KR101717474B1 - Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof - Google Patents

Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof Download PDF

Info

Publication number
KR101717474B1
KR101717474B1 KR1020150014572A KR20150014572A KR101717474B1 KR 101717474 B1 KR101717474 B1 KR 101717474B1 KR 1020150014572 A KR1020150014572 A KR 1020150014572A KR 20150014572 A KR20150014572 A KR 20150014572A KR 101717474 B1 KR101717474 B1 KR 101717474B1
Authority
KR
South Korea
Prior art keywords
plant
at1g70000
anthocyanin
vector
synthesis
Prior art date
Application number
KR1020150014572A
Other languages
Korean (ko)
Other versions
KR20160093813A (en
Inventor
이호정
정찬영
호아이 누엔 누엔
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150014572A priority Critical patent/KR101717474B1/en
Publication of KR20160093813A publication Critical patent/KR20160093813A/en
Application granted granted Critical
Publication of KR101717474B1 publication Critical patent/KR101717474B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/13Nucleic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

본 발명은 AT1G70000 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는, 식물체의 안토시아닌 합성 증가 유도용 조성물에 관한 것이다. 또한, 본 발명은 AT1G70000를 코딩하는 폴리뉴클레오티드를 포함하는 식물체의 안토시아닌 합성 증가 유도용 재조합 벡터 및 상기 벡터로 형질전환된 식물체에 관한 것이다. 또한, 본 발명은 상기 벡터를 이용하여 식물체의 안토시아닌 합성 증가를 유도하는 방법에 관한 것이다. 본 발명에 따른 AT1G70000 또는 이를 코딩하는 폴리뉴클레오티드는 식물체 내에서 안토시아닌의 합성을 효과적으로 유도하는 바, 안토시아닌의 대량생산을 가능하게 할 수 있으며, 또한 안토시아닌의 함량이 증가된 기능성 식품의 원료로서의 식물체의 생산도 가능하게 될 것으로 기대된다.The present invention relates to a composition for inducing increased anthocyanin synthesis in plants, comprising AT1G70000 or a polynucleotide encoding the same. The present invention also relates to a recombinant vector for inducing increased anthocyanin synthesis of a plant comprising a polynucleotide encoding AT1G70000 and a plant transformed with said vector. The present invention also relates to a method for inducing an increase in anthocyanin synthesis in a plant using the vector. The AT1G70000 or the polynucleotide encoding the AT1G70000 according to the present invention effectively induces the synthesis of anthocyanin in the plant and can produce anthocyanin in a large quantity and can also be used for the production of plant as a raw material of functional food having an increased content of anthocyanin Is expected to become possible.

Description

AT1G70000을 포함하는 식물체의 안토시아닌 합성 증가 유도용 조성물 및 그의 이용 {Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof}AT1G70000 and use thereof for inducing anthocyanin synthesis in plants containing AT1G70000,

본 발명은 AT1G70000 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는, 식물체의 안토시아닌 합성 증가 유도용 조성물에 관한 것이다.The present invention relates to a composition for inducing increased anthocyanin synthesis in plants, comprising AT1G70000 or a polynucleotide encoding the same.

또한, 본 발명은 AT1G70000를 코딩하는 폴리뉴클레오티드를 포함하는 식물체의 안토시아닌 합성 증가 유도용 재조합 벡터 및 상기 벡터로 형질전환된 식물체에 관한 것이다.The present invention also relates to a recombinant vector for inducing increased anthocyanin synthesis of a plant comprising a polynucleotide encoding AT1G70000 and a plant transformed with said vector.

또한, 본 발명은 상기 벡터를 이용하여 식물체의 안토시아닌 합성 증가를 유도하는 방법에 관한 것이다.The present invention also relates to a method for inducing an increase in anthocyanin synthesis in a plant using the vector.

