KR101711600B1 - Peptide Sensors for Selective Detection of Explosives - Google Patents

Peptide Sensors for Selective Detection of Explosives Download PDF

Info

Publication number
KR101711600B1
KR101711600B1 KR1020120103016A KR20120103016A KR101711600B1 KR 101711600 B1 KR101711600 B1 KR 101711600B1 KR 1020120103016 A KR1020120103016 A KR 1020120103016A KR 20120103016 A KR20120103016 A KR 20120103016A KR 101711600 B1 KR101711600 B1 KR 101711600B1
Authority
KR
South Korea
Prior art keywords
tnt
dnt
peptide
ser
leu
Prior art date
Application number
KR1020120103016A
Other languages
Korean (ko)
Other versions
KR20120119206A (en
Inventor
임시형
유연규
김석찬
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020120103016A priority Critical patent/KR101711600B1/en
Publication of KR20120119206A publication Critical patent/KR20120119206A/en
Application granted granted Critical
Publication of KR101711600B1 publication Critical patent/KR101711600B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/227Explosives, e.g. combustive properties thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 폭발물을 선택적으로 검출하기 위한 펩타이드 센서, 그 제조방법, 및 그를 이용한 검출장치에 관한 것이다. 본 발명의 펩타이드 센서는 종래의 폭발물 센서가 고분자로 구성되거나 고체 TNT 또는 고체 DNT에 선택적인 펩타이드를 이용하는 것이 비하여, 본 발명에 따른 펩타이드는 TNT와 DNT 유도체를 표면에 고정화한 후 이에 선택적인 펩타이드 서열을 파지 디스플레이의 방법으로 도출하였다. 이러한 펩타이드는 기존의 물질에 대하여 TNT 또는 DNT에 높은 선택성을 보이므로 표면 플라즈몬 공명 분광기(Surface Plasmon Resonance, SPR), Cantilever, QCM 등의 장치에 적용하여 기체상 또는 액체상에 포함된 폭발물을 검출하는 펩타이드 센서로 이용될 수 있다.The present invention relates to a peptide sensor for selectively detecting explosives, a method for producing the same, and a detection apparatus using the same. The peptide sensor of the present invention is characterized in that the peptides according to the present invention immobilize the TNT and DNT derivatives on the surface thereof and then form a selective peptide sequence Was derived by the method of phage display. Since these peptides exhibit high selectivity for TNT or DNT for existing substances, they can be applied to devices such as Surface Plasmon Resonance (SPR), Cantilever and QCM to detect peptides contained in gas phase or liquid phase Can be used as a sensor.

Description

폭발물의 선택적 검출을 위한 펩타이드 센서{Peptide Sensors for Selective Detection of Explosives}Peptide Sensors for Selective Detection of Explosives

본 발명은 TNT 및 DNT를 포함하는 폭발물을 검출하기 위한 센서용 펩타이드, 및 이러한 TNT 또는 DNT 특이적 펩타이드를 이용하는 것을 특징으로 하는 폭발물 검출용 센서에 관한 것이다.The present invention relates to a peptide for a sensor for detecting explosives including TNT and DNT, and a sensor for detecting an explosive, characterized by using such a TNT or DNT-specific peptide.

폭발물에 대한 새로운 센서의 설계와 연구는 그동안 활발히 진행되어 왔다. 폭발물로 사용되는 대표적인 화합물은 TNT(trinitrotoluene)이다. 한편 TNT의 합성과정 또는 TNT의 분해과정을 통하여 DNT(dinitrotoluene)도 일부 폭발물에 존재한다. 따라서 TNT와 DNT는 폭발물에 존재하는 대표적인 화합물로서 폭발물 센서는 주로 이들 두 물질을 검출하는 것을 주기능으로 한다. 그런데 TNT와 DNT는 고체로 존재하며 증기압이 매우 낮으므로, 폭발물에서 기화되어 공기 중에 존재하는 TNT와 DNT를 검출하기 위하여 고감도의 선택성을 가지며 기체 상에서 안정적인 구조를 갖는 수용체(receptor)의 개발이 TNT 및 DNT 센서 개발의 핵심 기술이다. 최근 DNT 및 TNT에 고감도로 선택적으로 결합할 수 있는 수용체로서 펩타이드와 같은 생체 고분자가 폭발물 센서로 활용될 수 있는 가능성을 보여 왔다[Langmuir 2008, 24, 4938-4943].The design and research of new sensors for explosives have been actively conducted so far. A typical compound used as an explosive is trinitrotoluene (TNT). Meanwhile, dinitrotoluene (DNT) is also present in some explosives through the process of synthesizing or decomposing TNT. Therefore, TNT and DNT are representative compounds present in explosives, and explosive sensors mainly detect these two substances as their main function. However, since TNT and DNT exist as solids and have a very low vapor pressure, the development of a receptor having a high sensitivity selectivity and a stable structure in the gas phase to detect TNT and DNT that is vaporized in the air and evaporated from explosives has been developed. It is the core technology of DNT sensor development. Recently, as a receptor capable of selectively binding to DNT and TNT with high sensitivity, it has shown the possibility that biopolymers such as peptides can be used as explosives sensors [ Langmuir 2008, 24 , 4938-4943].

한편 기존에 개발된 TNT 및 DNT 특이적 펩타이드는 고체 또는 결정형 TNT 및 DNT에 선택적으로 결합하는 펩타이드를 파지 디스플레이 라이브러리로부터 발굴하였기 때문에 단분자 상태의 TNT 또는 DNT와 선택적으로 결합하는데 제한성이 있을 것으로 추정되며, 특히 기화되어 공기 중에 존재하는 상태의 TNT 및 DNT를 검출하는 데 있어 다소 효율이 떨어질 것이다.Meanwhile, since the previously developed TNT and DNT-specific peptides were discovered from the phage display library for peptides that selectively bind to solid or crystalline TNT and DNT, it is estimated that there is a limitation in selectively binding to TNT or DNT in a monomolecular state. In particular, it will be somewhat less efficient in detecting TNT and DNT in the state of being vaporized and present in air.

따라서 본 발명이 이루고자 하는 기술적 과제는 폭발물에 포함되어 있는 TNT(trinitrotoluene) 및 DNT(dinitrotoluene)와 높은 감도로 선택적으로 결합할 수 있는 펩타이드를 얻고, 이를 이용한 폭발물 센서를 제공하는 것이다. 특히, 실제 폭발물 검출 상황과 같은 기화된 상태의 TNT 및 DNT를 검출하는데 유용한 폭발물 검출용 펩타이드 및 이를 포함하는 센서를 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to obtain a peptide capable of selectively binding with trinitrotoluene (TNT) and dinitrotoluene (DNT) contained in explosives with high sensitivity, and to provide an explosive sensor using the same. In particular, it is to provide a peptide for detecting explosives useful for detecting TNT and DNT in a vaporized state as in the actual explosive detection situation, and a sensor including the same.

본 발명의 다른 기술적 과제는 하천, 지하수, 토양 등과 같은 환경 시료로부터 오염된 TNT 또는 DNT를 선택적으로 검출하기 위한 펩타이드 및 이를 포함하는 센서를 제공하는 것이다.Another technical object of the present invention is to provide a peptide for selectively detecting contaminated TNT or DNT from environmental samples such as rivers, groundwater, soil, and the like, and a sensor including the same.

본 발명의 또 다른 기술적 과제는 이러한 펩타이드 센서를 이용한 TNT 또는 DNT의 선택적 검출장치를 제공하는 것이다.Another technical problem of the present invention is to provide a device for selective detection of TNT or DNT using such a peptide sensor.

상기 기술적 과제를 달성하기 위하여, 본 발명은 하기 서열번호 1 내지 4의 아미노산 서열 중 어느 하나를 가지는 TNT 특이적 펩타이드 및 서열번호 9 내지 11의 아미노산 서열 중 어느 하나를 가지는 DNT 특이적 펩타이드를 제공한다. 이러한 펩타이드들은 TNT 또는 DNT를 검출하기 위한 펩타이드 센서로 이용될 수 있다.In order to achieve the above technical problem, the present invention provides a TNT-specific peptide having any one of the amino acid sequences of SEQ ID NOs: 1 to 4 and a DNT-specific peptide having any one of the amino acid sequences of SEQ ID NOs: 9 to 11 . These peptides can be used as a peptide sensor to detect TNT or DNT.

