiCF3CO₂, Li(CF3SO₂)₂, LiAsF6, LiN(CF3SO₂)₂, LiB10Cl10, 저급 지방족 카르본산 리튬(Lithium), 클로로 보란 리튬(chloro borane Lithium), 사페닐 붕산리튬, 또는 LiN(CF3SO2)(C2F5SO2), LiN(CF3SO2)₂, LiN(C2F5SO2)2 및 LiN(CF3SO2)(C4F9SO2)등의 이미드(imide)류를 들 수 있다. 이들은 각각 단독으로 또는 본 발명의 효과를 손상시키지 않은 범위에서 임의로 조합하여 사용될 수 있다. 이중에 특히 LiPF6를 포함하는 것이 바람직하다. A lithium salt dissolved in this solvent is LiClO₄, LiBF₄, LiPF 6, LiAlCl 4, LiSbF 6, LiSCN, LiCF 3 SO₃, LiCF 3 CO₂, Li (CF3SO₂) ₂, LiAsF 6, LiN (CF 3 SO₂) ₂, LiB 10 Cl 10, lower aliphatic carboxylic acid lithium (lithium), chloroborane lithium (chloro borane lithium), four-phenyl lithium borate, or LiN (CF 3 SO 2) ( C 2 F 5 SO 2), LiN (CF 3 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ). These may be used alone or in any combination insofar as the effects of the present invention are not impaired. Of these, it is particularly preferable to include LiPF 6 .

상기의 분리막(세퍼레이터)은 다공성 폴리에틸렌과 같은 폴리에틸렌계 혹은 폴리프로필렌계 폴리머를 주로 사용한다. The separator (separator) is mainly made of a polyethylene-based or polypropylene-based polymer such as porous polyethylene.

이하, 실시예들을 들어서 본 발명을 구체적으로 설명하지만, 본 발명이 이들 실시예들만으로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

<실시예1>&Lt; Example 1 >

(1) 볼밀 혼합체의 제조(1) Preparation of a ball mill mixture

100nm 크기의 나노실리콘 5g과 탄소나노튜브 5g를 혼합하고, 볼 200g을 HDPE 1L용기에 넣고, 100rpm 속도로 볼 밀링기에서 볼밀 혼합하였다. 볼밀 혼합후의 형상을 도4에 표시하였다. 탄소나노튜브(3)의 표면에 나노실리콘(2) 입자들이 골고루 흡착되어 있는 것을 확인할 수 있다. 5 g of nanosilicon having a size of 100 nm and 5 g of carbon nanotubes were mixed, and 200 g of balls were put into a 1 L HDPE vessel and ball milled in a ball miller at a speed of 100 rpm. The shape after mixing with the ball mill is shown in Fig. It can be confirmed that nanosilicon (2) particles are evenly adsorbed on the surface of the carbon nanotubes (3).

(2) 나노실리콘과 탄소 복합체의 제조(2) Production of nanosilicon and carbon composite

콜타르 피치 20g을 적정한 양의 N-메틸피롤리돈(NMP)으로 녹인 후 그 녹인 용액 내에 상기에서 제조된 볼밀 혼합물 10g을 집어넣고 혼합하여 석영관에 넣고 1100oC에까지 승온하되, 승온 속도를 분당 4 oC로 하고 유지시간 1시간으로 하여 열처리한다. 이러한 과정을 거쳐서 나노실리콘과 탄소 복합체를 제조하였다. 제조된 복합체에 대한 형상을 도5에 표시하였는데, 도5의 <b> 도면은 볼밀 혼합물에 탄소(4)가 전체적으로 덮여 있는 것을 보여준다.
20 g of the coal tar pitch was dissolved in an appropriate amount of N-methylpyrrolidone (NMP), 10 g of the ball mill mixture prepared above was put into the dissolved solution, and the mixture was placed in a quartz tube. The temperature was elevated to 1100 ° C, 4 ° C and maintained for 1 hour. Through these processes, nanosilicon and carbon composites were fabricated. The shape of the composite thus prepared is shown in FIG. 5, wherein the <b> drawing of FIG. 5 shows that the carbon mixture 4 is entirely covered with the ball mill mixture.