안토시아닌(anthocyanin)은 식물의 꽃, 열매, 줄기 또는 잎 등의 색깔을 결정할 뿐 아니라 식물의 성장 및 발달에 있어서도 아주 중요한 기능을 한다. 안토시아닌은 꽃잎에서 곤충 등의 꽃가루 매개자를 유혹하고, 열매 및 씨앗에서 종자의 분산을 돕는다. 또한, 안토시아닌을 포함한 플라보노이드 화합물은 곤충 및 외부 스트레스에 대한 식물의 손상을 보호하는 기능을 하고, 특히 활성산소 등에 의한 손상을 막는 항산화제로 작용한다(Gould et al., 2004, J. Biomed. Biotechnol. 5:314-320).Anthocyanin not only determines the color of plants' flowers, fruits, stems or leaves, but also plays an important role in plant growth and development. Anthocyanins attract insect and other pollen mediators from the petals and help disperse the seeds in the fruit and seed. In addition, flavonoid compounds, including anthocyanins, act as antioxidants to protect plants from damage to insects and external stresses, and in particular to prevent damage by reactive oxygen species (Gould et al., 2004, J. Biomed. Biotechnol. 5: 314-320).

안토시아닌의 동물 체내에서의 효능이 연구되어왔다. 안토시아닌은 산화방지 작용이 월등하여 체세포를 보호하고 면역 체계를 증진 할 뿐만 아니라, 항암작용에도 뛰어난 효과가 있다고 알려져있다. 안토시아닌의 항암작용은 이미 여러 종류의 암세포에서 효과가 있는 것으로 밝혀졌다. 특히 안토시아닌은 암의 성장, 전이, 내성에 관련된 NF-κB의 억제 효과 있음이 보고되었다.
Anthocyanins have been studied in animals for their efficacy. Anthocyanin is known to have excellent antioxidant activity as well as to protect somatic cells and improve immune system. The anticancer activity of anthocyanin has already been shown to be effective in several types of cancer cells. In particular, anthocyanin has been reported to have an inhibitory effect on NF-κB related to cancer growth, metastasis, and tolerance.

식물에서 안토시아닌 생합성 경로는 잘 알려져 있는데, 식물체 내 안토시아닌의 축적은 플라보노이드 생합성 경로에 포함된 주요 효소들을 암호화하는 구조 유전자군의 조절과 이들 구조 유전자들의 발현을 조절하는 조절 유전자들에 의해 이루어진다. 금어초, 페튜니아 및 애기장대에서 CHS(chalcone synthase), CHI(chalcone isomerase), F3H(flavanone 3-hydroxylase) 등은 플라보노이드계 화합물의 초기 합성에 관여하는 EBGs(early biosynthetic genes)로서 다양한 플라보노이드 화합물 생합성 기작에 모두 공통으로 관련되어 있으며, 초기에 발현이 이루어진다. 한편 DFR(dihydroflavonol 4-reductase), LDOX(leucoanthocyanidin oxygenase), ANR(anthocyanidin reductase), UF3GT(UDP-glucose:flavonoid 3-O-glucosyltransferase) 등은 LBGs(late biosynthetic genes)로서 EBG들의 발현이 이루어진 후 나중에 발현되며, 안토시아닌 생합성 경로의 후반부를 담당하고 있다.Anthocyanin biosynthetic pathways in plants are well known. The accumulation of anthocyanins in plants is mediated by regulatory genes that regulate structural gene families that encode key enzymes involved in the flavonoid biosynthetic pathway and regulate expression of these structural genes. CHS (chalcone isomerase), CHI (chalcone isomerase), and F3H (flavanone 3-hydroxylase) are the early biosynthetic genes (EBGs) involved in the early synthesis of flavonoid compounds in Snapdragon, Petunia and Arabidopsis All are related in common, and expression occurs at an early stage. On the other hand, DFR (dihydroflavonol 4-reductase), LDOX (leucoanthocyanidin oxygenase), ANR (anthocyanidin reductase) and UF3GT (UDP-glucose: flavonoid 3-O-glucosyltransferase) were expressed as LBGs (late biosynthetic genes) And is responsible for the second half of the anthocyanin biosynthetic pathway.