서열번호Sequence number 아미노산 서열Amino acid sequence 1One H2N-His-Pro-Leu-Lys-Gln-Tyr-Trp-Trp-Arg-Pro-Ser-Ile-COOHH 2 N-His-Pro-Leu-Lys-Gln-Tyr-Trp-Trp-Arg-Pro-Ser-Ile-COOH 22 H2N-Val-Ser-Arg-His-Gln-Ser-Trp-His-Pro-His-Asp-Leu-COOHH 2 N-Val-Ser-Arg-His-Gln-Ser-Trp-His-Pro-His-Asp-Leu-COOH 33 H2N-His-Arg-Asn-His-Leu-Met-Asp-Leu-Ser-Gly-Leu-Tyr-COOHH 2 N-His-Arg-Asn-His-Leu-Met-Asp-Leu-Ser-Gly-Leu-Tyr-COOH 44 H2N-Trp-Ser-Pro-Gly-Gln-Gln-Arg-Leu-His-Asn-Ser-Thr-COOHH 2 N-Trp-Ser-Pro-Gly-Gln-Gln-Arg-Leu-His-Asn-Ser-Thr-COOH

서열번호Sequence number 아미노산 서열Amino acid sequence 99 H2N-Lys-Met-His-Thr-Ala-Ser-Leu-Ser-Gln-Pro-Leu-Met-COOHH 2 N-Lys-Met-His-Thr-Ala-Ser-Leu-Ser-Gln-Pro-Leu-Met-COOH 1010 H2N-Gln-Ser-Phe-Ala-Ser-Leu-Thr-Asn-Pro-Arg-Val-Leu-COOHH 2 N-Gln-Ser-Phe-Ala-Ser-Leu-Thr-Asn-Pro-Arg-Val-Leu-COOH 1111 H2N-Ala-Ser-Thr-Ala-Ser-Leu-His-Gln-Pro-Arg-COOHH 2 N-Ala-Ser-Thr-Ala-Ser-Leu-His-Gln-Pro-Arg-COOH

본 발명자들은 기상에서 단분자 상태로 존재하는 TNT 또는 DNT와 선택성 있는 결합을 하는 펩타이드를 발굴하기 위하여 고체 표면에 일정한 길이의 링커로 연결되어 단분자 형태로 존재하는 TNT 또는 DNT를 이용한다면 보다 선택성이 있은 펩타이드를 파지 디스플레이 라이브러리로부터 발굴할 수 있을 것으로 추정하였다. 이에, 본 발명자들은 TNT 또는 DNT의 유도체를 합성하고 이를 링커로 고체 표면에 고정화한 후 단분자 상태의 TNT 또는 DNT에 선택적인 펩타이드 서열을 파지 디스플레이 라이브러리로부터 확인하였고, 확인된 서열의 펩타이드를 합성하여 TNT와 DNT에 선택적으로 결합하는 것을 확인하였다. 그리고 이러한 펩타이드가 고정화된 칩(chip)을 이용하여 기체 상에 존재하는 TNT 또는 DNT를 선택적으로 측정하여 발굴된 펩타이드는 폭발물 센서로서 활용이 가능하다는 것을 확인함으로써 본 발명을 완성하였다.In order to discover a peptide that selectively binds to TNT or DNT that exists in a monomolecular state in the gas phase, the present inventors use TNT or DNT that is connected to a solid surface with a linker of a certain length and exists in the form of a single molecule. It was estimated that the present peptide could be excavated from the phage display library. Thus, the present inventors synthesized a derivative of TNT or DNT, immobilized it on a solid surface with a linker, and then identified a peptide sequence selective for TNT or DNT in a monomolecular state from a phage display library, and synthesized a peptide of the identified sequence. It was confirmed that it selectively binds to TNT and DNT. In addition, the present invention was completed by confirming that the peptide discovered by selectively measuring TNT or DNT present on the gas using a chip to which such a peptide is immobilized can be used as an explosive sensor.

또한 본 발명은 상기 TNT 또는 DNT 특이적 펩타이드의 카복시 말단에 고체 지지체 결합을 위한 링커가 추가로 연결된 TNT 또는 DNT 검출용 펩타이드를 제공하며, 바람직하게 이러한 링커는 Gly-Cys이다. 더욱 바람직하게, 링커가 연결된 본 발명의 TNT 또는 DNT 특이적 펩타이드는 하기 서열번호 5-8 (TNT 특이적) 또는 서열번호 12-14 (DNT 특이적)의 아미노산 서열을 가진다.In addition, the present invention provides a peptide for detecting TNT or DNT to which a linker for binding a solid support is further linked to the carboxy terminal of the TNT or DNT-specific peptide, and preferably such a linker is Gly-Cys. More preferably, the TNT or DNT-specific peptide of the present invention to which a linker is linked has an amino acid sequence of SEQ ID NO: 5-8 (TNT specific) or SEQ ID NO: 12-14 (DNT specific).

서열번호Sequence number 아미노산 서열Amino acid sequence 55 H2N-His-Pro-Leu-Lys-Gln-Tyr-Trp-Trp-Arg-Pro-Ser-Ile-Gly-Cys-COOHH 2 N-His-Pro-Leu-Lys-Gln-Tyr-Trp-Trp-Arg-Pro-Ser-Ile-Gly-Cys-COOH 66 H2N-Val-Ser-Arg-His-Gln-Ser-Trp-His-Pro-His-Asp-Leu-Gly-Cys-COOHH 2 N-Val-Ser-Arg-His-Gln-Ser-Trp-His-Pro-His-Asp-Leu-Gly-Cys-COOH 77 H2N-His-Arg-Asn-His-Leu-Met-Asp-Leu-Ser-Gly-Leu-Tyr-Gly-Cys-COOHH 2 N-His-Arg-Asn-His-Leu-Met-Asp-Leu-Ser-Gly-Leu-Tyr-Gly-Cys-COOH 88 H2N-Trp-Ser-Pro-Gly-Gln-Gln-Arg-Leu-His-Asn-Ser-Thr-Gly-Cys-COOHH 2 N-Trp-Ser-Pro-Gly-Gln-Gln-Arg-Leu-His-Asn-Ser-Thr-Gly-Cys-COOH

서열번호Sequence number 아미노산 서열Amino acid sequence 1212 H2N-Lys-Met-His-Thr-Ala-Ser-Leu-Ser-Gln-Pro-Leu-Met-Gly-Cys-COOHH 2 N-Lys-Met-His-Thr-Ala-Ser-Leu-Ser-Gln-Pro-Leu-Met-Gly-Cys-COOH 1313 H2N-Gln-Ser-Phe-Ala-Ser-Leu-Thr-Asn-Pro-Arg-Val-Leu-Gly-Cys-COOHH 2 N-Gln-Ser-Phe-Ala-Ser-Leu-Thr-Asn-Pro-Arg-Val-Leu-Gly-Cys-COOH 1414 H2N-Ala-Ser-Thr-Ala-Ser-Leu-His-Gln-Pro-Arg-Gly-Cys-COOHH 2 N-Ala-Ser-Thr-Ala-Ser-Leu-His-Gln-Pro-Arg-Gly-Cys-COOH

본 발명은 또한 본 발명에 따른 TNT 또는 DNT 특이적 펩타이드를 포함하는 것을 특징으로 하는 폭발물 센서를 제공하며, 바람직하게, 이러한 센서에 있어 본 발명의 펩타이드는 카복시 말단이 고체 지지체에 결합(표면 고정화)된다.The present invention also provides an explosive sensor comprising a TNT or DNT-specific peptide according to the present invention, and preferably, in such a sensor, the peptide of the present invention has a carboxy end bound to a solid support (surface immobilization). do.

표면 고정화의 용이성, 시스템 설계 등 여러 측면에서, 본 발명에 따른 펩타이드의 카복시 말단(COOH)의 수산기(-OH)는 -NH2, -NHR1 (R1은 탄소수 1-18 알킬기), -OR1 (R1은 탄소수 1-18 알킬기), 또는 아미노산으로 치환될 수 있다. 상기 카복시 말단이 치환된 펩타이드는 고체상 합성법, 액체상 합성법 등의 본 발명이 속한 분야에서 잘 알려진 방법으로 제조될 수 있다.In various aspects, such as ease of surface immobilization and system design, the hydroxyl group (-OH) of the carboxy terminal (COOH) of the peptide according to the present invention is -NH 2 , -NHR 1 (R 1 is an alkyl group having 1-18 carbon atoms), -OR 1 (R 1 is a C 1-18 alkyl group), or an amino acid may be substituted. The peptide having the carboxy terminal substituted may be prepared by a method well known in the field to which the present invention belongs, such as a solid-phase synthesis method and a liquid-phase synthesis method.