(3) 나노실리콘과 탄소 복합체의 전기화학적 평가(3) Electrochemical evaluation of nanosilicon and carbon composites

제조된 나노실리콘과 카본 복합체를 음극 활물질로 하고, 바인더로 PVDF, 도전제로 카본블랙(Super-P)을 사용하여 60:25:15의 중량비율로 혼합함으로써 음극을 제조하였다. The prepared nanosilicon and carbon composite were used as a negative electrode active material, and PVDF as a binder and carbon black (Super-P) as a conductive material were mixed at a weight ratio of 60:25:15 to prepare a negative electrode.

이렇게 제조된 음극과, 리튬포일을 상대 전극으로 하여, 다공성 폴리에틸렌막(Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디에틸 카보네이트가 부피비로 1:2로 혼합된 용매에 LiPF6가 1몰 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 파우치 전지를 제조하였다. To the thus prepared negative electrode and lithium foil as a counter electrode, a porous polyethylene membrane (Celgard 2300, thickness: 25 mu m) was used as a separator, and a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 2 was added LiPF 6 Was dissolved in a concentration of 1 mol, a pouch battery was manufactured according to a conventional manufacturing process.

상기 제조된 전지를 충방전기를 사용하여 방전(discharge)시에는 0.01V까지 0.2C 정전류로 하고, 0.01V에서 0.05C 전류까지 정전압으로 방전(discharge)한 후에 2.0볼트까지 정전류로 충전(charge) 하여 25℃에서 전지용량 및 효율을 평가하였다.When the battery was discharged using a charge-discharge device, the battery was discharged at a constant current of 0.2 C to 0.01 V, at a constant voltage of 0.01 V to 0.05 C, and then charged to a constant current of 2.0 V The battery capacity and efficiency at 25 [deg.] C were evaluated.

수명특성은 방전, 충전시 정전류로 0.5C를 사용한 것외에는 위와 동일하게 테스트하였다. 충방전 곡선을 도10에 도시하고, 수명 곡선을 도11에 표시하였는데, 이때 전지의 용량은 733mAh, 효율은 72.6%, 수명은 30사이클까지 92.3%로 잘 유지되고 있음을 알 수 있다.
The lifetime characteristics were the same as above except that 0.5C was used as a constant current during discharging and charging. The charging / discharging curve is shown in Fig. 10 and the life curve is shown in Fig. 11. It can be seen that the capacity of the battery is maintained at 733 mAh, the efficiency is 72.6%, and the lifetime is 92.3% up to 30 cycles.

<실시예2>&Lt; Example 2 >

(1) 전지의 제조(1) Manufacture of batteries

제조된 나노실리콘과 카본 복합체와 크기 10

Figure 112014061768670-pat00001
m 천연흑연을 50:50으로 음극 혼합하여 음극 활물질로 하고, 바인더로 PVDF, 도전제로 카본블랙(Super-P)를 사용하여 80:20으로 음극을 제조하였다. 제조된 음극을 상기의 실시예1의 전지 제조와 동일하게 용량 및 수명을 측정하여, 도10 및 도11에 표시하였다. Manufactured nanosilicon and carbon composite and size 10
Figure 112014061768670-pat00001
m natural graphite was mixed with the negative electrode at a ratio of 50:50 to prepare a negative electrode active material, and a negative electrode was prepared at 80:20 using PVDF as a binder and carbon black (Super-P) as a conductive agent. The prepared negative electrode was measured for capacity and lifetime in the same manner as in the preparation of the battery of Example 1, and shown in Figs. 10 and 11. Fig.

천연 흑연을 함께 섞어 줌으로서 전지의 용량은 480mAh/g으로 줄었으나 수명은 30사이클까지 94.8%로 잘 유지됨을 볼 수 있다.
By mixing natural graphite together, the capacity of the battery was reduced to 480mAh / g, but the life span was maintained at 94.8% up to 30 cycles.

<실시예3>&Lt; Example 3 >

(1) 볼밀 혼합체의 제조(1) Preparation of a ball mill mixture

탄소나노튜브 5.0g 대신에 2.5g을 사용한 것 외에는 실시예1과 동일하게 제조하였다. Was prepared in the same manner as in Example 1 except that 2.5 g of the carbon nanotubes was used instead of 5.0 g of the carbon nanotubes.