식물체에서 안토시아닌의 축적은 다양한 환경자극에 반응하여 조절되는 것으로 알려져 있는데 특히 빛, 온도, 당, 식물호르몬 및 무기염류 등은 식물체의 안토시아닌 생합성에 있어 아주 중요한 인자들이며, 이들의 상호작용에 의해 다양한 조직 및 세포에서 색소 축적이 조절된다. 따라서 안토시아닌 생합성에 있어 이들 인자의 상호 작용을 밝히는 것은 식물체의 안토시아닌 색소 축적 및 식물 2차 대사 기작을 이해하는 데 있어 매우 중요하다. 이전의 연구에서 다양한 빛 조건 하에서 안토시아닌의 생합성 변화를 연구하여, 빛이 안토시아닌 생합성에 있어서 아주 중요한 인자 중 하나임이 밝혀졌으며, 특히 인산의 결핍, 저온 스트레스 및 당의 증가는 빛에 의해 야기되는 안토시아닌 축적에 있어 중요한 인자로 작용하는 것으로 알려졌다(Lea et al., 2007, Planta. 225:1245-1253). 또한, 안토시아닌 생합성에 있어 수크로즈, 호르몬 에틸렌, 시토키닌, 지베렐린 및 앱시스산의 상관관계 에서 당에 의한 안토시아닌 생합성이 에틸렌 및 지베렐린에 의해서 억제되는 것으로 알려졌다(Das et al.,2012, Mol. Cell. 34:501-507).The accumulation of anthocyanin in plants is known to be regulated in response to various environmental stimuli. Light, temperature, sugars, plant hormones and inorganic salts are very important factors in the anthocyanin biosynthesis of plants. And pigment accumulation in cells. Therefore, identifying the interaction of these factors in anthocyanin biosynthesis is crucial to understanding the anthocyanin pigment accumulation and plant secondary metabolism of plants. Previous studies have shown that light is one of the most important factors in anthocyanin biosynthesis by studying the biosynthesis of anthocyanin under various light conditions. In particular, the deficiency of phosphoric acid, low temperature stress, and increased sugar are responsible for the accumulation of anthocyanins (Lea et al., 2007, Planta. 225: 1245-1253). It is also known that anthocyanin biosynthesis by the sugar is inhibited by ethylene and gibberellin in the correlation of sucrose, hormone ethylene, cytokinin, gibberellin and abscisic acid in anthocyanin biosynthesis (Das et al., 2012, Mol. Cell. : 501-507).

그러나, 아직까지 식물체 내에서 안토시아닌 합성 증대에 관여하는 유전 자원에 대한 다각화된 연구가 미흡한 상황이다.
However, there is still a lack of diversified research on the genetic resources involved in anthocyanin synthesis in plants.

출원번호 10-2011-0078073Application No. 10-2011-0078073

이에 본 발명자들은 식물체 내에서 안토시아닌의 합성을 증대시킬 수 있는 유전자원을 발굴하기 위하여 예의 노력한 결과, AT1G70000 유전자가 안토시아닌 합성 증진을 유도할 수 있다는 것을 바탕으로 식물체 내에 상기 유전자를 과발현시켰을 때, 안토시아닌의 합성이 증가되었음을 확인하고 본 발명을 완성하기에 이르렀다. Accordingly, the present inventors have made intensive efforts to discover a genetic resource capable of enhancing the synthesis of anthocyanin in plants. As a result, when the AT1G70000 gene was able to induce the synthesis of anthocyanin synthesis, when the gene was overexpressed in the plant, And the present invention has been accomplished.

이에 따라, 본 발명의 일 양상은 식물체의 안토시아닌 합성 증가 유도용 조성물을 제공하는 것이다.Accordingly, one aspect of the present invention is to provide a composition for inducing an increase in anthocyanin synthesis of a plant.

또한, 본 발명의 다른 양상은 식물체의 안토시아닌 합성 증가 유도용 재조합 벡터 및 이에 의하여 형질전환된 식물체를 제공하는 것이다.Another aspect of the present invention is to provide a recombinant vector for inducing anthocyanin synthesis increase of a plant, and a plant transformed by the vector.

또한, 본 발명의 다른 양상은 식물체의 안토시아닌 합성 증가를 유도하는 방법을 제공하는 것이다.
Another aspect of the present invention is to provide a method for inducing increased anthocyanin synthesis in a plant.