또한 본 발명에 따른 폭발물 센서에 사용될 수 있는 상기 고체 지지체의 형태는 비이드, 필름, 나노 튜브, 다공성 입자 등 어떠한 형태도 가능하고, 고체 지지체의 구성 성분은 금, 실리카(silica), 유리, 유리섬유, TiO2, 백금, 은, 크롬, 니켈, 백금, 알루미늄, 철, 구리, 티타늄, 산화금, 산화크롬, 산화은, 또는 지르코늄 등이며, 폴리스타일렌, 니트로셀룰로오스, 폴리비닐클로라이드, 폴리에틸렌-테레프탈레이트 등과 같은 고분자 수지 등도 가능하다. 앞서 언급한 바와 같이, 이러한 고체 지지체에 본 발명에 따른 펩타이드의 카복시 말단, 카복시 말단이 아미노기로 치환된 말단, 또는 알킬에스테르기로 치환된 말단 등이 고정화될 수 있으며(다만, 이러한 고정화 수단에 본 발명이 한정되는 것은 아니다.), 본 발명이 속한 분야에서 잘 알려진 고정화 방법이 사용될 수 있다.In addition, the shape of the solid support that can be used in the explosive sensor according to the present invention can be any shape such as beads, films, nanotubes, and porous particles, and the constituents of the solid support are gold, silica, glass, glass. Fiber, TiO 2 , platinum, silver, chromium, nickel, platinum, aluminum, iron, copper, titanium, gold oxide, chromium oxide, silver oxide, or zirconium, etc., and polystyrene, nitrocellulose, polyvinyl chloride, polyethylene-terephthalate Polymer resins such as, etc. are also possible. As mentioned above, the carboxy end of the peptide according to the present invention, the end substituted with an amino group, or an end substituted with an alkyl ester group, etc. of the peptide according to the present invention may be immobilized on such a solid support (however, the present invention This is not limited.), an immobilization method well known in the field to which the present invention belongs may be used.

본 발명은 또한 본 발명에 따른 TNT 또는 DNT 펩타이드 또는 이러한 펩타이드를 포함하는 센서를 이용하는 것을 특징으로 하는 폭발물 검출 방법 및 폭발물 검출기를 제공한다. 검출 시료는 액상(수용액 환경)일 수 있으며, 바람직하게는 기체 상이다.The present invention also provides an explosive detection method and an explosive detector, characterized in that using the TNT or DNT peptide according to the present invention or a sensor containing such a peptide. The detection sample may be in a liquid phase (aqueous solution environment), and preferably in a gas phase.

상기 DNT 또는 TNT의 검출은 상기 펩타이드가 고정화된 센서와 DNT 또는 TNT의 복합체 형성에 따른 질량 변화, 표면 플라즈몬 공명(surface plasmon resonance)의 변화, 또는 cantilever의 휘어짐 정도 또는 cantilever의 진동수 변화를 측정함으로써 수행될 수 있으나, 이에 한정되는 것은 아니다(예를 들어, Burg, T. P. 등 Nature 2007, 446, 1066; Grate, J. W. 등 Anal . Chem . 1996, 68, 913; Patel, S. V. 등 Sens . Actuators , B 2003, 96, 541; Hagleitner, C. 등 Nature 2001, 414, 293; Freund, M. S. 등 Proc . Natl . Acad . Sci . U.S.A. 1995, 92, 2652; 및 Shekhawat, G. 등 Science 2006, 311, 1592 참조).The detection of the DNT or TNT is performed by measuring a change in mass according to the formation of a complex between the sensor on which the peptide is immobilized and DNT or TNT, a change in surface plasmon resonance, or a degree of warpage of the cantilever or a change in the frequency of the cantilever. May be, but is not limited thereto (for example, Burg, TP, etc. Nature 2007 , 446 , 1066; Grate, JW, etc. Anal . Chem . 1996 , 68 , 913; Patel, SV et al . Sens. Actuators , B 2003 , 96 , 541; Hagleitner, C. et al . Nature 2001 , 414 , 293; Freund, MS et al . Proc. Natl . Acad . Sci . USA 1995 , 92 , 2652; And Shekhawat, G. et al. Science 2006 , 311 , 1592).

본 발명은 또한 지지체 등의 표면에 고정화된, 단분자 상태의 3-(2,4,6-트리니트로페녹시)C2 - 5알킬-1-아미노 기, 바람직하게는 3-(2,4,6-트리니트로페녹시)프로판-1-아미노 기를 이용하는 것을 특징으로 하는 TNT 특이적 펩타이드의 검출 방법을 제공한다. The invention may also (not 2,4,6-trinitro phenoxy), the 3-in monomolecular state immobilized on a support surface, such as C 2 - 5 is the 1-alkyl-amino group, preferably 3- (2, 4, It provides a method for detecting a TNT-specific peptide, characterized in that it uses a 6-trinitrophenoxy)propane-1-amino group.

본 발명은 또한 지지체 등의 표면에 고정화된, 단분자 상태의 4-(2,4-디니트로페닐)C2 - 6알킬-1-아미노 기, 바람직하게는 4-(2,4-디니트로페닐)부탄-1-아미노 기를 이용하는 것을 특징으로 하는 DNT 특이적 펩타이드의 검출 방법을 제공한다.The invention also in a unimolecular state immobilized on a support surface, such as 4- (2,4-dinitrophenyl) C 2 - 6 1-amino group to an alkyl, preferably 4- (2,4-dinitrophenyl It provides a method for detecting a DNT-specific peptide characterized by using a phenyl) butane-1-amino group.

본 발명은 다음과 같은 특징이 있는 TNT 또는 DNT 특이적 펩타이드와 이를 이용한 폭발물 검출 센서, 폭발물 검출 방법을 제공한다. 첫째, 본 발명에서 개발된 TNT 또는 DNT 특이적 펩타이드는 기존의 폭발물 센서에 사용되는 폭발물 특이적 고분자에 비하여 TNT 및 DNT에 대한 선택성이 높다. 또한 TNT와 DNT 결정을 이용하여 검색된 펩타이드에 비하여 TNT 및 DNT에 대한 선택성이 높은 것으로 확인되었다. 둘째, 폭발물의 주성분인 TNT 또는 DNT의 유도체를 제조하여 표면에 고정화함으로써 분자들이 응집된 결정상태와는 달리 단분자 형태로 노출된 TNT 및 DNT에 선택적으로 결합하는 펩타이드를 개발하는 장점이 있다. 이는 실제 폭발물 센서가 사용되는 환경과 동일한, 단분자 형태로 기상에 존재하는 TNT 및 DNT와 효과적으로 결합하는 특성을 갖는 펩타이드를 제조함으로써 선택성이 높은 폭발물 센서의 개발에 유용하게 이용될 수 있다. The present invention provides a TNT or DNT-specific peptide having the following characteristics, an explosive detection sensor using the same, and an explosive detection method. First, the TNT or DNT-specific peptide developed in the present invention has higher selectivity for TNT and DNT than the explosive-specific polymer used in the conventional explosive sensor. In addition, it was confirmed that the selectivity for TNT and DNT was higher than that of the peptides detected using TNT and DNT crystals. Second, there is an advantage of developing a peptide that selectively binds to exposed TNT and DNT in the form of a single molecule, unlike a crystal state in which molecules are aggregated, by preparing a derivative of TNT or DNT, which is the main component of an explosive, and immobilized on the surface. This can be usefully used in the development of an explosive sensor with high selectivity by producing a peptide having a characteristic that effectively binds to TNT and DNT existing in the gas phase in the form of a single molecule, which is the same as the environment in which the explosive sensor is actually used.

도 1은 TNT/DNT 유도체의 합성, 이러한 유도체의 금 표면 고정화 및 TNT/DNT 유도체에 선택적인 파지의 분리 과정을 보여주는 도면이다.
도 2는 본 발명에 따라 선별된 펩타이드를 금 칩(chip) 표면에 고정화한 코팅 개념도이다((a) OEG + 펩타이드, (b) 펩타이드)).
도 3은 Cantilever 센싱 시스템 개념도이다.
도 4는 Cantilever 센싱 시스템을 사용한, 제작한 펩타이드의 기상에서의 DNT 및 NT에 대한 선택성 비교 실험 결과이다.
1 is a view showing the synthesis of TNT/DNT derivatives, immobilization of the gold surface of these derivatives, and separation of phages selective to the TNT/DNT derivatives.
2 is a conceptual diagram of a coating in which the selected peptides according to the present invention are immobilized on the surface of a gold chip ((a) OEG + peptide, (b) peptide)).
3 is a conceptual diagram of a cantilever sensing system.
4 is a result of a comparison experiment of selectivity for DNT and NT in the gas phase of the produced peptide using the Cantilever sensing system.