(2) 나노실리콘과 탄소 복합체의 제조(2) Production of nanosilicon and carbon composite

콜타르 피치 12.5g을 사용한 것 외에는 실시예1과 동일하게 제조하였고, 그 탄소복합체의 입자 형상을 도6에 표시하였다. 탄소(4)가 볼밀혼합체(1)를 균등하게 덮고 있는 것을 볼 수 있다.The carbon composite material was prepared in the same manner as in Example 1 except that 12.5 g of coal tar pitch was used. The particle shape of the carbon composite material was shown in Fig. It can be seen that the carbon 4 uniformly covers the ball mill 1.

(3) 나노실리콘과 탄소 복합체의 전기화학적 평가(3) Electrochemical evaluation of nanosilicon and carbon composites

실시예1과 동일한 방식으로 전지를 제조하여 평가하였고, 충방전 곡선을 도10에 도시하고, 수명곡선을 도11에 표시하였는데, 이때 전지의 용량은 949 mAh이고, 효율은 78.1%로 나타났으며, 수명은 30사이클까지 79.8%를 유지하는 것으로 나타났다. The battery was manufactured and evaluated in the same manner as in Example 1, and the charging / discharging curve was shown in FIG. 10 and the life curve was shown in FIG. 11, where the capacity of the battery was 949 mAh and the efficiency was 78.1% , And the life span was maintained at 79.8% up to 30 cycles.

<실시예4><Example 4>

(1) 볼밀 혼합체의 제조(1) Preparation of a ball mill mixture

탄소나노튜브 5.0g 대신에 카본블랙(Super P) 10g을 사용한 것 외에는 실시예1과 동일하게 제조하였다. 복합체의 표면형상은, 도7에서 볼 수 있듯이, 카본블랙(3a)과 나노실리콘(2)이 균등하게 분산되어 있는 것을 볼 수 있다. Except that 10 g of carbon black (Super P) was used instead of 5.0 g of the carbon nanotubes. As can be seen from Fig. 7, the carbon black 3a and the nanosilicon 2 are uniformly dispersed in the surface shape of the composite.

(2) 나노실리콘과 탄소 복합체의 제조(2) Production of nanosilicon and carbon composite

콜타르 피치 15g을 사용하고 볼밀복합체 15g을 사용한 것 외에는 실시예1과 동일하게 제조하였는데, 이때의 탄소복합체의 형상을 도8에 표시하였다. 도8을 보면, 탄소(4)가 볼밀혼합체(1)를 균등하게 덮고 있는 것을 볼 수 있다.15 g of a coal tar pitch and 15 g of a ball mill complex were used in place of the carbon composite material of Example 1. The shape of the carbon composite material at this time is shown in Fig. 8, it can be seen that the carbon 4 uniformly covers the ball-and-tube mixture 1.

(3) 나노실리콘과 탄소 복합체의 전기화학적 평가(3) Electrochemical evaluation of nanosilicon and carbon composites

실시예1과 동일한 방식으로 전지를 제조하여 평가하였고, 충방전 곡선을 도10에 도시하고, 수명 곡선을 도11에 표시하였다. 이 전지의 용량은 685mAh, 효율은 74.5%, 수명은 30사이클까지 77.6%를 유지하고 있음을 알 수 있다.
A battery was manufactured and evaluated in the same manner as in Example 1, and the charging / discharging curve was shown in FIG. 10, and the life curve was shown in FIG. The capacity of the battery is 685 mAh, the efficiency is 74.5%, and the life span is maintained at 77.6% up to 30 cycles.

<비교예1>&Lt; Comparative Example 1 &

(1) 나노실리콘과 탄소 복합체의 제조(1) Production of nanosilicon and carbon composite

나노실리콘과 탄소나노튜브의 볼밀 혼합 없이 콜타르 피치 25g을 NMP에 녹인 후 여기에 나노실리콘 5g을 넣어 실시예1과 동일한 방식으로 열처리 하였다. 도9에 그 표면 형상을 나타내었으며, 이 사진을 보면, 탄소 구조 내에 완전히 나노실리콘이 혼합되어 일반 코크의 구조와 동일하였다.25 g of a coal tar pitch was dissolved in NMP without mixing a ball mill of nano silicon and a carbon nanotube, and then 5 g of nanosilicon was added thereto, followed by heat treatment in the same manner as in Example 1. Fig. 9 shows the surface shape thereof. In this photograph, the structure of the common coke was completely the same as that of the ordinary coke mixed with the nanosilicon in the carbon structure.