본 발명의 일 양상은 AT1G70000 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는, 식물체의 안토시아닌 합성 증가 유도용 조성물을 제공한다. One aspect of the present invention provides a composition for inducing increased anthocyanin synthesis in plants, comprising AT1G70000 or a polynucleotide encoding the same.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명에서 AT1G70000 (Gene Code [ MIPS (http://pgsb.helmholtz-muenchen.de/plant/athal/reportsjsp/geneticElement.jsp?gene=AT1G70000.1)][ TAIR (http://arabidopsis.org/servlets/TairObject?type=locus&name=At1g70000)])는 myb-유사 전사인자로 알려져 있으며, 그 기능이 아직 상세하게 알려진 바가 없다. 본 발명은 AT1G70000와 안토시아닌 합성과의 관계를 최초로 규명한 것에 해당한다. 상기 AT1G70000는 서열번호 1의 아미노산 서열로 이루어진 것일 수 있다. 상기 AT1G70000는 애기장대로부터 유래된 것일 수 있다.In the present invention, AT1G70000 (Gene Code [ MIPS (http://pgsb.helmholtz-muenchen.de/plant/athal/reportsjsp/geneticElement.jsp?gene=AT1G70000.1)] [ TAIR (http://arabidopsis.org/ servlets / TairObject? type = locus & name = At1g70000)]) is known as myb-like transcription factor and its function is not yet known in detail. The present invention corresponds to the first identification of the relationship between AT1G70000 and anthocyanin synthesis. The AT1G70000 may comprise the amino acid sequence of SEQ ID NO: 1. The AT1G70000 may be derived from Arabidopsis thaliana.

본 발명에 따른 식물체의 안토시아닌 합성 증가 유도용 조성물은 AT1G70000을 코딩하는 폴리뉴클레오티드를 포함할 수 있다. The composition for inducing the increase of anthocyanin synthesis of a plant according to the present invention may comprise a polynucleotide encoding AT1G70000.

본 발명에서 사용하는 용어 폴리뉴클레오티드 (polynucleotide)는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드의 중합체이다. RNA 게놈 서열, DNA(gDNA 및 cDNA) 및 이로부터 전사되는 RNA 서열을 포괄하며, 특별하게 다른 언급이 없는 한 천연의 폴리뉴클레오티드의 유사체를 포함한다.As used herein, the term polynucleotide is a polymer of a deoxyribonucleotide or a ribonucleotide present in single stranded or double stranded form. RNA genomic sequences, DNA (gDNA and cDNA) and RNA sequences transcribed therefrom, and include analogs of natural polynucleotides unless otherwise specified.

상기 폴리뉴클레오티드는 서열번호 2의 cDNA일 수 있으나, 이에 한정되는 것은 아니다.The polynucleotide may be the cDNA of SEQ ID NO: 2, but is not limited thereto.

상기 폴리뉴클레오티드는 상기 뉴클레오티드 서열뿐만 아니라, 그 서열에 상보적인 (complementary) 서열도 포함한다. 상기 상보적인 서열은 완벽하게 상보적인 서열뿐만 아니라, 실질적으로 상보적인 서열도 포함한다. , 이는 당업계에 공지된 가혹조건 (stringent conditions) 하에서, 예를 들어, 서열번호 1 내지 10 중 어느 하나의 아미노산 서열을 코딩하는 뉴클레오티드 서열과 혼성화될 수 있는 서열을 의미한다.
The polynucleotide includes not only the nucleotide sequence but also a sequence complementary to the nucleotide sequence. The complementary sequence includes not only perfectly complementary sequences but also substantially complementary sequences. , Which means a sequence that can hybridize under stringent conditions known in the art, for example, to a nucleotide sequence encoding an amino acid sequence of any one of SEQ ID NOS: 1-10.

또한 상기 폴리뉴클레오티드는 변형될 수 있다. 상기 변형은 뉴클레오티드의 추가, 결실 또는 비보존적 치환 또는 보존적 치환을 포함한다. 상기 폴리뉴클레오티드는 상기 뉴클레오티드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오티드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기 뉴클레오티드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 70%의 상동성, 최소 80%의 상동성 또는 최소 90%의 상동성을 나타내는 서열일 수 있다.The polynucleotide may also be modified. Such modifications include addition, deletion or non-conservative substitution or conservative substitution of nucleotides. The polynucleotide is also interpreted to include a nucleotide sequence that exhibits substantial identity to the nucleotide sequence. The above substantial identity is determined by aligning the nucleotide sequence with any other sequence as closely as possible and using at least 70% homology, preferably at least 70% sequence identity, when analyzing the aligned sequence using algorithms commonly used in the art. At least 80% homology or at least 90% homology.

폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
"% Of sequence homology to polynucleotides" is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >

또한, 본 발명의 일 양상은 AT1G70000를 코딩하는 폴리뉴클레오티드를 포함하는, 식물체의 안토시아닌 합성 증가 유도용 재조합 벡터를 제공한다. In addition, an aspect of the present invention provides a recombinant vector for inducing increased anthocyanin synthesis in plants, comprising a polynucleotide encoding AT1G70000.