이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
Hereinafter, examples, etc. will be described in detail to aid understanding of the present invention. However, the embodiments according to the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following examples. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.

<실시예 1> TNT 유도체의 제조<Example 1> Preparation of TNT derivative

표면 고정화를 위한 TNT 유도체인 3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드를 페놀로부터 하기 반응식 1의 합성 경로를 이용하여 합성하였다. 합성과정은 페놀로부터 피크르산(picric acid), 2-클로로-1,3,5-트리니트로벤젠 (1)을 합성하고 2-클로로-1,3,5-트리니트로벤젠 (1)과 tert-부틸 3-하이드록시프로필카바메이트 (2)의 반응을 통하여 3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드의 합성을 완성한다.3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride, a TNT derivative for surface immobilization, was synthesized from phenol using the synthetic route of Scheme 1 below. The synthesis process was to synthesize picric acid, 2-chloro-1,3,5-trinitrobenzene (1) from phenol, and 2-chloro-1,3,5-trinitrobenzene (1) and tert-butyl 3- Synthesis of 3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride is completed through the reaction of hydroxypropylcarbamate (2).

[반응식 1][Scheme 1]

Figure 112012075221453-pat00001
Figure 112012075221453-pat00001

1) 피크르산(picric acid)의 합성: 페놀 (10.0 g, 106.26 mmol)을 98% H2SO4 (100 mL)에 녹였다. 얼음 수조를 설치하고, 98% HNO3 (60.26 g, 956.34 mmol)을 천천히 적가하였다. 그 후, 90 ℃에서 5 시간 동안 교반하고, 얼음 수조를 설치하고 물 (200 mL)을 투입하여 반응을 종결하였다. 에틸 아세테이트 (250 mL)와 물 (100 mL × 5)로 추출하고, 에틸 아세테이트를 MgSO4로 건조한 다음, 에틸 아세테이트를 감압 증류하여 생성물을 얻었다. (21.18 g, 87%) 1H NMR (300 MHz, CDCl3) δ 9.21 (s, 2H)1) Synthesis of picric acid: Phenol (10.0 g, 106.26 mmol) was dissolved in 98% H 2 SO 4 (100 mL). An ice bath was installed, and 98% HNO 3 (60.26 g, 956.34 mmol) was slowly added dropwise. Then, the mixture was stirred at 90° C. for 5 hours, an ice bath was installed, and water (200 mL) was added to terminate the reaction. Extracted with ethyl acetate (250 mL) and water (100 mL × 5), ethyl acetate was dried over MgSO 4 , and ethyl acetate was distilled under reduced pressure to obtain a product. (21.18 g, 87%) 1 H NMR (300 MHz, CDCl 3 ) δ 9.21 (s, 2H)

2) 2-클로로-1,3,5-트리니트로벤젠의 합성: 피크르산 (20.0 g, 87.3 mmol)을 반응기에 투입하고 MC (250 mL)에 녹였다. 얼음 수조를 설치하고, POCl3 (12 mL, 130.95 mmol)과 피리딘 (8.55 mL, 104.76 mmol)을 천천히 적가하였다. 적가가 끝나면, 40 ℃에서 2 시간 동안 교반하였다. 그 후, 얼음 수조를 설치하고, 물 (50 mL)로 반응을 종결시켰다. 그리고 에틸 아세테이트 (100 mL)와 물 (50 mL × 4)로 추출하고, 에틸 아세테이트를 MgSO4를 이용하여 건조한 다음, 에틸 아세테이트를 감압 증류하여 조(crude) 생성물을 얻는다. 조 생성물을 MC와 헥산을 이용하여 재결정을 통해 순수한 생성물을 얻는다. (17.94 g, 83%) 1H NMR (300 MHz, CDCl3) δ 8.86 (s, 2H)2) Synthesis of 2-chloro-1,3,5-trinitrobenzene: picric acid (20.0 g, 87.3 mmol) was added to the reactor and dissolved in MC (250 mL). An ice water bath was installed, and POCl 3 (12 mL, 130.95 mmol) and pyridine (8.55 mL, 104.76 mmol) were slowly added dropwise. When the dropwise addition was completed, the mixture was stirred at 40° C. for 2 hours. Then, an ice water bath was installed, and the reaction was terminated with water (50 mL). Then, extraction was performed with ethyl acetate (100 mL) and water (50 mL × 4), and ethyl acetate was dried over MgSO 4 , and then ethyl acetate was distilled under reduced pressure to obtain a crude product. The crude product is recrystallized using MC and hexane to obtain a pure product. (17.94 g, 83%) 1 H NMR (300 MHz, CDCl 3 ) δ 8.86 (s, 2H)

3) tert-부틸 3-hydroxypropylcarbamate의 합성: 3-aminopropan-1-ol (10.0 g, 133.13 mmol)을 MC (200 mL)에 녹인다. Ice bath를 설치하고, di-tert-butyl dicarbonate (43.58 g, 199.69 mmol)을 천천히 적가한다. 적가가 끝나고, 상온에서 2 시간 동안 교반한다. 반한후, ethyl acetate (200 mL)과 물 (50 mL × 3)로 추출하고, ethyl acetate를 MgSO4를 이용하여 건조한 다음, ethyl acetate를 감압 증류하여 생성물을 얻는다. (20.98 g, 90%) 1H NMR (300 MHz, CDCl3) δ 3.61 (t, 2H), 3.29 (q, 2H), 1.64 (m, 2H), 1.40 (s, 9H)
3) Synthesis of tert-butyl 3-hydroxypropylcarbamate: 3-aminopropan-1-ol (10.0 g, 133.13 mmol) is dissolved in MC (200 mL). Set up an ice bath, and slowly add di-tert-butyl dicarbonate (43.58 g, 199.69 mmol) dropwise. After the dropwise addition is complete, the mixture is stirred at room temperature for 2 hours. After inversion, extract with ethyl acetate (200 mL) and water (50 mL × 3), dry ethyl acetate with MgSO 4 , and distill ethyl acetate under reduced pressure to obtain a product. (20.98 g, 90%) 1 H NMR (300 MHz, CDCl 3 ) δ 3.61 (t, 2H), 3.29 (q, 2H), 1.64 (m, 2H), 1.40 (s, 9H)

*4) tert-부틸 3-(2,4,6-트리니트로페녹시)프로필카바메이트의 합성: 2-클로로-1,3,5-트리니트로벤젠 (5.0 g, 20.19 mmol)을 THF (75 mL)에 녹이고, KOH (5.33 g, 80.76 mmol)을 투입하여 교반하였다. 그 후, tert-부틸 3-하이드록시프로필카바메이트 (4.25 g, 24.23 mmol)을 투입하고, 4 시간 동안 가열 환류시켰다. 반응이 종료되면 TFH를 감압 증류하고, 에틸 아세테이트 (100 mL)와 물 (50 mL × 4)로 추출하였다. 에틸 아세테이트를 MgSO4를 이용하여 건조한 다음, 에틸 아세테이트를 감압 증류하여 조(crude) 생성물을 얻는다. 조 생성물을 칼럼 크로마토그래피 (silica gel 60, 70-230 mesh ASTM)를 통해 정제하여 순수한 생성물을 얻었다. (2.88 g, 37%) 1H NMR (300 MHz, CDCl3) δ 8.86 (s, 2H), 4.32 (t, 2H), 3.29 (q, 2H), 2.04 (m, 2H), 1.40 (s, 9H)*4) Synthesis of tert-butyl 3-(2,4,6-trinitrophenoxy)propylcarbamate: 2-chloro-1,3,5-trinitrobenzene (5.0 g, 20.19 mmol) in THF (75 mL) Dissolved in, KOH (5.33 g, 80.76 mmol) was added and stirred. Then, tert-butyl 3-hydroxypropylcarbamate (4.25 g, 24.23 mmol) was added, followed by heating to reflux for 4 hours. When the reaction was completed, TFH was distilled under reduced pressure, and extracted with ethyl acetate (100 mL) and water (50 mL x 4). Ethyl acetate was dried over MgSO 4 and then ethyl acetate was distilled under reduced pressure to obtain a crude product. The crude product was purified through column chromatography (silica gel 60, 70-230 mesh ASTM) to obtain a pure product. (2.88 g, 37%) 1 H NMR (300 MHz, CDCl 3 ) δ 8.86 (s, 2H), 4.32 (t, 2H), 3.29 (q, 2H), 2.04 (m, 2H), 1.40 (s, 9H)