(2) 나노실리콘과 탄소 복합체의 전기화학적 평가(2) Electrochemical evaluation of nanosilicon and carbon composites

실시예 1과 동일한 방식으로 전지를 제조하여 평가하였고, 충방전 곡선을 도10에 도시하고, 수명곡선을 도11에 표시하였다. 이 전지의 용량은 699mAh, 효율은 72.7%, 수명은 30사이까지 63.7%로 실시예에 비교하여 유지율이 매우 낮았다.A battery was manufactured and evaluated in the same manner as in Example 1, and the charging / discharging curve was shown in FIG. 10, and the life curve was shown in FIG. The capacity of this battery was 699 mAh, the efficiency was 72.7%, and the lifetime was between 30 and 63.7%.

표1에서 볼 수 있듯이 나노실리콘과 카본나노튜브 및 카본블랙을 볼밀 혼합할 경우에 수명특성이 현격히 향상됨을 알 수가 있으며 이는 카본나노튜브가 실리콘 소재의 전도성을 계속적으로 유지시켜 줌과 동시에 완충제 역할을 하고 있기 때문이다. As can be seen in Table 1, when the ball mill is mixed with the nanosilicon, the carbon nanotube and the carbon black, the lifetime characteristics are remarkably improved. This is because the carbon nanotube keeps the conductivity of the silicon material continuously and acts as a buffer It is because.

1: 나노실리콘-카본 복합체 2: 나노실리콘(nano silicon)
3: 카본나노튜브(carbon nanotube) 3a: 카본블랙
4: 코크(coke)
10: 나노실리콘와 카본나노튜브의 밀 혼합체 입자
100: 나노실리콘과 탄소의 복합체 입자
1: nano silicon-carbon composite 2: nano silicon
3: carbon nanotube 3a: carbon black
4: Coke
10: a mixture of nano-silicon and carbon nanotubes
100: composite particle of nanosilicon and carbon

Claims (7)