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. The recombinant cell can express a gene or a gene fragment that is not found in the natural form of the cell in one of the sense or antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.

본 발명에서, 상기 AT1G70000를 코딩하는 폴리뉴클레오티드는 재조합 벡터 내로 삽입될 수 있다. 용어 "재조합 벡터"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 이는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 포함한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the polynucleotide encoding AT1G70000 may be inserted into a recombinant vector. The term "recombinant vector" means a means for expressing a gene of interest in a host cell. This includes bacterial plasmids, phage, yeast plasmids, plant cell viruses, mammalian cell viruses, or other vectors. In principle, any plasmid and vector can be used if it can replicate and stabilize within the host. An important characteristic of the expression vector is that it has a replication origin, a promoter, a marker gene and a translation control element.

AT1G70000를 코딩하는 폴리뉴클레오티드를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.Expression vectors comprising polynucleotides encoding AT1G70000 can be constructed by methods well known to those skilled in the art. Such methods include in vitro recombinant DNA technology, DNA synthesis techniques, and in vivo recombination techniques. The DNA sequence can be effectively linked to appropriate promoters in the expression vector to drive mRNA synthesis. The expression vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.

본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로 운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a so-called T-region to a plant cell when present in a suitable host, such as Agrobacterium tumefaciens. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently used to transfer hybrid DNA sequences to plant cells or protoplasts in which new plants capable of properly inserting hybrid DNA into the genome of a plant can be produced . A particularly preferred form of the Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and U.S. Patent No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into the plant host include viral vectors such as those that can be derived from double-stranded plant viruses (e. G., CaMV) and single- For example, from non -complete plant virus vectors. The use of such vectors may be particularly advantageous when it is difficult to transform the plant host properly.

발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector may preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotics such as kanamycin, G418, Bleomycin, hygromycin, chloramphenicol, Resistant genes, but are not limited thereto.

본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant vector of the present invention, the promoter may be CaMV 35S, actin, ubiquitin, pEMU, MAS, or histone promoter, but is not limited thereto. The term "promoter " refers to the region of DNA upstream from the structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constructive promoters may be preferred in the present invention because the choice of transformants can be made by various tissues at various stages. Thus, constitutive promoters do not limit selectivity.

본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스 (Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vector of the present invention, conventional terminators can be used. Examples thereof include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium tumefaciens ) Octopine gene terminator, but the present invention is not limited thereto. Regarding the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of a terminator is highly desirable in the context of the present invention.

본 발명의 상기 백터는 도 1의 개열지도로 이루어진 것일 수 있으나, 이에 제한되지 않는다.
The vector of the present invention may be composed of a cleaved map of Fig. 1, but is not limited thereto.

또한, 본 발명은 상기 재조합 벡터로 형질전환된, 안토시아닌 합성이 증가된 식물체를 제공한다. The present invention also provides a plant having an increased anthocyanin synthesis, which is transformed with the above recombinant vector.

상기 안토시아닌의 합성의 증가는 안토시아닌의 합성이 형질전환되지 않은 식물체에 비하여 증가한 것을 의미하며, 안토시아닌 합성 기능의 발휘를 포함하는 개념이다. The increase in the synthesis of anthocyanin means that the synthesis of anthocyanin is increased compared to the plant without transformation, and the concept includes the demonstration of anthocyanin synthesis function.

상기 식물체는 외떡잎 식물, 쌍떡잎 식물, 다년생 식물, 단년생 식물 등 그 종류를 제한하지 않으며, 예를 들면, 애기장대, 배추, 양배추, 무, 겨자, 유채, 꽃양배추, 아루굴라, 케일, 브로콜리, 청경채, 냉이, 콜리플라워, 또는 루꼴라인 등의 십자화과 식물일 수 있다. 또한, 상기 식물체는 식물 세포주, 식물 캘러스, 종자, 또는 식물의 일부 기관을 포함하는 개념이다.
The plant is not limited to a variety of plants such as a monocotyledonous plant, a dicotyledonous plant, a perennial plant, a perennial plant, and the like. Examples of the plant include rice terra cotta, cabbage, cabbage, radish, mustard, oilseed rape, arugula, kale, broccoli, It may be a cruciferous plant such as Chrysanthemum japonica, Cucurbitae, Cauliflower, or Rutalin. In addition, the plant is a concept including plant cell lines, plant calluses, seeds, or some organs of plants.