5) 3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드의 합성: tert-부틸 3-(2,4,6-트리니트로페녹시)프로필카바메이트 (2.0 g, 5.18 mmol)를 MC (30 mL)에 녹이고, 얼음 수조를 설치하였다. 이 용액 속으로 건조 HCl 가스를 1 시간 동안 불어 넣어주었다. 용액 속에 고체가 생성되면 반응을 종료하였다. 그 후, 고체를 여과하여 생성물을 얻었다. (1.25 g, 75%) 1H NMR (300 MHz, CD3OD) δ 9.08 (s, 2H), 4.44 (t, 2H), 3.19 (t, 2H), 2.23 (m, 2H)5) Synthesis of 3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride: tert-butyl 3-(2,4,6-trinitrophenoxy)propylcarbamate (2.0 g, 5.18 mmol ) Was dissolved in MC (30 mL), and an ice water bath was installed. Dry HCl gas was blown into this solution for 1 hour. When a solid was formed in the solution, the reaction was terminated. Then, the solid was filtered to obtain a product. (1.25 g, 75%) 1 H NMR (300 MHz, CD 3 OD) δ 9.08 (s, 2H), 4.44 (t, 2H), 3.19 (t, 2H), 2.23 (m, 2H)

합성된 TNT 유도체 (3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드)의 NMR 스펙트럼을 분석하여 목적하는 구조와 같은 TNT 유도체가 합성된 것을 확인하였다.
By analyzing the NMR spectrum of the synthesized TNT derivative (3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride), it was confirmed that the TNT derivative having the desired structure was synthesized.

<실시예 2> DNT 유도체의 제조<Example 2> Preparation of DNT derivative

표면 고정화를 위한 DNT 유도체인 4-(2,4-디니트로페닐)부탄-1-아민을 페놀로부터 하기 반응식 3의 합성 경로를 이용하여 합성하였다. 합성과정은 벤질 브로마이드로부터 부트(But)-3-에닐벤젠을 합성하고 부트-3-에닐벤젠으로부터 4-페닐부탄-1-올을 합성하며, 4-페닐부탄-1-올로부터 1-클로로-4-페닐부탄을 합성하고, 1-클로로-4-페닐부탄으로부터 1-(4-클로로부틸)-2,4-디니트로벤젠을 합성하고, 1-(4-클로로부틸)-2,4-디니트로벤젠으로부터 4-(2,4-디니트로페닐)부탄-1-아민을 합성하였다.4-(2,4-dinitrophenyl)butan-1-amine, a DNT derivative for surface immobilization, was synthesized from phenol using the synthetic route of Scheme 3 below. In the synthesis process, but-3-enylbenzene is synthesized from benzyl bromide, 4-phenylbutan-1-ol is synthesized from but-3-enylbenzene, and 1-chloro- 4-phenylbutane was synthesized, 1-(4-chlorobutyl)-2,4-dinitrobenzene was synthesized from 1-chloro-4-phenylbutane, and 1-(4-chlorobutyl)-2,4- 4-(2,4-dinitrophenyl)butan-1-amine was synthesized from dinitrobenzene.

[반응식 2][Scheme 2]

Figure 112012075221453-pat00002
Figure 112012075221453-pat00002

1) 부트-3-에닐벤젠의 합성: 벤질 브로마이드 (5.0 g, 29.23 mmol)와 알릴마그네슘(allylmagnesium) 브로마이드 1.0 M 디에틸 에테르 용액 (43.85 mL, 43.84 mmol)을 질소 하에서 반응기에 투입하고, 50 ℃에서 2 시간 동안 반응시켰다. 그 후, 물 (10 mL)을 이용하여 반응을 종료시키고, 물 (20 mL × 3)로 추출하였다. 디에틸 에테르를 MgSO4를 이용하여 건조하고, 디에틸 에테르를 감압 증류하여 생성물을 얻었다. (3.48 g, 90%) 1H NMR (300 MHz, CDCl3) δ 7.25 (m, 5H), 5.84 (m, 1H), 5.01 (m, 2H), 2.69 (m, 2H), 2.38 (m, 2H)1) Synthesis of but-3-enylbenzene: benzyl bromide (5.0 g, 29.23 mmol) and allylmagnesium bromide 1.0 M diethyl ether solution (43.85 mL, 43.84 mmol) were added to the reactor under nitrogen, and 50°C. Reacted at for 2 hours. After that, the reaction was terminated with water (10 mL), followed by extraction with water (20 mL × 3). Diethyl ether was dried over MgSO 4 , and diethyl ether was distilled under reduced pressure to obtain a product. (3.48 g, 90%) 1 H NMR (300 MHz, CDCl 3 ) δ 7.25 (m, 5H), 5.84 (m, 1H), 5.01 (m, 2H), 2.69 (m, 2H), 2.38 (m, 2H)

2) 4-페닐부탄-1-올의 합성: 부트-3-에닐벤젠 (3.0 g, 22.69 mmol)을 질소 하에서 반응기에 투입한 후, 얼음 수조를 설치하였다. 그 후, 보란(borane)-THF 복합체(complex) 1.0 M 용액 (35 mL, 35 mmol)을 천천히 적가하고, 1 시간 동안 교반하였다. 1 시간 후, NaOH (1.2 g)와 30% H2O2 (3.75 mL)를 천천히 투입하고, 1 시간 동안 교반하였다. 그 후, 에틸 아세테이트 (20 mL)와 물 (15 mL × 3)로 추출하고, 에틸 아세테이트를 MgSO4를 이용하여 건조한 다음, 에틸 아세테이트를 감압 증류하여 생성물을 얻었다. (2.89 g, 85%) 1H NMR (300 MHz, CDCl3) δ 7.20 (m, 5H), 3.62 (t, 2H), 2.62 (t, 2H), 1.62 (m, 4H).2) Synthesis of 4-phenylbutan-1-ol: But-3-enylbenzene (3.0 g, 22.69 mmol) was added to the reactor under nitrogen, and then an ice bath was installed. Then, borane-THF complex 1.0 M solution (35 mL, 35 mmol) was slowly added dropwise, followed by stirring for 1 hour. After 1 hour, NaOH (1.2 g) and 30% H 2 O 2 (3.75 mL) were slowly added and stirred for 1 hour. Thereafter, extraction was performed with ethyl acetate (20 mL) and water (15 mL × 3), and ethyl acetate was dried over MgSO 4 , and then ethyl acetate was distilled under reduced pressure to obtain a product. (2.89 g, 85%) 1 H NMR (300 MHz, CDCl 3 ) δ 7.20 (m, 5H), 3.62 (t, 2H), 2.62 (t, 2H), 1.62 (m, 4H).

3) 1-클로로-4-페닐부탄의 합성: 4-페닐부탄-1-올 (2.8 g, 17.97 mmol)을 반응기에 투입하고 20 ml의 메틸렌 클로라이드 (MC)에 녹였다. 얼음 수조를 설치하고, POCl3 (2.47 mL, 26.96 mmol)과 피리딘 (1.76 mL, 21.56 mmol)을 천천히 적가하였다. 적가가 끝나면, 40 ℃에서 2 시간 동안 교반하였다. 그 후, 얼음 수조를 설치하고, 물 (10 mL)로 반응을 종결시켰다. 이후 디에틸 에테르 (30 mL)와 물 (25 mL × 4)로 추출하고, 디에틸 에테르를 MgSO4를 이용하여 건조한 다음, 디에틸 에테르를 감압 증류하여 생성물을 얻었다. (2.87 g, 95%) 1H NMR (300 MHz, CDCl3) δ 7.22 (m, 5H), 3.58 (t, 2H), 2.63 (t, 2H), 1.81 (m, 4H).3) Synthesis of 1-chloro-4-phenylbutane: 4-phenylbutan-1-ol (2.8 g, 17.97 mmol) was added to a reactor and dissolved in 20 ml of methylene chloride (MC). An ice water bath was installed, and POCl 3 (2.47 mL, 26.96 mmol) and pyridine (1.76 mL, 21.56 mmol) were slowly added dropwise. When the dropwise addition was completed, the mixture was stirred at 40° C. for 2 hours. After that, an ice water bath was installed, and the reaction was terminated with water (10 mL). After extraction with diethyl ether (30 mL) and water (25 mL × 4), diethyl ether was dried over MgSO 4 , and diethyl ether was distilled under reduced pressure to obtain a product. (2.87 g, 95%) 1 H NMR (300 MHz, CDCl 3 ) δ 7.22 (m, 5H), 3.58 (t, 2H), 2.63 (t, 2H), 1.81 (m, 4H).