나노실리콘(2)과 전도성 물질(3)을 혼합하여 나노실리콘(2)의 입자들이 전도성 물질(3) 중에 균질하게 분산된 제1혼합물을 만드는 제1단계; 및
상기 제1혼합물을 피치류 물질과 혼합한 후 500~1400 ℃에서 비활성 분위기에서 열처리하여 나노실리콘과 탄소의 복합체(1)를 제조하는 제2단계;를 포함하며,
상기 제1단계는 볼밀(ball mill)에 의해서 상기 나노실리콘(2)과 전도성 물질(3)을 혼합하되, 볼밀 작업은 합성수지 재질의 용기에 상기 나노실리콘 및 전도성 물질을 투입한 상태에서 상기 나노실리콘(2) 및 전도성 물질(3)의 양에 대해 1~50배의 중량비율로 볼들을 투입하여 진행하고,
이때 상기 나노실리콘(2)은 입자의 크기가 10~500㎚의 범위에 있으며, 상기 전도성 물질(3)은 탄소나노튜브 또는 카본블랙이고,
상기 볼밀 속의 볼들의 직경은 0.1~3㎜이고, 상기 볼밀의 회전속도는 50~300rpm이며,
상기 제1단계의 볼밀 작업 후에는 상기 전도성 물질에 나노실리콘이 균등하게 흡착되어 있으며, 나노실리콘 입자가 일정한 사이즈로 상기 전도성 물질내에 응집된 형태를 갖게 되고,
상기 피치류 물질은 콜타르 피치 및 석유계 피치를 포함하는 군에서 선택된 어느 하나 이상의 물질인 것을 특징으로 하는, 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온 이차전지용 음극활물질의 제조방법.
A first step of mixing the nanosilicon 2 and the conductive material 3 to form a first mixture in which particles of the nanosilicon 2 are uniformly dispersed in the conductive material 3; And
And a second step of mixing the first mixture with a pitch material and then heat-treating the mixture in an inert atmosphere at 500 to 1400 ° C to produce a composite (1) of nanosilicon and carbon,
In the first step, the nanosilicon 2 and the conductive material 3 are mixed by a ball mill. In the ball mill operation, the nanosilicon and the conductive material are introduced into a container made of synthetic resin, (2) and the conductive material (3) at a weight ratio of 1 to 50 times,
In this case, the size of the nanosilicon (2) is in the range of 10 to 500 nm, the conductive material (3) is carbon nanotube or carbon black,
The diameter of the balls in the ball mill is 0.1 to 3 mm, the rotation speed of the ball mill is 50 to 300 rpm,
After the ball milling operation in the first step, nanosilicon is evenly adsorbed on the conductive material, nanosilicon particles are aggregated in the conductive material to a certain size,
Wherein the pitch material is at least one selected from the group consisting of coal tar pitches and petroleum pitches. The method for producing a negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the mixture of nanosilicon and carbon is dispersed in a conductive material.
나노실리콘(2)과 전도성 물질(3)을 혼합하여 나노실리콘(2)의 입자들이 전도성 물질(3) 중에 균질하게 분산된 제1혼합물을 만드는 제1단계; 및
상기 제1혼합물을 고분자 물질과 혼합한 후 500~1400 ℃에서 비활성 분위기에서 열처리하여 나노실리콘과 탄소의 복합체(1)를 제조하는 제2단계;를 포함하며,
상기 제1단계는 볼밀(ball mill)에 의해서 상기 나노실리콘(2)과 전도성 물질(3)을 혼합하되, 볼밀 작업은 합성수지 재질의 용기에 상기 나노실리콘 및 전도성 물질을 투입한 상태에서 상기 나노실리콘(2) 및 전도성 물질(3)의 양에 대해 1~50배의 중량비율로 볼들을 투입하여 진행하고,
이때 상기 나노실리콘(2)은 입자의 크기가 10~500㎚의 범위에 있으며, 상기 전도성 물질(3)은 탄소나노튜브 또는 카본블랙이고,
상기 볼밀 속의 볼들의 직경은 0.1~3㎜이고, 상기 볼밀의 회전속도는 50~300rpm이며,
상기 제1단계의 볼밀 작업 후에는 상기 전도성 물질에 나노실리콘이 균등하게 흡착되어 있으며, 나노실리콘 입자가 일정한 사이즈로 상기 전도성 물질내에 응집된 형태를 갖게 되고,
상기 고분자 물질은 폴리비닐알콜(PVA), 폴리염화비닐(PVC), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 및 폴리스티렌(PS)을 포함하는 군에서 선택된 적어도 어느 하나의 물질인 것을 특징으로 하는, 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온 이차전지용 음극활물질의 제조방법.
A first step of mixing the nanosilicon 2 and the conductive material 3 to form a first mixture in which particles of the nanosilicon 2 are uniformly dispersed in the conductive material 3; And
And a second step of mixing the first mixture with a polymer material and then heat-treating the mixture in an inert atmosphere at 500 to 1400 ° C to produce a composite (1) of nanosilicon and carbon,
In the first step, the nanosilicon 2 and the conductive material 3 are mixed by a ball mill. In the ball mill operation, the nanosilicon and the conductive material are introduced into a container made of synthetic resin, (2) and the conductive material (3) at a weight ratio of 1 to 50 times,
In this case, the size of the nanosilicon (2) is in the range of 10 to 500 nm, the conductive material (3) is carbon nanotube or carbon black,