또한, 본 발명의 일 양상은 AT1G70000를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 식물체를 형질전환시키는 단계를 포함하는, 식물체의 안토시아닌 합성 증가를 유도하는 방법을 제공한다. In addition, an aspect of the invention provides a method of inducing increased anthocyanin synthesis in a plant, comprising transforming the plant with a vector comprising a polynucleotide encoding AT1G70000.

식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법 (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다.
Transformation of a plant means any method of transferring DNA to a plant. Such transformation methods do not necessarily have a regeneration and / or tissue culture period. Transformation of plant species is now common for plant species, including both terminal plants as well as dicotyledonous plants. In principle, any transformation method can be used to introduce the hybrid DNA according to the present invention into suitable progenitor cells. The method is based on the calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373) (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microinjection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202,179-185 (Klein et al., 1987, Nature 327, 70), the infiltration of plants or the transformation of mature pollen or vesicles into Agrobacterium tumefaciens Infection by viruses (non-integrative) in virus-mediated gene transfer (EP 0 301 316), and the like. A preferred method according to the present invention comprises Agrobacterium mediated DNA delivery.

본 발명에 따른 AT1G70000 또는 이를 코딩하는 폴리뉴클레오티드는 식물체 내에서 안토시아닌의 합성을 효과적으로 유도하는 바, 안토시아닌의 대량생산을 가능하게 할 수 있으며, 또한 안토시아닌의 함량이 증가된 기능성 식품의 원료로서의 식물체의 생산도 가능하게 될 것으로 기대된다.
The AT1G70000 or the polynucleotide encoding the AT1G70000 according to the present invention effectively induces the synthesis of anthocyanin in the plant and can produce anthocyanin in a large quantity and can also be used for the production of plant as a raw material of functional food having an increased content of anthocyanin Is expected to become possible.

도 1은 AT1G70000의 식물체내 발현을 위한 벡터의 개열지도이다.
도 2는 도 1의 벡터로 형질전환된 식물체에서 AT1G70000의 과발현을 확인한 결과이다.
도 3은 AT1G70000의 과발현이 확인된 식물체에서 안토시아닌의 함량이 증가되었음을 확인한 결과이다.
Figure 1 is a cleavage map of a vector for expression of AT1G70000 in plants.
FIG. 2 shows the result of confirming overexpression of AT1G70000 in the plant transformed with the vector of FIG.
FIG. 3 shows the result of confirming that anthocyanin content was increased in plants overexpressing AT1G70000.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

실시예 1: AT1G70000 cDNA 클로닝Example 1: AT1G70000 cDNA cloning

발아 후 2주일된 Wild-type 애기장대 성체의 mRNA를 추출한 뒤, Reverse transcriptase를 이용하여 cDNA를 합성하였다. 그 후 전기영동을 통하여 증폭된 AT1G70000 cDNA를 확인하고, 젤에서 용출하였다.After 2 weeks of germination, wild-type Arabidopsis mRNA was extracted and reverse transcriptase was used to synthesize cDNA. The amplified AT1G70000 cDNA was then confirmed by electrophoresis and eluted from the gel.

용출된 cDNA 조각(786 bp)을 topo vector(pCR®8/GW/TOPO : invitrogen)에 삽입하고 이를 식물체 과발현용 vector인 pMDC32 vector에 LR reaction(LR Clonase®:invitrogen)으로 삽입하였다. 구체적인 벡터의 개열지도는 도 1에 도시하였다.The eluted cDNA fragment (786 bp) was inserted into a topo vector (pCR8 / GW / TOPO: invitrogen) and inserted into the pMDC32 vector, a vector for overexpression of the plant, with the LR reaction (LR Clonase®: invitrogen). A cleavage map of a specific vector is shown in Fig.

상기 확립한 벡터를 E.coli cell(TOP10 cell:invitrogen)에 heat-shock transformation 방법으로 형질전환한 후 colony가 생성 될 때까지 37℃에서 12시간 동안 배양하였다. The thus-constructed vector was transformed into E. coli cells (TOP10 cell: invitrogen) by heat-shock transformation and cultured at 37 DEG C for 12 hours until colony formation.

이후 생성된 colony를 다시 LB 배지에 배양 후 plasmid vector를 추출하였다.
The resulting colony was cultured again on LB medium and plasmid vector was extracted.