4) 1-(4-클로로부틸)-2,4-디니트로벤젠의 합성: 1-클로로-4-페닐부탄 (2.5 g, 14.82 mmol)을 98% H2SO4 (20 mL)에 녹였다. 얼음 수조를 설치하고, 70% HNO3 (5.66 mL, 88.92 mmol)을 천천히 적가하였다. 그 후, 80 ℃에서 3 시간 동안 교반하고, 얼음 수조를 설치하여 물 (10 mL)을 투입하여 반응을 종결하였다. 에틸 아세테이트 (50 mL)와 물 (50 mL × 4)로 추출하고, 에틸 아세테이트를 MgSO4를 이용하여 건조한 다음, 에틸 아세테이트를 감압 증류하여 조(crude) 생성물을 얻었다. 조 생성물을 칼럼 크로마토그래피 (silica gel 60, 70-230 mesh ASTM)를 통해 정제하여 순수한 생성물을 얻었다. (2.49 g, 65%) 1H NMR (300 MHz, CDCl3) δ 8.72 (d, 1H), 8.38 (dd, 1H), 7.61 (d, 1H), 3.60 (t, 2H), 3.02 (t, 2H), 1.95 (m, 4H).4) Synthesis of 1-(4-chlorobutyl)-2,4-dinitrobenzene: 1-chloro-4-phenylbutane (2.5 g, 14.82 mmol) was dissolved in 98% H 2 SO 4 (20 mL). An ice water bath was installed, and 70% HNO 3 (5.66 mL, 88.92 mmol) was slowly added dropwise. Then, the mixture was stirred at 80° C. for 3 hours, and water (10 mL) was added to an ice bath to terminate the reaction. Extracted with ethyl acetate (50 mL) and water (50 mL × 4), ethyl acetate was dried over MgSO 4 , and then ethyl acetate was distilled under reduced pressure to obtain a crude product. The crude product was purified through column chromatography (silica gel 60, 70-230 mesh ASTM) to obtain a pure product. (2.49 g, 65%) 1 H NMR (300 MHz, CDCl 3 ) δ 8.72 (d, 1H), 8.38 (dd, 1H), 7.61 (d, 1H), 3.60 (t, 2H), 3.02 (t, 2H), 1.95 (m, 4H).

5) 4-(2,4-디니트로페닐)부탄-1-아민의 합성: 1-(4-클로로부틸)-2,4-디니트로벤젠 (1.0 g, 3.86 mmol)과 암모니아 2.0 M 메탄올 용액 (15 mL)을 마이크로웨이브 반응로(microwave reactor) 전용 반응기에 투입하였다. 마이크로웨이브 반응기를 이용하여 120 ℃에서 20분 동안 반응시켰다. 반응이 끝나면, 감압 증류하여 메탄올을 제거하고, 에틸 아세테이트 (20 mL)와 물 (10 mL × 3)을 사용하여 추출하였다. 그리고 물 층을 중성으로 만들고, MC (15 mL ×4)를 이용하여 추출하였다. MC를 MgSO4를 이용하여 건조한 다음, MC를 감압 증류하여 생성물을 얻었다. (0.32 g, 35%) 1H NMR (300 MHz, CDCl3) δ 8.78 (d, 1H), 8.38 (dd, 1H), 7.61 (d, 1H), 3.01 (t, 2H), 2.73 (t, 2H), 1.62 (m, 4H)5) Synthesis of 4-(2,4-dinitrophenyl)butan-1-amine: 1-(4-chlorobutyl)-2,4-dinitrobenzene (1.0 g, 3.86 mmol) and 2.0 M methanol solution of ammonia (15 mL) was introduced into a reactor dedicated to a microwave reactor. It was reacted at 120° C. for 20 minutes using a microwave reactor. After the reaction was completed, distillation under reduced pressure to remove methanol, and extracted with ethyl acetate (20 mL) and water (10 mL × 3). And the water layer was made neutral, and extracted using MC (15 mL × 4). MC was dried using MgSO 4 , and then MC was distilled under reduced pressure to obtain a product. (0.32 g, 35%) 1 H NMR (300 MHz, CDCl 3 ) δ 8.78 (d, 1H), 8.38 (dd, 1H), 7.61 (d, 1H), 3.01 (t, 2H), 2.73 (t, 2H), 1.62 (m, 4H)

합성된 DNT 유도체 (4-(2,4-디니트로페닐)부탄-1-아민)의 NMR 스펙트럼을 분석하여 목적하는 구조와 같은 DNT 유도체가 합성된 것을 확인하였다.
By analyzing the NMR spectrum of the synthesized DNT derivative (4-(2,4-dinitrophenyl)butan-1-amine), it was confirmed that the DNT derivative having the desired structure was synthesized.

<실시예 3> TNT 특이적인 펩타이드를 가진 파지의 선별과 아미노산 서열 분석<Example 3> Selection and amino acid sequence analysis of phage having TNT-specific peptide

TNT 특이적 파지를 선별하기 위하여 TNT 유도체인 3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드를 링커인 2,5-디옥소피롤리딘-1-일 23-머캅토-3,6,9,12-테트라옥사트리코산-1-오에이트(2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatricosan-1-oate)를 이용하여 금 박막에 고정화하였다. 금 박막 (1.7cm×1.7cm)을 에탄올로 세척한 후 에탄올에 녹아있는 2 mM의 2,5-디옥소피롤리딘-1-일 23-머캅토-3,6,9,12-테트라옥사트리코산-1-오에이트와 빛이 들어오지 않는 조건에서 상온 상태로 14 시간 동안 반응시켰다. 링커가 부착된 금 박막을 에탄올로 세척한 후 1 mM의 3-(2,4,6-트리니트로페녹시)프로판-1-암모니움 클로라이드와 3 mM의 글리신을 50mM NaHCO3(pH9.1)에 녹인 후 금 박막과 14시간 반응시켰다. TNT 유도체가 고정화된 금 박막에 파지 디스플레이 라이브러리 (NEB, 1.5×1013pfu, 10ul)를 TBS 90ul와 섞어서 1시간 동안 반응시킨 후 TBS 500ul을 부어서 10회 세척하였다. TNT 유도체가 고정화된 금 박막 표면에 흡착된 파지를 0.2M 글리신-HCl (pH2.2) 용액으로 용출한 후 5ml의 대장균 현탁액 (ER2738, overnight culture)을 1/100 비율로 LB 배지용액에 희석하였다. 그리고 파지(phage) 용출액을 넣어서 4.5시간 동안 배양한 후 원심분리하고 PEG/NaCl을 써서 파지를 분리함으로써 고정화된 TNT 유도체에 결합하는 파지의 분리 과정을 수행하였다. 이러한 TNT 유도체에 결합하는 파지의 분리 과정을 4회 반복한 후 최종적으로 분리된 파지를 ER2738 대장균 배양액에 접종시킨 후 아가 플레이트에 배양하였다. 아가 플레이트에 형성된 개별적인 파지 플라크에서 파지를 분리한 후 ER2738 대장균 배양액에 접종시킨 후 5시간 배양한 후 파지를 분리하고 분리된 파지로부터 파지 DNA를 정제하였다. 정제된 파지 DNA의 염기서열을 결정하여 파지 표면 단백질에 부착된 펩타이드 서열을 결정하였다.In order to select a TNT-specific phage, 3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride, a TNT derivative, was used as a linker, 2,5-dioxopyrrolidin-1-yl 23-mercapto. Gold using -3,6,9,12-tetraoxatricosan-1-oate (2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatricosan-1-oate) It was immobilized on a thin film. After washing the gold thin film (1.7cm×1.7cm) with ethanol, 2 mM 2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatrico dissolved in ethanol It was allowed to react with acid-1-oate at room temperature for 14 hours under the condition of no light. After washing the gold thin film with the linker attached with ethanol, 1 mM 3-(2,4,6-trinitrophenoxy)propane-1-ammonium chloride and 3 mM glycine were added to 50 mM NaHCO 3 (pH9.1). After melting, it was reacted with the gold thin film for 14 hours. A phage display library (NEB, 1.5×10 13 pfu, 10ul) was mixed with 90ul of TBS and reacted for 1 hour on the gold thin film on which the TNT derivative was immobilized, and 500ul of TBS was poured and washed 10 times. The phage adsorbed on the surface of the gold thin film on which the TNT derivative is immobilized was eluted with 0.2M glycine-HCl (pH2.2) solution, and then 5ml of E. coli suspension (ER2738, overnight culture) was diluted in LB medium solution at a ratio of 1/100. . Then, the phage eluate was added and incubated for 4.5 hours, followed by centrifugation and separation of the phage bound to the immobilized TNT derivative by separating the phage using PEG/NaCl. The separation process of the phage binding to the TNT derivative was repeated 4 times, and the finally separated phage was inoculated into ER2738 E. coli culture medium and then cultured on an agar plate. The phages were separated from individual phage plaques formed on the agar plate, inoculated into ER2738 E. coli culture, and cultured for 5 hours. The phages were separated and phage DNA was purified from the separated phages. The nucleotide sequence of the purified phage DNA was determined to determine the peptide sequence attached to the phage surface protein.