The diameter of the balls in the ball mill is 0.1 to 3 mm, the rotation speed of the ball mill is 50 to 300 rpm,
After the ball milling operation in the first step, nanosilicon is evenly adsorbed on the conductive material, nanosilicon particles are aggregated in the conductive material to a certain size,
Wherein the polymer material is at least one material selected from the group consisting of polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), and polystyrene (PS) , A composite of nanosilicon and carbon dispersed in a conductive material, for producing a negative electrode active material for a lithium ion secondary battery.
제1항 또는 제2항에 있어서, 상기 제2단계에서 제조된 나노실리콘과 탄소의 복합체(1)에 천연흑연을 3 : 7 ~ 7 : 3의 중량비율로 혼합하는 제3단계;를 더 포함하는 것을 특징으로 하는, 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온 이차전지용 음극활물질의 제조방법.The method according to claim 1 or 2, further comprising a third step of mixing natural graphite in a weight ratio of 3: 7 to 7: 3 to the composite (1) of nanosilicon and carbon produced in the second step Wherein the negative electrode active material is composed of a composite of nanosilicon and carbon dispersed in a conductive material. 삭제delete 삭제delete 나노실리콘(2)과 전도성 물질(3) 및 코크(4)를 포함하여 구성되며, 나노실리콘 입자들이 전도성 물질(3) 중에 분산되어 있고, 코크(4)가 상기 나노실리콘과 전도성 물질의 복합물을 둘러싸고 있으며,
상기 나노실리콘(2)과 상기 전도성 물질(3)의 상대적인 중량비율은 1 : 0.3 ~ 1 : 5의 범위에 있으며,
상기 나노실리콘(2)은 입자의 크기가 10~500㎚의 범위에 있으며, 상기 전도성 물질(3)은 탄소나노튜브 또는 카본블랙이고,
상기 나노실리콘은 상기 전도성 물질에 균등하게 흡착되어 있으며, 나노실리콘 입자가 일정한 사이즈로 상기 전도성 물질내에 응집된 형태로 존재하고,
상기 코크(4)는, 상기 나노실리콘과 전도성 물질의 혼합물을 피치류 물질 또는 고분자류 물질과 혼합한 후 500~1400℃의 온도에서 비활성 분위기에서 열처리함으로써 생성된 것이고,
상기 피치류 물질은 콜타르 피치 및 석유계 피치를 포함하는 군에서 선택된 어느 하나 이상의 물질이고, 상기 고분자류 물질은 폴리비닐알콜(PVA), 폴리염화비닐(PVC), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 및 폴리스티렌(PS)을 포함하는 군에서 선택된 적어도 어느 하나의 물질인 것을 특징으로 하는, 전도성 물질에 분산된 나노실리콘과 탄소의 복합체로 구성된 리튬이온 이차전지용 음극활물질.
And a coke (4), wherein the nanosilicone particles are dispersed in the conductive material (3), and the coke (4) comprises a composite of the nanosilicon and the conductive material Surrounding,
The relative weight ratio of the nanosilicon (2) to the conductive material (3) is in the range of 1: 0.3 to 1: 5,
Wherein the nanosilicon (2) has a particle size in the range of 10 to 500 nm, the conductive material (3) is a carbon nanotube or carbon black,
Wherein the nanosilicon is uniformly adsorbed to the conductive material, the nanosilicon particles are present in a coherent form in the conductive material with a predetermined size,
The coke 4 is formed by mixing a mixture of the nanosilicon and a conductive material with a pitch material or a high molecular material and then heat-treating the mixture in an inert atmosphere at a temperature of 500 to 1400 ° C,
Wherein the pitch material is at least one material selected from the group consisting of coal tar pitch and petroleum pitch, and the polymer material is selected from the group consisting of polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene fluoride , PVdF), and polystyrene (PS). The negative electrode active material for a lithium ion secondary battery according to any one of claims 1 to 7, wherein the negative active material is a composite of nanosilicon and carbon dispersed in a conductive material.
삭제delete
KR1020140081445A 2014-06-30 2014-06-30 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof KR101718367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140081445A KR101718367B1 (en) 2014-06-30 2014-06-30 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140081445A KR101718367B1 (en) 2014-06-30 2014-06-30 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20160002281A KR20160002281A (en) 2016-01-07
KR101718367B1 true KR101718367B1 (en) 2017-03-21