실시예 2: AT1G70000 cDNA로 식물체를 형질전환Example 2 Transformation of Plants with AT1G70000 cDNA

실시예 1과 같이 제조한 벡터, 즉 35S CaMV promoter::AT1G70000 vector를 Agrobacteria에 electric shock transformation방법으로 형질전환한 후 배양하였다. 형질전환된 Agrobacteria를 floral dipping transformation을 통해 준비된 wild-type 애기장대와 유채에 형질전환시켰다. 이후 형질전환된 식물로부터 씨를 수확하고 3세대까지 자가교배시켜 homologous line을 확보하였다. The vector prepared as in Example 1, that is, 35S CaMV promoter :: AT1G70000 vector was transformed into Agrobacteria by electric shock transformation method and then cultured. Transgenic Agrobacteria were transformed into wild-type Arabidopsis and rapeseed plants prepared by floral dipping transformation. The seeds were then harvested from the transgenic plants and self-crossed to the third generation to obtain homologous lines.

뒤이어, Rt-PCR의 방법을 통하여 AT1G70000 과발현을 확인하였다. 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, AT1G70000 (MybD)가 1# 및 4#라인에서 rRNA의 양이 증가하였음을 노던 블로팅을 이용하여 확인 할 수 있었다.
Subsequently, AT1G70000 overexpression was confirmed by the Rt-PCR method. The results are shown in Fig. As shown in FIG. 2, it was confirmed that AT1G70000 (MybD) increased the amount of rRNA at 1 # and 4 # lines using Northern blotting.

실시예 3: 식물체에서 안토시아닌 함량의 증가 확인Example 3: Confirmation of an increase in anthocyanin content in plants

발아한 지 7일이 된 식물의 60mg을 안토시아닌 추출 실험에 사용한다. 액체질소로 급속 냉동시킨 후, 샘플을 곱게 분쇄시킨다. 분쇄된 샘플에 45 mL methanol + 450 μL HCl 로 혼합된 용액을 300 μL를 넣은 뒤 4ºC의 암조건에서 16시간 이상 반응시킨다. 그 후 DW 200 μL와 Chloroform 500 μL를 넣고 잘 섞어준 뒤 3000 rpm의 고속원심분리를 시킨다. 상등액을 일정량 옮겨 흡광도 (OD 535-650)를 측정한다. 60 mg of plants germinated 7 days are used for anthocyanin extraction experiments. After rapid freezing with liquid nitrogen, the sample is crushed finely. Add 300 μL of the solution mixed with 45 mL methanol + 450 μL HCl to the ground sample and react at 16 ° C for 4 hours. Then, add 200 μL of DW and 500 μL of Chloroform, mix well and centrifuge at 3000 rpm. Measure the absorbance (OD 535-650) by transferring a certain amount of the supernatant.

그 결과를 도 3에 나타내었다. The results are shown in Fig.

도 3에 나타난 바와 같이, 실시예 2에서 AT1G70000 (MybD)의 발현양이 증가된 것으로 확인된 1# 및 4#라인에서 안토시아닌의 함량이 증가된 것을 확인할 수 있었다.
As shown in FIG. 3, it was confirmed that the anthocyanin content was increased in the 1 # and 4 # lines, which were confirmed to increase the expression level of AT1G70000 (MybD) in Example 2.

Claims (9)

애기장대 유래 AT1G70000을 포함하고, 상기 AT1G70000은 하기의 개열지도로 표시되는 벡터에 포함되는 것인, 식물체의 안토시아닌 합성 증가 유도용 조성물:
Figure 112017017457264-pat00005
.
Wherein the AT1G70000 comprises the Arabidopsis originating AT1G70000 and the AT1G70000 is contained in a vector represented by the following cleavage map:
Figure 112017017457264-pat00005
.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 애기장대 유래 AT1G70000을 포함하는 재조합 벡터로 형질전환된, 안토시아닌 합성이 증가된 식물체.Plant having increased anthocyanin synthesis, transformed with a recombinant vector comprising Arabidopsis-derived AT1G70000. 청구항 7에 있어서, 상기 식물체는 애기장대, 배추, 양배추, 무, 겨자, 유채, 꽃양배추, 아루굴라, 케일, 브로콜리, 청경채, 냉이, 콜리플라워, 또는 루꼴라인 것인, 안토시아닌 합성이 증가된 식물체.[Claim 7] The plant according to claim 7, wherein the plant is anthocyanin-synthesized plant having increased anthocyanin synthesis, wherein the plant is Arabidopsis, cabbage, cabbage, radish, mustard, oilseed, cauliflower, arugula, kale, broccoli, . 애기장대 유래 AT1G70000을 포함하는 재조합 벡터로 식물체를 형질전환시키는 단계를 포함하는, 식물체의 안토시아닌 합성 증가를 유도하는 방법.A method of inducing increased anthocyanin synthesis in a plant, comprising transforming the plant with a recombinant vector comprising Arabidopsis derived AT1G70000.
KR1020150014572A 2015-01-29 2015-01-29 Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof KR101717474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150014572A KR101717474B1 (en) 2015-01-29 2015-01-29 Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150014572A KR101717474B1 (en) 2015-01-29 2015-01-29 Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof

Publications (2)

Publication Number Publication Date
KR20160093813A KR20160093813A (en) 2016-08-09
KR101717474B1 true KR101717474B1 (en) 2017-03-20

Family

ID=56712227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150014572A KR101717474B1 (en) 2015-01-29 2015-01-29 Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof

Country Status (1)

Country Link
KR (1) KR101717474B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118361A (en) 2017-04-21 2018-10-31 (주) 바이텍 Method for manufacturing concentrate of Aronia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091834B1 (en) 2009-12-30 2011-12-12 동국대학교 산학협력단 Method and apparatus for test question selection and achievement assessment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plant Molecular Biology. Vol. 60, No. 1, 페이지 107-124 (2006.01.)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118361A (en) 2017-04-21 2018-10-31 (주) 바이텍 Method for manufacturing concentrate of Aronia

Also Published As

Publication number Publication date
KR20160093813A (en) 2016-08-09

Similar Documents

Publication Publication Date Title
EP1709179B1 (en) Transgenic plants with reduced level of saturated fatty acid and methods for making them
US20030074695A1 (en) Plant diacylglycerol O-acyltransferase and uses thereof
Nakatsuka et al. Production of picotee-type flowers in Japanese gentian by CRES-T
WO2009028903A1 (en) Fusion polynucleotide for biosynthesis of beta-carotene using bicistronic gene expression and method for producing beta-carotene using the same
WO2011049243A1 (en) Transgenic plant having increased biomass and improved environmental stress resistance, and process for production thereof
CN117343156B (en) Tartary buckwheat-derived bHLH transcription factor, coding gene and application thereof
US6372961B1 (en) Hemoglobin genes and their use
CN107602683B (en) Transcription factor ZmNLP4 from corn and application thereof
AU2009291522B2 (en) Modification of fructan biosynthesis, increasing plant biomass, and enhancing productivity of biochemical pathways in a plant
US10006039B2 (en) Production of oil in vegetative tissues
CN110295175B (en) Application of soybean NAC transcription factor family gene Glyma08g41995
KR101717474B1 (en) Composition for inducing anthocyanin biosynthesis comprising AT1G70000 and use thereof
US8692069B2 (en) Environmental stress-inducible 557 promoter isolated from rice and uses thereof
KR101300509B1 (en) COMT gene from Miscanthus sinensis and the uses thereof
KR20100107263A (en) Promoters inducible by environmental stresses and uses thereof
AU2015264827B2 (en) Modification of fructan biosynthesis, increasing plant biomass, and enhancing productivity of biochemical pathways in a plant (2)
KR102450489B1 (en) STA1 gene from Arabidopsis thaliana regulating seed development and pollen viability under high temperature stress conditions in plant and uses thereof
JP4919305B2 (en) Promoter with leaf-specific expression activity
JP4505627B2 (en) Promoter with green tissue specific expression activity
JP4505628B2 (en) Promoter with leaf-specific expression activity
KR101700103B1 (en) CuCRTISO promoter from Citrus unshiu and uses thereof
KR20220086041A (en) ARP6 gene from Arabidopsis thaliana for regulating regeneration efficiency of plant and uses thereof
KR101370283B1 (en) Method for producing plant with improved growth and increased seed production transformed with gene encoding atrbp1 protein from arabidopsis thaliana
JP2005224112A (en) Promoter for specifically expressing shoot vascular bundle
KR101297355B1 (en) Recombinant vector for increasing tolerance to paraquat, salt, and drought stresses, uses thereof and transformed plants thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200128

Year of fee payment: 4