상기 실험을 통하여 상기 서열번호 1 내지 4의 TNT 특이적 펩타이드 서열을 선별하였다.
Through the experiment, the TNT-specific peptide sequences of SEQ ID NOs: 1 to 4 were selected.

<실시예 4> DNT 특이적인 펩타이드를 가진 파지의 선별과 아미노산 서열 분석<Example 4> Selection and amino acid sequence analysis of phage having DNT-specific peptide

DNT 특이적 파지를 선별하기 위하여 DNT 유도체인 4-(2,4-디니트로페닐)부탄-1-아민)을 금 박막에 2,5-디옥소피롤리딘-1-일 23-머캅토-3,6,9,12-테트라옥사트리코산-1-오에이트(2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatricosan-1-oate)를 이용하여 고정화하였다. 금 박막 (1.7cm×1.7cm)을 에탄올로 세척한 후 2 mM의 2,5-디옥소피롤리딘-1-일 23-머캅토-3,6,9,12-테트라옥사트리코산-1-오에이트를 에탄올에 녹인 후 빛이 들어오지 않는 조건에서 상온 상태에서 금 박막과 14 시간 동안 반응시켰다. 링커가 부착된 금 박막을 에탄올로 세척한 후 1 mM의 4-(2,4-디니트로페닐)부탄-1-아민과 3 mM의 글리신을 50mM NaHCO3(pH9.1)에 녹인 후 금 박막과 14시간 반응시켰다. 4-(2,4-디니트로페닐)부탄-1-아민이 고정화된 금 박막에 파지 디스플레이 라이브러리 (NEB, 1.5×1013pfu, 10ul)를 TBS 90ul와 섞어서 1시간 동안 반응시킨 후 TBS 500ul을 부어서 10회 세척하였다. 금 박막 표면에 흡착된 파지를 0.2M 글리신-HCl(pH2.2) 용액으로 용출한 후 5ml의 대장균 현탁액 (ER2738, overnight culture)을 1/100 비율로 LB 배지용액에 희석하였다. 그리고 파지 용출액을 넣어서 4.5시간 동안 배양한 후 원심분리하고 PEG/NaCl을 써서 파지를 분리함으로써 고정화된 DNT 유도체에 결합하는 파지의 분리 과정을 수행하였다. 이러한 DNT 유도체에 결합하는 파지의 분리 과정을 4회 반복한 후 최종적으로 분리된 파지를 ER2738 대장균 배양액에 접종시킨 후 아가 플레이트로 배양하였다. 아가 플레이트에 형성된 개별적인 파지 플라크에서 파지를 분리한 후 ER2738 대장균 배양액에 접종시킨 후 5시간 배양한 후 파지를 분리하고 분리된 파지로부터 파지 DNA를 정제하였다. 정제된 파지 DNA의 염기서열을 결정하여 파지 표면 단백질에 부착된 펩타이드 서열을 결정하였다.In order to select DNT-specific phage, a DNT derivative 4-(2,4-dinitrophenyl)butan-1-amine) was added to a gold thin film with 2,5-dioxopyrrolidin-1-yl 23-mercapto-3. ,6,9,12-tetraoxatricosan-1-oate (2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatricosan-1-oate) was immobilized using. After washing the gold thin film (1.7cm×1.7cm) with ethanol, 2 mM 2,5-dioxopyrrolidin-1-yl 23-mercapto-3,6,9,12-tetraoxatricosan-1- After Oate was dissolved in ethanol, it was reacted with the gold thin film for 14 hours at room temperature under the condition of no light. After washing the gold thin film with the linker attached with ethanol, dissolve 1 mM of 4-(2,4-dinitrophenyl)butan-1-amine and 3 mM glycine in 50 mM NaHCO 3 (pH9.1), and then the gold thin film And reacted for 14 hours. A phage display library (NEB, 1.5×10 13 pfu, 10ul) was mixed with 90ul of TBS and reacted for 1 hour on a gold thin film immobilized with 4-(2,4-dinitrophenyl)butan-1-amine, and 500ul of TBS was added. Poured and washed 10 times. Phage adsorbed on the surface of the gold thin film was eluted with 0.2M glycine-HCl (pH2.2) solution, and then 5 ml of E. coli suspension (ER2738, overnight culture) was diluted in LB medium solution at a ratio of 1/100. Then, the phage eluate was added and cultured for 4.5 hours, followed by centrifugation and separation of phage bound to the immobilized DNT derivative by separating the phage using PEG/NaCl. The separation process of the phage binding to the DNT derivative was repeated four times, and the finally separated phage was inoculated into ER2738 E. coli culture medium, and then cultured on an agar plate. The phages were separated from individual phage plaques formed on the agar plate, inoculated into ER2738 E. coli culture, and cultured for 5 hours. The phages were separated and phage DNA was purified from the separated phages. The nucleotide sequence of the purified phage DNA was determined to determine the peptide sequence attached to the phage surface protein.

상기 실험을 통하여 상기 서열번호 9 내지 11의 DNT 특이적 펩타이드 서열을 선별하였다.
Through the experiment, the DNT-specific peptide sequences of SEQ ID NOs: 9 to 11 were selected.

<실시예 5> TNT/DNT에 특이적인 펩타이드의 TNT/DNT에 대한 선택성 분석<Example 5> TNT/DNT-specific Peptide Selectivity Analysis for TNT/DNT

제조된 펩타이드 (1mg)를 완충용액에 녹인 후 SPR, QCM(Quartz Crystal Microbalance) 또는 Cantilever 등의 측정 기기에 사용되는 금 박막 표면에 도 2와 같이 반응시켰다. 그 후 다음과 같은 과정을 통하여 각각의 선택성을 분석하였다.After dissolving the prepared peptide (1 mg) in a buffer solution, it was reacted on the surface of a gold thin film used in a measuring device such as SPR, QCM (Quartz Crystal Microbalance) or Cantilever as shown in FIG. 2. After that, each selectivity was analyzed through the following process.

1) 금 박막을 입힌 Cantilever를 다음과 같은 과정으로 클리닝하였다. 우선 20 분간 UV 클리닝을 실시하였다. 그리고 2N 의 NaOH 용액에 칩을 30분간 담가둔 후, 탈염수(deionized water)에 10 분 동안 담그고, 다시 1N HCl에 5분간 담근 후, 마지막에 탈염수로 세척하였다.1) The cantilever coated with a gold thin film was cleaned in the following process. First, UV cleaning was performed for 20 minutes. Then, the chips were immersed in 2N NaOH solution for 30 minutes, then immersed in deionized water for 10 minutes, immersed in 1N HCl for 5 minutes, and finally washed with demineralized water.

2) 펩타이드를 PBS 완충액(pH 약 7.2)에 녹여 1mM 용액을 만들어, Cantilever를 약 12 시간 동안 담가둔 후 PBS 완충액과 탈염수로 잘 씻어주었다.2) The peptide was dissolved in PBS buffer (pH about 7.2) to make a 1mM solution, and the cantilever was soaked for about 12 hours, and then washed well with PBS buffer and demineralized water.

3) 실험에 사용하기 전 PBS 완충액에 담근 후 4 ℃에 보관한 후 도 3과 같은 Cantilever 센싱 시스템을 통해 실험을 수행하였다.3) Before use in the experiment, the experiment was performed through the Cantilever sensing system as shown in FIG. 3 after immersing in PBS buffer and storing at 4°C.

실험은, 펩타이드가 코팅된 Cantilever 센싱 시스템에 PBS 완충액을 일정량 주입한 후, 동일한 농도(0.55 mM)의 DNT 및 NT(2-니트로톨루엔)를 PBS 완충액에 녹여 각각 일정량 주입하였다. Cantilever의 처짐량을 측정하는 방법으로 도 3과 같이 주입된 DNT 및 NT는 기화과정을 통해 펩타이드와 선택적 반응을 이룬다. 서열번호 12의 펩타이드를 이용한 결과를 도 4에 나타내었다.In the experiment, after injecting a certain amount of PBS buffer into the peptide-coated Cantilever sensing system, the same concentration (0.55 mM) of DNT and NT (2-nitrotoluene) was dissolved in the PBS buffer, and a certain amount of each was injected. As a method of measuring the amount of deflection of the cantilever, the injected DNT and NT as shown in FIG. 3 undergo a selective reaction with the peptide through a vaporization process. The results using the peptide of SEQ ID NO: 12 are shown in FIG. 4.