Family

ID=55168962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140081445A KR101718367B1 (en) 2014-06-30 2014-06-30 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101718367B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019022A (en) 2018-08-13 2020-02-21 한국생산기술연구원 Continuous synthesis method of chain shaped nano structure
KR20240032574A (en) 2022-09-02 2024-03-12 주식회사 엠지이노베이션 An anode active material for lithium ion secondary battery having an excellent life cycle performance and fabricating method thereof
KR20240032576A (en) 2022-09-02 2024-03-12 주식회사 엠지이노베이션 An anode material for lithium ion secondary battery having an excellent life characteristics capacity characteristics and a method for preparing the same
KR20240075012A (en) 2022-11-17 2024-05-29 한국표준과학연구원 Composites for Secondary Battery Anode, Apparatus and Method of Preparing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725381B1 (en) 2016-04-27 2017-04-11 금오공과대학교 산학협력단 Methods for manufacturing composite including Si, Si-transition metal compound, graphite and amorphous carbon, anode material for secondary battery including composite manufactured thereby, and Li-ion secondary battery comprising the same
CN110085856A (en) 2018-01-26 2019-08-02 三星电子株式会社 Containing silicon structure body, preparation method, using its carbon complex and respectively including its electrode, lithium battery and equipment
KR102260425B1 (en) * 2018-05-24 2021-08-02 주식회사 엘지에너지솔루션 Anode Active Material for lithium secondary battery and Method for preparing the same
KR20220088221A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Metal-Carbon Composite Anode material for lithium secondary battery, method for manufacturing the same and lithium secondary battery comprising the same
CN116344807A (en) * 2021-12-22 2023-06-27 溧阳天目先导电池材料科技有限公司 Composite material for secondary lithium ion battery, preparation method and application
KR20230116292A (en) 2022-01-28 2023-08-04 금오공과대학교 산학협력단 METHOD FOR MANUFACTURING BINARY Li-COMPOUND/CARBON COMPOSITE, ELECTRODE MATERIALS FOR SECONDARY BATTERY INCLUDING THE COMPOSITE MANUFACTURED THEREBY AND SECONDARY BATTERY INCLUDING THE SAME
KR20230126905A (en) 2022-02-24 2023-08-31 금오공과대학교 산학협력단 METHOD FOR MANUFACTURING TERNARY Li-COMPOUNDS, ELECTRODE MATERIALS FOR SECONDARY BATTERY INCLUDING THE TERNARY Li-COMPOUNDS MANUFACTURED THEREBY AND SECONDARY BATTERY INCLUDING THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263986A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263986A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019022A (en) 2018-08-13 2020-02-21 한국생산기술연구원 Continuous synthesis method of chain shaped nano structure
KR20240032574A (en) 2022-09-02 2024-03-12 주식회사 엠지이노베이션 An anode active material for lithium ion secondary battery having an excellent life cycle performance and fabricating method thereof
KR20240032576A (en) 2022-09-02 2024-03-12 주식회사 엠지이노베이션 An anode material for lithium ion secondary battery having an excellent life characteristics capacity characteristics and a method for preparing the same
KR20240075012A (en) 2022-11-17 2024-05-29 한국표준과학연구원 Composites for Secondary Battery Anode, Apparatus and Method of Preparing the same

Also Published As

Publication number Publication date
KR20160002281A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
KR101718367B1 (en) Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof
KR101730956B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
US9647262B2 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
CN113471442B (en) Negative active material, and negative electrode sheet, electrochemical device, and electronic device using same
KR101211327B1 (en) Anode active material for secondary battery and method for preparing the same
WO2016031082A1 (en) Anode material for lithium ion battery
CN106328889A (en) Negative active material, lithium battery including the negative active material, and method of preparing the negative active material
JP7461476B2 (en) Negative electrode active material, its manufacturing method, secondary battery, and device including secondary battery
KR101919524B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same
CN110350156A (en) Negative electrode active material and lithium rechargeable battery including it
KR20170042937A (en) Composite electrode active material, lithium battery including the same, and method for preparing the composite electrode active material
CN109478641A (en) Negative electrode active material and cathode comprising it
CN116231091B (en) Electrolyte for lithium secondary battery, and electricity using device
KR101643819B1 (en) Methode of preparing surface coated cathode active material and cathode active material prepared thereby
KR20160064193A (en) Electrode for an electric energy storage battery comprising a graphite/silicon/carbon fibre composite material
WO2023082245A1 (en) Electrode and manufacturing method therefor, electrochemical device, and electronic device
CN106797027A (en) Non-aqueous electrolyte lithium secondary battery
KR20150078068A (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2007258087A (en) Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
US20220158175A1 (en) Anode material, electrochemical device and electronic device including the same
US20130309563A1 (en) Composite anode from silicon kerf
KR101977973B1 (en) Negative electrode for fast charging, battery comprising the same and fabricating methods thereof
KR101926572B1 (en) Cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
KR101663716B1 (en) Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon dioxide to be electrochemical activation by reaction with carbon, and the method for producing a lithium ion secondary battery by using the anode material
KR101183682B1 (en) Anode active material for lithium secondary battery of which surface is processed and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
R401 Registration of restoration