<110> Kookmin University Industry Academy Cooperation Foundation <120> Peptide Sensors for Selective Detection of Explosives <130> P12-204 <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 1 His Pro Leu Lys Gln Tyr Trp Trp Arg Pro Ser Ile 1 5 10 <210> 2 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 2 Val Ser Arg His Gln Ser Trp His Pro His Asp Leu 1 5 10 <210> 3 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 3 His Arg Asn His Leu Met Asp Leu Ser Gly Leu Tyr 1 5 10 <210> 4 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 4 Trp Ser Pro Gly Gln Gln Arg Leu His Asn Ser Thr 1 5 10 <210> 5 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 5 His Pro Leu Lys Gln Tyr Trp Trp Arg Pro Ser Ile Gly Cys 1 5 10 <210> 6 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 6 Val Ser Arg His Gln Ser Trp His Pro His Asp Leu Gly Cys 1 5 10 <210> 7 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 7 His Arg Asn His Leu Met Asp Leu Ser Gly Leu Tyr Gly Cys 1 5 10 <210> 8 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 8 Trp Ser Pro Gly Gln Gln Arg Leu His Asn Ser Thr Gly Cys 1 5 10 <210> 9 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 9 Lys Met His Thr Ala Ser Leu Ser Gln Pro Leu Met 1 5 10 <210> 10 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 10 Gln Ser Phe Ala Ser Leu Thr Asn Pro Arg Val Leu 1 5 10 <210> 11 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 11 Ala Ser Thr Ala Ser Leu His Gln Pro Arg 1 5 10 <210> 12 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 12 Lys Met His Thr Ala Ser Leu Ser Gln Pro Leu Met Gly Cys 1 5 10 <210> 13 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 13 Gln Ser Phe Ala Ser Leu Thr Asn Pro Arg Val Leu Gly Cys 1 5 10 <210> 14 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 14 Ala Ser Thr Ala Ser Leu His Gln Pro Arg Gly Cys 1 5 10 <110> Kookmin University Industry Academy Cooperation Foundation <120> Peptide Sensors for Selective Detection of Explosives <130> P12-204 <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 1 His Pro Leu Lys Gln Tyr Trp Trp Arg Pro Ser Ile 1 5 10 <210> 2 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 2 Val Ser Arg His Gln Ser Trp His Pro His Asp Leu 1 5 10 <210> 3 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 3 His Arg Asn His Leu Met Asp Leu Ser Gly Leu Tyr 1 5 10 <210> 4 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 4 Trp Ser Pro Gly Gln Gln Arg Leu His Asn Ser Thr 1 5 10 <210> 5 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 5 His Pro Leu Lys Gln Tyr Trp Trp Arg Pro Ser Ile Gly Cys 1 5 10 <210> 6 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 6 Val Ser Arg His Gln Ser Trp His Pro His Asp Leu Gly Cys 1 5 10 <210> 7 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 7 His Arg Asn His Leu Met Asp Leu Ser Gly Leu Tyr Gly Cys 1 5 10 <210> 8 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of TNT <400> 8 Trp Ser Pro Gly Gln Gln Arg Leu His Asn Ser Thr Gly Cys 1 5 10 <210> 9 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 9 Lys Met His Thr Ala Ser Leu Ser Gln Pro Leu Met 1 5 10 <210> 10 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 10 Gln Ser Phe Ala Ser Leu Thr Asn Pro Arg Val Leu 1 5 10 <210> 11 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 11 Ala Ser Thr Ala Ser Leu His Gln Pro Arg 1 5 10 <210> 12 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 12 Lys Met His Thr Ala Ser Leu Ser Gln Pro Leu Met Gly Cys 1 5 10 <210> 13 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 13 Gln Ser Phe Ala Ser Leu Thr Asn Pro Arg Val Leu Gly Cys 1 5 10 <210> 14 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Peptide for Selective Detection of DNT <400> 14 Ala Ser Thr Ala Ser Leu His Gln Pro Arg Gly Cys 1 5 10

Claims (7)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 지지체 표면에 고정화된, 단분자 상태의 3-(2,4,6-트리니트로페녹시)프로판-1-아미노 기를 이용하는 것을 특징으로 하는 TNT 특이적 펩타이드의 검출 방법.Characterized in that a monomolecular 3- (2,4,6-trinitrophenoxy) propane-1-amino group immobilized on the surface of a support is used.
KR1020120103016A 2012-09-17 2012-09-17 Peptide Sensors for Selective Detection of Explosives KR101711600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120103016A KR101711600B1 (en) 2012-09-17 2012-09-17 Peptide Sensors for Selective Detection of Explosives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120103016A KR101711600B1 (en) 2012-09-17 2012-09-17 Peptide Sensors for Selective Detection of Explosives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020100084325A Division KR101230398B1 (en) 2010-08-30 2010-08-30 Peptide Sensors for Selective Detection of Explosives

Publications (2)

Publication Number Publication Date
KR20120119206A KR20120119206A (en) 2012-10-30
KR101711600B1 true KR101711600B1 (en) 2017-03-02

Family

ID=47286500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120103016A KR101711600B1 (en) 2012-09-17 2012-09-17 Peptide Sensors for Selective Detection of Explosives

Country Status (1)

Country Link
KR (1) KR101711600B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407150B (en) * 2014-11-12 2016-03-30 浙江大学 For the biological nano transducer production method that 2,4,6-TNT detects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060035223A1 (en) * 2002-03-13 2006-02-16 Naik Rajesh R Method of isolating binding peptides from a combinatorial phage display library and peptides produced thereby
US20110311551A1 (en) * 2003-04-01 2011-12-22 Petit Marie Anne Antibodies directed against hepatitis c virus e1e2 complex, compositions of hcv particles, and pharmaceutical compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060035223A1 (en) * 2002-03-13 2006-02-16 Naik Rajesh R Method of isolating binding peptides from a combinatorial phage display library and peptides produced thereby
US20110311551A1 (en) * 2003-04-01 2011-12-22 Petit Marie Anne Antibodies directed against hepatitis c virus e1e2 complex, compositions of hcv particles, and pharmaceutical compositions

Also Published As

Publication number Publication date
KR20120119206A (en) 2012-10-30

Similar Documents

Publication Publication Date Title
Liu et al. Fluorescent sensors for amino acid anions based on calix [4] arenes bearing two dansyl groups
US20060275823A1 (en) Selection of peptides with antibody-like properties
EP1423685A2 (en) Method and device for the detection of trace amounts of a substance, using a piezoelectric crystal element
Stones et al. Modular solid‐phase synthetic approach to optimize structural and electronic properties of oligoboronic acid receptors and sensors for the aqueous recognition of oligosaccharides
CN109575042B (en) Chiral fluorescent probe with spiropyran characteristic and preparation method and application thereof
KR101230398B1 (en) Peptide Sensors for Selective Detection of Explosives
KR101711600B1 (en) Peptide Sensors for Selective Detection of Explosives
US20120108450A1 (en) Receptors Useful for Gas Phase Chemical Sensing
KR100698763B1 (en) Novel aminocalixarene derivatives, method of preparation thereof, self-assembledmonolayer prepared by using them and fixing method of oligo-dna by using the same and dna chip prepared by the method
CN107400070B (en) Biguanide probe and preparation method thereof
CN110938007A (en) Dicofol hapten, artificial antigen, antibody, synthetic method and application thereof
CN113620847B (en) Naphthalenesulfonyl compounds, preparation method and application thereof
CN108948128A (en) It is a kind of based on electron deficient benzaldehyde without catalyst hydrazone connecting peptides or chemical modification method
Richter et al. Curtius degradation in solid-phase synthesis
CN110483548B (en) Piperlongumine derivative and preparation method and application thereof
CN110240706B (en) Cd-MOF material and preparation method and application thereof
JP7345841B2 (en) Linker compounds, diamond electrodes, devices, methods for detecting pathogens or proteins, and methods for manufacturing diamond electrodes
Maftouh et al. Synthesis of haptens for immunoassay of chlorpyrifos-ethyl as organophosphorus pesticides
WO2004040305A1 (en) Method of immobilizing compound on solid phase support
CN114349800B (en) Ferrocene derivative and synthetic method and application thereof
Dai et al. Solution‐phase synthesis and evaluation of tetraproline chiral stationary phases
JP2003514876A (en) New functionalized polymer reagent
Kuchelmeister et al. An efficient synthesis of an orthogonally protected aromatic diamine as scaffold for tweezer receptors with two different arms
Jang et al. Identification of dinitrotoluene selective peptides by phage display cloning
WO2016175049A1 (en) Novel method for detecting protein or pathogen

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 4